当前位置:文档之家› 量子力学发展史

量子力学发展史

量子力学发展史
量子力学发展史

计算机分子模拟论文---量子力学发展历程简史

学院:文学院

班级:法学11-1班

姓名:杜鹃

学号:11103120

2012年11月28日

量子力学发展历程简史

摘要:量子力学是描写微观物质的一个物理学理论,与相对论一起被认为是现代物理学的两大基本支柱。只有量子力学才能描述原子核与电子的运动规律计算机科学最底层次就是量子力学层次,它也是其他更高层次计算的基础。量子力学的威力是人类之前建立的任何一个理论无法匹敌的。它完美地解释了经典力学无法解释的物理现象,并成功地预言了后来的许多实验发现。量子力学还把大量的其他理论融入自己的体系中。现代物理学的绝大多数基础理论,包括狭义相对论,都被量子力学纳入量子场论的范畴中。

关键词:经典量子论量子力学普朗克常数波函数波粒二象性玻尔模型

引言:量子力学是描写微观物质的一个物理学理论,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学如原子物理学、固体物理学、核物理学和粒子物理学以及其它相关的学科都是以量子力学为基础。19世纪末,经典力学和经典电动力学在描述微观系统时的不足越来越明显。而后,量子力学始于20世纪初马克斯·普朗克和尼尔斯·玻尔的开创性工作,马克斯·玻恩于1924年创造了“量子力学”一词。因其成功的解释了经典力学无法解释的实验现象,并精确地预言了此后的一些发现,物理学界开始广泛接受这个新理论。量子力学早期的一个主要成就是成功地解释了波粒二象性,此术语源于亚原子粒子同时表现出粒子和波的特性。

只有量子力学才能描述原子核与电子的运动规律计算机科学最底层次就是量子力学层次,它也是其他更高层次计算的基础。量子力学的发展差不多分为两个理论阶段,其一是经典量子论,其二是现代量子力学的发展。世界上第一个量子理论:普朗克和黑体辐射。

一、经典量子论

19世纪末,。其中,伦琴 1895年“X射线”,贝克勒尔1896年的“放射性”,汤姆孙1897年的“电子的发现”。这三大发现,揭开了近代物理发展的序幕。

普朗克常数

经典物理有一个关于黑体辐射问题的推论:当频率增大时,黑体辐射【6】将会释放出无限大的能量。,马克斯·普朗克给出了一个能够解释黑体光谱实验现象的经验公式(利用数学插值法),但他不能使之和经典物理相协调。他得出的结论是,和从前大家所普遍相信的不一样,经典物理并不适用于微观世界。

普朗克,德国物理学家,量子力学的创始人,二十世纪最重要的物理学家之一,因发现能量量子而对物理学的进展做出了重要贡献,并在1918年获得诺贝尔物理学奖。1900年,普朗克为了解释黑体辐射现象,引入一个“离经叛道”的假设: 黑体吸收或发射辐射的能量必须是不连续的。这一重要事件后来被认为是量子革命的开端。普朗克为此获1918年诺贝尔物理学奖。普朗克最先提出了

能量量子的概念,指出黑体是由谐振子构成, 能量为nh ν (n=1,2,…3, ν 为谐振

子的固有振动频率), 物体发射或吸收电磁辐射的过程, 是以不可分割的能量量

子(h ν)为单元不连续地进行的, h 为普朗克常数, h =6.626*10-34J ·s 。普朗克于会议上提出了能量量子化的假说: 1

其中E 是能量,是频率,并引入了一个重要的物理常数h ——普朗克常数,

能量只能以不可分的能量元素(即量子)的形式向外辐射。这样的假说调和了经

典物理学理论研究热辐射规律时遇到的矛盾。基于这样的假设,他并给出了黑体

辐射的普朗克公式,圆满地解释了实验现象。这个成就揭开旧量子论与量子力学

的序幕,因此12月14日成为了量子日,以作纪念。普朗克也此获得1918年诺

贝尔物理学奖。尽管在后来的时间里,普朗克一直试图将自己的理论纳入经典物

理学的框架之下,但他仍被视为近代物理学的开拓者之一。

爱因斯坦,德国科学家,20世纪犹太裔理论物理学家、思想家及哲学家,

也是相对论的创立者。被誉为是“现代物理学之父”及二十世纪世界最重要科学

家之一。1905年,爱因斯坦对光电效应提出了一个理论,解决了之前光的波动

理论所无法解释的这个实验现象。他引入了光子,一个携带光能的量子的概念。

在光电效应中,人们观察到将一束光线照射在某些金属上会在电路中产生一

定的电流。可以推断是光将金属中的电子打出,使得它们流动。然而,人们同时

观察到,对于某些材料,即使一束微弱的蓝光也能产生电流,但是无论多么强的

红光都无法在其中引出电流。根据波动理论,光强对应于它所携带的能量,因而

强光一定能提供更强的能量将电子击出。然而事实与预期的恰巧相反。

爱因斯坦将其解释为量子化效应:电子被光子击出金属,每一个光子都带有

一部分能量E ,这份能量对应于光的频率ν:E=h ν λh p =

这里h 是普朗克常数(6.626 x 10^-34 J s )。

以上两式是光的波粒二象性的数学表达式,它们将标志波动性质的频率和波

长,通过一个普适常量—普朗克常数,同标志粒子性质的能量和动量联系起来。

体现:1、光既有粒子性又有波动性;

2、光在传播时显示出波动性,而在转移能量时显示出粒子性。

3、在任何一个特定的事例中,光要么显示出粒子性,要么显示出波动性,

二这决不会同时出现。

光束的颜色决定于光子的频率,而光强则决定于光子的数量。由于量子化效

应,每个电子只能整份地接受光子的能量,因此,只有高频率的光子(蓝光,而

非红光)才有能力将电子击出。

约化普朗克常数(狄拉克常数) 普朗克常数最初只是连接光的能量和频率的比例因子。为探索为何2π和普

朗克常数一起出现在了他推导出的数学表述中。德布罗意假设电子也如同光子那

样具有频率,而其此频率必须满足电子在特定轨道稳定存在的驻波条件。这就是

说,电子波圆周运动的轨迹必须光滑的衔接起来,波峰和波谷连续分布。中间不

能有间断,周长的每一段都是振动的一部分,而且波形不能重叠。

质量为m 的粒子,以速度 v 匀速运动时,一方面可以用能量E 和动量P 对

它作粒子的描述,另一方面也可以用频率ν,波长λ作波的描述,其关系为: ???==λ

ν/h p h E mv h p h ==λ 此式称为德布罗意公式,这种波称为德布罗意波或物质波。

德布罗意关系λ=h/p,和量子关系E=h γ(及薛定谔方程)这两个关系式实际

表示的是波性与粒子性的统一关系, 而不是粒性与波性的两分。德布罗意物质波

是粒波一体的真物质粒子,光子,电子等的波动。3

玻尔的原子模型

1887年,J ·J ·汤姆生领导的一个研究小组发现了一种带着一个单位负电荷

且质量极小的基本粒子并把它命名为电子。通过金箔实验,物理学家认识到物质

的内部几乎是真空的,原子核只占了原子很小的一部分。这个事实清楚之后,就

可以很自然的假设负电子在轨道上环绕着原子核运动,就像太阳系的行星那样。

但这种简单的类比的后果就是:根据经典电动力学,电子在运动时会不断向外辐

射电磁波,失去能量的电子最终将会坠入原子核中。以此推论,电子大约只能存

在百分之一微秒。因此,20世纪初困扰物理学家们最大的问题就是:电子是如

何保持稳定轨道的?

1913年,为了解决这个问题,尼尔斯·玻尔假设了电子的轨道是量子化的

(不连续)。这就是著名的玻尔原子模型【7】。玻尔的基本假设是:电子只能占

据原子核外的特定轨道,这些轨道能够在对单一元素的原子的光谱分析后得出。

【1】

波粒二象性

玻尔指出了粒子说和波动说都不能独立的说明经实验观测到得光的特性。所

有形式的电磁辐射都在一些实验中表现出波动性,却又在别的一些实验中表现出

粒子性。以此为根据,玻尔阐明了对应原理,此原理针对一些相对应的概念,如

波动性和粒子性,位置和动量等。1924年,德布罗意推广了玻尔的模型和理论。

提出“物质波”假说,认为和光一样,一切物质都具有波粒二象性。根据这一假

说,电子也会具有干涉和衍射等波动现象,这被后来的电子衍射试验所证实。德

布罗意受爱因斯坦的“光子学说”的启发, 大胆假设电子具有波动性。特别的

是,只有环绕原子核形成驻波时,电子才能被观测到。“驻波”的波形无法前进,

因此无法传播能量。1924年11月,德布罗意在其博士论文里首次提出所有物质

粒子具有波粒二象性的假设。

1927年,C.J.戴维孙和L.H.革末做了晶体对电子的衍射实验。电子衍射的

发现证实了L.V.德布罗意提出的电子具有波动性的设想,构成了量子力学的实

验基础。证明了德布罗意关于所有的物质粒子都具有波粒二象性假设的真实性。

同年,海森伯提出“不确定关系”。它反映了微观粒子运动的基本规律,是

物理学中一个极为重要的关系式,它包括多种表示形式。由于粒子的波动性,它

在客观上不能同时具有确定的坐标位置位置和相应的动量。不确定关系式是物质

粒子波粒二象性【8】的反映。其物理意义:微观粒子的位置和动量不能同时准

确地测定。

二,现代量子力学的发展

完整的量子论

1932年诺贝尔物理学奖获得者,维尔纳·海森堡在1925年建立起了完整的量子力学理论。【2】

薛定谔波动方程

奥地利理论物理学家,量子力学的奠基人之一。1933年和英国物理学家狄拉克共同获得了诺贝尔物理学奖,被称为量子物理学之父。1925年,基于德布罗意的物质波模型,埃尔温·薛定谔假设电子就是那样环绕原子核的波,然后对电子的行为进行了数学分析。他并没有把电子比作绕行星转动的卫星,而是直接把它们看作在原子核周围的某种波,并且指出描述各个电子的波函数都是互不相同的。而这种波函数所遵守的方程被命名为薛定谔方程【9】,以纪念他为量子力学做出的贡献。1926年,薛定谔首次建立了微观粒子的波动方程,标志着新量子时代到来,之后这一领域取得了辉煌的成就,并对其它化学学科激起了层层千浪。特别是随着计算机的高速发展,可以快速、简便地获得大量微观电子结构,从而能为化学研究提供丰富的信息。

薛定谔建立了描述微观粒子运动状态的波函数所满足的方程 — 薛定谔方程:

)()(d d 22

22x V E x m ψψ-=- 薛定谔方程是量子力学中的基本方程,已知 U 求解方程得到描述粒子运动状态的波函数。它分别从三个性质出发描述了波函数:

1. 轨道的名称表明了粒子波的能量高低(离原子核越近能量越低)。

2. 轨道的形状,球形或者其他。

3. 轨道的倾角,决定了电子对z 轴的磁矩。

这三种特性被归纳成描述电子量子态的波函数 。量子态代表着电子的这些特性,它适时的描述了电子的状态。这三个被波函数描述的特性分别被称之为电子的量子数。【3】1926年5月,薛定谔证明了海森堡的矩阵力学和他的波动力学对电子性质和行为的预测结果是相同的;而它们在数学上也是等价的。

不确定性原理

海森堡又提出了著名的“不确定性原理【10】”(又称“海森堡测不准原理”),在一个量子力学系统中,一个运动粒子的位置和它的动量不可被同时确定,位置的不确定性和动量的不确定性是不可避免的,它们的乘积不小于(为普朗克常数),这些误差对于人类来说虽然是微小的,但是在原子研究中并不能被忽略。其物理意义是微观粒子的位置和动量不能同时准确地测定。由于粒子的波动性,它在客观上不能同时具有确定的坐标位置位置和相应的动量。因此可以这样说,不确定关系式,它反映了微观粒子运动的基本规律,是物理学中一个

极为重要的关系式。

自牛顿以来的经典物理学告诉我们,如果我们知道某一时刻行星和恒星的位置和运动状态,我们就能够预测它们在未来任何时刻运动状态。不确定原理则告诉我们这对于亚原子世界是不适用的。我们不能同时精确测量出微观粒子位置和动量,对于粒子未来的运动状态,我们只能给出一种概率分布,该分布只能告诉我们在未来它处在这种状态的可能性。源自波粒二象性的不确定性原理的影响只在亚原子尺度时显现出来。尽管这些现象违背了我们的直觉,以不确定原理著称的量子力学仍然不断引领着科学技术的进步,如果没有它,我们也就不会拥有电子计算机,荧光灯以及医学影像设备。

海森堡对建立量子力学做出重要贡献。

波函数

波函数【12】是描述微观粒子运动状态的函数称为微观粒子的波函数。波函数的表达式:

)(),(r P t E i 0e Ψt r Ψ

?--= 波函数不能直接观测,玻恩说:2||ψ是电子(或其他粒子)出现的几率密度 ,即波函数模的平方对应于微观粒子在某处出现的几率密度。

在某一时刻,粒子在空间某处的体积元dV 中出现的概率与该处波函数模的平方成正比:

V

w d d 2==*ψψψ 波函数的物理意义: 2

ψ 表示t 时刻,粒子在空间x 处的单位体积内出现的概率。而微观粒子在各处出现的概率密度才具有明显的物理意义。波函数是描述微观粒子状态的函数,其模的平方对应于粒子出现的概率密度;而微观粒子运动所遵循的规律是薛定谔方程。波函数概念的形成正是量子力学完全摆脱经典观念、走向成熟的标志;波函数和概率密度,是构成量子力学理论的最基本的概念。玻恩对波函数所作出的几率解释,此解释赋予微观粒子运动规律以至量子理论以统计性特色,使非决定论成为量子物理的新思想方法。

波函数的归一化条件,因为在整个空间发现粒子的总概率为100% 1d )(3

2)total (=?r r ψ 此式称为归一化条件 归一化的波函数对应的概率密度是相对概率而非绝对概率,亦即在所指定空间区域观察到粒子的概率占全空间概率的分数。

原子内电子不是如玻尔原子理论所假定的那样——在一些分立的轨道上作圆周运动,而是处于不同量子态的电子在原子内各处都有一定的几率分布。【4】

泡利不相容原理

沃尔夫冈·泡利奥地利物理学家,20世纪最重要的物理学家之一。他最突出的贡献在于对自旋(b)的研究。“泡利不相容原理【11】”表明了一个原子里的每一个费米子必然具有不相同的量子状态。它的一个非常重要的推论就是对任何原子,两个电子都不能具有同样的量子态。于1925年,泡利的“泡利不相容原理”也是近代量子力学的伟大发现之一。沃尔夫冈·泡利给出了“泡利不相容原理”简单的表述:一个原子中没有两个量子数完全相同的电子。沃尔夫冈·泡利的不相容原理是从他称做“量子自由度的双重值”的理论发展而来的。这个理论是为了解释氢原子光谱中成对出现的两根非常接近的谱线。这个现象意味着原子的磁矩比预先设想的要大。

1925年初,乔治·乌伦贝克和塞缪尔·高德斯密特提出电子可能像地球那样绕自身的轴自转的假设,他们把这种特性称之为自旋。自旋能够解释多出来的那部分磁矩,并且让两个电子在不违反不相容原理的条件下占据同一个轨道成为了可能——只需要它们自旋方向相反。这时就需要一个新的量子数来描述原子自旋的动量。

就这样,我们就确定了电子具有四个量子数:

①n:主量子数

②l:角量子数

③m1::磁量子数

④m2:自旋量子数

三,量子力学发展评述

经典力学和量子力学相比,经典力学就是一个巨人国,而量子力学只相当于一个小人国。经典力学适用范围宏观、低速;而量子力学适用范围微观、高速。经典力学的状态描述位置、动量、牛顿的运动方程;量子力学状态描述波函数、薛定谔方程。但二者也有相似之处,他们的普遍适用规律是动量守恒定律,角动量守恒定律、能量守恒定律等。现代物理学的分支和相关边缘学科都是以量子力学为基础。

毫无疑问,量子力学的威力是人类之前建立的任何一个理论无法匹敌的。它完美地解释了经典力学无法解释的物理现象,并成功地预言了后来的许多实验发现。量子力学还把大量的其他理论融入自己的体系中。现代物理学的绝大多数基础理论,包括狭义相对论,都被量子力学纳入量子场论的范畴中。经典力学在人们生活中仍旧起作用,这是因为几乎所有的经典物理内容都可以被看做是量子物理和相对论的近似情况。

广义相对论和相对论性量子力学联合起来的终极理论被誉为当代理论物理学的圣杯。也即,量子力学和相对论一起构成近代物理学的两大理论支柱。量子力学为在原子-分子水平上揭示化学问题的本质奠定了牢固的理论基础。因为,化学反应基本过程是伴随着反应体系原子核的重排而发生的电子运动状态的改变,这些微观运动均服从薛定谔方程。

然而尽管量子力学在预言和实用上取得了空前的成功,它的很多方面却一直在挑战着我们的直觉。量子力学所描述的微观物质的行为,和我们由日常经验所能想象的实在是相差甚远。例如薛定谔的猫。,1957年,吴健雄与她的合作者验证了杨振宁和李政道提出的“宇称不守恒”,几乎使提出不相容理论的泡利休克。

但量子力学也不是“绝对真理”,理论物理学家曾谨言也在《物理》杂志所发表的《量子物理学百年回顾》一文中表达了他的看法:“迄今所有实验都肯定了量子力学的正确性,但这只表明:它在人类迄今实践所及的领域是正确的。量子力学并非绝对真理。量子力学并没有,也不可能关闭人们进一步认识自然界的道路。量子力学与广义相对论之间的矛盾并未解决。”著名物理学家费曼就曾说:“我敢肯定,现在没有一个人能够懂得量子力学。”

但随着理论知识的发展,理论与实际的结合越来越紧密,希望能够为量子力学的发展开辟一条更广阔的路。

(a)热辐射即物体因其自身温度而从物体表面发射出来的电磁辐射。如果有一个物体经过充分加热以后,会开始发射出光谱中红色端的光线而变得火红。再进一步加热物体时会使颜色发生变化,发射出波长较短(频率较高)的光线。而且这个物体既可以是完美的发射体,同时也可以是完美的吸收体。当物体处于冰冷状态时,看起来是纯粹的黑色,此时物体几乎不会发射出可见光,而且还会吸纳落在物体上的光线。这个理想的热发射体就被视为黑体,而黑体发出的辐射就称为黑体辐射。

(b)在量子力学中,自旋是粒子所具有的内在性质,其运算规则类似于经典力学的角动量,并因此产生一个磁场。

参考文献:

【1】来自于修订于2012年11月19日《量子力学入门》——《经典力学》—“玻尔的原子模型篇”

【2】来自于修订于2012年11月19日《量子力学入门》——《现代量子力学的发展》—“完整量子论”

【3】来自于修订于2012年11月19日《量子力学入门》——《现在量子力学的发展》—”薛定谔波动方程”

【4】源于赵联明博士的《计算机分子模拟》课件。

【5】参考资料:马克斯?普朗克个人发展简史;维尔纳?海森堡个人发展简史;尼尔斯?玻尔个人发展简史;马克斯?玻恩个人发展简史;沃尔夫冈?泡利个人发展简史;保罗?狄拉克个人发展简史;埃尔温?薛定谔个人发展简史;阿尔伯特?爱因斯坦个人发展简史;德布罗意个人发展史

【6】参考资料:维基百科《黑体辐射》修订于2012年10月13日

【7】参考资料:维基百科《玻尔原子模型》国立交通大学物理系视听教学:玻尔模型;修订于2012年7月31日

【8】参考资料:维基百科《波粒二象性》修订于2012年11月19日;国立交通大学物理系视听教学:量子力学导论

【9】参考资料《薛定谔方程》修订于2012年10月18日

【10】参考资料:维基百科《不确定性原理》修订于2012年11月13日

【11】参考资料:维基百科《泡利不相容原理》Ford, Kenneth William. 101 Quantum Questions. Harvard University Press. 2012: pp.117. 修订于2012年9月16日

【12】参考资料:维基百科《波函数》修订于2012年7月14日

量子力学发展简史

量子力学发展简史 摘要: 相对论是在普朗克为了克服经典理论解释黑体辐射规律的困难,引入能量子概念的基础上发展起来的,爱因斯坦提出光量子假说、运用能量子概念使量子理论得到进一步发展。玻尔、德布罗意、薛定谔、玻恩、狄拉克等人为解决量子理论遇到的困难,进行了开创性的工作,先后提出电子自旋概念,创立矩阵力学、波动力学,诠释波函数进行物理以及提出测不准原理和互补原理。终于在1925 年到1928年形成了完整的量子力学理论,与爱因斯坦的相对论并肩形成现代物理学的两大理论支柱。 关键词:量子力学,量子理论,矩阵力学,波动力学,测不准原理 量子力学是研究微观粒子(如电子、原子、分子等)的运动规律的物理学分 支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对论一起构成了现代物理学的理论基础,是现代物理学的两大基本支柱。经典力学奠定了现代物理学的基础,但对于高速运动的物体和微观条件下的物体,牛顿定律不再适用,相对论解决了高速运动问题;量子力学解决了微观亚原子条件下的问题。量子力学认为在亚原子条件下,粒子的运动速度和位置不可能同时得到精确的测量,微观粒子的动量、电荷、能量、粒子数等特性都是分立不连续的,量子力学定律不能描述粒子运动的轨道细节,只能给出相对机率,为此爱因斯坦和玻尔产生激烈争论,并直至去世时仍不承认量子力学理论的哥本哈根诠释。 量子力学是一个物理学的理论框架,是对经典物理学在微观领域的一次革命。 它有很多基本特征,如不确定性、量子涨落、波粒二象性等,在原子和亚原子的微观尺度上将变的极为显著。爱因斯坦、海森堡、玻尔、薛定谔、狄拉克等人对其理论发展做出了重要贡献。原子核和固体的性质以及其他微观现象,目前已基本上能从以量子力学为基础的现代理论中得到说明。现在量子力学不仅是物理学中的基础理论之一,而且在化学和许多近代技术中也得到了广泛的应用。上世纪末和本世纪初,物理学的研究领域从宏观世界逐渐深入到微观世界;许多新的实验结果用经典理论已不能得到解释。大量的实验事实和量子论的发展,表明微观粒子不仅具有粒子性,同时还具有波动性(参见波粒二象性),微观粒子的运动不能用通常的宏观物体运动规律来描写。德布罗意、薛定谔、海森堡,玻尔和狄拉克等人逐步建立和发展了量子力学的基本理论。应用这理论去解决原子和分子范围内的问题时,得到与实验符合的结果。因此量子力学的建立大大促进了原子物理。固体物理和原子核物理等学科的发展,它还标志着人们对客观规律的认识从宏观世界深入到了微观世界。量子力学是用波函数描写微观粒子的运动状态,以薛定谔方程确定波函数的变化规律,并用算符或矩阵方法对各物理量进行计算。因此量子力学在早期也称为波动力学或矩阵力学。量子力学的规律用于宏观物体或质量和能量相当大的粒子时,也能得出经典力学的结论。在解决原子核和基本粒子的某些问题时,量子力学必须与狭义相对论结合起来(相对论量子力学),并由此逐步建立了现代的量子场论。

物理学发展简史

物理学发展简史 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

一、古典物理学与近代物理学: 1、古典物理学:廿世纪以前所发展的物理学称为古典物理学,以巨观的角度研究物理,可分为 力学、热学、光学、电磁学等主要分支。 2、近代物理学:廿世纪以后(1900年卜朗克提出量子论后)所发展的物理学称为近代物理学, 以微观的角度研究物理,量子力学与相对论为近代物理的两大基石。

一、古典物理学对人类生活的影响: 1、力学:简单机械(杠杆、轮轴、滑轮、斜面、螺旋、劈) …… 2、光学: (一)反射原理: (1)平面镜:镜子…… (2)凹面镜:手电筒、车灯、探照灯…… (3)凸面镜:路口、商店监视镜…… (二)折射原理: (1)凸透镜:放大镜、显微镜、相机…… (2)凹透镜:眼镜、相机…… 3、热学:蒸汽机、内燃机、引擎、冰箱、冷(暖)气机…… 4、电学: (一)利用电能运作:一般电器用品,如:电视机、冰箱、洗衣机…… (二)利用电磁感应:发电机、变压器…… (三)利用电磁波原理:无线通讯、雷达…… 二、近代物理学对人类生活的影响: 1、半导体: (一)半导体:导电性介于导体和绝缘体间之一种材料,可分为元素半导体(如:硅、锗等)和 化合物半导体(如:砷化镓等)两种。 (二)用途: (1)半导体制成晶体管,体积小、耗电量少,具有放大电流讯号功能。 (2)半导体制成二极管具整流能力。 (3)集成电路(IC): (A)1958年发展出「集成电路」技术,系利用长晶、蚀刻、蒸镀等方式于一小芯片上容 纳上百万个晶体管、二极管、电阻、电感、电容等电子组件之技术,而此电路即称为 集成电路。 (B)IC之特性:体积小、效率高、耗电低、稳定性高、可大量生产。 (C)IC之应用:计算机、手机、电视、计算器、手表等电子产品。 (4)计算机信息科技之扩展大辐改变了人类的生活习惯,故俗称第二次工业革命。 2、雷射: (一)原理:利用爱因斯坦「原子受激放射」理论,诱发大量原子由受激态同时做能态之跃迁 并放射同频率之光子,藉以将光加以增强。 (二)特性:聚旋光性好、强度高、光束集中、频率单一(单色光)。 (三)应用:

浅谈量子力学的前沿进展

量子力学论文 题目:浅谈量子力学的前沿进展 学院: 专业: 学号: 姓名: 时间:2014年7月1日 指导教师:

浅谈量子力学的前沿进展 摘要:量子力学是在19世纪末发展起来的一门新科学,而且它还一直处于不断地发展中,在自然科学中具有重要作用。量子力学的规律已成功地运用于各个领域,物理、材料、化学、生命、信息和制药等,量子力学与我们的生活密切相关。量子力学是研究微观粒子的运动规律,主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论。量子力学诞生至今一百年。经过一百年的发展,它由原子层次的动力学理论,已经向物理学和其他学科以及高新技术延伸。而事实上,它已超出物理学范围;它不仅是现代物质科学的主心骨,又是现代科技文明建设的主要理论基础之一。本文将对量子力学目前的发展、应用以及前沿进展做出阐述。

关键词:量子力学;发展;前沿 Abstract Quantum Mechanics was a new subject that was formulated at the end of the 19th century and is still under development. It plays a key role in natural sciences. The theory of Quantum Mechanics is applied to a variety of areas, such as physics, materials, chemistry, life science, informatics and pharmacy and is closely related to our daily life. Quantum Mechanics is a basic theory that studies the motion law of microscopic particles and studies mainly atoms, molecules, condensed matter, and the structure and nature of atomic nucleus and fundamental particles. It has been one hundred years up to now when Quantum Mechanics was founded. It extended from kinetic theory at atomic level to Physics and other subjects and high-tech within one hundred years of development. As a matter of fact, it has beyond the scope of Physics; it is not only the backbone of modern matter science, but also one of the main theoretical basis of modern science and civilization construction. This paper will make a simple exposition for the modern development, application and leading edge of Quantum Mechanics.

量子力学考试题

量子力学考试题 (共五题,每题20分) 1、扼要说明: (a )束缚定态的主要性质。 (b )单价原子自发能级跃迁过程的选择定则及其理论根据。 2、设力学量算符(厄米算符)∧ F ,∧ G 不对易,令∧K =i (∧F ∧G -∧G ∧ F ),试证明: (a )∧ K 的本征值是实数。 (b )对于∧ F 的任何本征态ψ,∧ K 的平均值为0。 (c )在任何态中2F +2 G ≥K 3、自旋η/2的定域电子(不考虑“轨道”运动)受到磁场作用,已知其能量算符为 S H ??ω= ∧ H =ω∧ z S +ν∧ x S (ω,ν>0,ω?ν) (a )求能级的精确值。 (b )视ν∧ x S 项为微扰,用微扰论公式求能级。 4、质量为m 的粒子在无限深势阱(0

(a )能量有确定值。力学量(不显含t )的可能测值及概率不随时间改变。 (b )(n l m m s )→(n’ l’ m’ m s ’) 选择定则:l ?=1±,m ?=0,1±,s m ?=0 根据:电矩m 矩阵元-e → r n’l’m’m s ’,n l m m s ≠0 2、(a )6分(b )7分(c )7分 (a )∧ K 是厄米算符,所以其本征值必为实数。 (b )∧ F ψ=λψ,ψ∧ F =λψ K =ψ∧ K ψ=i ψ∧F ∧ G -∧ G ∧F ψ =i λ{ψ∧ G ψ-ψG ψ}=0 (c )(∧F +i ∧G )(∧F -i ∧G )=∧ F 2 +∧ G 2 -∧ K ψ(∧F +i ∧G )(∧F -i ∧G )ψ=︱(∧ F -i ∧ G )ψ︱2≥0 ∴<∧ F 2 +∧ G 2-∧ K >≥0,即2F +2 G ≥K 3、(a),(b)各10分 (a) ∧ H =ω∧ z S +ν∧ x S =2ηω[1001-]+2ην[0110]=2η[ων ν ω -] ∧ H ψ=E ψ,ψ=[b a ],令E =2η λ,则 [λωννλω---][b a ]=0,︱λων ν λω---︱ =2λ-2ω-2ν=0 λ=±22νω+,E 1=-2η22νω+,E 2=2η 22νω+ 当ω?ν,22νω+=ω(1+22ων)1/2≈ω(1+222ων)=ω+ων22 E 1≈-2η[ω+ων22],E 2 =2η [ω+ων22] (b )∧ H =ω∧z S +ν∧ x S =∧H 0+∧H ’,∧ H 0=ω∧ z S ,∧ H ’=ν∧ x S ∧ H 0本征值为ωη21± ,取E 1(0)=-ωη21,E 2(0) =ωη21 相当本征函数(S z 表象)为ψ1(0)=[10],ψ2(0)=[01 ] 则∧ H ’之矩阵元(S z 表象)为

有量子力学发展史谈一谈物理学研究方法汇总

量子力学理论体系的发展,从二十世纪初开始,经历了半个多世纪,积累了十二项诺贝尔物理学奖的成果才形成的。 德国物理学家普朗克因发现能量子而对物理学的发展做出杰出贡献,荣获1918 年度诺贝尔物理学奖。他 1895 年开始研究热辐射问题,1900 年普朗克在德国物理学会年会上宣读了《关于正常光谱的能量分布定律》的论文。他指出能量在辐射过程中不是连续的,而是如一股股的涓流似的被释放。这股涓流就是量子,而量子的能量只决定于频率 v,即 E=hv,h = 6.63×10 ?34 J ? S,h 为作用量子,后人称之为普朗克常数,作用量子在物理学中是一种崭新的、前所未闻的事物,它要求从根本上修改我们自从牛顿和莱布尼兹在一切因果关系的连续性基础上创立了微积分以来的全部物理概念。真正认识量子论的价值并大大开拓其应用疆界的是爱因斯坦,1905 年提出光量子的概念,成功地解释了光电效应,1913 年玻尔在此基础上又提出了原子结构的量子理论,揭示了原子光谱之谜。于是普朗克的量子理论,标志着一个新的、广阔的物理学科——量子力学的诞生。 德国物理学家爱因斯坦,因发现了光电效应而获 1921 年度诺贝尔73物理学奖,1905 年爱因斯坦发表了论文《关于光的产生和转化的一个启发性观点》,他推广普朗克把能量子的不连续性局限在辐射和吸收过程中,认为光在传播过程中能量也是不连续的,每个光子都有一定的能量,对于频率为 v 的光,其光子能量为 E=hv。光电效应是由于金属中的自由电子吸收了光子能量而从金属中逸出而发生的。这样,爱因斯坦用光量子理论成功地解释了光电效应,并确定了其规律。爱因斯坦光量子理论的重要意义,是使对光的本性认识推进了一大步,历时三个多世纪的波动说和微粒说的争论,被爱因斯坦的光的波粒二象性论点所代替,并为以后其他的微观粒子的波粒二象性的观点打下了坚实的基础。必须指出爱因斯坦对物理学的贡献不仅仅只是正确解释光电效应一方面,他所创立的狭义相对论、广义相对论等是他对人类科学最大的划时代贡献。只是当时决定授予爱因斯坦诺贝尔物理学奖的时候,他的相对论还未被所有科学家承认,物理学界还存在着激烈的争论和巨大的分歧,因此评委会有意回避了相对论的贡献,只是他对理论物理方面的贡献,特别是阐明光电效应的规律而授予他这项荣誉奖励。 丹麦物理学家玻尔因研究原子结构及原子辐射获 1922 年度诺贝尔物理学奖。

浅析量子力学

Despite the name, the Underground Railroad was not really a railroad, but was a network of people who assisted fugitive slaves. Many fugitives who escaped to the North and Canada received assistance along the way from individuals who were involved in this network. By the early 19th century, the organization became so successful that it is estimatal that between 1810 and 1850,100,000 slaves escaped from the South through the Underground Railroad. It was not a coincidence that it was called the Underground Railroad. Steam railroads had just emerged and the terms used to describe the people who helped and the fugitives were related to the railroad line. Fugitive slaves were called “parcels”and “passengers”, the helpers were the “conductors”, the people who provided their homes as refuge were called “stationmasters”, and the homes were referred to as “depots” or “station”. The route used was an important part of a successful escape. There were numerous secret routes that a conductor could use. The one used depended on where the search parties and slave catchers were stationed . Some trips required the use of many different routes. If it appeared that they might be in danger, a guide would change paths. Some guided and

中国人民大学《617量子力学》考研真题详解

中国人民大学《617量子力学》考研真题详解 2021年中国人民大学理学院物理系《617量子力学》考研全套 目录 ?全国名校量子力学考研真题汇编 ?2021年量子力学考研真题精解精析50题 说明:本科目考研真题不对外公布(暂时难以获得),通过分析参考教材知识点,精选了有类似考点的其他院校相关考研真题,以供参考。 2.教材教辅 ?曾谨言《量子力学教程》(第3版)配套题库【名校考研真题+课后习题+章节题库+模拟试题】 ?曾谨言《量子力学导论》(第2版)网授精讲班【39课时】说明:以上为本科目参考教材配套的辅导资料。

? 试看部分内容 2021年量子力学考研真题精解精析50题1当前冷原子物理研究非常活跃,在实验中,粒子常常是被束缚 在谐振子势中,因此其哈密顿量为。假设粒子间有相互作用,其中分别代表粒子1和粒子2的自旋,参数J>0。 (1)如果把两个自旋1/2的全同粒子放在上述势阱中,试写出基态能量和基态波函数; (2)如果把两个自旋1的全同粒子放在上述势阱中,试写出基态能量和基态波函数。(注意:参数在不同范围内,情况会不同) [浙江大学2014研]【解题思路】 ①研究体系处在线性谐振子势场中,有关单个体系在谐振子势中 的问题,一般可以通过求解薛定谔方程得出相应的本征波函数和本征能量,确定体系的波函数,研究对象的量子状态、对其进行测量可得到的测量值的大小和几率等问题,都可以一一解决。 ②研究体系内包含两个粒子,它们之间存在自旋-自旋相互作用, 利用角动量的合成来解决这部分相互作用引出的相关问题。

③在两个问题中,涉及到不同自旋的粒子,即玻色子和费米子,可以通过它们满足的统计性质来决定在势场中的分布情况,从而解决要求的基态能量和波函数。 【解析】 (1)对于处在线性谐振子势中粒子的哈密顿量 由薛定谔方程 得本征能量为 本征波函数为 两粒子间有相互作用 设 因此 即

量子力学发展史

鬼话连篇:荒诞量子力学 原创2017-01-15小学僧老和山下的小学僧 先来个绕口令渲染一下诡异的氛围,量子力学奠基人波尔曾曰:如果你第 一次学量子力学认为自己懂了,那说明你还没懂。” 为了理解这个叹为观止的理论的伟大,只能把起点设得低一些,就从认识论'说起吧!中学僧请跳过,直接看后半篇。 人类为了生存,一直试图认识和解释这个世界。最早的认识论”充满了想象,后来逐渐演化成了宗教”,比如上帝创造了万物。过了一阵子,有些人发现这种认识论"不靠谱,跪了半天祈雨,还不如萧敬腾管用!脑袋瓜好使的人就在思考世界的本源是什么”、东西为什么往下掉”,如此云云。早期的聪明人只是坐在办公室研究世界,于是这种单纯的思辨就慢慢变成了哲学” 大家围坐论道,逼格是挺高,但只能争个面红耳赤,张三说世界在乌龟背上,李四说世界在大象背上。我说哥们儿,你们就不能验证一下吗?当然不能!土鳖才动手,君子只动口,这种风气夸张到什么程度呢?亚里士多德认为女性的牙齿比男性少”,就这么一个理论,愣是被奉为经典几百年。 很长一段时间,大家就是这么靠拍脑袋研究世界。拍着拍着,突然有个家伙灵光一闪,拍出了逻辑思维,做起了实验,这就是伽利略”。伽利略是第一个系统地用严密的逻辑和实验来研究事物的人,这便是科学”的雏形,所以伽利略很伟大,属于一流伟大”这个范畴。 是不是觉得早生几百年,你我都是科学家?别天真了,其实经常以负面形象出现的亚里士多德,绝对属于当时最聪明的人,时代局限性造成的无知”不是无知。 打个补丁,本文说的科学”是单纯的一门学科,而不是形容词。啥意思呢?因为某党的某些需求,科学这个词在国内的意义急剧扩大化,以至于现在科学' 就是真理”的代名词,很多地方可以把科学”和合理”两个词互换。你的做法很科学”,你的做法很合理”,这两句话有区别吗?再看英文版:你的做法很Scienee :这可就是语病了。本文说的科学”就是“Scienee, 是—门学科,而不是理:。

浅谈量子力学与量子思维

量子力学:不平凡的诞生预示了不平凡的神奇 ——浅谈量子力学与量子思维 理学院物理系林功伟 量子力学自诞生以来,极大地推动了现代科学和技术的发展,已经深刻地改变了我们的生活方式。从电脑、电视、手机到核能、航天、生物技术,处处它都在大显身手,它已经把人类社会带入量子时代。但量子理论究竟带给了我们什么?这个问题,至今带给我们的仍只是无尽的想象。近年来,校长钱旭红院士,从改变思维的角度出发,在多种场合呼吁全社会要重视量子思维方式并加以运用,不久前又在“文汇科技沙龙”上,提议让“量子思维”尽早走入中小学课堂。那么,量子力学究竟是什么? 量子力学的诞生是一段波澜壮阔的传奇。它的发展史是物理学乃至整个科学史上最为动人心魄的篇章之一。不平凡的诞生预示了不平凡的神奇。在量子世界中,处事原则处处与我们熟悉的牛顿力学主宰的世界截然不同。在我们熟悉的世界,要么是波,要么是粒子。在量子世界,既是波也是粒子,既不是波也不是粒子,兼具波和粒子的特质,即波粒二象性。从而引申出量子叠加、测量塌缩、量子纠缠等种种神奇的现象。 量子叠加:鱼和熊掌亦可得兼 在经典的牛顿力学体系中,把粒子的运动都归结为确定轨道的机械运动。知道粒子某个时刻的运动状态与力的作用,就可以推断粒子的过去,也可以预知粒子的未来。就像一个算命先生,你告诉他生辰八字,他掐指一算就知道你的前世来生。在这种机械观下,仿佛一切都是注定的、唯一确定的。然而,在量子世界,一切都变得不一样。比如,有一天要从上海去北京,异想天开的你既想乘坐京沪高铁体验沿途的风光,又想搭乘飞机享受鸟瞰大地的感觉。我们习惯的方式是同

一时间我们只能选择其一,必须割爱其一。但在量子世界中你可以在火车上和飞机里共存量子叠加态上,鱼和熊掌亦可得兼。 这种量子叠加状态非常奇特。同一时刻,你既体验着高铁沿途的风光,也享受着飞机上鸟瞰大地的感觉,如果说同一时刻有两件事,但分别要求在火车上和在飞机里完成,量子叠加态的你完全可以神奇地一一照做。就像《西游记》中的孙悟空有分身术,同时一个上天一个入地。现在科学家们正利用这一原理来研制未来的量子计算机。量子计算机中的量子比特可以在无数的空间中量子叠加。它们并行地操作完成复杂的计算。已有研究表明这种量子并行计算确实可以在某些特定的复杂计算问题上大大提高效率。例如:一个400位的阿拉伯数字进行质数因子分解,目前即使最快的超级计算机也要耗时上百亿年,这几乎等于宇宙的整个寿命;而具有相同时钟脉冲速度的量子计算机可能只需要几分钟。还有利用量子快速搜索算法,可能很快从一个大森林里找到一片叶子,或者在一个沙滩上找到一颗沙子。在量子世界,“大海捞针”已不再是没有可能的事,简直“易如反掌”。 量子叠加不仅可以是同一个物质在它不同状态的叠加,还允许不同物质的叠加,哪怕这两个物质是迥然不同类的。比如光和原子,前者是宇宙中最快的,一眨眼可以绕地球好几周;后者可以慢悠悠地停留在某处。如果让它们量子叠加一起会怎么样呢?有种叫电磁诱导透明的技术就可以让光和原子相干叠加。叠加后我们称之为暗态极子,它是半光半原子的混合体,就像希腊神话中半人半神的帕尔修斯,既具备人的情感,也具备神的能力。人们发现这种半光半原子混合体的速度是介于之间的,它既不像光速那么快,也不像原子慢悠悠停留在某处,它的速度取决于光在其中叠加的比重。人们通过调节这个比重就可以让光乖乖地慢下来,需要的时候还可以让光再飞奔起来。在运用上,光子相互作用很小,而原子之间容易产生大的相互作用。有趣的是:最近,我们研究小组通过合理设计可以利用原子的优点来弥补光子的缺点,设计出强的单光子相互作用。如果把这个过程提升到量子思维的话,不就是我们生活中的“取长补短”“协同合作”吗?而这个思维能力正是当代社会所迫切需要的。

量子力学史简介

近代物理学史论文题目:量子力学发展脉络及代表人物简介 姓名: 学号: 学院: 2016年12月27

量子力学发展脉络 量子力学是研究微观粒子运动的基本理论,它和相对论构成近代物理学的两大支柱。可以毫不犹豫的说没有量子力学和相对论的提出就没有人类的现代物质文明。而在原子尺度上的基本物理问题只有在量子力学的基础上才能有合理地解释。可以说没有哪一门现代物理分支能离开量子力学比如固体物理、原子核粒子物理、量子化学低温物理等。尽管量子力学在当前有着相当广阔的应用前景,甚至对当前科技的进步起着决定性的作用,但是量子力学的建立过程及在其建立过程中起重要作用的人物除了业内人对于普通得人却鲜为人知。本文主要简单介绍下量子力学建立的两条路径及其之间的关系及后续的发展,与此同时还简单介绍了在量子力学建立过程中起到关键作用的人物及其贡献。 通过本文的简单介绍使普通人对量子力学有个简单认识同时缅怀哪些对量子力学建立其关键作用的科学家。 旧量子理论 量子力学是在旧量子论的基础上发展起来的旧量子论包括普朗克量子假说、爱因斯坦光电效应光电子假说和波尔的原子理论。 在19世纪末,物理学家存在一种乐观情绪,他们认为当时建立的力学体系、统计物理、电动力学已经相当完善,而剩下的部分不过是提高重要物理学常数的观测精度。然而在物理的不断发展中有些科学家却发现其中存在的一些难以解释的问题,比如涉及电动力学的以太以及观测到的物体比热总小于能均分给出的值。对黑体辐射研究的过程中,维恩由热力学普遍规律及经验参数给出维恩公式,但随后的研究表明维恩公式只在短波波段和实验符合的很好,而在长波波段和实验有很大的出入。随后瑞利和金森根据经典电动力学给出瑞利金森公式,而该公式只在长波波段和实验符合的很好,而在短波波段会导致紫外光灾。普朗克在解决黑体辐射问题时提出了一个全新的公式普朗克公式,普朗克公式和实验数据符合的很好并且数学形式也非常简单,在此基础上他深入探索这背后的物理本质。他发现如果做出以下假设就可以很好的从理论上推导出他和黑体辐射公式:对于一定频率f的电磁辐射,物体只能以hf为单位吸收

浅谈量子力学的哲学含义

浅谈量子力学的哲学含义 【摘要】量子力学的产生和发展受到经济生活的多方面影响,量子力学的产生也相应地对于政治、经济生活提供积极因素影响,量子力学中包含的量子场理论和微观粒子的提出,微观世界物质的特性等提出都在一定程度上包含一定的哲学含义。 【关键词】量子力学;哲学含义 1.量子力学的主要表述 量子力学确立了普遍的量子场实在理论。宇宙最基本的物理是量子场,量子场是第一性的,而实物粒子是第二性的。微观粒子没有经典物理学中的决定论表述,只有非决定论论述。量子力学的微观粒子理论中,包含具有叠加态的波函数,秉有波粒二象性和非定论的远程联系。特定的测量方式造成波函数的失落,越来越显露出它的本质特征。量子场实在论证明了宇宙的实在性,不同于德谟克里特所说的宇宙存在,宇宙更多如毕达哥拉斯和柏拉图描述的:宇宙是用数学公式表达的波函数以及所显示的各种图形的组合。 量子力学对于波粒二象性的揭示和微观粒子中反粒子存在的表述,阐释着物质和反物质的辩证存在关系。量子力学的多世界论认为世界大系统由多个平行世界构成,世界论中也存在反世界物质。无论是物质和反物质还是世界论中的反世界物质都表现着哲学中黑格尔和马克思主义哲学的正确性和真理性成分。其中物质与反物质是一对矛盾体,物质相对于反物质而存在。矛盾的普遍性阐释了时时刻刻存在矛盾的真理性。宇宙世界的基本属性是矛盾性和对立统一性。矛盾的特殊性要求必须正确把握主要矛盾和次要矛盾以及矛盾的主要方面和次要方面。主要矛盾的主要方面决定事物的根本性质。然而,在矛盾的哲学理论体系中,矛盾的双方是相对立而存在的,所谓物质和反物质的矛盾性从表象上分析是对立的存在,对立关系就是阐释着物质和反物质的相对应。在某一特殊世界领域中,各种客观实在具有方面上的相对关系。历史经验告诫区分“现实矛盾”和“逻辑矛盾”。 2.量子力学包含的矛盾哲理 其中逻辑矛盾表现在概念提出中的逻辑关系的对立;现实矛盾是隐藏在逻辑矛盾之下更深层次的以客观事实为导向的矛盾。任何话语系统不允许逻辑矛盾,A是B与A是-B同时为真,正如“正粒子”与“反粒子”碰撞,这两个命题是可以互相抵消为无的。然而,现实的矛盾,如“正电荷”和“负电荷”,“正粒子”和“反粒子”的相互矛盾关系,是长期存在的,共同构成了物质世界的矛盾客体。可以说矛盾的存在是世界物质性发展和产生的基本推动力。世界是充满矛盾的世界,矛盾构成了世界的真实存在。矛盾具有同一性和斗争性,在量子力学理论体系中正电荷和负电荷是在同一和斗争中不断转化的,正电荷和负电荷的交汇形成电荷的不带电中和性质,正负电荷在同一的过程中各自改变其特性以适应向新物质存在的客观转化。正负粒子的斗争性体现于正负粒子的正负电子相互碰撞和作用,不

量子力学地发展史及其哲学思想

十九世纪末期,物理学理论在当时看来已发展到相当完善的阶段.那时,一般的物理现象都可以从相应的理论中得到说明:物体的机械运动比光速小的多时,准确地遵循牛顿力学的规律;电磁现象的规律被总结为麦克斯韦方程;光的现象有光的波动理论,最后也归结为麦克斯韦方程;热的现象理论有完整的热力学以及玻耳兹曼,吉不斯等人建立的统计物理学.在这种情况下,当时有许多人认为物理现象的基本规律已完全被揭露,剩下的工作只是把这些基本规律应用到各种具体问题上,进行一些计算而已。 这种把当时物理学的理论认作”最终理论”的看法显然是错误的,因为:在绝对的总的宇宙发展过程中,各个具体过程的发展都是相对的,因而在”绝对真理的长河中,人们对于在各个一定发展阶段上的具体过程的认识具有相对的真理性.”生产力的巨大发展,对科学试验不断提出新的要求,促使科学试验从一个发展阶段进入到另一个新的发展阶段。就在物理学的经典理论取得上述重大成就的同时,人们发现了一些新的物理现象,例如黑体辐射,光电效应,原子的光谱线系以及固体在低温下的比热等,都是经典物理理论所无法解释的。这些现象揭露了经典物理学的局限性,突出了经典物理学与微观世界规律性的矛盾,从而为发现微观世界的规律打下基础。黑体辐射和光电效应等现象使人们发现了光的波粒二象性;玻尔为解释原子的光谱线系而提出了原子结构的量子论,由于这个理论只是在经典理论的基础上加进一些新的假设,因而未能反映微观世界的本质。因此更突出了认识微观粒子运动规律的迫切性。直到本世纪二十年代,人们在光的波粒二象性的启示下,开始认识到微观粒子的波粒二象性,才开辟了建立量子力学的途径。

量子力学诞生和发展的过程,是充满着矛盾和斗争的过程。一方面,新现象的发现暴露了微观过程内部的矛盾,推动人们突破经典物理理论的限制,提出新的思想,新的理论;另一方面,不少的人(其中也包括一些对突破经典物理学的限制有过贡献的人),他们的思想不能(或不完全能)随变化了的客观情况而前进,不愿承认经典物理理论的局限性,总是千方百计地企图把新发现的现象以及为说明这些现象而提出的新思想,新理论纳入经典物理理论的框架之内。虽然本书中不能详细叙述这个过程。尽管这些新现象在十九世纪末就陆续被发现,而量子力学的诞生却在本世纪二十年代,这中间曾经历一个曲折的途径,说明量子力学这个理论的诞生决不是一帆风顺的更不是靠少数科学家在头脑中凭空想出来的。 爱因斯坦在这次大会上作了题为《论我们关于辐射的本质和组成的观点的发展》的报告,首次提出光具有波粒二象性。爱因斯坦通过对光辐射的统计提醒的精辟分析得出结论:光对于统计平均现象表现为波动,而对于能量张罗现象却表现为粒子,因此,光同时具有波动性和粒子性。爱因斯坦进一步指出,这两者并不是水火不相容的。这样,爱因斯坦的第一次在更深的层次上及时处理光的神秘本性,从而也将他最尊敬的两位前辈——牛顿和麦克斯韦——关于光的理论有机的综合在一起。 量子力学是研究微观粒子的运动规律的物理学分支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对

量子力学发展史浅析(可编辑修改word版)

量子力学发展史浅析 工程科学(1)班 肖玉超 摘要本文将以量子力学发展的重大事件与重要人物为主要分析对象,以量子力学发展的时间顺序为线索,对量子力学发展历史进行浅谈并针对量子力学发展过程中“物质的波动性与粒子性”,“随机论与决定论”问题,以及其引申出的EPR 佯谬等问题进行讨论,探究量子力学发展是如何不断自我完善的。 关键词:量子力学波动粒子EPR 佯谬 一、风暴前夕 量子力学发展中最大的争论——“物质的波动性与粒子性”的起源可以追溯到古希腊时期,古希腊时期对于光的思考与假设已经可以大致的看出其中包含的波动或是粒子的影子。古希腊时期伟大的哲学家恩培多克勒提出了“四根说”,即世界由土、气、火、水四种根源组成,他提出假设光是从人的眼睛中射出的火焰(古人由于技术条件,光火不分),当火焰到达物体是我们看见了物体。这不难看出其中包含着光的连续性的影子。这个假说无法解释我们在黑暗中无法看见其他物体而被推翻。对于我们如何感知光线的正确解释一直到了罗马时期,学者卢克来修在其著作中指出光线是直接到达眼睛而被人感知的。在光的传播的一些性质问题上欧几里德对光的反射进行了研究;托勒密、开普勒、哈桑都对光的折射进行了研究;最终费马总结了前人的研究,并将其归结为一个简洁明了的理论——的光程最短法则,物理学的简约美充分得到体现。此时,光学,作为物理学的一门学科建立

了起来。 关于光的本质到底是什么,人们的观点大致可以分为两派,即波动派与粒子派。波动派从弗朗西斯科·格里马第的光衍射条纹得到支持,认为光是一种依靠介质震动的波,然而光的介质却为人所困惑,因为光可以从遥远的星系传播到这里,其途径并没有我们常见的空气等作为介质,为此,波动说假设空间中有一种名为以太的介质来传递光波的震动。 而粒子派,却从光的严格反射与光总是沿直线传播这两点入手,认为光的本质是一种十分微小的微粒,然而粒子派也有自己的难题,就是两束光交叉的时候为什么没有发生想象当中的物理碰撞而弹开的现象。 十七世纪中叶,由对光的颜色这一问题的讨论引发的关于光本质的大论战开始了,这两个引发世纪论战的学派此时真正地正面对立了起来。论战一直持续到1704 年,牛顿的著作《光学》的问世宣告了粒子说的暂时胜利,这场论战才谢幕。论战期间,波动派的代表人物格里马第力图通过实验证明光色的不通是由于其频率不同导致的,胡克重复了格里马第的工作并在《显微术》一书中支持格里马第的理论。另一代表人物惠更斯,他运用了高超的数学天赋,成功的数学证明了波动的光的折射反射定律,既而证明的牛顿环的问题。这令波动说大占优势。 牛顿关于光的颜色问题的解释是光是颜色不通的微粒色散,实验证明白光是各种色光的混合,是不通颜色微粒的分开,他在进一步吸收波动说的一些理论,例如周期性与震动,在利用已经成名的牛顿力学,成功的解释了诸多光学问题。随着《光学》的出版,粒子说走向了那时巅峰。牛顿的巨大成功,不仅仅因为牛顿的个人的探索,同时也有牛顿吸收对立学派的理论,强化自己的理论的原因。正如牛顿自己说说:“我能取得成功,因为我站在巨人的肩膀上!”粒子说能运用波动说的理论,反之可不可以呢?这是否意味着波和粒子在对对立的性质在更高的层面上是统一的呢?物理,这本来是客观描述世界规律的学问,为何出现了哲学的影子? 1807 年,托马斯·杨在其《自然哲学讲义》一书中提示出双缝干涉实验,实验现象的明暗相间的条纹表明,明亮条纹是光波波峰的叠加,暗条纹收波谷的叠加。针对这一现象,粒子说完全无法得到一个合理的解释。雪上加霜的是,在菲涅耳提出光是一种横波的假设, v ≈ 3c 成功解决了光的偏振问题,傅克测得水中光速 4 后,更是宣判了粒子说的死刑,似乎 没有什么能阻止波动取代粒子,走向了主宰光学的皇位。 然而波动说始终有着“以太为介质”这一个致命的前期假设,在这个假设下,光速要

哈工大考研量子力学试题

2.2.3 2008年真题 【题目】1. 轨道角动量的三个分量x L ,y L 和z L 是否有共同本征态?若果有, 写出一个来;如果没有,请说明为什么 【解题】 没有,^^^ ,x y z L L i L ?? =???? 不对易,故无共同本征态 【分析】 本题考察两个算符具有共同本征态的条件——两个算符对易。属于 基础概念的考核。对易这一概念是量子力学考试中肯定会出现的概念,通常穿插在答题中间,对常用的对易关系一定要做到熟练运用,记忆的程度。 【题目】2. 已知哈密顿量2 21()2H V r μ =- ?+的本征值为n E ,相应的本征函数 为()n r ?,求2 22()2H V r C μ =- ?++的本征值和本征函数(C 为常数)。 【解题】 ^ 1^^^ 211()() ()()()()()()()()() n n n n n n n n n n n n H r E r H r H C r H r C r E r C r E C r ?????????==+=+=+=+ 由上式知,^ 2H 的本征函数为()n r ?,本征值为n E C + 【分析】首先写出哈密顿量的本征方程,通过两个不同哈密顿量的关系可以得出 相关结果

【题目】3. 计算对易关系2[,]?;[,]?z x y z p L L iL L =+= 【解题】 (1) 22^^^^^^^^^^^^ ^^ ^^ ^ ^ ^ ^ ^ ^ ^ ^ ,,,,()()()0 z z z z y x y x y x x y y x x y p L L p L p p p L p i p i i p j p p i p i i p j i p p p p p p p p ????????=-=--???????? ???????????? =----=--+-= (2) ^^^^^^^^^ ,,,x y z x z y z y x L i L L L L i L L i L i L ?????? +=+=+???????????? 【分析】本题需要掌握常见量子算符的对易关系,比如坐标与动量、动量与 动量、角动量与动量,并且有关对易几条性质得知道,比如 ?? ? ???+??????=??????∧∧∧∧∧∧∧∧∧C A B C B A C ,,B A ,,能将复杂的算符用一些简单并且我们所熟知的算符表示出来,并化简得出结果 【题目】4. 利用不确定关系估算线性谐振子的基态能量。 【解题】 2222 (),()x x x p p p =-=- 对线性谐振子 0x p == 2222,x x p p ∴==

量子力学的历史和发展

量子力学的历史和发展 量子论和相对论是现代物理学的两大基础理论。它们是在二十世纪头30年发生的物理学革命的过程中产生和形成的,并且也是这场革命的主要标志和直接的成果,量子论的诞生成了物理学革命的第一声号角。经过许多物理学家不分民族和国籍的国际合作,在1927年它形成了一个严密的理论体系。它不仅是人类洞察自然所取得的富有革命精神和极有成效的科学成果,而且在人类思想史上也占有极其重要的地位。如果说相对论作为时空的物理理论从根本上改变人们以往的时空观念,那么量子论则很大程度改变了人们的实践,使人类对自然界的认识又一次深化。它对人与自然之间的关系的重要修正,影响到人类对掌握自己命运的能力的看法。量子论的创立经历了从旧量子论到量子力学的近30年的历程。量子力学产生以前的量子论通常称旧量子论。它的主要内容是相继出现的普朗克量子假说、爱因斯坦的光量子论和玻尔的原子理论。 热辐射研究和普朗克能量子假说 十九世纪中叶,冶金工业的向前发展所要求的高温测量技术推动了热辐射的研究。已经成为欧洲工业强国的德国有许多物理学家致力于这一课题的研究。德国成为热辐射研究的发源地。所谓热辐射就是物体被加热时发出的电磁波。所有的热物体都会发出热辐射。凝聚态物质(固体和液体)发生的连续辐射很强地依赖它的温度。一个物体被加热从暗到发光,从发红光到黄光、蓝光直至白光。1859年,柏林大学教授基尔霍夫(1824—1887年)根据实验的启发,提出用黑体作为理想模型来研究热辐射。所谓黑体是指一种能够完全吸收投射在它上面的辐射而全无反射和透射的,看上去全黑的理想物体。1895年,维恩(1864—1928年)从理论分析得出,一个带有小孔的空腔的热辐射性能可以看作一个黑体。实验表明这样的黑体所发射的辐射的能量密度只与它的温度和频率有关,而与它的形状及其组成的物质无关。黑体在任何给定的温度发射出特征频率的光谱。这光谱包括一切频率,但和频率相联系的强度却不同。怎样从理论上解释黑体能谱曲线是当时热辐射理论研究的根本问题。1896年,维恩根据热力学的普遍原理和一些特殊的假设提出一个黑体辐射能量按频率分布的公式,后来人们称它为维恩辐射定律。普朗克就在这时加入了热辐射研究者的行动。普朗克(1858—1947年)出身于一个书香门第之家,曾祖父和祖父曾在哥廷根大学任神学教授,伯父和父亲分别是哥廷根大学和基尔大学的法学教授。他出生在基尔,青年时期在慕尼黑度过。17岁进慕尼黑大学攻读数学和物理学,后来转到柏林大学受教于基尔

浅谈化学发展史

浅谈化学发展史 【摘要】:化学的发展,对人类社会的进步至关重要。化学与人们的生活息息相关,了解化学的发展史,有助于我们更好的利用化学。化学的历史渊源非常古老,可以说自从有了人类,化学便与人类结下了不解之缘。钻木取火,用火烧煮食物,烧制陶器,冶炼青铜器和铁器等等。当时只是一种经验的积累,化学知识的形成和发展经历了漫长而曲折的道路。而它的发展,又极大地促进了当时社会生产力的发展,成为人类进步的标志。 【关键词】:重要意义;定义;发展;化学 【正文】:第一次学习化学发展史,首先要知道它有什么意义,那么我们为什么要学化学发展史呢?首先,学习和研究化学式的重要意义已为化学家和化学史家所重视,甚至已经发展到为教育领导部门所重视,这不是偶然,而是由化学史的内容所决定的。学习化学史,不仅是为史而学,而是史为今用,为了更好地学习和研究现代化学。因此,学习化学史至少有以下几个方面的积极意义。 第一,掌握化学产生和发展全过程的系统历史知识,有利益培养化学人才的良好素质。通过化学史的学习,可以清楚的了解到化学发展到今天的水平并不容易,是广大劳动群众和化学家们经过长期的艰辛努力,甚至不惜付出健康和生命代价,取得这样或那样的成果,汇集成一部化学的历史。 第二,通过对化学的学习,可以正确的理解和处理化学中实验与理论二者的辩证关系,它们是具体的历史的同意,二者相辅相成,不可偏废。它们共同促进了化学学科的发展。 第三,学习化学史,有利于提高化学人才的独立工作能力。在经过二三年的基础课程和专业课程以及实验课程的学习和训练之后,在学习化学史,可以讲全部化学连贯起来通盘考察其发展过程中成功与失败的原因,分析和比较各种方法的优劣,寻求研究问题的方法和规律。 知道了化学发展史的意义,那么什么是化学发展?化学史是科学史的一个分支。什么是科学史呢?科学史的重要奠基人,美国著名科学史家G.萨顿曾经这样定义:“如果把科学定义为系统化的实证知识,或者看做是在不同时期不同地索系统化的这样一种知识,那么科学史就是这种知识发展的描述和说明。”如果我们用更习惯的语言为科学史下定义,可以认为科学史史人类在长期社会实践活动过程中,关于自然知识的系统的历史的描述。 化学史则是人类在长期的社会实践过程中,对大自然的化学知识的系统的历史的描述。因此,化学史不是纯自然科学,而是自然科学与历史科学相互交叉的一门特殊的历史科学。化学史也是化学的一个分支学科,余华的其他分支学科有区别也有联系。化学的其他分支学科,以讲授知识的理论和现状为目的,随着学科的不断发展更新其内容。化学史则不然,他是从化学发展的历史角度,在纵的方向上,阐述从化学萌芽开始,经过漫长的岁月,怎样发展为现代化学史的过程。即化学怎样产生,发展和繁荣起来的全过程的系统阐述。 那么化学是怎样发展的呢?化学在发展过程中,依照所研究的分子类别和研究手段、目的、任务的不同,派生出不同层次的许多分支。在20世纪20年代以前,化学传统地分为无机化学、有机化学、物理化学和分析化学四个分支。20年代以后,由于世界经济的高速发展,化学键的电子理论和量子力学的诞生、电子技术和计算机技术的兴起,化学研究在理论上和实验技术上都获得了新的手段,导致这门学科从30年代以来飞跃发展,出现了崭新的面貌。现在把化学内容一般分为生物化学、有机化学、高分子化学、应用化学和化学工程学、物理化学、无机化学等五大类共80项,实际包括了七大分支学科。那么它们又是如何发展的呢?我们就从分析化学来看。在化学还没有成为一门独立学科的中世纪,甚至古代,人们已开始从事分析检验的实践活动。这一实践活动来源于生产和生活的需要。如为了冶炼各种金属,

相关主题
文本预览
相关文档 最新文档