当前位置:文档之家› 无资料感潮河段设计洪水位计算

无资料感潮河段设计洪水位计算

无资料感潮河段设计洪水位计算
无资料感潮河段设计洪水位计算

Journal of Water Resources Research 水资源研究, 2017, 6(1), 66-70

Published Online February 2017 in Hans. https://www.doczj.com/doc/5f12238518.html,/journal/jwrr https://https://www.doczj.com/doc/5f12238518.html,/10.12677/jwrr.2017.61009

文章引用: 胡进宝, 刘海成, 王晓霞, 管宁. 无资料感潮河段设计洪水位计算[J]. 水资源研究, 2017, 6(1): 66-70.

Design Water Level Calculation for Tidal River in Ungauged Basins

Jinbao Hu 1, Haicheng Liu 2, Xiaoxia Wang 1, Ning Guan 2

1Northwest Electric Power Design Institute, China Power Consulting Group, Xi’an Shannxi 2

Tianjin Research Institute for Water Transport Engineering, MOT, Tianjin

Received: Jan. 18th , 2017; accepted: Feb. 7th , 2017; published: Feb. 10th

, 2017

Abstract

The hydrological regime of the tidal reach is complicated because it’s influenced by both the upstream runoff and the downstream tide. This paper focuses on the design water level calculation for tidal river in ungauged basin based on the short-term tidal level observation, the long term tidal observation and short term tidal level observation relationship. After the quasi-synchronous comparison, the tidal level data of long-term tide observation stations are transferred to the engineering sea area. By using the P-III frequency curve, the extreme tidal level of each year is estimated for different design tide levels. As a re-sult, the problem of different frequency tide calculation is solved. As to the river flood design water level calculation, because the lack of observation river flow data, the maximum reservoir discharge flow and interval flow is used as the upstream flow boundary conditions, the average high tidal level is used as the downstream water level conditions. Besides, based on different time of the remote sense image at the estuary, the rational assumptions of estuarine topography is put forward using the hydrodynamics mo- del, the design water level satisfied the project need is calculated. The above-mentioned methods pro-vide an important reference for the calculation of the design flood level of tidal reach inungauged basins.

Keywords

Tidal Reach, Design Water Level, Ungauged Basins

无资料感潮河段设计洪水位计算

胡进宝1,刘海成2,王晓霞1,管 宁2

1中国电力工程顾问集团西北电力设计院有限公司,陕西 西安 2

交通运输部天津水运工程科学研究所,天津

收稿日期:2017年1月18日;录用日期:2017年2月7日;发布日期:2017年2月10日

作者简介:胡进宝(1982.3-),安徽庐江人,高级工程师,主要从事电力工程水文气象勘测工作。

无资料感潮河段设计洪水位计算

摘 要

感潮河段的洪水过程由于既受上游河道径流和下游潮汐的双重作用,使感潮河段的水文情势尤为复杂。本文针对无资料感潮河段设计洪水位计算,提出根据短期潮位对比观测,通过准同步比较,将长期潮位观测站逐年实测潮位资料转引至工程海域后,对逐年的极端高潮位采用PIII 型频率曲线进行适线计算,得到不同频率设计高潮位,从而解决不同频率潮位计算问题;针对河流洪水计算,由于缺乏实测河流流量资料,采用水库最大下泄流量加区间流量作为上游流量边界,采用一般大潮高潮位作为下游水位边界,同时对河口地形根据不同时期影像资料进行了适当假定,采用水动力模型进行了河流洪水计算,得到满足工程需要的设计洪水位;上述所述方法对无资料感潮河段设计洪水位计算提供了重要参考。

关键词

感潮河段,设计洪水位,无资料

Copyright ? 2017 by authors and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.doczj.com/doc/5f12238518.html,/licenses/by/4.0/

1. 引言

感潮河段的洪水过程由于既受上游河道径流和下游潮汐的双重作用,此外,河口地区的复杂地理特性,因而使感潮河段的水文情势尤为复杂,感潮河段的设计洪水位计算成为研究的热点和难点[1]。目前,国内感潮河段设计洪水位计算常用的方法有水动力学法、水文统计法及水文信息法等[2] [3] [4] [5]。水动力学法基于完全圣维南方程组,建立考虑潮水顶托影响的感潮河段设计洪水位计算,目前已得到广泛应用。水文统计法根据水文要素自身随时间演变规律或建立统计回归分析的感潮河段设计洪水位计算。水文信息法将感潮河段视为一个水文系统,以上游流量、下游潮位和区间入流为输入计算感潮河段设计洪水位。上述感潮河段设计洪水位计算方法虽精度较高,但对资料要求较高,如河道断面和糙率资料等,导致感潮河段设计洪水位计算精度很大程度上依赖于水文资料及模型的求解。

随着“一带一路”战略的实行,越来越多的电力设计单位到世界各地去承揽工程,国外电厂工程经常位于感潮河段,同时受上游径流和下游潮汐的双重作用,但是国外感潮河段设计洪水位计算经常遇到缺少实测资料的情况,甚至无资料的情形,这种情形下,无法采用水动力学法、水文统计法及水文信息法进行设计洪水位计算,需要采用其它的方法。本文以某国外电厂工程为例,在短期实测潮位资料的基础上,通过潮位转引及数学模型计算,提出了一种实用的满足工程需要的无资料感潮河段洪水位计算,以供同类工程参考。

2. 实例研究

国外某电厂工程,西侧濒临阿拉伯海,南侧距河流入海口约2 km ,河口上游约57 km 为一水库,水库坝体结构为土石坝,设计总库容为8.09 × 108 m 3。厂址、水库、海洋位置关系示意如图1所示。

由于厂址南侧距河流入海口仅约2 km ,南侧河流属感潮河段,因此厂址百年一遇洪水位分析需要考虑阿拉伯海潮汐与河流径流相遇对厂址洪水的影响。

2.1. 潮位计算

于2015年4月8日~2015年6月3日于工程所在海域进行了潮位观测,距工程所在地约30 km 处存在长

Open Access

无资料感潮河段设计洪水位计算

Figure 1. Sketch map of power plant, reservoir and the ocean 图1. 厂址、水库、阿拉伯海位置关系示意图

期潮位观测站,通过对比发现,工程所在海域潮时比长期观测站潮时滞后约4 h ,把长期观测站潮时往后推4 h(比如将长期观测站5月1日8时的潮位数据作为5月1日4时的潮位数据)与工程海域的潮位数据进行准同步比较。通过准同步比较,长期观测站和工程海域潮位数据有着完全一致的规律。通常情况下长期观测站的高潮位略高于工程海域,低潮位置略低于工程海域,即长期观测站的潮差比工程海域略大。为了将长期观测站的潮位资料应用到工程所在地的潮位计算中,需要将长期观测站潮位站的资料转引至工程海域。转引的方法是将长期观测站的潮位过程数据乘以合适的系数或整体平移后使两者的一致性达到最好。通过对比分析发现,将长期潮位观测站数据通过下述关系转引后与现场实测潮位数据拟合最优,转引关系如式(1)。

00.860.265h

h + (1)

式中:h 0为卡拉奇港潮位站实测潮位;h 为转引后的潮位。

另外,长期潮位观测站与工程所在地同处阿拉伯海,受热带气旋影响相似。因此,可通过上述关系将长期潮位观测站的多年实测资料转引至工程海域。将长期潮位观测站逐年实测潮位资料转引至工程海域后,分别对逐年的极端高潮位采用PIII 型频率曲线进行适线计算,得到不同频率设计高潮位。长期潮位观测站转引后与工程海域潮位数据对比曲线如图2所示,图中:红色为工程海域潮位数据蓝色为长期潮位观测数据。

2.2. 河流洪水计算

工程所在地位于河口附近,由于受地势及阿拉伯海海水顶托影响,导致上游来水不能得到很快下泄,易在工程位置产生洪水;此外,上游约57 km 处为一水库,水库下泄洪峰流量叠加区间洪水流量将会对工程区域产生洪水影响。因此需要分析河流洪水叠加潮汐洪水对工程所在地的影响。洪水计算采用MIKE21水动力模型进行计算。 2.2.1. 模型介绍

模型的基本方程包括连续性方程和动量方程,控制方程有两种表达方式,分别是笛卡尔坐标系下的控制方程和球坐标系下的控制方程。其中笛卡尔坐标系下的控制方程形式如下。

连续性方程为:

h hu hv

hS t x y

???++=??? (2) x 向和y 向运动方程为:

()()220002sx bx xx xy s hu hu hvu gh fvh gh hT hT hu S t x y x x x y ττηρρρρ???????

++=??+?+++??????? (3) ()()220002sy by xy yy s hv huv hv gh fvh gh hT hT hu S t x y y y x y

ττηρρρρ???????++=???+?+++??????? (4)

无资料感潮河段设计洪水位计算

式中:t 为时间;x 、y 为笛卡尔坐标的两坐标轴;h 为总水深;η为水面高程;d 为水深;u 、v 为对应于u 、

v 的速度分量;f 为科氏力;g 为重力加速度;ρ为密度;0ρ为密度;t v 为涡粘系数;a P 为大气压强;S 为

源汇项的流量。

模型计算时,计算网格采用三角形非结构化网格。上游从水库开始作为上游边界,下游至河口的外侧海域。工程区域的地形采用现场实测高程,上游河道的地形从DEM 提取进行插值得到。上游的边界为流量边界条件,下游边界为水位边界条件。 2.2.2. 边界条件

工程位置处的洪峰流量受水库最大下泄流量和区间流量的共同控制。水库溢洪道最大下泄流量为13,000 m 3/s 。不同重现期区间采用上下游的汇流面积比来推算。根据河流流域地形图,分别描绘出水库上、下游的汇流区面积,其上、下游汇流面积比约为23:1。在推算不同重现期洪水流量过程中,分两种情况进行考虑,当上游流量大于溢洪道最大设计流量时,采用溢洪道最大设计流量叠加下游汇流流量作为重现期洪水流量;当上游流量小于溢洪道最大设计流量时,采用上游流量叠加下游汇流流量作为重现期洪水流量。对应100年一遇的洪水流量为13,700 m 3/s 。

计算时下游边界条件为水位边界,采用一般大潮高潮位3.0 m 作为下游水位边界(CD 高程,一般大潮高潮位在3.0 m 左右)。

由于河口存在着沿岸沙丘和河嘴,沿岸沙丘和河嘴对上游洪水存在着阻水,河口不同时期影像如图3所示,

Figure 2. Tidal comparison line of long-term tidal observation and the short-

term tidal observation

图2. 长期潮位观测站转引后与工程海域短期潮位数据对比曲线

(a) 2003.12.30 (b) 2016.3.29

Figure 3. Image of different time at the estuary

图3. 河口不同时期影像图

无资料感潮河段设计洪水位计算

计算时假定发生洪水时沙丘被部分冲开,有效河口宽度为1000 m。

2.2.

3. 计算结果

在工程区域提取不同计算点的水位高程结果,100年一遇洪水情形下洪水位高程为5.17 m,电厂附近已有一燃油电厂,2006年河流发生洪水曾导致该燃油电厂的排水明渠和电厂围墙附近的外围区域受淹,根据这次历史资料情况,燃油电厂采取了修建挡水墙措施,将该挡水墙高度与100年一遇洪水位进行比较,高度基本一致,因此可见,本次洪水计算的结果是基本合理的。将计算结果与实测的厂址高程数据相比较,判断厂址局部区域受河流100年一遇洪水影响,需要采取防洪措施。

3. 结论

感潮河段的洪水过程由于既受上游河道径流和下游潮汐的双重作用,使感潮河段的水文情势尤为复杂,感潮河段的设计洪水位计算成为研究的热点和难点。随着“一带一路”战略的实行,越来越多的电力设计单位到世界各地去承揽工程,国外电厂工程经常位于感潮河段,但是国外感潮河段设计洪水位计算经常遇到缺少实测资料的情况,甚至无资料的情形,这种情形下,无法采用水动力学法、水文统计法及水文信息法进行设计洪水位计算,需要采用其它的方法。

本文以某国外电厂工程为例,提出根据短期潮位对比观测,通过准同步比较,将长期潮位观测站逐年实测潮位资料转引至工程海域后,分别对逐年的极端高潮位采用PIII型频率曲线进行适线计算,得到不同频率设计高潮位,从而解决不同频率潮位计算问题;针对河流洪水计算,采用水库最大下泄流量加区间流量作为上游流量边界,采用一般大潮高潮位作为下游水位边界,同时对河口地形结合历年影像资料进行了适当假定,进行了河流洪水计算;上述所述方法对国外无资料感潮河段设计洪水位计算提供了重要参考。

参考文献(References)

[1]林炳尧, 黄世昌, 毛献忠, 等. 钱塘江河口潮波变化过程[J]. 水动力学研究与进展, A辑, 2002, 17(6): 665-675.

LIN Bingyao, HUANG Shichang, MAO Xianzhong, et al. Deformation process of tidal waves in Qingtang Estuary. Journal of Hydrodynamics Ser. A, 2002, 17(6): 665-675. (in Chinese)

[2]徐祖信, 卢士强. 平原感潮河网水动力学模型研究[J]. 水动力学研究与进展, A辑, 2003, 18(2): 176-181.

XU Zuxin, LU Shiqiang. Hydrodynamics model for tidal river network. Journal of Hydrodynamics Ser. A, 2003, 18(2): 176- 181. (in Chinese)

[3]赖锡军, 汪德爟. 非恒定水流的一维、二维耦合数值模型[J]. 水利水运工程学报, 2003(2): 48-51.

LAI Xijun, WANG Deguan. 1-D and 2-D coupling numerical model of unsteady flow. Hydro-Science and Engineering, 2003(2): 48-51. (in Chinese)

[4]包为民, 卞毓明. 感潮河段水位演算模型研究[J]. 水利学报, 1997(11): 34-38.

BAO Weimin, BIAN Yuming. Study on stage routing model of tidal-reach. Shuili Xuebao, 1997(11): 34-38. (in Chinese) [5]黄国如, 胡和平, 田富强. 用径向基函数神经网络模型预报感潮河段洪水位[J]. 水科学进展, 2003, 14(2): 158-162.

HUANG Guoru, HU Heping and TIAN Fuqiang. Flood level forecast model for tidal channel based on the radial basis func-tion-artificial neural network. Advances in Water Science, 2003, 14(2): 158-162. (in Chinese)

设计计算数模板

PSH21D-5-WT五层机械横移式机械停车设备 设计计算书 1、设计基本参数: 容车组别代号:T型车 停车规格:车长×车宽×车高 5300×1950×1650;单位:mm 停车最大重量:2300kg, 4-6层提升速度:9.2m/min,横移速度:8.2m/min。 负载=约733kg(载车板自重)+2300kg=3033kg。 1.1、升降电机选择 根据车库使用者要求,设计的升降横移式立体车库提升速度:9.2m/min,提升速度:0.1533m/S。 起吊重量m=2594kg。g=9.8m/S2。 电机功率P=G×V=3033x9.8x0.1533=4557w=4.557kw; 根据各立体车库专用电机的型号,苏州乔力以电机设备有限公司的立体车库专用减速电机JLYP-50DX-55 5HP型号电机,减速比1:50,功率:3.7kw,输入:1420r/min,输出27.2r/min。此减速电机润滑良好,各传动构件之间的摩擦小,电机每天运行的时间很短,仅在车辆入库或者出库时启动,所选用电机具有一定过载能力,停车超载时,电机稍有过载。 1.2、横移电机的选择 横移速度:8.2m/min=0.14 m/S,g=10m/S2 横移重量G=[900kg(横移框架)+733kg(载车板)+2300kg(车重)]xg=39330 N, 滚轮直径D轮=85mm,滚动摩擦系数μ=0.4(mm),滚动摩擦因数μ'==0.014, 横移部件与轨道之间的摩擦力f为: f= G×μ'=39330N×0.014=551N, 则横移电机的所需功率P: P=f×v=551Nx0.14m/S=77.41w,取0.2kw。 根据各立体车库专用电机的型号,选用苏州联发电机有限公司的立体车库专用减速电机JNAP-20DX 1/4HP型号电机,功率:0.2kw,输入:1420r/min,(减速比1:45、输出31.3r/min) 1.3、降钢丝绳选择 升降钢丝绳最大拉力(双根)=3033x9.8x0.3=8.917kN。 选用6x19S+FC?12钢丝绳,抗拉强度1570/1770MPa。 最小破断拉力:77.9kn 77.9/8.917=8.74>7,安全。 1.4、提升链条实际速度为9.2m/min=0.153m/S,升降横移式立体车库链条运行速度远低于0.6m/s,属于低速链传动。对于低速链传动,因抗拉静力强度不够而破坏的几率很大,设计时在结构允许的条件下,应尽量取较大的链轮直径以减小链条拉力。必须保证小链轮与链条同时啮合的齿数大于3~5。故对链条进行抗拉静力强度计算: 链条拉力Fe=29.72x349/324=32.013kn F1=Fe+Fc+Ff=32013+0+8=32021N 设可选链条的抗拉强度(单排)为a,则2a/32.013>7 即a>7x32.013/2,a>112kn 链条采用2条24A提升,抗拉强度为125kn

设计洪水分析计算

设计洪水分析计算 1、洪水标准 依据《水利水电工程等级划分及洪水标准》(SL44-2006),确定该工程等级为五等,按20年一遇洪水标准设计,200年一遇洪水校核。 本水库上游流域面积为1.6平方千米,属于小于30平方千米范围,按《山东省小型水库洪水核算办法》(试行)进行洪水计算。 2、设计洪水推求成果 1、基本资料 流域面积F=1.6平方公里,干流长度L=2.1千米,干流平均比降j=0.02。 根据山东省小型水库洪水核算办法,查《山东省多年平均二十四小时暴雨等值线图》,该流域中心多年平均二十四小时暴雨H24=85毫米。 该水库水位、库容关系表如下:

设计溢洪道底高程177.84米,相应库容23.29万立米。 2、最大入库流量Q m计算 (1)、流域综合特征系数K 按下式计算K=L/j1/3F2/5 (2)、设计暴雨量计算 查《山东省最大二十四小时暴雨变差系数C v等值线图》,该流域中心C v=0.6,采用C s=3.5C v应用皮尔逊3型曲线K p值表得,20年一遇K p=2.20,200年一遇K p=3.62,则20年一遇最大24小时降雨量H24=2.2*85=187毫米,200年一遇最大24小时降雨量H24=3.62*85=307.7毫米。 (3)单位面积最大洪峰流量计算 经实地勘测,该工程地点以上流域属丘陵区,查泰沂山北丘陵区q m- H24-K关系曲线,得20年一遇单位面积最大洪峰流量及200年一遇单位面积最大洪峰流量q m。 (4)洪水总量及洪水过程线推求 已算得20年一遇最大24小时降雨量H24=187毫米及200年一遇最大24小时降雨量H24=307.7毫米,取其75%为P 。设计前期影响雨量P a取40毫米,计算P+P a,查P+P a与设计净雨h R关系曲线,得20年一遇及 00年一遇h R。 洪水总量按下式计算W=0.1*F*h R,由此可计算得20年一遇及200年一遇洪水总量W。

模板支架设计方案

模板支架设计 一、编制依据: 《混凝土结构工程施工质量验收规范》 《建筑施工扣件式钢管脚手架安全技术规范》 《木结构工程施工质量验收规范》 施工图纸(工程结构形式、荷载大小、地基土类别、承受浇筑混凝土的重量及侧压力)及施工组织设计(施工进度、施工设备、材料供应以及施工荷载) 二、编织步骤及注意事项: 脚手架工程施工的主要步骤如下:主要及相关人员商讨方案---确定方案---编制方案---报公司技术、安全部门审批方案---审批合格后由架子工长组织实施---各方验收合格---投入使用脚手架工程在施工前,技术负责人应召集技术、安全、生产等相关人员对本工程的脚手架搭设情况进行研讨,确定脚手架应搭设的步距、纵距、横距、总高度、范围等各项参数内容,然后由技术负责人或技术员编制,编制完毕的方案经技术负责人审核后报公司技术安全部门会审,并由公司总工程师审批后执行。方案审批返回项目部,由项目部架子工长组织工人进行搭设,经公司技术、安全及项目部技术、安全部门负责人验收合格,方可使用。 三、模板支架荷载: 1、荷载分类 作用于模板支架的荷载可分为永久荷载(恒荷载)与可变荷载(活荷载)。 2、永久荷载(恒荷载)可分为: (1)模板及支架自重,包括模板、木方、纵向水平杆、横向水平杆、立杆、剪刀撑、横向斜撑和扣件等的自重; (2)新浇混凝土自重; (3)钢筋自重 3 、可变荷载(活荷载)可分为: (1)施工荷载,包括作业层上的人员、器具和材料的自重; (2)倾倒或振捣混凝土荷载。 四、方案确定: 1、工程概况

板厚240 mm 180mm 150mm 130mm 130mm 高1000mm 700mm 700mm 700mm 700mm 梁 宽700mm 500mm 500mm 500mm 500mm 2、顶板支撑方案搭设参数的确定 现以转换层为例选择顶板模板支撑方案: ①、由于层高为4.5m,可确定支架搭设高度为4.2m(层高减掉板厚);现设定支撑架布距为1.2m,则立杆上端伸出顶层横杆中心线至模板支撑点的长度a=层高-板厚-底层横杆至地面距离-整倍的布距-相邻模板背楞的高度;及 a=4.5-0.2-0.1-1.2×3-0.1=0.5 ②、初步确定立杆纵距和横距均为1.2m; ③、模板材料选择竹胶板;相邻模板的小楞采用50×100mm2木方,间距为300mm;顶托梁采用100×100mm2木方,间距为1200mm。采用的钢管类型为48× 3.5。 3、设计计算内容: 1.板底面板强度、挠度和剪力计算; 2.板底木方强度、挠度和剪力计算; 3.木方下面支撑梁(木方或钢管)强度、挠度计算; 4.扣件的抗滑承载力计算; 5.立杆的稳定性计算。 4、计算解析: 力传递过程: 面板-木方-托梁-顶托(或扣件)-立杆 楼板支撑架立面简图

全省小型水库设计洪水位查算 方法

xx省小(2)型病险水库应急除险定型设计 设计洪水位查算方法(参考) 由于本次应急处理的小(2)型病险水库数量众多,按照常规设计步骤难已在短时期内完成除险设计。根据xx省小(2)型水库的特点:水库集水面积较小一般为1~5 km2,且水库及附近流域没有水文资料,水库设计洪水一般采用《xx 省暴雨洪水查算手册》规定方法进行计算。为便于各地有关单位对小(2)型水库应急除险设计,特编制xx省小(2)型水库设计水位查算图,供有关单位对小(2)型水库进行除险加固设计参考应用。 1 水库设计洪水位计算原理 水库设计、校核洪水位是水库工程一个重要的特征参数,是水库大坝坝顶高程设计的重要依据。水库设计、校核洪水位的确定,一般根据水库的规模、坝型,按照SL 252-2000《水利水电工程等级划分及洪水标准》,确定其设计洪水、校核洪水标准,然后根据水文资料条件,选用一种或多种计算方法,求得水库设计、校核洪水过程线,而后根据水库高程~容积曲线、水库水位泄流曲线,进行洪水调节计算,求得水库设计、校核频率下的最高调洪水位,即为水库设计、校核洪水位。

2 本次小(2)型水库设计洪水位查算图编制方法 2.1 设计洪水计算方法 (1)设计暴雨 根据xx省水文局2010年编制的《xx省暴雨洪水查算手册》有关附图(最大1h、最大6h、最大24h暴雨均值、Cv等值线图),将xx省归纳为赣北和赣南2个分区(详见图1),各分区时段点暴雨设计参数及设计采用成果见表2.1。 表2.1 xx省小(2)型水库分区暴雨设计参数及成果表 分区名称时段点暴雨参数和设计值备注 1h 6h 24h 赣南区均值(mm)45 70 110 1区Cv 0.4 0.45 0.4 P=2%(mm) 93.6 157.5 228.8 P=0.5%(m m) 113.8 195.3 278.3 赣北区均值(mm)45 85 140 7区Cv 0.45 0.5 0.45 P=2%(mm) 101.3 205.7 315.0 P=0.5%(m125.5 260.1 390.6

扣件式钢管模板支架的设计计算

扣件式钢管 模板支架的设计计算 ××省××市××建设有限公司 二O一四年七月十八日

前言 近几年,国内连续发生多起模板支架坍塌事故,尤其是2000年10月,南京电视台新演播大厅双向预应力井式屋盖混凝土浇筑途中,发生了36m高扣件式钢管梁板高支撑架倒塌的重大伤亡事故。从此以后,模板支架设计和使用安全问题引起了人们的高度注意。 虽然采用钢管脚手架杆件搭设各类模板支架已是现代施工常用的做法,但由于缺少系统试验和深入研究,因而尚无包括其设计计算方法的专项标准。几年来,钢管模板支架和高支撑架(h≥4m的模板支架),均采用《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2001)(以下简称《扣件架规范》)中“模板支架计算”章节提供的有关公式及相应规定来进行设计计算的,但是惨痛的“事故”教训和深入的试验研究,已经充分揭示了《扣件架规范》中“模板支架计算”对于高支撑架的计算确实尤其是存在重要疏漏,致使计算极容易出现不能完全确保安全的计算结果。 在新规范或标准尚未颁布之前,为了保证扣件式钢管梁板模板支架的使用安全,总工室参考近期发表的论文,论著以及相关的技术资料,收集整理了有关“扣件式钢管梁板模板支架”的设计计算资料,提供给公司工程技术人员设计计算参考使用;与此同时,《扣件架规范》中“模板支架计算”的相关公式、计算资料,相应停止使用。 特此说明! 总工程师室 二O一四年七月十八日

目录 CONTENTS 第一节模板支架计算………………………………………………1-1 第二节关于模板支架立杆计算长度L有关问题的探讨……………2-1 第三节模板支架的构造要求…………………………………………3-1 第四节梁板楼板模板高支撑架的构造和施工设计要求……………4-1 第五节模板支架设计计算实例………………………………………5-1 第六节附录:模板支架设计计算资料………………………………6-1 [附录A]扣件式钢管脚手架每米立杆承受的结构自重、常用构配件与材料自重[附录B]钢管截面特性 [附录C]钢材的强度设计值 [附录D]钢材和钢铸件的物理性能指标 [附录E]Q235-A钢轴心受压构件的稳定系数 [附录F]立杆计算长度L修正系数表

设计洪水计算书

设计洪水推求 (一)工程概况 甘溪又称古城溪,发源于浙江省江山市大桥镇青源尾。甘溪自源头开始以东西向流入玉山县境内,经白云镇鹁鸪嘴、大园地、平阳村、岩瑞镇水门村后,在岩瑞镇山头淤北和金沙溪汇合。甘溪流域面积206Km 2,主河道长44.2Km ,河道加权平均坡降0.824‰(其中玉山境内流域面积102.6Km 2,河长24Km )。甘溪河道弯曲,河床较浅,中下游两岸地形开阔,耕地集中,属平原丘陵地带,是主要产粮区之一。 1,工程地点流域特征值,主河道比降0.000824. 已知流域总面积206Km 2,加权平均坡降0.824‰,计算河段下游断面集雨面积145.3 Km 2,加权平均坡降1.32‰,主河道长44.2 Km 。 2,设计暴雨查算 (1) 求十年一遇24小时点暴雨量 根据工程地理位置,查《江西省暴雨洪水查算手册》(下同)附图2—4,得流域中心最大24小时点暴雨量H 24=115mm ;查附图2—5,得Cv 24=0.45。由设计频率P=10%和Cs=3.5Cv 查附表5—2,得Kp 24=1.60。 则十年一遇24小时点暴雨量H 24(10%)=115?1.60=184.0mm 。 (2) 求十年一遇24小时面暴雨量 根据计算段流域面积F=145.3 Km 2和暴雨历时t=24小时,查附图5—1,得点面系数24α=0.983 则十年一遇面暴雨量为 24%)10(24%)10(24α?=H H =184?0.983=180.9mm 。 (3)求设计暴雨24小时的时程分配 ○1 设计24小时暴雨雨型 以控制时程t ?=3小时为例,查附表2—1,得雨型分配表,如下表1:

什么是水库的特征水位及库容

什么是水库的特征水位及库容? 水库死水位(Z 死)及死库容(V 死 )。水库在正常运用情况下,允许消落的最低水位, 又称设计低水位。日调节水库在枯水季节水位变化较大,每24小时内将有一次消落到死水位。年调节水库一般在设计枯水年供水期末才消落到死水位。多年调节水库只在多年的枯水段末才消落到死水位。水库正常蓄水位与死水位之间的变幅称水库消落深度。 死库容是指死水位以下的水库容积,又称垫底库容。一般用于容纳淤沙、抬高坝前水位和库区水深。在正常运用中不调节径流,也不放空。只有因特殊原因,如排沙、检修和战备等,才考虑泄放这部分容积。 水库正常蓄水位(Z 正)及兴利库容(V 兴 )。水库的正常蓄水位是水库在正常运用 情况下,为满足兴利要求应在开始供水时蓄到的高水位,又称正常高水位,兴利水位。它决定水库的效益和调节方式,也在很大程度上决定水工建筑物的尺寸、型式和水库的淹没损失,是水库最重要的一项特征。当采用无闸门控制的泄洪建筑物时,它与泄洪堰顶高程相同;当采用有闸门控制的泄洪建筑物时,它是闸门关闭时允许长期维持的最高蓄水位,也是挡水建筑物稳定计算的主要依据。 兴利库容,即调节库容。正常蓄水位至死水位之间的水库容积。用以调节径流,提供水库的供水量或水电站的出力。

汛期限制水位(Z 限)和结合库容(V 结 )。系指水库在汛期允许兴利蓄水的上限水 位,是预留防洪库容的下限水位,在常规防洪调度中是设计调洪计算的起始水位。汛期限制水位是根据水库综合效益、洪水特性、防洪要求和调度原则,在保证工程安全的前提下经分析计算确定的。一般在水库工程的正常运用情况下,即采用原设计提出的运用指标。防洪限制水位与正常蓄水位之间的库容称结合库容(V结),此库容在汛末要蓄满为兴利所用。在汛期洪水到来后,此库容可作滞洪用,洪水消退时,水库尽快泄洪,使水库水位迅速回降到防洪限制水位。 水库防洪高水位(Z 防)和防洪库容(V 防 )。水库的防洪高水位是水库遇到下游防 护对象的设计标准洪水时,在坝前达到的最高水位。只有当水库承担下游防洪任务时,才需确定这一水位。此水位可采用相应下游防洪标准的各种典型洪水,按拟定的防洪调度方式,自防洪限制水位开始进行水库调洪计算求得。 防洪库容是防洪高水位至防洪限制水位之间的水库容积,用以控制洪水,满足下游防护对象的防洪标准。当汛期各时段分别拟定不同的防洪限制水位时,这一库容指其中最低的防洪限制水位至防洪高水位之间的水库库容。 允许最高洪水位(Z 允 )。系指在汛期防洪调度中,为保障水库工程安全而允许充蓄的最高洪水位。一般情况下,如工程能按设计要求安全运行,则原设计确定的校核洪水位即可作为水库在汛期的最高控制水位,在实时调度中除在发生超设计标准洪水时不应突破。 水库的设计洪水位(Z 设 )。水库的设计洪水位是,当水库遇到大坝的设计洪水时,在坝前达到的最高水位。它是水库在正常运用情况下允许达到的最高水位。也是挡水建筑物稳定计算的主要依据。可采用相应大坝设计标准的各种典型洪水,按拟定的调洪方式,自防洪限制水位开始进行调洪计算求得。 水库校核洪水位(Z 校)及调洪库容(V 调 )。水库的校核洪水位是水库遇到大坝的 校核洪水时,在坝前达到的最高水位,它是水库在非常运用情况下,允许临时达到的最高洪水位,是确定大坝顶高及进行大坝安全校核的主要依据。此水位可采用相应大坝校核标准的各种典型洪水,按拟定的调洪方式,自防洪限制水位开始进行调洪计算求得。 水库设计最大泄洪流量(Q 设 )。当水库遭遇设计洪水时,按正常运用条件进行调洪计算所求得的泄洪流量过程中的最大值。水库设计最大泄洪流量由泄洪设备和其他过水

水利工程设计常用计算公式

水利常用专业计算公式 一、枢纽建筑物计算 1、进水闸进水流量计算:Q=B0δεm(2gH03)1/2 式中:m —堰流流量系数 ε—堰流侧收缩系数 2、明渠恒定均匀流的基本公式如下: 流速公式: u=Ri C 流量公式 Q=Au=A Ri C 流量模数 K=A R C 式中:C—谢才系数,对于平方摩阻区宜按曼宁公式确定,即

C = 6/1n 1R R —水力半径(m ); i —渠道纵坡; A —过水断面面积(m 2); n —曼宁粗糙系数,其值按SL 18确定。 3、水电站引水渠道中的水流为缓流。水面线以a1型壅水曲线和b1型落水曲线最为常见。求解明渠恒定缓变流水面曲线,宜采用逐段试算法,对棱柱体和非棱柱渠道均可应用。逐段试算法的基本公式为 △x=f 21112222i -i 2g v a h 2g v a h ???? ??+-???? ??+ 式中:△x ——流段长度(m );

g ——重力加速度(m/s 2); h 1、h 2——分别为流段上游和下游断面的水深(m ); v 1、v 2——分别为流段上游和下游断面的平均流速(m/s ); a 1、a 2——分别为流段上游和下游断面的动能修正系数; f i ——流段的平均水里坡降,一般可采用 ??? ??+=-2f 1f -f i i 21i 或??? ? ??+=?=3/4222 224/312121f f v n R v n 21x h i R 式中:h f ——△x 段的水头损失(m ) ; n 1、n 2——分别为上、下游断面的曼宁粗糙系数,当壁面条件相同时,则n 1=n 2=n ; R 1、R 2——分别为上、下游断面的水力半径(m ); A 1、A 2——分别为上、下游断面的过水断面面积(㎡); 4、各项水头损失的计算如下: (1)沿程水头损失的计算公式为

毕业设计手算计算书基本步骤模板1

1 建筑设计 1.1 建筑方案的比选与确定 根据毕业设计任务书的要求,在参观了一些办公大楼的基础上,我先后做出了三个方案,经过初选,摈弃方案三,现将方案一与方案二做一比较,以此确定最终的建筑设计方案。 1.1.1建筑功能比较 由于此保险公司办公楼要求有营业大厅,故可以采用两种方式,一种是将营业大厅单独设置在一边,即采用裙楼的方式,主楼办公区8层,裙楼2层,这样功能划分明确,且建筑物有错落感,外形美观,但结构布置和计算麻烦些;另一种则用对称的柱网,一楼设置营业大厅,与办公区2-8层的布置不同,这样主要的问题就是底层的功能划分了,考虑方便,美观,防火等,此方案绘图和计算相对容易些,考虑到是初次设计完整的一栋框架结构,主要目的是掌握思想方法,故采用方案2,柱网完全采用对称布置。关于底层平面的布置的问题又有如下两种方案: 方案一建筑底层平面布置完全对称,这样有利于引导人流,且外形较好,里面效果好,现浇整体布局较为紧凑,便于设计计算和施工;由于底层有大型的营业大厅,而且要求与办公区隔离,该方案楼梯布置比较困难,若分两边布置,则使建筑无门厅主楼梯,不利于交通组织,将其因为对称布局带来的优势丧失,且将对电梯的布置带来问题;若于中门厅处布置一部主楼梯,则为了防火需要(以防形成“袋形走廊”),要在建筑两侧加设防火楼梯与防火出口,造成不经济,且将楼梯置于建筑两头不利于抗震设计。 方案二建筑底层平面非对称布置,可能导致交通组织不明确,但在设置两个入口后问题得到解决,营业大厅不布置在中间,而是放在最右边,有其单独的入口,中间用一道门即可与办公区的门厅隔离,达到设计要求。该方案楼梯布置较为合理,于门厅布置主楼梯一部,通向楼顶,设置防火卷门,即起到消防楼梯的作用,引导人流且同两部电

水文水利计算

摘要 天然情况下的河川径流,有着年内和年际的变化,且地区间的分布也不均衡,因此无法满足国民经济各用水部门对水资源利用的要求。水利工程建设目的在于通过各种施工调节、改变区域水量分布状况和地区水利条件,使之符合工业、农业及其他各部门的需要。水利工程从修建到运用,一般要经过规划设计、施工、管理三个阶段,每一个阶段都需要进行水文水利计算工作。水文工作中的水利计算、水文预报及水资源评价都为工程在各阶段提供了所需数据,而水文水利计算就是这些数据的基础,通过分析,定出工程规模和建筑尺寸,编制水量调度方案,并对工程的经济性和安全性连个方面进行权衡并制定对策,力求在复杂的问题中得到规划设计和调度运行的最优方案。本次设计就是从这一方面出发,通过对兴利调节、防洪调节和水能计算等各种任务的运算,求得死库容、兴利库容、防洪库容和保证出力等,使得到的成果能运用到生产当中。 关键词;水库兴利调节;水库防洪调节计算;水库水能计算。

(1) 设计暴雨推求 有资料地区,设计暴雨的推求采用实测雨量进行分析;缺资料地区采用2003年颁布的《广东省暴雨参数等值线图》查算。 (2) 设计排涝流量 设计排涝流量一般采用平均排除法,也可采用排涝模数经验公式法。当涝区内有较大的蓄涝区时,一般需要采用产、汇流方法推求设计排涝流量过程线,供排涝演算使用。 1) 平均排除法 广东省一般采用平均排除法计算排水流量,这种计算方法适用于集水面积较小的涝区排水设计。平均排除法按涝区积水总量和设计排涝历时计算排水流量和排涝模数,其计算公式为: 43213 21)(1000q q q q T W W W h E R A C Q i i p i i ++++-----?=∑ F Q q = 式中:Q ——设计排水流量(m 3/s); Ci ——各地类径流系数,参考值:水稻田、鱼塘和河涌采用1.0;山岗、坡地、经济作物地类采用0.7;村庄、道路采用0.7~0.9;城镇不透水地面采用0.95; Ai ——各地类面积(km 2); Rp ——设计暴雨量(mm); Ei ——各地蒸发量(mm ),一般可采用4mm/d ; hi ——各地类暂存水量(mm ),水稻田采用40mm ,鱼塘采用50mm ~100mm ,河涌采用100mm ;

校核洪水位

个人收集整理仅供参考学习 校核洪水位water level for check floodJ,aohe hongshu,wef 校核洪水位(water level for。heek fl仪Kl) 水库遇到大坝的校核洪水时坝前允许达到的最高库水位。该水位也是设计考虑最不利水文条件下的最高库水位.水库遇到大坝设计洪水时坝前允许达到的最高库水位称为设计洪水位。校核洪水位是确定坝高的依据。校核洪水位以下的库容称为总库容,总库容是划分水电站等级的依据之一。校核洪水位与汛期限制水位之间的库容称为调洪库容,其中包括防洪高水位与汛期限制水位之间的防洪库容。校核洪水位和设计洪水位又是水电站水工建筑物安全设计的依据。当遇设计洪水或校核洪水时,水库利用所有泄水建筑物的泄水能力敞泄出库。在入库洪水涨水阶段,人库流t大于泄水能力,部分水量蓄水人库,库水位抬高,泄水能力也相应增加。在人库流量开始消落直至等于泄水能力时,库水位达到最高。此时,对应于遇设计洪水水库的最高水位为设计洪水位;遇校核洪水时水库的最高洪水位为校核洪水位。对于有防洪任务的水库,在人库洪水开始涨水但涨到下游防洪保护对象的防洪标准洪水以前,水库据下游防洪要求的安全泄量控制泄t。但洪水涨到大于防洪标准洪水以后,或库水位超过防洪高水位时,水库由控泄改为敞泄,直到设计洪水位或校核洪水位。校核洪水位和设计洪水位是在水电站设计阶段选定,一般是在汛期限制水位和防洪高水位已经选定的条件下进行。这两个水位与泄水建筑物规模有关,并决定坝高。当采用的泄水建筑物泄水能力较大时这两个水位将较低,坝体工程量较少。反之,这两个水位较高,坝体工程t较多.所以这两个水位选择一般是根据泄水建筑物和坝体所需投资最少的原则选定,有时据水库不淹没库区某一对象确定这两个水位,同时据此确定泄水建筑物的泄水能力。 1 / 1

模板设计计算书(一)

模板设计计算书(一) 模板设计计算书(一)提要:计算底模承受的荷载:梁的底模设计要考虑四部分荷载,模板自重,新浇砼的重量,钢筋重量及振捣砼产生的荷载 模板设计计算书(一) 矩形梁模板和顶撑计算 梁长6.9米,截面尺寸为250*550mm,离地面高m,?梁底钢管顶撑间距为600mm,侧模板立档间距为600mm。木材用红松:fe=10N/mm2fv=/mm2 fm=13N/mm2 1.底板计算 底板计算 抗弯强度验算 计算底模承受的荷载:梁的底模设计要考虑四部分荷载,模板自重,新浇砼的重量,钢筋重量及振捣砼产生的荷载,均乘以分项系数,设底模厚度为4mm。 底模板自重 .2×5××=/m 砼荷重 .2×24××=/m 钢筋荷重

.2×××=/m 振捣砼荷载 .2××=/m 根据《砼结构工程施工及验收规范》的规定,设计荷载值要乘以V=?的折减系数,所以q=×=/m 验算底模抗弯承载力 底模下面顶撑间距为米,底模的计算简图是一个等跨的多跨连续梁,因为模板长度有限,一般可按四等跨连续梁计算,查静力计算表得: L= L= L= L= Mmax=-=-××=·m 按下列公式验算 Mmax/wn≤kfm Mmax/Wn=×106/﹛250/(6×402)﹜=/mm2 满足要求 抗剪强度验算 Vmax==××= Lmax=3Vmax/2bh=3××103/(2×250×40)=/mm2 Kfv=×=/mm2>/mm2

满足要求 挠度验算 验算挠度时,采用荷载标准值,且不考虑振捣砼的荷载 q’=++=/m wA=×q’l4/100EI=××6004/﹛100×9×103×(1/12)×250×403﹜=? 允许挠度为h/400=600/400=> 满足要求 2、侧模板计算 (1)侧压力计算,梁的侧模强度计算,?要考虑振捣砼时产生的荷载及新浇砼对模板侧面的压力,并乘以分项系数1.2。 采用内部振捣器时,新浇筑的普通砼作用于模板的最大侧压力:F=×24×200/20+15×1×1×(2)=/m2 F=24H=24×=/m2 选择二者之中较小者取F=/m2 振捣砼时产生的侧压力为4kN/m2 总侧压力q1==/m2 化为线荷载q=×=/m 验算抗弯强度 按四跨连续梁查表得: Mmax=-=-××=kn·m=- 钢模板静截面抵抗矩为

设计洪水计算

项目二:设计洪水计算 由流量资料推求设计洪水 一、填空题 1.洪水的三要素是指、、。 2.防洪设计标准分为两类,一类是、另一类是。 3.目前计算设计洪水的基本途径有三种,它们分别是、 、。 4.在设计洪水计算中,洪峰及各时段洪量采用不同倍比,使放大后的典型洪水过程线的洪峰及各历时的洪量分别等于设计洪峰和设计洪量值,此种放大方法称为。 5.在洪水峰、量频率计算中,洪峰流量的选样采用、时段洪量的选样采用。 6.连序样本是指。不连序样本是指 。 7.对于同一流域,一般情况下洪峰及洪量系列的C V值都比暴雨系列的C V值,这主要是洪水受_和影响的结果。 二、问答题 1.什么是特大洪水?特大洪水在频率计算中的意义是什么? 2.对特大洪水进行处理时,洪水经验频率计算的方法有哪两种?分别是如何进行计算的? 3.洪水频率计算的合理性分析应从几个方面进行考虑? 4.采用典型洪水过程线放大的方法推求设计洪水过程线,典型洪水过程线的选择原则是什么? 5.采用典型洪水过程线放大的方法推求设计洪水过程线的两种放大方法是什么?分别是如何计算的? 6.在洪水峰、量频率计算工作中,为了提高资料系列的可靠性、一致性和代表性,一般要进行下列各项工作,试在下表的相应栏中用“+”表明该项措施起作用,用“-”表明该项措施不起作用。

三、计算题 1.某水库坝址断面处有1958年至1995年的年最大洪峰流量资料,其中最大的三年洪峰流量分别为 7500 m3/s、 4900 m3/s和 3800 m3/s。由洪水调查知道,自1835年到1957年间,发生过一次特大洪水,洪峰流量为 9700 m3/s ,并且可以肯定,调查期内没有漏掉 6000 m3/s 以上的洪水,试计算各次洪水的经验频率,并说明理由。 2.某水文站根据实测洪水和历史调查洪水资料,已经绘制出洪峰流量经验频率曲线,现从经验频率曲线上读取三点(2080,5%)、(760,50%)、(296,95%),试按三点法计算这一洪水系列的统计参数。 3.已知设计标准P=1%洪水过程的洪峰、1天、3天洪量和典型洪水的相应特征值及其过程线(见表1和表2),试用同频率放大法推求P=1%的设计洪水过程线(保留三位有效数字,不需修匀)。 表1 设计洪水和典型洪水峰、量特征值 表2 典型洪水过程

无资料感潮河段设计洪水位计算

Journal of Water Resources Research 水资源研究, 2017, 6(1), 66-70 Published Online February 2017 in Hans. https://www.doczj.com/doc/5f12238518.html,/journal/jwrr https://https://www.doczj.com/doc/5f12238518.html,/10.12677/jwrr.2017.61009 文章引用: 胡进宝, 刘海成, 王晓霞, 管宁. 无资料感潮河段设计洪水位计算[J]. 水资源研究, 2017, 6(1): 66-70. Design Water Level Calculation for Tidal River in Ungauged Basins Jinbao Hu 1, Haicheng Liu 2, Xiaoxia Wang 1, Ning Guan 2 1Northwest Electric Power Design Institute, China Power Consulting Group, Xi’an Shannxi 2 Tianjin Research Institute for Water Transport Engineering, MOT, Tianjin Received: Jan. 18th , 2017; accepted: Feb. 7th , 2017; published: Feb. 10th , 2017 Abstract The hydrological regime of the tidal reach is complicated because it’s influenced by both the upstream runoff and the downstream tide. This paper focuses on the design water level calculation for tidal river in ungauged basin based on the short-term tidal level observation, the long term tidal observation and short term tidal level observation relationship. After the quasi-synchronous comparison, the tidal level data of long-term tide observation stations are transferred to the engineering sea area. By using the P-III frequency curve, the extreme tidal level of each year is estimated for different design tide levels. As a re-sult, the problem of different frequency tide calculation is solved. As to the river flood design water level calculation, because the lack of observation river flow data, the maximum reservoir discharge flow and interval flow is used as the upstream flow boundary conditions, the average high tidal level is used as the downstream water level conditions. Besides, based on different time of the remote sense image at the estuary, the rational assumptions of estuarine topography is put forward using the hydrodynamics mo- del, the design water level satisfied the project need is calculated. The above-mentioned methods pro-vide an important reference for the calculation of the design flood level of tidal reach inungauged basins. Keywords Tidal Reach, Design Water Level, Ungauged Basins 无资料感潮河段设计洪水位计算 胡进宝1,刘海成2,王晓霞1,管 宁2 1中国电力工程顾问集团西北电力设计院有限公司,陕西 西安 2 交通运输部天津水运工程科学研究所,天津 收稿日期:2017年1月18日;录用日期:2017年2月7日;发布日期:2017年2月10日 作者简介:胡进宝(1982.3-),安徽庐江人,高级工程师,主要从事电力工程水文气象勘测工作。

现浇混凝土模板的支撑设计计算书

模板的支撑设计计算书 ●本工程的模板均采用胶合板模板,木方背楞,钢管扣件支撑,配合采用 对拉螺栓。

施工荷载 1.4×2500=3500N/m 2 钢筋自重荷载 1.2×1100=1320N/m 2 振捣荷载 1.4×2000=2800 N/m 2 合计: 15480 N/m 2 mm q bh f l bh W m 80148 .156181********* 12 22=****=*≤ (2)按剪应力验算 mm q bhf l f bh ql bh V ql V v v 201648 .1533.118100043443232/1max =****=≤≤== =τ (3)按挠度验算

mm q EI l l EI ql 487200 632.0100200 100632.034=??=< ?=ω 现浇板木胶合板模板跨度(即70×100mm 木方背楞间距)取400mm. 4) 70×100mm 木方背楞受力验算 70×100mm 木方背楞搁置在钢管大横杆上,现进行木方背楞受力验算。 (1)按抗弯强度验算 上式中q ’=15480×0.4=6.192N/mm (2))按剪应力验算 (3 根据以上计算,胶合板木方70×100mm 背楞跨度可取1200mm 。 但模板下钢管扣件支撑,每一扣件抗滑能力约为6500N ,而其上荷载为15480N/m 2,可知如支撑立杆间距布置为600mm×600mm,则扣件承受

的力为15480×0.6×0.6=5.57KN<6.5KN,可满足要求。 则木方背楞下,φ48×3.5钢管大横楞及φ48×3.5立杆间距取@600mm ,也即,木方背楞的实际跨度为600mm ,现进行大横杆及立杆验算。 5) 木方背楞下φ48×3.5钢管大横杆受力验算 作用于钢管横楞上的集中荷载为F=q ×0.6×0.4=4.39KN 则按单跨梁,最大弯距可能为: m KN Fl M ?=?== 439.04 6.039.44max (2) 按挠度验算 mm mm F EI l l EI Fl 6008364390400121867101.24820048400 4853<=????=≤≤ =ω 6) 钢管支撑立杆受力验算。 支撑立杆步距1800m ,采用φ48×3.5钢管对接连接: 立杆最大受力F=15480×0.6×0.6=5573N<扣件的抗滑能力值 2 2/205/01.36489 316.05573316 .0,1488 .151800 3.1mm N mm N A N i l <=?=?===?= ?= ?σ?μλ则查表 150mm 厚及其以下模板支撑设计

模板计算

施工模板设计计算书 本工程为框架剪力墙结构,汽车库和指挥中心为均为地下一层。其中汽车库部分共有48根框架柱,其中矩形柱2根,方形柱46根。柱径分别有700×700mm、900×900mm、1100×1100mm、1700×500mm、950×900mm等五种。柱高均为4300mm。最大框架梁断面为b×h:700×1400mm,梁长为8000mm。砼墙最大厚度为750mm,计算高度为5700mm。现浇板厚分别有:指挥中心部分有1800mm、1000mm ,汽车库部分有450mm、400mm。 一、施工材料 1、钢管φ=48×3.5(用于柱箍、钢楞和模板支撑) 截面积: A = 489㎜2 截面抵抗矩:W X = 5.08×103mm3 截面惯性矩:I X = 12.19×104mm4 回转半径:ⅰ= 15.8㎜ 每米重量:g = 3.84 ㎏/m 弹性模量: E = 2.06×105 N/㎜2 2、木材 多层胶合板厚18㎜(用于顶板模板) 竹胶合板厚18㎜(用于柱模) 木板(东北松)板厚50㎜(用于梁底模) 木枋50×100(用于木模板楞木) 木材弹性模量: E = 9.5×103 N/mm3

木材抗弯强度设计值:f m= 13 N/㎜2 木材抗剪强度设计值:f V = 1.4 N/㎜2 3、钢材(型钢) ⑴、∟75×75×5角钢(用于柱箍) 截面积A=741.2mm2 理论重量:5.818kg/m 截面惯性矩Ix=37.97×104mm4 截面最小抵抗矩W X = 7.32×103mm3 回转半径i=23.3mm 钢材弹性模量 E = 2.06×105 N/㎜2 钢材抗拉、抗弯强度设计值 f = 215N/㎜2⑵、10#槽钢(用于墙模板钢楞) 截面积A=1274.8mm2 理论重量:10.007kg/m 截面惯性矩Ix=198×104mm4 截面最小抵抗矩W X = 39.7×103mm3 回转半径i x=23.3mm 钢材弹性模量 E = 2.06×105 N/㎜2 钢材抗拉、抗弯强度设计值 f = 215N/㎜2⑶、6#槽钢(用于墙模板钢楞) 截面积A=845.1mm2 理论重量:6.63kg/m

根据流量资料计算设计洪水

FCD11020 FCD 水利水电工程初步设计阶段 根据流量资料计算设计洪水 大纲范本 水利水电勘测设计标准化信息网 1997年8月 1

水电站技术设计阶段 根据流量资料计算设计洪水大纲 主编单位: 主编单位总工程师: 参编单位: 主要编写人员: 软件开发单位: 软件编写人员: 勘测设计研究院 年月 2

目次 1. 引言 (4) 2. 设计依据文件和规范 (4) 3. 基本资料 (4) 4. 设计原则 (8) 5. 设计内容与方法 (8) 6.专题研究 (12) 7.设计成果 (12) 3

1 引言 流域及工程概况: 本工程位于江(河)上。距上(下)游市(县) km。 工程所在河流发源于省山麓,自向,流经等省(市),于进入,最后注入海,全长km,流域面积km2。 坝址以上流域位于东经~;北纬~,集水面积km2,河道长度km,河道比降,河谷形态,河网分布呈。流域平均高程m,山为最高峰,海拔m,年平均雨量mm,年平均蒸发量mm。植被率。流域内已建大中型水电站(水库)有等;引水、蓄水工程有和工程;分洪、滞洪工程有和工程以及水土保持措施。 本工程为坝(闸),以为主,兼顾等任务。大坝设计洪水标准为;校核洪水标准为。 2 设计依据文件和规范 2.1 有关本工程(或专业)的文件 (1) 可行性研究报告; (2) 可行性研究报告专题报告; (3) 可行性研究报告审批文件; (4) 初步设计任务书和项目卷册任务书及其他专业对本专业的要求。 2.2 主要设计规范 (1) DL5020-93 水利水电工程可行性研究报告编制规程; (2) DL5021-93 水利水电工程初步设计报告编制规程; (3) SL44-93 水利水电工程设计洪水计算规范。 3 基本资料 3.1 资料搜集与复核 3.1.1 资料搜集 4

钢模板设计计算

府谷煤炭铁路专用线四标 模板计算书 编制: 复核: 审核: 中铁七局集团府谷铁路专用线项目部二O一一年十二月十八日

钢模板设计计算 参数选定: 混凝土浇注速度V=1.5m/h,混凝土初凝时间取3h,汽车路上消耗0.5小时,即混凝土入模到凝结取2小时。 混凝土入模温度取t0=20oC,掺外加剂,混凝土塌落度取160mm。混凝土塌落度影响系数1.5,外加剂修正系数1.2 1、混凝土对模板侧压力计算 则:F1=γc H=γc VΔT=25×1.5×2=75KN/m2=75 KPa F2=0.22γc t0?1?2V t0=200/(20+15)= 5.7 h 则:F2=0.22×25×5.714×1.2×1.5×5.1=53.12KPa 取基本荷载标准值F=53.12KPa 荷载组合: 标准值取1.2为保险系数,但以0.85予以折减,水平冲击荷载取1.4为保险系数,采用0.2~0.8m3 的灰斗进行浇注,取F倒=4KPa 1.则:混凝土侧压力值F=(53.12+4) ×1.2×0.85=58.26KPa 2、面板验算 模板面板采用6mm厚钢板,采用双向板结构,取方格间距为0.3×0.3m.以一边简支、三面固结计算。图中q=f×10×10-3=58.26KN/m 一面简支最为不利

取计算单元为10mm=1×10-3 m 则K=(Eh 3×b)/(12×(1-0.32))(建筑施工手册) =41.53846 W=61bh 2=61×10×10-3×(6×10-3)2=6×10-8m 3 δ=Mmax/W=0.06ql 2/W=0.06×58.26×0.32/(6×10-8 ) =52MPa <170MPa=[δ],可以 f max =0.0016ql 4/K=0.0016×58.26×0.34/41.538=0.18mm 发生与板中心 Fmax=0.18<[f]=L/400=300/400=0.75mm 满足要求 3.板内肋的布置及验算: 横向:内楞采用δ=6mm 厚,高0.07m 板作为内楞,间距0.4m q=58.26×0.3=17.478KN/m M=ql 2/8=17.478×0.32/8=196.6N ·M 则;W=6 1×b ×10-3×(0.07)2=4.9×10-6m 3 I=121bh 3=121×b ×10-3×(0.07)3=171.5×10-9m 4 [d]= Mmax/W=196.6/(4.9×10-6 )=40MPa <170MPa ,可以 f max =5ql 4/(384EI )=5×17.478×3004/(384×2.1×105×171.5×103)=0.051mm 4.竖肋验算 竖肋采用[8的槽钢,每1.0m 加一道外加强箍,外加强箍采用2根[16槽钢,[8的槽钢竖向间距0.3m , 截面参数:W=25.3cm 3 I=101.3cm 4

相关主题
文本预览
相关文档 最新文档