当前位置:文档之家› 7-无人机驾驶职业技能等级标准

7-无人机驾驶职业技能等级标准

7-无人机驾驶职业技能等级标准
7-无人机驾驶职业技能等级标准

无人机驾驶

职业技能等级标准

目录

前言﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍1 1范围﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍2 2规范性引用文件﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍2 3术语和定义﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍2 4对应院校专业﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍3 5面向工作岗位(群)﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍4 6职业技能要求﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍4 参考文献﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍12

1范围

本标准规定了无人机驾驶职业技能等级对应的工作领域、工作任务及职业技能要求。

本标准适用于无人机驾驶职业技能培训、考核与评价,相关用人单位的人员

聘用、培训与考核可参照使用。

2规范性引用文件

下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本适用于本文件。

Manual on Remotely Piloted Aircraft Systems (RPAS) (ICAO-Doc 10019) 民用无人机驾驶员管理规定(AC-61-FS-2018R2)

轻小无人机运行规定(AC-91-FS-2015-31)

民用无人机驾驶员合格审定规则(T/AOPA 0008-2019)

3术语和定义

国家、行业标准界定的以及下列术语和定义适用于本文件。

3.1无人机(UA: Unmanned Aircraft)

是由控制站管理(包括远程操纵或自主飞行)的航空器。也称远程驾驶航空器(RPA: Remotely Piloted Aircraft)。

3.2无人机系统(UAS: Unmanned Aircraft System)

也称远程驾驶航空器系统(RPAS: Remotely Piloted Aircraft Systems),是指由无人机、相关的控制站、所需的指令与控制数据链路以及批准的型号设计规定的任何其他部件组成的系统。

3.3无人机系统驾驶

是指操控无人机系统完成既定飞行任务,负责整个无人机系统运行和安全。

3.4类别

指根据无人机产生气动力及不同运动状态依靠的不同部件或方式,将无人机进行划分的一种维度。

3.5固定翼无人机

指动力驱动的重于空气的一种无人机,其飞行升力主要由给定飞行条件下保持不变的翼面产生,属于类别中的一种。

3.6无人直升机

是指一种重于空气的无人机,其飞行升力主要由在垂直轴上一个或多个动力驱动的旋翼产生,其运动状态改变的操纵一般通过改变旋翼桨叶角来实现,属于类别中的一种。

3.7多旋翼无人机

是指一种重于空气的无人机,其飞行升力主要由三个及以上动力驱动的旋翼产生,其运动状态改变的操纵一般通过改变旋翼转速来实现,属于类别中的一种。

3.8垂直起降固定翼无人机(VTOL)

是指一种重于空气的无人机,垂直起降阶段时升力主要由旋翼或直接推力等方式产生,水平飞行阶段主要由固定翼面产生,且两种方式可在空中进行转换。

3.9视距内运行

指无人机在驾驶员与之保持直接目视视觉接触的范围内的运行,且该范围水平半径不大于500米,航空器相对高度不高于120米。

3.10超视距运行

指无人机进行的除视距内运行以外的运行。

4对应院校专业

中等职业院校:无人机操控与维护、设施农业生产技术、森林资源保护与管理、国土资源调查、地质与测量、生态环境保护、输配电线路施工与运行、影像与

影视技术、航空摄影测量、森林消防、应急管理与减灾技术等专业。

高等职业院校:无人机应用技术、设施农业与装备、现代农业技术、农业装备

应用技术、森林资源保护、林业信息技术与管理、国土资源调查与管理、地质调查与矿产普查、工程测量技术、摄影测量与遥感技术、测绘工程技术、测绘地理信息技术、国土测绘与规划、大气探测技术、环境监测与控制技术、救援技术、高压输配电线路施工运行与维护、水文测报技术、交通运营管理、定翼机驾驶技术、直升机驾驶技术、摄影摄像技术、交通管理、抢险救援等专业。

应用型本科院校:无人驾驶航空器系统工程、自然地理与资源环境、地理信

息科学、自动化、测绘工程、遥感科学与技术、飞行器设计与工程、飞行器制造工程、农业机械化及其自动化、环境科学与工程、森林保护、摄影等专业。

5面向工作岗位(群)

无人机驾驶职业技能等级标准,主要面向影视传媒单位、农业相关单位、交

通部门、建筑部门、应急救援部门、电力等能源部门、国土资源勘查部门、环保部门、无人机研发与制造单位、公安部门等,从事无人机航拍、农业喷洒、病虫害监

控与防止、土壤与作物检测监控、交通线路巡检、电力巡检、管道与基站巡检、国

土资源勘察与测绘、保险勘察、环保检测、建筑或固定设施(如桥梁、电塔等)

检查、特殊环境(如地质灾害现场、火情现场等)等多种运行场景下的无人机系

统操控工作,也可从事无人机型号测试、系统软硬件选配调试与维修,以及保障

运行所需的装配调整、维护及飞行前检查工作。

6职业技能要求

6.1职业技能等级划分

无人机驾驶职业技能等级分为三个等级:初级、中级、高级。三个级别依次递进,高级别涵盖低级别职业技能要求。

【无人机驾驶】(初级):能按照厂家手册安装多旋翼类别无人机系统以及任务载荷,进行必要飞行前安全检查,操纵多旋翼类别无人机在视距内场景下起降以及运行,依据无人机系统手册完成日常的检查与维护工作。

【无人机驾驶】(中级):能按照厂家手册安装多类别的无人机系统以及远程地面控制站,完成所需燃料加注,进行系统整体安全检查,操纵多种类别无人机起降以及在超视距场景下的运行,以及保障运行所需的装配调整、维护工作。

【无人机驾驶】(高级):能根据飞行任务需要装配无人机整体系统以及任务载荷,并完成系统整体调试,设计作业方案及应急处置预案,操纵多种类别无人机在多种运行场景下完成运行,能进行作业数据后期处理,可以胜任无人机型号测试、出厂测试等工作,以及部件级维修工作。

6.2职业技能等级要求描述

表1 无人机驾驶职业技能等级要求(初级)

表2 无人机驾驶职业技能等级要求(中级)

表 3 无人机驾驶职业技能等级要求(高级)

参考文献

[1]ICAO-Doc-10019 Manual on Remotely Piloted Aircraft Systems (RPAS)

[2]AC-61-FS-2018R2 民用无人机驾驶员管理规定

[3]AC-91-FS-2015-31 轻小无人机运行规定

[4]T/AOPA 0008-2019 民用无人机驾驶员合格审定规则

无人机基础知识(飞行原理、系统组成、组装与调试)

近年来无人机的应用逐渐广泛,不少爱好者想集中学习无人机的知识,本文从最基本 的飞行原理、无人机系统组成、组装与调试等方面着手,集中讲述了无人机的基本知识。 第一章飞行原理 本章介绍一些基本物理观念,在此只能点到为止,如果你在学校已上过了 或没兴趣学,请跳过这一章直接往下看。 第一节速度与加速度 速度即物体移动的快慢及方向,我们常用的单位是每秒多少公尺﹝公尺/秒﹞0 加速度即速度的改变率,我们常用的单位是﹝公尺/秒/秒﹞,如果加速度 是负数,则代表减速。 第二节牛顿三大运动定律 第一定律:除非受到外来的作用力,否则物体的速度(v)会保持不变。 没有受力即所有外力合力为零,当飞机在天上保持等速直线飞行时,这时 飞机所受的合力为零,与一般人想象不同的是,当飞机降落保持相同下沉率下降,这时升力与重力的合力仍是零,升力并未减少,否则飞机会越掉越快。 第二定律:某质量为m的物体的动量(p = mv)变化率是正比于外加力 F 并且发生在力的方向上。 此即着名的F=ma 公式,当物体受一个外力后,即在外力的方向产生一个 加速度,飞机起飞滑行时引擎推力大于阻力,于是产生向前的加速度,速度越来越快阻力也越来越大,迟早引擎推力会等于阻力,于是加速度为零,速度不再增加,当然飞机此时早已飞在天空了。 第三定律:作用力与反作用力是数值相等且方向相反。 你踢门一脚,你的脚也会痛,因为门也对你施了一个相同大小的力 第三节力的平衡

作用于飞机的力要刚好平衡,如果不平衡就是合力不为零,依牛顿第二定律就会产生加速度,为了分析方便我们把力分为X、Y、Z三个轴力的平衡及绕X、Y、Z三个轴弯矩的平衡。 轴力不平衡则会在合力的方向产生加速度,飞行中的飞机受的力可分为升力、重力、阻力、推力﹝如图1-1﹞,升力由机翼提供,推力由引擎提供,重力由地心引力产生,阻力由空气产生,我们可以把力分解为两个方向的力,称x 及y 方向﹝当然还有一个z方向,但对飞机不是很重要,除非是在转弯中﹞,飞机等速直线飞行时x方向阻力与推力大小相同方向相反,故x方向合力为零,飞机速度不变,y方向升力与重力大小相同方向相反,故y方向合力亦为零,飞机不升降,所以会保持等速直线飞 行。 弯矩不平衡则会产生旋转加速度,在飞机来说,X轴弯矩不平衡飞机会滚转,Y轴弯矩不平衡飞机会偏航、Z轴弯矩不平衡飞机会俯仰﹝如图1-2﹞。

无人机飞行控制方法概述

2017-10-08 GaryLiu 于四川绵阳 无人机的飞行控制是无人机研究领域主要问题之一。在飞行过程中会受到各种干扰,如传感器的噪音与漂移、强风与乱气流、载重量变化及倾角过大引起的模型变动等等。这些都会严重影响飞行器的飞行品质,因此无人机的控制技术便显得尤为重要。传统的控制方法主要集中于姿态和高度的控制,除此之外还有一些用来控制速度、位置、航向、3D轨迹跟踪控制。多旋翼无人机的控制方法可以总结为以下三个主要的方面。 1.线性飞行控制方法 常规的飞行器控制方法以及早期的对飞行器控制的尝试都是建立在线性飞行控制理论上的,这其中就有诸如PID、H∞、LQR以及增益调度法。 1)PID PID控制属于传统控制方法,是目前最成功、用的最广泛的控制方法之一。其控制方法简单,无需前期建模工作,参数物理意义明确,适用于飞行精度要求不高的控制。 2)H∞ H∞属于鲁棒控制的方法。经典的控制理论并不要求被控对象的精确数学模型来解决多输入多输出非线性系统问题。现代控制理论可以定量地解决多输入多输出非线性系统问题,但完全依赖于描述被控对象的动态特性的数学模型。鲁棒控制可以很好解决因干扰等因素引起的建模误差问题,但它的计算量非常大,依赖于高性能的处理器,同时,由于是频域设计方法,调参也相对困难。 3)LQR LQR是被运用来控制无人机的比较成功的方法之一,其对象是能用状态空间表达式表示的线性系统,目标函数是状态变量或控制变量的二次函数的积分。而且Matlab软件的使用为LQR的控制方法提供了良好的仿真条件,更为工程实现提供了便利。 4)增益调度法 增益调度(Gain scheduling)即在系统运行时,调度变量的变化导致控制器的参数随着改变,根据调度变量使系统以不同的控制规律在不同的区域内运行,以解决系统非线性的问题。该算法由两大部分组成,第一部分主要完成事件驱动,实现参数调整。如果系统的运行情况改变,则可通过该部分来识别并切换模态;第二部分为误差驱动,其控制功能由选定的模态来实现。该控制方法在旋翼无人机的垂直起降、定点悬停及路径跟踪等控制上有着优异的性能。 2.基于学习的飞行控制方法 基于学习的飞行控制方法的特点就是无需了解飞行器的动力学模型,只要一些飞行试验和飞行数据。其中研究最热门的有模糊控制方法、基于人体学习的方法以及神经网络法。 1)模糊控制方法(Fuzzy logic) 模糊控制是解决模型不确定性的方法之一,在模型未知的情况下来实现对无人机的控制。 2)基于人体学习的方法(Human-based learning) 美国MIT的科研人员为了寻找能更好地控制小型无人飞行器的控制方法,从参加军事演习进行特技飞行的飞机中采集数据,分析飞行员对不同情况下飞机的操作,从而更好地理解无人机的输入序列和反馈机制。这种方法已经被运用到小型无人机的自主飞行中。 3)神经网络法(Neural networks)

世界无人机大全

世界无人机大全 诺斯罗普·格鲁曼公司的RQ-4A“全球鹰”是美国空军乃至全世界最先进的无人机。作为“高空持久性先进概念技术验证”(ACTD)计划的一部分,包括“全球鹰”和“暗星”两个部分在内的“全球鹰”计划于1995年启动。ACTD计划最初由国防先进研究项目处管理,1998年10月转由怀特·帕特森空军基地的空军系统计划办公室接管。后来“暗星”计划于1999年1月取消。“全球鹰”的研制计划分为三部分:设计,研制与试验,部署和评估。相关厂商包括电气系统ES公司,信息科技IT公司,综合系统IS 公司,舰船系统和构成公司。 贴子相关图片:

2 Northrop Grumman 公司已经从机身制造公司Schweizer航空器集团接收了第一架RQ-8A配备火力的垂直升降无人侦察机. Northrop Grumman公司正在试飞一架此型飞机的有人驾驶型号来测试其执行任务的能力. 此型飞机将提供给美国海军和海军陆战队来实施侦察,位置预料和支持目标精确打击.此型飞机能在任何配有航空装置的战舰和狭小的陆

地上起飞.它配有电子红外传感器和激光指示器,能覆盖从起飞地方圆110海里的区域. 第一批此型飞机将配给海军陆战队,包括三架飞机,两个地面控制基地,一套数据连接系统,远程数据终端等设施. 贴子相关图片: 3 据AAI公司称,“影子-200”无人机参与了许多著名的战斗,其中之一是捕获了绰号为"金刚石之王"的萨达姆高级副官之一,在另一次战斗中,“影子”无人机完成了侦察任务,从而使美国部队成功解除了一支支持萨达姆的伊朗游击队武装。

由于“影子-200”无人机在飞行中噪声大,部队将该无人机命名为“尖叫魔鬼”。不过,在作战期间,这种无隐身的飞机倒能提供心理上的优势。 贴子相关图片: 4 用途:战场侦察、目标指引、火力校正(AS90和MLRS) 制造商:英国GEC-马可尼航空有限公司

无人机主要部件

1、首先介绍的是无人机的大脑——飞控 无人机飞行控制系统是指能够稳定无人机飞行姿态,并能控制无人机自主或半自主飞行的控制系统,是无人机的大脑,也是区别于航模的最主要标志,简称飞控。飞控的作用就是通过飞控板上的陀螺仪,对四轴飞行状态进行快速调整(都是瞬间的事,不要妄想用人肉完成)。如发现右边力量大,向左倾斜,那么就减弱右边电流输出,电机变慢、升力变小,自然就不再向左倾斜。如果没有飞控系统,四轴飞行器就会因为安装、外界干扰、零件之间的不一致等原因形成飞行力量不平衡,后果就是左右、上下地胡乱翻滚,根本无法飞行。 工作过程大致如下:飞控系统实时采集各传感器测量的飞行状态数据、接收无线电测控终端传输的由地面测控站上行信道送来的控制命令及数据,经计算处理,输出控制指令给执行机构,实现对无人机中各种飞行模态的控制和对任务设备的管理与控制;同时将无人机的状态数据及发动机、机载电源系统、任务设备的工作状态参数实时传送给机载无线电数据终端,经无线电下行信道发送回地面测控站。飞控系统的硬件主要包括:主控制模块、信号调理及接口模块、数据采集模块以及舵机驱动模块等。 2、为传感器增稳的——云台 稳定平台,对于任务设备来说太重要了,是用来给相机增稳的部分,几千米的高度上误差个几分几秒就能差出去几十米。它主要通过传感器感知机身的动作,通过电机驱动让相机保持原来的位置,抵消机身晃动或者震动的影响。云台主要考察几个性能:增稳精度、兼容性(一款云台能适配几款相机和镜头)和转动范围(分为俯仰、横滚和旋转三个轴),如果遇到变焦相机,就更加考验云台

的增稳精度了,因为经过长距离的变焦,一点点轻微的震动都会让画面抖动得很厉害。 现时的航拍云台主要由无刷电机驱动,在水平、横滚、俯仰三个轴向对相机进行增稳,可搭载的摄影器材从小摄像头到GoPro,再到微单/无反相机,甚至全画幅单反以及专业级电影机都可以。摄影器材越大,云台就越大,相应的机架也就越大。 上面三个演示的是机身不动、相机动的效果,但实际上云台工作时,是相机不动,而机身动。所以在空中时,无人机的机身不断在动作,云台依然可以保相机镜头的位置,达到增稳的效果。 分类: 目前市面上常见的有三轴增稳云台和两轴增稳云台。

GCS与无人机自动驾驶仪

第四讲:GCS与无人机自动驾驶仪 ★这一讲的内容,基本以YS09自驾的基本内容来展开。 1.GCS的引进 光看视频监视器,依然不能直观地了解飞机的实时位置信息。这时候可以引入简单的地面站软件系统,利用便携式电脑而不是小电视来显示遥测数据。 有了GCS,就能扩展许多新功能,比如: 功能一:更直观地显示飞机的实时位置。即载入电子地图,显示飞机的实时飞行轨迹; 功能二:指哪飞哪。即,在地图上选定一个点,让飞机飞往该点并绕之盘旋。实际上是盘旋功能的扩展。此外,还有定点盘旋、到达航点后盘旋、云台锁定目标盘旋等扩展方式。 功能三:显示更多有用数据。便携式电脑上能以仪表、数据选项卡(位置可复用)等形式来加强数据显示功能。 功能四:航线功能 有了GCS后,自驾系统可以进一步扩展出一个航线功能。在地图上选定几个航点,根据映射关系知道这几个航点的经纬度数据,然后给每个点预设一个飞行高度,就能生成一条目标航线。把航线数据上传到自驾上,就能让飞机以更精确的方式来执行航拍任务了。 2.航模与无人机有什么关系? (1)RC发射机手动控制与GCS自动控制 简单来理解,无人机尺寸比航模大,载重比航模多,通信距离比航模远,自动化程度比航模高。其中最重要的区别,就是无人机的高度自动化的工作方式。 在航模中,RC发射机是最主要的命令发信源,手动模式是最基本的飞行控制模式,在无人机中,带GCS(Ground Control Station,即地面站软件)的便携式电脑,是最主要的命令发信源,而自动模式才是最基本的飞行控制模式。所谓自动模式,就是,用户在电脑上发出命令,然后通过数据链路(GCS->串口->地面数传电台->机载数传电台->飞行控制器)传到飞机上,由飞机上的飞行控制器分析处理后,再去驱动各执行设备(如舵机)的工作。 可以认为,GCS自动控制是RC发射机手动控制的扩展和延伸。还可以做其他的类比:GCS的遥测数据监视,是OSD的扩展和延伸;GCS的通信协议,是PWM规则的扩展和延伸;GCS的参数设置,是舵机通道感度旋钮的扩展和延伸;等。 (2)有三种通过GCS发出控制命令的方法: ①直接点击某个按钮或菜单,如“开伞”功能,GCS就自动按照专用的通信协议产生一条数字命令; ②先以键盘输入、鼠标动作、RC发射机动作等形式向GCS录入一个或一组数据,然后

小型无人机飞控系统介绍与工作原理

飞控系统是无人机的核心控制装置,相当于无人机的大脑,是否装有飞控系统也是无人机区别于普通航空模型的重要标志。在经历了早期的遥控飞行后,目前其导航控制方式已经发展为自主飞行和智能飞行。导航方式的改变对飞行控制计算机的精度提出了更高的要求;随着小型无人机执行任务复杂程度的增加,对飞控计算机运算速度的要求也更高;而小型化的要求对飞控计算机的功耗和体积也提出了很高的要求。高精度不仅要求计算机的控制精度高,而且要求能够运行复杂的控制算法,小型化则要求无人机的体积小,机动性好,进而要求控制计算机的体积越小越好。 在众多处理器芯片中,最适合小型飞控计算机CPU的芯片当属TI公司的TMS320LF2407,其运算速度以及众多的外围接口电路很适合用来完成对小型无人机的实时控制功能。它采用哈佛结构、多级流水线操作,对数据和指令同时进行读取,片内自带资源包括16路10位A /D转换器且带自动排序功能,保证最多16路有转换在同一转换期间进行,而不会增加CPU 的开销;40路可单独编程或复用的通用输入/输出通道;5个外部中断;集成的串行通信接口(SCI),可使其具备与系统内其他控制器进行异步(RS 485)通信的能力;16位同步串行外围接口(SPI)能方便地用来与其他的外围设备通信;还提供看门狗定时器模块(WDT)和CAN通信模块。 飞控系统组成模块 飞控系统实时采集各传感器测量的飞行状态数据、接收无线电测控终端传输的由地面测控站上行信道送来的控制命令及数据,经计算处理,输出控制指令给执行机构,实现对无人机中各种飞行模态的控制和对任务设备的管理与控制;同时将无人机的状态数据及发动机、机载电源系统、任务设备的工作状态参数实时传送给机载无线电数据终端,经无线电下行信道发送回地面测控站。按照功能划分,该飞控系统的硬件包括:主控制模块、信号调理及接口模块、数据采集模块以及舵机驱动模块等。 模块功能 各个功能模块组合在一起,构成飞行控制系统的核心,而主控制模块是飞控系统核心,它与信号调理模块、接口模块和舵机驱动模块相组合,在只需要修改软件和简单改动外围电路的基础上可以满足一系列小型无人机的飞行控制和飞行管理功能要求,从而实现一次开发,多型号使用,降低系统开发成本的目的。系统主要完成如下功能: (1)完成多路模拟信号的高精度采集,包括陀螺信号、航向信号、舵偏角信号、发动机转速、缸温信号、动静压传感器信号、电源电压信号等。由于CPU自带A/D的精度和通道数有限,所以使用了另外的数据采集电路,其片选和控制信号是通过EPLD中译码电路产生的。

无人机专业考试总结

无人机专业考试总结 一、无人机的定义 无人驾驶飞机简称“无人机”,英文缩写为“UAV”,是利用无线电遥控设备和自备的程序控制装置操纵的不载人飞机。从技术角度定义可以分为:无人固定翼机、无人垂直起降机、无人飞艇、无人直升机、无人多旋翼飞行器、无人伞翼机等。 二、无人机发展史 (一)研制背景 无人机最早在20世纪20年代出现,1914年第一次世界大战正进行得如火如荼,英国的卡德尔和皮切尔两位将军,向英国军事航空学会提出了一项建议:研制一种不用人驾驶,而用无线电操纵的小型飞机,使它能够飞到敌方某一目标区上空,将事先装在小飞机上的炸弹投下去。这种大胆的设想立即得到当时英国军事航空学会理事长戴·亨德森爵士赏识。他指定由A.M.洛教授率领一班人马进行研制。无人机当时是作为训练用的靶机使用的。是一个许多国家用于描述最新一代无人驾驶飞机的术语。从字面上讲,这个术语可以描述从风筝,无线电遥控飞机,到V-1飞弹从发展来的巡航导弹,但是在军方的术语中仅限于可重复使用的比空气重的飞行器。 (二)研发历程 20世纪40年代,二战中无人靶机用于训练防空炮手。 1945年,第二次世界大战之后将多余或者是退役的飞机改装成为特殊研究或者是靶机,成为近代无人机使用趋势的先河。随著电子技术的进步,无人机在担任侦查任务的角色上开始展露他的弹性与重要性。 20世纪55年到74年的越南战争,海湾战争乃至北约空袭南斯拉夫的过程中,无人机都被频繁地用于执行军事任务。 1982年以色列航空工业公司(IAI)首创以无人机担任其他角色的军事任务。在加利利和平行动(黎巴嫩战争)时期,侦察者无人机无人机系统曾经在以色列陆军和以色列空军的服役中担任重要战斗角色。以色列国防军主要用无人机进行侦察,情报收集,跟踪和通讯。 1991年的沙漠风暴作战当中,美军曾经发射专门设计欺骗雷达系统的小型无人机作为诱饵,这种诱饵也成为其他国家效彷的对象。 1996年3月,美国国家航空航天局研制出两架试验机:X-36试验型无尾无人战斗机。该机长5.7米,重88公斤,其大小相当于普通战斗机的28%。该机使用的分列式副翼和转向推力系统比常规战斗机更具有灵活性。水平垂直的机尾既减轻了重量和拉力,也缩小了雷达反射截面。无人驾驶战斗机将执行的理想任务是压制敌防空、遮断、战斗损失评估、战区导弹防御以及超高空攻击,特别适合在政治敏感区执行任务。 20世纪晚期之前,他们不过是比全尺寸的遥控飞机小一些而已。美国军方在这类飞行器上的兴趣不断增长,因为他们提供了成本低廉,极富任务弹性的战斗机器,这些战斗机器可以被使用而不存在机组人员死亡的风险。 20世纪90年代,海湾战争后,无人机开始飞速发展和广泛运用。美国军队曾经购买和自制先锋无人机在对伊拉克的第二次和第三次海湾战争中作为可靠的系统。 20世纪90年代后,西方国家充分认识到无人机在战争中的作用,竞相把高新技术应用到无人机的研制与发展上:新翼型和轻型材料大大增加了无人机的续航时间;采用先进的信号处理与通信技术提高了无人机的图像传递速度和数字化传输速度;先进的自动驾驶仪使无人机不再需要陆基电视屏幕领航,而是按程序飞往盘旋点,改变高度和飞往下一个目标。 三、无人机分类

关于无人机飞行控制系统的全面解析

关于无人机飞行控制系统的全面解析 飞控的大脑:微控制器在四轴飞行器的飞控主板上,需要用到的芯片并不多。目前的玩具级飞行器还只是简单地在空中飞行或停留,只要能够接收到遥控器发送过来的指令,控制四个马达带动桨翼,基本上就可以实现飞行或悬停的功能。意法半导体高级市场工程师介绍,无人机/多轴飞行器主要部件包括飞行控制以及遥控器两部分。其中飞行控制包括电调/马达控制、飞机姿态控制以及云台控制等。目前主流的电调控制方式主要分成BLDC方波控制以及FOC正弦波控制。 高通和英特尔推的飞控主芯片CES上我们看到了高通和英特尔展示了功能更为丰富的多轴飞行器,他们采用了比微控制器(MCU)更为强大的CPU或是ARM Cortex-A系列处理器作为飞控主芯片。例如,高通CES上展示的Snapdragon Cargo无人机是基于高通Snapdragon芯片开发出来的飞行控制器,它有无线通信、传感器集成和空间定位等功能。Intel CEO Brian Krzanich也亲自在CES上演示了他们的无人机。这款无人机采用了RealSense技术,能够建起3D地图和感知周围环境,它可以像一只蝙蝠一样飞行,能主动避免障碍物。英特尔的无人机是与一家德国工业无人机厂商Ascending Technologies合作开发,内置了高达6个英特的RealSense3D摄像头,以及采用了四核的英特尔凌动(Atom)处理器的PCI-express定制卡,来处理距离远近与传感器的实时信息,以及如何避免近距离的障碍物。这两家公司在CES展示如此强大功能的无人机,一是看好无人机的市场,二是美国即将推出相关法规,对无人机的飞行将有严格的管控。 多轴无人机的EMS/传感器某无人机方案商总经理认为,目前业内的玩具级飞行器,虽然大部分从三轴升级到了六轴MEMS,但通常采用的都是消费类产品如平板或手机上较常用的价格敏感型型号。在专业航拍以及专为航模发烧友开发的中高端无人机上,则会用到质量更为价格更高的传感器,以保障无人机更为稳定、安全的飞行。这些MEMS传感器主要用来实现飞行器的平稳控制和辅助导航。飞行器之所以能悬停,可以做航拍,是因为MEMS传感器可以检测飞行器在飞行过程中的俯仰角和滚转角变化,在检测到角度变化

YS09无人机自动驾驶仪用户手册-GoogleEarth地图版

YS09无人机自动驾驶仪用户手册 GoogleEarth地图版 零度智控(北京)智能科技有限公司Zero UAV Science & Technology Co.,Ltd. https://www.doczj.com/doc/5d9510266.html, 2011 年12月编制

目录 目录 (2) 一、简介 (4) 1、系统特性 (4) 2、阅读指南 (5) 二、系统原理示意图 (6) 三、产品清单 (7) 四、机载飞控系统 (8) 1、硬件简介 (8) 1.1核心板外观 (8) 1.2 飞控盒外观 (9) 2、安装指南 (9) 3 飞控接口 (10) 4.其他部分 (14) 4.1电源 (14) 4.2通讯链路 (14) 4.3 GPS (16) 4.4 空速 (17) 4.5 转速传感器 (17) 4.6 熄火开关 (17) 五、地面站系统 (18) 1、硬件说明 (18) 2、软件简介 (19) 3、软件安装 (19) 4、软件详解 (19) 5、操作说明 (21) 5.1 菜单栏 (22) 5.2 工具栏 (35) 5.3 状态栏 (36) 5.4 仪表状态 (39) 5.5 控制区域 (40) 5.6 地图区域 (43) 6、飞行控制方式 (44) 六、相关功能介绍 (44) 1、参数调整 (44) 2、任务载荷说明 (50) 3、高度调整 (54) 4、开关接收机 (54) 5、开伞、停车功能键 (55) 6、自动生成航线说明 (55) 七、现场调试(重要) (58) 1、开机步骤 (58) 2、手操阶段注意内容 (60)

3、紧急状况处理 (62) 八、简易飞行流程参考 (63) 九、典型应用及免责声明 (64) 1、典型应用 (64) 2、免责声明 (65) 附录 (67)

无人机结构及系统

第1章 无人机结构与系统 一一无人机结构与系统分为结构和系统两个方面,其中无人机结构主要是指无人机的硬件结构,无人机系统主要是指无人机动力系统二控制站二飞行控制系统二通信导航系统二任务载荷系统和发射回收系统等三 1.1 无人机概述 一一18世纪后期,热气球在欧洲升空,迈出了人类翱翔天空的第一步三20世纪初期,美国莱特兄弟的 飞行者 号飞机试飞成功,开创了现代航空的新篇章三20世纪40年代初期第二次世界大战时,德国成功发射大型液体火箭V-2,把航天理论变成现实三1961年,苏联航天员加加林乘坐 东方1号 宇宙飞船在最大高度为301k m的轨道上绕地球一周,揭开了人类载人航天器进入太空的新篇章三 无人机的起源可以追溯到第一次世界大战,1914年英国的两位将军提出了研制一种使用无线电操纵的小型无人驾驶飞机用来空投炸弹的建议,得到认可并开始研制三1915年10月,德国西门子公司成功研制了采用伺服控制装置和指令制导的滑翔炸弹三1916年9月12日,第一架无线电操纵的无人驾驶飞机在美国试飞三1917 1918年,英国与德国先后研制成功无人遥控飞机三这些被公认为是遥控无人机的先驱三 随后,无人机被逐步应用于靶机二侦察二情报收集二跟踪二通信和诱饵等军事任务中,新时代的军用无人机很大程度上改变了军事战争和军事调动的原始形式三与军用无人机的百年历史相比,民用无人机技术要求低二更注重经济性三军用无人机技术的民用化降低了民用无人机市场进入门槛和研发成本,使得民用无人机得以快速发展三 目前,民用无人机已广泛应用于航拍二航测二农林植保二巡线巡检二防灾减灾二地质勘测二灾害监测和气象探测等领域三 未来,无人机将在智能化二微型化二长航时二超高速二隐身性等方向上发展,无人机的市场空间和应用前景非常广阔三 中国民用航空局飞行标准司在2016年7月11日颁布的‘民用无人机驾驶员管理规定“(A C-61-F S-2016-20-R1),其对无人机及相关概念作了定义三

iFLY无人机自动驾驶仪资料

立刻起飞,无人驾驶! ——iFLY40自动驾驶仪产品特点简介 北京博创兴盛机器人技术有限公司推出国内首款完全自主 研发、性能和国外同类产品相当、完全本土化的高性能微型自 动驾驶仪iFLY40。 iFLY40自动驾驶仪携飞控参数调整软件ADJ200、地面控 制站软件GCS300为用户提供小型无人飞行器飞行控制系统的 一站式服务。iFLY40与ADJ200的搭配融入了IFLY团队近千 小时飞行经验累计的智慧,使得用户能够快速掌握飞行器(固 定翼飞行器、浮空器)参数,并立刻达到理想的飞行效果和控 制精度。GCS300则听取了近10个专业用户单位的意见,分析 了中国用户的典型功能需求,为用户快速实现自己的任务功能 提供软件和协议支持。 近1000小时外场科研试飞; 88页飞行控制和任务功能协议; 12万行程序代码; iFLY将致力于提供符合中国用户需求的无人飞行器自动 驾驶系统,并不断推出高性价比的产品和本土化的解决方案。 iFLY40 自动驾驶仪及配套软件介绍 概述: z iFLY40 自动驾驶仪是目前最高性价比的微型自动驾驶仪之一,与同类产品相比,许多选配部件成为标准 配置,在算法和控制精度上不作限制与保留。 z iFLY40 自动驾驶仪的器件选择考虑了供货渠道的风险,并由ITM实验室最优秀的嵌入式系统研发人员进 行模块化设计,当某种器件受到限制时,可快速更换 器件进行“变种”,因此产能不受限制。 z iFLY系列自动驾驶仪将在北京航空航天大学的学科背景下逐步完善质量管理和军品资质认证。

硬件配置特点: z iFLY40自驾仪可以包括导航(NAV)、飞控(FCS)、舵机扩展板(ExServ)、用户模式扩展板(Ex10)等,4者之间通过CAN总线进行通讯。 z3个CPU设计,飞控计算机66MHz,导航计算机66MHz,手驾/自驾切换模块8MHz,手驾/自驾切换模块高可靠性设计,数字开关直接切换,降低试飞风险。 4M可擦写存储器,提供长达2小时黑匣子数据记录功能。 z传感器配置齐全,集成三轴MEMS陀螺、三轴MEMS 加速度计、气压高度计、气压空速计、数字磁罗盘、12通道快速搜星GPS,能给出较精确的三维姿态,实现姿态控制,给出捷联航向,同时给出地速和空速。 z强大的扩展能力,可提供舵面舵机4路,油门舵机1路,任务舵机5路注1,舵机输出分辨率为10位,更新频率为25Hz注2。可通过CAN总线扩展各种高级功能,包括A/D采样、最多128路开关量和伺服舵机、多组动力电池管理、其他航电系统在线自检等。 技术规格: z重量:电路板重57克(含飞控、导航和手自驾切换模块),加上屏蔽外壳、航空插头、舵机接线板、GPS 天线后重157克 z尺寸:35×35×120毫米(含屏蔽壳) z功耗:1200毫瓦 z使用电压: 主电源:6.5~10伏 手自动切换模块:4.5~10伏(通常与遥控 接收机共用电池) z使用温度:-15~65摄氏度 z使用过载:5G z破坏过载:200G z测量速度范围:空速管80米/秒,GPS 350米/秒 z最大高度:4500米

无人机系统建设方案(初稿)--李仁伟--2018.09.21

监管场所无人机系统 建设方案 北京创羿兴晟科技发展有限公司 2018.9

目录 目录 目录 (1) 一、概述 (2) 1.1、背景 (2) 1.2、应用 (2) 1.3、方案依据标准规范 (3) 二、系统介绍 (5) 2.1、系统功能 (5) 2.2、功能及产品介绍 (5) 2.2.1、六旋翼无人机主机 (5) 2.2.2、航拍摄像 (12) 2.2.3、空中抛投 (25) 2.2.4、通信中继..................................... 错误!未定义书签。 2.3、无人机综合管控指挥平台 (29) 2.3.1、平台内容 (30) 2.3.2、软件架构 (31) 2.3.3、通信架构 (31) 2.3.4、客户端界面 (32)

一、概述 1.1、背景 无人机产业发展至今,已经成长为了一个完整的体系,在这个体系之下,无人机从功能上细分到了各个领域,除了航拍、植保等功用之外,无人机也在勘察、安检等领域拥有不错的发挥,其中安全巡逻无人机已经成为无人机市场中的一匹迅速崛起的黑马,并且还在不断地快速成长。运用高科技手段对监狱工作提供技术支持已刻不容缓。作为高度戒备监狱,监狱押犯规模大、在押罪犯刑期长、犯群结构复杂,为积极整合资源、推动高新技术应用、完善综合保障机制、增强突发事件应对能力。 无人机可完成包括巡航、实时监控、取证拍摄等一体化飞行及监控任务,并能将高清视频或高像素照片实时传输到执法终端。今后,它不仅会用于监管设施及周边区域的隐患排查,维护监管安全,为监狱指挥中心作出实时部署提供第一手资料;它还对开展隐蔽督察、视频督察、掌握狱情灾情和处置突发事件发挥重要作用。

(完整版)无人机飞行控制系统仿真研究本科生毕业论文

1 绪论 本章先主要介绍了无人机进无人机的特点,国内外研究现状和发展趋势及这篇文章的主要内容安排。 1.1无人机概述 无人机即无人驾驶飞机,也称为遥控驾驶飞行器,是机上没有驾驶员,靠自身程序控制装置操纵,自动飞行或者由人在地面或母机上进行遥控的无人驾驶飞行器,在它上面装有自动驾驶仪、程序控制系统、遥控与遥测系统、自动导航系统、自动着陆系统等,通过这些系统实现远距离控制飞行。无人机大体上由无人机载体、地面站设备(无线电控制、任务控制、发射回收等起降装置)以及有效负荷三部分组成。 无人机在航空业已有一百年的历史了。第一驾遥控航模飞机于1909年在美国试飞成功。1915年10月德国西门子公司研制成功采用伺服控制装置和指令制导的滑翔炸弹,它被公认为有控的无人机的先驱。世界上第一架无人机是英国人于1917年研制的。这是一架无线电操纵的小型单翼机,由于当时的许多技术问题,所以试验失败。一直到1921年英国才研制成可付诸实用的第一驾靶机。1918年德国也研制成第一驾无人驾驶的遥控飞机。1920年简氏《世界各地飞机》首次提到无人机。20世纪30年代初无线电操纵的无人靶机研制成功。在20世纪40至50年代,无人机逐渐得到了广泛使用,但这时主要是作为靶机使用。世界各国空军于20世纪50年代大量装备了无人驾驶飞机作为空靶。进入20世纪60年代后,美国出于冷战需要,将无人机研究重点放在侦察用途方面,这标志着无人机技术开始进入了以应用需求为牵引的快速发展时代。 由于无人机具有低成本、零伤亡、可重复使用和高机动等优点,因此

深受世界各国军队的广泛欢迎,近年来得到了快速发展。对于无人机而言,其自动飞行控制系统的设计是至关重要的,它的优劣程度直接影响到无人机各项性能(包括起飞着陆性能、作业飞行性能、飞行安全可靠性能、系统的自动化性和可维护性等)。因此,研究无人机的自动飞行控制技术具有十分重要的现实意义,尤其是在军事上的重要性己经得到国内外的高度重视,而无人机飞行控制系统是无人机能够安全、有效地完成复杂战术、战略使命的基本前提,因此迫切需要加强该领域的研究工作。 无人机的研制早在 20 世纪初就开始了,几乎与有人机同步,自30年代国外首次采用无线电操纵的模型飞机作为靶机以后,无人机的发展十分迅速。40年代,低空低速的小型活塞式靶机投入使用。50年代出现了高亚音速和超音速高性能的靶机,世界各国空军开始大量装备无人机作为空靶。60年代以后,随着微电子技术、导航与控制技术的发展,一些国家研制了无人驾驶侦察机,美国率先研制成功无人驾驶侦察机,并开始用于越战。无人机受到越来越多国家的青睐,发展迅猛。在1982年的中东战争中,以色列在贝卡谷地交战中,用“侦察兵”和“猛犬”无人机诱骗叙军的地空导弹的制导雷达开机,侦查获取了雷达的工作参数并测定了其所在位置。无人机的飞速发展是在海湾战争后,以美国为首的多国部队的无人机在海湾战争中成功地完成了战场侦察、火炮校射、通信中继和电子对抗任务。无人机的研制成功和战场运用,揭开了以远距离攻击型智能化武器、信息化武器为主导的“非接触性战争”的新篇章,由此引发了无人机及其飞行控制研究的热潮。 美国、英国、法国、德国、以色列、澳大利亚等国都针对这个领域投入了相当的研究力量。究其原因,用无人机替代有人驾驶飞机可以降低生产成本,便于运输、维修和保养,而且不用考虑人的生理和心理承受极限。未来无人机在军事和民事上都有广泛的应用前景。在军事领域,采用无人

无人机自动驾驶仪

无人机自动驾驶仪 1.自动驾驶仪(autopilot): 按一定技术要求自动控制飞行器的装置。在有人驾驶飞机上使用自动驾驶仪是为了减轻驾驶员的负担,使飞机自动地按一定姿态、航向、高度和马赫数飞行。飞机受暂时干扰后,自动驾驶仪能使它恢复原有的稳定飞行状态,因此,初期的自动驾驶仪称为自动稳定器。自动驾驶仪与飞机上其他系统交联还可实现对飞机的控制。在导弹上,自动驾驶仪起稳定导弹姿态的作用,故称导弹姿态控制系统。它与导弹上的或地面的导引装置交联组成导弹制导和控制系统,实现稳定和控制的功能。 1.1发展概况 1914年美国人E.斯派雷制成电动陀螺稳定装置,这是自动驾驶仪的雏型。30年代,为了减轻驾驶员长时间飞行的疲劳,开始使用三轴稳定的自动驾驶仪。它的主要功用是使飞机保持平直飞行。50年代,通过在自动驾驶仪中引入角速率信号的方法制成阻尼器或增稳系

统,改善了飞机的稳定性。50年代以来自动驾驶仪发展成为飞行自动控制系统。50年代后期,又出现自适应自动驾驶仪,它能随飞行器特性的变化而改变自身的结构和参数。60~70年代,数字式自动驾驶仪应运而生,它在“阿波罗”号载人飞船登月舱的登月过程中得到应用。 1.2原理和组成 自动驾驶仪是模仿驾驶员的动作驾驶飞机的。它由敏感元件、计算机和伺服机构组成。当某种干扰使飞机偏离原有姿态时,敏感元件(例如陀螺仪)检测出姿态的变化;计算机算出需要的修正舵偏量;伺服机构(或称舵机)将舵面操纵到所需位置。自动驾驶仪与飞机组成反馈回路,保证飞机稳定飞行。 1.3分类和特点 自动驾驶仪可按能源形式、使用对象、调节规律等分类。 ①按能源形式:分为气压式、液压式、电气式或者是这几种形式的组合。现代超音速飞机多安装电气(或电子)-液压式自动驾驶仪。气压式伺服机构主要用于导弹。 ②按使用对象:分为飞机自动驾驶仪和导弹自动驾驶仪。飞机自动驾驶仪多具有检测飞机姿态角的敏感元件,能稳定飞机的姿态角。为了提高这种自动驾驶仪的稳定效果,可配合使用速率陀螺仪。战术导弹只需要稳定角速度,其姿态角根据目标的运动而改变,因此,在自动驾驶仪中不设检测角位置的敏感元件。巡航导弹、战略导弹和运载火箭需要稳定姿态角,在这些飞行器的自动驾驶仪中仍有检测姿态角的敏感元件。 ③按调节规律:自动驾驶仪的调节规律(即数学模型)表示伺服机构的输出量与被调参量之间的函数关系。飞机自动驾驶仪依调节规律的不同分为比例式自动驾驶仪和积分式自动驾驶仪。比例式自动驾驶仪是以伺服机构输出的位置偏移量(如舵偏角)与被调参量(如姿态角)的偏差成比例的原理工作的。它的结构简单,应用很广,但在干扰作用下会产生静态误差。积分式自动驾驶仪是以伺服机构输出的位置偏移量与被调参量偏差的积分成比例的原理工作的,它没有静态误差,但系统的稳定性差,结构复杂,应用受到一定限制。 导弹自动驾驶仪按被调参量的性质可分为位置式自动驾驶仪、定向式自动驾驶仪和加速度式自动驾驶仪。位置式自动驾驶仪的被调参量是飞行器的角位置(即姿态角),伺服机构的输出量与姿态角的偏差成比例。定向式自动驾驶仪的被调参量是飞行器的姿态角速度,伺服机构的输出量与姿态角速度的偏差成比例。加速度式自动驾驶仪的被调参量是飞行器的法向加速度,伺服机构的输出量与法向加速度的偏差成比例。 现代自动驾驶仪的趋势是向数字化和智能化方向发展。80年代以前,战术导弹由于工

无人机组成

无人机组成 无人机组成(1):撑起所有部件的机架 所谓“机架”,是指无人机的承载平台,所有设备都是用机架承载起来飞上天上的, 所以无人机的机架好坏,很大程度上决定了这部无人机好不好用。衡量一个机架 的好坏,可以从坚固程度、使用方便程度、元器件安装是否合理等等方面考察。 现在常见的无人机,多数指多轴飞行器的形式,机架的组成与上图这样的大 同小异,主要由中心板、力臂、脚架组成,有着结构简单的特点,但缺点是效率 较低。这是本频道主要关注的无人机形式。 更久一点的无人机,会是这种直升机形式,只有一个主螺旋桨(配合尾螺旋 桨低消旋转反扭力)。直升机形式的无人机,由于效率更高,更适合高原、大风 等环境,但由于主螺旋桨“杀伤力”太大,而家直升机旋翼头结构复杂,现在是越

来越少见到了。 还有一种无人机形式,是上图这样的固定翼,有着结构简单、效率高、续航 时间长等特点,但缺点就是不能悬停,以及云台安排不太灵活,这对于常见的航 拍来说是致命的。所以固定翼无人机常用于侦查监视、测绘等需要长距离、长续 航的拍摄情况。 多轴飞行器,顾名思义就是有多个螺旋桨,通过螺旋桨转速的不同而实现上 升下降、左右旋转、前进后退等等动作。多轴飞行器的轴数,从两轴开始,到十 多轴都有,但常见的还是以3、4、6、8轴为主。轴数越多、螺旋桨越多、机架 的负载就越大,但相对地结构也就变得越复杂。 多轴还有一个概念,就是“轴距”,用于表达机架的尺寸大小。轴距是指对角 线两个螺旋桨中心的距离,单位通常是毫米(mm)。机架大小决定了能多多大 的螺旋桨,从而决定了机架的负载能力(能携带多大的摄影设备上天)。

一般来说,搭载GoPro等运动相机/摄像机或者小卡片相机,可以选择四轴、 轴距330-550mm的机架,可以兼顾载重与便携。搭载微单、无反等相机的话, 可以选择六轴或八轴、轴距700-1000mm的机架,保证足够的负载能力与机架大 小。而想搭载全画幅单反、电影机等等重型设备的话,基本上都需要动用到八轴、 1000mm以上的机架,才能有足够的负载能力,否则很容易出现动力不足而产生 的坠机意外。 无人机组成(2):飞行的大脑“飞控” “飞控”是指无人机的飞行控制器,用于自动化保持飞行器处于一个特定的状态(悬停、飞行等)。由于无人机经常处于“超视距”的环境飞行,所以自动化控制的飞控对于无人机来说是不能缺少的。好的飞控,还会搭配不少有 用的功能,方便控制者进行复杂的运动。 本文以多轴飞行器的飞控为主。多轴飞行器的飞控,主要由主控器(上图左上)、姿态感应器(上图右上)、

无人机制作原理及过程++

无人机制作原理及过程 今年4月份,由技装公司自主研制的无人机“翔雁”首次亮相第十三届中国东西部投资与贸易洽谈会,并与国家测绘局签约合作意向书。该项目拟投资2000多万元,分两个阶段实施:第一阶段为研制试验阶段,包括航摄设备材料购置、航摄系统研究开发、无人机平台完善和试飞,以及相关技术及配套软件开发研究投入;第二阶段为推广阶段,建立“翔雁”无人机及航摄设备生产线,拟订无人机航摄系统应用标准,在全国范围内推广。 此前,“翔雁”无人机已完成8个起落的飞行试验验证,飞行平衡,地面视频图像清晰完整,能按程序完成各项任务。这充分证明,“翔雁”无人机已跨入自主飞行的无人机行列。 那么,“翔雁”到底是一种什么样的机型,有什么功用呢? 据技装公司副总经理王俊介绍,“翔雁”无人机长2。7米,翼展4米,可以每小时110公里的速度进行大于15小时的巡航,采用菱形联结翼气动外形、前三点式起落架、发动机后推式布局,机身、机翼、起落架均可拆卸和组装。 “翔雁”利用航空制造工艺技术,采用全新的气动外形、模块化的任务系统、领先的飞行控制系统,形成自主飞行的能力,给它加载不同的任务系统就可以完成特定的任务。她可以用作气象探测、人工降雨、航空遥感、城市治安巡逻等多用途民用无人机平台,也可完成可执行目标指示、电子干扰、信号中继、战场侦察预警、战场评估、通信中断、空中监控、边境巡逻等军事任务。

当今,许多国家、机构对无人机研制和发展热情高涨,已研制出了50多种无人机,有55个国家军队装备了无人机。美国仅装备军队的就有“全球鹰”、“暗星”、“猎人”等十几个型号,波音公司是美国的主要无人机制造商之一。 由中国自主设计制造的长空一号、长空二号、无侦五、无侦九和ASN-206无人机正在服役,领先国内外水平的“暗箭”攻击型无人机正处于设计定型阶段。 面对竞争激烈的无人机市场,“翔雁”无人机此时“展翅”是否为时已晚? “暗箭”无人机 何以进军无人机市场 技装公司经营管理处处长王从福介绍,首先,“翔雁”无人机的低成本,为研发提供了可能。它不需要氧气、空调、增压、弹射座椅等座舱设备,降低了成本和重量;不需要生命保障系统,可以适应更

无人机概述与系统组成

无人机概述及系统组成 无人机( UAV)的定义 无人机驾驶航空器(UA: Unmanned Aircraft ),是一架由遥控站管理(包括远程操纵或自主飞行)、不搭 载操作人员的一种动力空中飞行器,采用空气动力为飞行器提供所需的升力,能够自动飞行或远程引导;既能一次性使用也能进行回收;能够携带致命性和非致命性有效负载。 以下简称无人机。 无人机系统的定义及组成 无人机系统( UAS:Unmanned Aircraft System),也称无人驾驶航空器系统(RPAS:Remotely Piloted Aircraft System),是指一架无人机、相关的遥控站、所需的指令与控制数据链路以及批准的 型号设计规定的任何其他部件组成的系统,无人机系统包括地面系统、飞机系统、任 务载荷和无人机使用保障人员。 无人机系统驾驶员的定义 无人机系统驾驶员,由运营人指派对无人机的运行负有必不可少职责并在飞行期间适时操纵飞行控制的人。 无人机系统的机长,是指在系统运行时间内负责整个无人机系统运行和安全的驾驶员。 无人机和航模的区别 一、定义不同 无人机是一种由无线电遥控设备或自身程序控制装置操纵的无人驾驶飞行器。航 空模型是一种重于空气的,有尺寸限制的,带有或不带有动力装置的,不能载人的航 空器,就叫航空模型。 二、飞行方式不同 唯一的区别在于是否有导航飞控系统,能否实现自主飞行。通俗来说,无人机可以实现自主飞行,而航模不可以,必须由人来通过遥控器控制。也就是无人机的本身是带了“大脑”飞行,可能“大脑”受限于人 工智能,没有人脑灵光。但是航模的“大脑”始终是在地面,在操纵人员的手上。 三、用途不同 无人机更偏向于军事用途或民用特种用途,而航空模型更接近于玩具。昆明劲鹰无人机专业从事航测无人机设备的设计、生产、销售、及航测航拍服务,费用低、技术强、工期短、精度高,是中国技术顶尖

无人机概述及系统组成

无人机概述及系统组成 无人机(UAV)的定义 无人机驾驶航空器(UA:Unmanned Aircraft),就是一架由遥控站管理(包括远程操纵或自主飞行)、不搭载操作人员的一种动力空中飞行器,采用空气动力为飞行器提供所需的升力,能够自动飞行或远程引导;既能一次性使用也能进行回收;能够携带致命性与非致命性有效负载。 以下简称无人机。 无人机系统的定义及组成 无人机系统(UAS:Unmanned Aircraft System),也称无人驾驶航空器系统(RPAS:Remotely Piloted Aircraft System),就是指一架无人机、相关的遥控站、所需的指令与控制数据链路以及批准的型号设计规定的任何其她部件组成的系统,无人机系统包括地面系统、飞机系统、任务载荷与无人机使用保障人员。 无人机系统驾驶员的定义 无人机系统驾驶员,由运营人指派对无人机的运行负有必不可少职责并在飞行期间适时操纵飞行控制的人。 无人机系统的机长,就是指在系统运行时间内负责整个无人机系统运行与安全的驾驶员。 无人机与航模的区别 一、定义不同 无人机就是一种由无线电遥控设备或自身程序控制装置操纵的无人驾驶飞行器。航空模型就是一种重于空气的,有尺寸限制的,带有或不带有动力装置的,不能载人的航空器,就叫航空模型。 二、飞行方式不同

唯一的区别在于就是否有导航飞控系统,能否实现自主飞行。通俗来说,无人机可以实现自主飞行,而航模不可以,必须由人来通过遥控器控制。也就就是无人机的本身就是带了“大脑”飞行,可能“大脑”受限于人工智能,没有人脑灵光。但就是航模的“大脑”始终就是在地面,在操纵人员的手上。 三、用途不同 无人机更偏向于军事用途或民用特种用途,而航空模型更接近于玩具。昆明劲鹰无人机专业从事航测无人机设备的设计、生产、销售、及航测航拍服务,费用低、技术强、工期短、精度高,就是中国技术顶尖的航测航拍无人机设计制造及航飞服务商。 四、组成不同 无人机比航模要复杂。航空模型由飞行平台、动力系统、视距内遥控系统组成。主要就是为了大众的观赏性,追求的就是外表的像真或就是飞行优雅等,科技含量并不高。无人机系统由飞行平台、动力系统、飞控导航系统、链路系统、任务系统、地面站等组成。主要就是为了完成特定任务,追求的就是系统的任务完成能力,科技含量高。部分高档的航空模型与低档的无人机在飞行平台、动力系统部分并无太大区别。 五、使用不同 无人机多执行超视距任务,最大任务半径上万公里。通过机载导航飞控系统自主飞行。通过链路系统上传控制指令与下传任务信息。航模通常在目视视距范围内飞行,控制半径小于800米,操作人员目视飞机,通过手中的遥控发射机操纵飞机,机上一般没有任务设备。很多无人机系统也有类似航模的能力,可以在视距内直接遥控操作。 六、管理不同 在我国,航空模型由国家体委下属航空运动管理中心管理。在我国,民用无人机由民航局统一管理,军用无人机由军方统一管理。 按平台构型分类 按飞行平台构型分类:无人机可分为固定翼无人机、旋翼无人机、无人飞艇、伞翼无人机、扑翼无人机等。 按用途分类 军用无人机可分为侦察无人机、诱饵无人机、电子对抗无人机、通信中继无人机、无人战斗机以及

相关主题
文本预览
相关文档 最新文档