当前位置:文档之家› 原子物理学 原子核物理概论 (7.10.2)--第七章原子核物理概论作业解答

原子物理学 原子核物理概论 (7.10.2)--第七章原子核物理概论作业解答

原子物理学 原子核物理概论  (7.10.2)--第七章原子核物理概论作业解答
原子物理学 原子核物理概论  (7.10.2)--第七章原子核物理概论作业解答

第七章作业及解答

7-1试计算核素40Ca 和56Fe 的结合能和比结合能.

分析:此题可采用两种算法,一是按核结合能公式;另一是按魏扎克核质量计算公式.

一.按核子结合能公式计算

解:1 ) 对于核素40Ca ,A =40,Z =20,N =20

由结合能公式 B =Z m p +Z m e -M

= (20×1.007825+20×1.008665-39.9625)u

=0.36721u×931.5MeV/u=342MeV

比结合能 B /A =342/40=8.55MeV

2 )对于核素56Fe ,A =56,Z =26,N =30

由结合能公式 B =Z m p +Z m e -M

= (26×1.007825+30×1.008665-55.9349)u

=0.5285u×931.5MeV/u=492.29775MeV

比结合能 B /A =492.29775/56MeV=8.79MeV

二.按魏扎克公式计算

对于题目中所给的40Ca 和56Fe 都是偶偶核.

依B=a V A-a s A 2/3-a c Z 2A -1/3-a sys (Z-N)2+a p A 1/2+B 壳,代入相应常数计算也可.

7-2 1mg 238U 每分钟放出740个α粒子,试证明:1g 238U 的放射性活度为0.33μC i ,238U 的半衰期为4.5x109a .

31060

740-?=A )(1033.0)(103.12613Ci S --?=?=)

(1087.41002.6103.121182323813--?=???==S N A λ故9718105.41015.3/1087.4/693.02ln ?=??==--λT (年)

7-3活着的有机体中,14C 对12C 的比与大气中是相同的,约为1.3x10-12.有机体死亡后,由于14C 的放射性衰变,14C 的含量就不断减少,因此,测量每克碳的衰变率就可计算有机体的死亡时间.现测得:取之于某一骸骨的100g碳的β衰变率为300次衰变/min,试问该骸骨已有多久历史?

解:100g 碳14的放射性活度 A=300次/min=5次/s , 又14C 的半衰期 T 1/2=5730a, 1克碳中碳14的含量为12103.1-?=M (克)

故101223

01059.5103.114

1002.6?=???=-N (个)/克故)(13)(21.01059.510

15.35730693.011111070----==????=g m g s A 而)(3100

30011--==g m A 由33.43

1322000===∴==--A A A e A A T t T t t λ12147573012.2693.047.1)2ln 33.4ln (=?=?==∴T T t (年)

7-4 一个放射性元素的平均寿命为10d ,试问在第5d 内发生衰变的数目是原来的多少?

由10=τ天,1.01==∴τ

λ/天 t

e N N λ-=0 064.0)5()4(1051040

0=-=-=?--e e N N N N N 7-5试问原来静止的226Ra 核在α衰变中发射的α粒子的能量是多少?

)

(102.50026.40176.2220254.2263u M -?=--=?)

(84.4931102.532MeV MC =??=?-故)(75.484.4226222MeV E =?=

α7-6 210po 核从基态进行衰变,并伴随发射两组α粒子。其中一组α粒子的能量为

5.30 MeV ,放出这组α粒子后,子核处于基态;另一组α粒子的能量为4.50MeV ,放出这组α粒子后,子核处于激发态.试计算:子核由激发态回到基态时放出的γ光子的能量.

)(403.5)206

41(30.500MeV E =+?=

)(587.4)206

41(50.401MeV E =+?=故)

(816.00100MeV E E E r =-=7-7 47V 既可发生β+衰变,也可发生K 俘获,已知β+的最大能量为1.89 MeV ,试求K 俘获过程中放出的中微子的能量E ν。

+β变化时放出的能量为 )

(91.202.189.1MeV =+K 电子的结合能 )(007.0)123(~2

MeV RhC k =-ε故中微子的能量为 )

(903.2007.091.2MeV E =-=υ 7-8 试计算下列反应的反应能:

(1) α+14N →17O+p (2) p+9Be →6Li+α

有关核素的质量,可查阅本书附表.

(1))(10282.1007825.199913.1600307.14002603.43u M -?-=--+=? ∴反应能)

(194.193110282.132MeV MC Q -=??-=?=-(2))(1028.2002603.4015123.6012183.9007825.13u M -?=--+=?

∴反应能)

(13.29311028.232MeV MC Q =??=?=-7-9 试问:用多大能量的质子轰击固定的氚靶,才能发生p+3H→n+3He反应? 若入射质子的能量为3.00 MeV,而发射的中子与质子的入射方向成90°角,则发射的中子和3He的动能各为多少?

31.007276 3.01605 1.008665 3.016029 1.36810()

M u -?=+--=-?231.36810931.5 1.274292 1.274()

Q MC MeV -∴=?=-??=-?-

根据Q 方程由于 =900,所以 u=0,故入射质子的能量

()()R R 33(31)463 1.2742920.5442810.544()4

i i p l l R m Q K m m Q E K w m m MeV q +-+?-===

=+-?==; 而 1.2742920.5442813 1.181427 1.18()

He n p E Q E E MeV =-+=--+=?7-10 由原子核的半经验结合能公式,试导出β稳定线上的原子核的Z 和A 所满足的关系式.

分析:β衰变相当于核素的质子数改变了,但质量数没变。

参阅史包尔斯基采用原子核质量的精确表达式: 3132/000627.0/)2

()(008665.1007825.122321A Z A Z A a A a A a Z A Z M +-++--+= 由0=??Z

M 得,0/2000627.0/)2(200084.031

3=??+---A Z A Z A a 32001254.02)00084.0(33A a a A Z ++=

∴ 由相当β衰变最稳定的那些原子的Z 、A 代入上式可求得083

.03=a 故3

2015.02A A Z +=7-11 (1)试证明:一个能量为E 0的中子与静止的碳原子核经N 次对碰后,其能量近似为(0.72)N E 0.

(2)热中子能有效地使235U 裂变,但裂变产生的中子能量一般较高(MeV).在反应堆中用石墨作减速剂,欲使能量为2.0 MeV 的快中子慢化为热中子(0.025

eV),需经过多少次对碰?

()R

R cos i i l R l R

m Q K m m u w m m q +-??+

)2

[K u q =

(1)设碳原子的质量为A M ,碰撞后的速度为A v ,能量为A E ,由 能量守恒 22002

121A A n n A v M v m E E E +'=+'= 动量守恒 A

A n n A v m v m P P P +'=+'=0 可得 02v M m m v A

n n A += 2022)2(2121v M m m M v M E A

n n A A A A +==∴})(4{21220n

A n n A

n m M m m M v m +?=])

1()1(1[22

0+--=A A E (A 为碳原子的质量数)因此经一次碰撞后的中子能量为 00272.0)1

1(E E A A =+-故N 次碰撞后的能量为 072.0E N

(2))(025.0272.072.00eV E N

N =?= 14~6.1314.09.172.0log 0125.0log ===∴N (次)

7-12 轻核19F在质子轰击下的共振反应,常用作低能加速器的能量定标,例如:质子能量E P /kev 反应 宽度/kev

224.4 19F (p,γ) 1.0

340.4 19F (p,αγ) 4.5

873.5 19F (p,αγ) 5.2

原子核物理及辐射探测学 1-4章答案

第一章 习题答案 1-1 当电子的速度为18105.2-?ms 时,它的动能和总能量各为多少? 答:总能量 ()MeV ....c v c m m c E e 92400352151101222 2=??? ??-=-==; 动能 ()MeV c v c m T e 413.011122=???? ??????--= 1-2.将α粒子的速度加速至光速的0.95时,α粒子的质量为多少? 答:α粒子的静止质量 ()()()u M m M m e 0026.44940 .9314,244,224,20=?+=≈-= α粒子的质量 g u m m 23220 10128.28186.1295.010026.41-?==-=-=βα 1-4 kg 1的水从C 00升高到C 0100,质量增加了多少? 答:kg 1的水从C 00升高到C 0100需做功为 J t cm E 510184.41001184.4?=??=?=?。 () kg c E m 1228521065.4100.310184.4-?=??=?=? 1-5 已知:()();054325239;050786238239238u .U M u .U M == ()()u .U M ;u .U M 045582236043944235236235==

试计算U-239,U-236最后一个中子的结合能。 答:最后一个中子的结合能 ()()()[]M e V .uc .c ,M m ,M ,B n n 774845126023992238922399222==?-+= ()()()[]MeV .uc .c ,M m ,M ,B n n 54556007027023692235922369222==?-+= 也可用书中的质量剩余()A ,Z ?: ()()()()MeV ....,n ,,B n 806457250071830747239922389223992=-+=?-?+?= ()()()()MeV ....,n ,,B n 545644242071891640236922359223692=-+=?-?+?= 其差别是由于数据的新旧和给出的精度不同而引起的。 1-6当质子在球形核里均匀分布时,原子核的库仑能为 RZZeEc024)1(53πε?= Z 为核电荷数,R 为核半径,0r 取m15105.1?×。试计算C13和N13核的库仑能之差。 答:查表带入公式得ΔΕ=2.935MeV 1-8 利用结合能半经验公式,计算U U 239236,最后一个中子的结合能,并与1-5式的结果进行比较。 答:()P sym C S V B A Z A a A Z a A a A a A Z B +??? ??----=--12 312322, 最后一个中子的结合能 ()()()[]2,1,,c A Z M m A Z M A Z S n n -+-= ()()()()[]()()A Z B A Z B c m Z A ZM m m Z A ZM n n n ,1.1,111,12+--?---+--+= ()()1,,--=A Z B A Z B 对U 236,144,236,92===N A Z 代入结合能半经验公式,得到

原子物理学第二章习题答案

第二章 原子的能级和辐射 试计算氢原子的第一玻尔轨道上电子绕核转动的频率、线速度和加速度。 解:电子在第一玻尔轨道上即年n=1。根据量子化条件, π φ2h n mvr p == 可得:频率 21211222ma h ma nh a v πππν= == 赫兹151058.6?= 速度:61110188.2/2?===ma h a v νπ米/秒 加速度:222122/10046.9//秒米?===a v r v w 试由氢原子的里德伯常数计算基态氢原子的电离电势和第一激发电势。 解:电离能为1E E E i -=∞,把氢原子的能级公式2 /n Rhc E n -=代入,得: Rhc hc R E H i =∞-=)1 1 1(2=电子伏特。 电离电势:60.13== e E V i i 伏特 第一激发能:20.1060.1343 43)2 111(2 2=?==-=Rhc hc R E H i 电子伏特 第一激发电势:20.101 1== e E V 伏特 用能量为电子伏特的电子去激发基态氢原子,问受激发的氢原子向低能基跃迁时,会出现那些波长的光谱线 解:把氢原子有基态激发到你n=2,3,4……等能级上去所需要的能量是: )1 11(22n hcR E H -= 其中6.13=H hcR 电子伏特 2.10)21 1(6.1321=-?=E 电子伏特 1.12)31 1(6.1322=-?=E 电子伏特 8.12)4 1 1(6.1323=-?=E 电子伏特 其中21E E 和小于电子伏特,3E 大于电子伏特。可见,具有电子伏特能量的电子不足以把基

态氢原子激发到4≥n 的能级上去,所以只能出现3≤n 的能级间的跃迁。跃迁时可能发出的光谱线的波长为: ο ο ο λλλλλλA R R A R R A R R H H H H H H 102598 )3 111( 1121543)2 111( 1 656536/5)3 121( 1 32 23 22 22 1221 ==-===-===-= 试估算一次电离的氦离子+ e H 、二次电离的锂离子+ i L 的第一玻尔轨道半径、电离电势、第一激发电势和赖曼系第一条谱线波长分别与氢原子的上述物理量之比值。 解:在估算时,不考虑原子核的运动所产生的影响,即把原子核视为不动,这样简单些。 a) 氢原子和类氢离子的轨道半径: 3 1,2132,1,10529177.0443,2,1,44102 22 01212 2220= ======?==? ?===++++++ ++-Li H H Li H H H He Z Z r r Z Z r r Z Li Z H Z H Z me h a n Z n a mZe n h r e 径之比是因此,玻尔第一轨道半;,;对于;对于是核电荷数,对于一轨道半径;米,是氢原子的玻尔第其中ππεππε b) 氢和类氢离子的能量公式: ??=?=-=3,2,1,)4(222 12 220242n n Z E h n Z me E πεπ 其中基态能量。电子伏特,是氢原子的6.13)4(22 204 21-≈-=h me E πεπ 电离能之比: 9 00,4002 222== --==--+ ++ ++ H Li H Li H He H He Z Z E E Z Z E E c) 第一激发能之比:

原子核物理知识点归纳

原子核物理重点知识点 第一章 原子核的基本性质 1、对核素、同位素、同位素丰度、同量异位素、同质异能素、镜像核等概念的理解。 (P2)核素:核内具有一定质子数和中子数以及特定能态的一种原子核或原子。 (P2)同位素:具有相同质子数、不同质量数的核素所对应的原子。 (P2)同位素丰度:某元素中各同位素天然含量的原子数百分比。 (P83)同质异能素:原子核的激发态寿命相当短暂,但一些激发态寿命较长,一般把寿命 长于0.1s 激发态的核素称为同质异能素。 (P75)镜像核:质量数、核自旋、宇称均相等,而质子数和中子数互为相反的两个核。 2、影响原子核稳定性的因素有哪些。(P3~5) 核内质子数和中子数之间的比例;质子数和中子数的奇偶性。 3、关于原子核半径的计算及单核子体积。(P6) R =r 0A 1/3 fm r 0=1.20 fm 电荷半径:R =(1.20±0.30)A 1/3 fm 核力半径:R =(1.40±0.10)A 1/3 fm 通常 核力半径>电荷半径 单核子体积:A r R V 3033 434ππ== 4、核力的特点。(P14) 1.核力是短程强相互作用力; 2.核力与核子电荷数无关; 3.核力具有饱和性; 4.核力在极短程内具有排斥芯; 5.核力还与自旋有关。 5、关于原子核结合能、比结合能物理意义的理解。(P8) 结合能:),()1,0()()1,1(),(),(2 A Z Z Z A Z c A Z m A Z B ?-?-+?=?= 表明核子结合成原子核时会释放的能量。 比结合能(平均结合能):A A Z B A Z /),(),(=ε 原子核拆散成自由核子时外界对每个核子所做的最小平均功,或者核子结合成原子核时平均每一个核子所释放的能量。 6、关于库仑势垒的理解和计算。(P17) 1.r>R ,核力为0,仅库仑斥力,入射粒子对于靶核势能V (r ),r →∞,V (r ) →0,粒子靠近靶核,r →R ,V (r )上升,靠近靶核边缘V (r )max ,势能曲线呈双曲线形,在靶核外围隆起,称为库仑势垒。 2.若靶核电荷数为Z ,入射粒子相对于靶核 的势能为:r Ze r V 2 0241 )(πε=,在r =R 处, 势垒最高,称为库仑势垒高度。

原子核物理课件第二章杨福家版

第2章核力与核结构 一、核力 ?(1)核力是强相互作用 ?质子之间库伦斥力反比于距离,而核内质子间距离非常小,但质子能紧密结合而不散开,说明新的作用力——核力的存在,且是吸引力。 ?一般核力约比库伦力大一百倍。

第2章核力与核结构 ?(2)核力的短程性和饱和性 ?结合能近似与A成正比,说明核力是短程力;?如果为长程力,一个核子能与核内其它每一个核子发生作用,那么核的结合能正比于核子的成对数A(A-1),即正比于A2,与实验事实不符。?核力只作用于相邻核子,由于相邻核子数目有限,因此核力具有明显的饱和性。

第2章核力与核结构 ?(3)核力的电荷无关性 ?1932年海森堡假设:质子与质子之间的核力Fpp 和中子与中子之间的核力Fnn以及质子与中子之间的核力Fpn都相等,称为核力的电荷无关性。?利用同位旋概念,质子和中子是一种粒子的两种 不同电荷态,同位旋都为1/2,而同位旋第三分量分别为1/2和-1/2。

第2章核力与核结构 ?(4)核力与自旋有关 ?利用氘核的基态性质,由一个质子和一个中子组成 的最简单核子束缚态,其自旋和宇称为,其 自旋为两个核子的总自旋和相对轨道角动量之和。 + =1 π I 3 S1 3 P1 3 D1 1 2 1 1 P110 状态LS

第2章核力与核结构 ?由于氘核基态宇称为正,只能是3S1+3D1态的混合,即有S=1的自旋三重态组成,不存在自旋单态的氘核,核力将使质子和中子倾向于处在自旋平行的态。 ?(5)非中心力成分 ?氘核基态可以是3S1+3D1的混合态,其中3S1态约占96%,3D1态约占4%。 ?核力是以中心力为主,混有少量的非中心力。

最新原子物理学杨福家1-6章 课后习题答案

原子物理学杨福家1-6章课后习题答案

原子物理学课后前六章答案(第四版) 杨福家著(高等教育出版社) 第一章:原子的位形:卢瑟福模型 第二章:原子的量子态:波尔模型 第三章:量子力学导论 第四章:原子的精细结构:电子的自旋 第五章:多电子原子:泡利原理 第六章:X 射线 第一章 习题1、2解 1.1 速度为v 的非相对论的α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角约为10-4rad. 要点分析: 碰撞应考虑入射粒子和电子方向改变.并不是像教材中的入射粒子与靶核的碰撞(靶核不动).注意这里电子要动. 证明:设α粒子的质量为Mα,碰撞前速度为V ,沿X 方向入射;碰撞后,速度为V',沿θ方向散射。电子质量用me 表示,碰撞前静止在坐标原点O 处,碰撞后以速度v 沿φ方向反冲。α粒子-电子系统在此过程中能量与动量均应守恒,有: (1) ? θααcos cos v m V M V M e +'= (2)

? θ α sin sin 0v m V M e - ' = (3)作运算:(2)×sinθ±(3)×cosθ,得 ) sin( sin ? θ θ α+ =V M v m e (4) ) sin( sin ? θ ? α α+ ='V M V M (5)再将(4)、(5)二式与(1)式联立,消去V’与v, ) ( sin sin ) ( sin sin 2 2 2 2 2 2 2 2 ? θ θ ? θ ? α α α+ + + =V m M V M V M e 化简上式,得 θ ? ? θα2 2 2sin sin ) ( sin e m M + = + (6)若记 α μ M m e = ,可将(6)式改写为 θ ? μ ? θ μ2 2 2sin sin ) ( sin+ = + (7)视θ为φ的函数θ(φ),对(7)式求θ的极值,有 )] (2 sin 2 sin [ )] sin( 2 [sin? θ ? μ ? θ μ θ ? θ + + - = + - d d 令 = ? θ d d ,则 sin2(θ+φ)-sin2φ=0 即 2cos(θ+2φ)sinθ=0 若 sinθ=0, 则θ=0(极小)(8) (2)若cos(θ+2φ)=0 ,则θ=90o-2φ(9)

原子核物理实验方法课后习题(答案)

第一章习题 1. 设测量样品的平均计数率是5计数/s,使用泊松分布公式确定在任1s 内得到计数小于或等于2个的概率。 解: 05 1525 (,)!5(0;5)0.0067 0!5 (0;5)0.0337 1!5(0;5)0.0842 2! N N r r r r N P N N e N P e P e P e ----=?=?==?==?= 在1秒内小于或等于2的概率为: (0;5)(1;5)(2;5)0.00670.03370.08420.1246r r r P P P ++=++= 2. 若某时间内的真计数值为100个计数,求得到计数为104个的概率,并求出计数值落在90-104范围内的概率。 解:高斯分布公式2 222)(2 2)(2121 )(σπσ πm n m m n e e m n P -- -- = = 1002==σm == =-- --2 2 22)104(2 2)(2121 )104(σπσ πm m m n e e m P 将数据化为标准正态分布变量 110 100 90)90(-=-= x 4.010100 104)104(=-=x 查表x=1,3413.0)(=Φx ,x=,1554.0)(=Φx 计数值落在90-104范围内的概率为

3. 本底计数率是500±20min -1,样品计数率是750±20min -1,求净计数率及误差。 解:t n = σ 本底测量的时间为:min 2520500 2 === b b b n t σ 样品测量时间为:min 35207002 === s s s n t σ 样品净计数率为:1min 200500700-=-=-= b b s s t n t n n 净计数率误差为:1min 640-== +=+= b s b b s s t n t n σσσ 此测量的净计数率为:1min 6200-± 4. 测样品8min 得平均计数率25min -1,测本底4min 得平均计数率18min -1,求样品净计数率及误差。 解:1min 71825-=-=-= b b s s t n t n n

原子核物理课后习题-刘修改

核物理习题与思考题 第一章 原子核的基本性质 1. 原子核半径的微观含义是什么?它与宏观半径有何区别? 2. 半径为O 189核半径的1/3的稳定核是什么核? 3. 若将原子核看作是一个均匀的球,试计算氢(1H )核的近似密度. 4. 计算下列各核的半径:A He 1074742,g ,.238 92U 设r0=1.451510-?米.。 5. 宏观质量单位与微观质量单位有何不同? 同位素,同量异位素,同质异能素,同中 子素之间有何区别? 对下列 每一种核素至少举出一种同量异位素和一种同位素: U Cu N 2386314,,. 6. 对下列每一种核素至少举出一种同位素和一种同中子异位素:Sn Pb O 12020816,,. 7. 若将α粒子加速到其速度等于光速度的95%,则α粒子质量为多少u? 合多少千克? 氢原子静止质量为M (He 4) =4.002603u . 8. 若电子的速度为2.5810?米/秒,那么它的动能和总能量各为多少电子伏特? 9. 计算下列核素的结合能和比结合能: U Ni Fe O C H 238585616122, ,,,,. 10. 从Ca 4020中移出一个中子需要多少能量? 从中移出一个质子的能量又是多少?其中 钙40,钙39的原子静止质量分别为: M (Ca 40) =39.96258u , M (Ca 39) =38.97069u ,M (K 39) =38.9163710u. 11. 计算从O O 1716和 中移出一个中子需要的能量. 有关原子静止质量为: M (O 16) =15.994915u ,M ( O 15) =15.003072u ,M ( O 17) =16.999133u . 12. 计算从和O 16F 17 中移出一个质子需要的能量. 有关原子质量为: M (N 15) =15.000108u , M (F 17) =17.0022096u , M (O 16) =16.999133u. 13. 计算下列过程中的反应能和阈能: ;42230 90234 92He Th U +→;126222 86234 92C Rn U +→ O Po U 1682188423492+→ 14.K 40核的自旋角度动量|1P | =25η,郎德因子为g 1=-0.3241,计算K 40的核自旋方向相对Z 轴方向有几种可能的取向? 其最大分量是多少η? K 40 的磁矩为多少核磁子N μ? 1P 与的相互取向如何?

原子物理学杨福家第六章习题答案

练习六习题1-2解 6-1 某一X 射线管发出的连续X 光谱的最短波长为0.0124nm ,试 问它的工作电压是多少?解:依据公式 答:它的工作电压是100kV . 6-2莫塞莱的实验是历史上首次精确测量原子序数的方法.如测得某元素的K α )(10Z ;将值代入上式, 10 246.0101010 )??= = =1780 Z =43 即该元素为43号元素锝(Te). 第六章习题3,4 6-3 钕原子(Z=60)的L 吸收限为0.19nm ,试问从钕原子中电离一个K 电子需作多少功? 6-4 证明:对大多数元素K α1射线的强度为K α2射线的两倍. 第六章习题5,6参考答案 6-5 已知铅的K 吸收限为0.014 1nm,K 线系各谱线的波长分别为:0.016 7nm(K α);0.0146nm(K β);0.0142nm(K γ),现请: (1) 根据这些数据绘出有关铅的X 射线能级简图; (2) 计算激发L 线系所需的最小能量与L α线的波长. 分析要点:弄清K 吸收限的含义. K 吸收限指在K 层产生一个空穴需要能量. 即K 层电子的结合能或电离能.

解: (1)由已知的条件可画出X 射线能级简图. K K α L α K β K γ (2) 激发L 线系所需的能量: K 在L 壳层产生一个空穴所需的能量 E LK = φK -φL φL =φK - E LK =87.94 keV -84.93keV=3.01 keV φ为结合能. 或

即有 m 即L α线的波长为0.116nm. 6-6 一束波长为0.54 nm 的单色光入射到一组晶面上,在与入射束偏离为120?的方向上产生一级衍射极大,试问该晶面的间距为多大? ?的方向上产生一级衍射极大sin θ n =1 解得 d =0.312 nm 第六章习题8参考答案 6-7 在康普顿散射中,若入射光子的能量等于电子的静止能,试求散射光子的最小能量及电子的最大动量. 6-8 在康普顿散射中,若一个光子能传递给一个静止电子的最大能量为10 keV ,试求入射光子的能量. (1)其中c m 光子去的能量为电子获得的能量 k E h h ='-νν 依题意,如果电子获得最大能量,则出射光子的能量为最小,(1)式E 由此可算出: ν γγh E E 22=+

原子与原子核物理学张国营习题答案

第一章 1.1 若卢瑟福散射用的α粒子是放射性物质镭' C 放射的,其动能为6 7.6810?电子伏特。散射物质是原子序数79Z =的金箔。试问散射角150ο θ=所对应的瞄准距离b 多大? 解:根据卢瑟福散射公式: 2 02 22 442K Mv ctg b b Ze Ze αθ πεπε== 得到: 21921501522 12619079(1.6010) 3.97104(48.8510)(7.681010) Ze ctg ctg b K ο θαπεπ---??===??????米 式中2 12K Mv α=是α粒子的功能。 1.3 钋放射的一种α粒子的速度为71.59710?米/秒,正面垂直入射于厚度为7 10-米、密度 为4 1.93210?3 /公斤米的金箔。试求所有散射在90οθ>的α粒子占全部入射粒子数的百 分比。已知金的原子量为197。 解:散射角在d θθθ+之间的α粒子数dn 与入射到箔上的总粒子数n 的比是: dn Ntd n σ= 其中单位体积中的金原子数:0//Au Au N m N A ρρ== 而散射角大于0 90的粒子数为:2 ' dn dn nNt d ππσ =?=? 所以有: 2 ' dn Nt d n ππσ=? 2 221800 2 903 cos 122( )( )4sin 2 Au N Ze t d A Mu ο ο θ ρπθθπε= ??? 等式右边的积分:180 18090903 3 cos sin 2221 sin sin 2 2 d I d ο ο ο οθθ θθ θ =?=?= 故

'22202012()()4Au N dn Ze t n A Mu ρππε=?? 64 8.5108.510--≈?=? 即速度为7 1.59710/?米秒的α粒子在金箔上散射,散射角大于90ο 以上的粒子数大约是 4008.510-?。 1.4能量为3.5兆电子伏特的细α粒子束射到单位面积上质量为2 2 /1005.1米公斤-?的银 箔上,α粒子与银箔表面成ο 60角。在离L=0.12米处放一窗口面积为2 5 100.6米-?的计数 器。测得散射进此窗口的α粒子是全部入射α粒子的百万分之29。若已知银的原子量为107.9。试求银的核电荷数Z 。 解:设靶厚度为' t 。非垂直入射时引起α 度' t ,而是ο 60sin /'t t =,如图1-1所示。 因为散射到θ与θθd +之间Ωd 立体 角内的粒子数dn 与总入射粒子数n 的比为: dn Ntd n σ= (1) 而σd 为: 2 sin )( )41( 42 2 2 20 θ πεσΩ=d Mv ze d (2把(2)式代入(1)式,得: 2 sin )()41(422220θπεΩ=d Mv ze Nt n dn ……(3) 式中立体角元0 '0'220,3/260sin /,/====Ωθt t t L ds d N 为原子密度。'Nt 为单位面上的原子数,1 0')/(/-==N A m Nt Ag Ag ηη,其中η是单位面积式上的质量;Ag m 是银原子的质量;Ag A 是银原子的原子量;0N 是阿佛加德罗常数。 将各量代入(3)式,得: 2 sin ) ()41(324 2222 0θπεηΩ=d Mv ze A N n dn Ag

智慧树知到《原子核物理》章节测试答案

第一章 1、原子的质量单位叫做碳单位 对 错 答案: 对 2、质子和中子的轨道角动量的矢量和就是原子核的自旋对 错 答案: 对 3、原子中的电子磁矩比核的磁矩小 对 错 答案: 错 4、长椭球形原子核具有负的电四极矩 对 错 答案: 错 5、在经典物理中存在宇称概念 对 错 答案: 错 6、质子和中子不是点状结构

对 错 答案: 错 7、核子之间的主要作用是库仑力 对 错 答案: 错 8、原子核的磁矩包含 质子的磁矩 中子的磁矩 电子的磁矩 答案: 质子的磁矩,中子的磁矩 9、下列说法正确的是 原子核是球形的 核内电荷分布半径就是质子分布的半径 核的电荷分布半径比核力作用半径大 电子在核上散射的角分布是核内电荷分布的函数答案: 核内电荷分布半径就是质子分布的半径10、下列说法正确的是 原子核的形状是长椭球形的 电四极矩多数是负值 利用原子核本身能级间的跃迁可以测出电四极矩

大多数原子核是球形的 答案: 利用原子核本身能级间的跃迁可以测出电四极矩11、下列说法正确的是 宇称是微观物理领域中特有的概念 在一切微观过程中宇称是守恒的 原子核是由中子、质子、电子组成的微观体系 经典物理中存在宇称 答案: 宇称是微观物理领域中特有的概念 12、下列说法正确的是 质子和中子具有内部结构 自旋为整数的粒子叫费米子 自旋为半整数的粒子叫玻色子 电子、质子、中子的自旋为整数 答案: 质子和中子具有内部结构 13、为什么会产生超精细结构 核自旋与电子的总角动量相互作用 核自旋与电子自旋相互作用 质子的轨道角动量与电子的总角动量相互作用 质子的轨道角动量与电子自旋相互作用 答案: 核自旋与电子的总角动量相互作用 14、下来说法错误的是 对于两核子体系,总同位旋是两个核子同位旋的矢量和

原子物理学杨福家1-6章课后习题答案

原子物理学课后前六章答案(第四版) 福家著(高等教育) 第一章:原子的位形:卢瑟福模型 第二章:原子的量子态:波尔模型 第三章:量子力学导论 第四章:原子的精细结构:电子的自旋 第五章:多电子原子:泡利原理 第六章:X 射线 第一章 习题1、2解 1.1 速度为v 的非相对论的α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角约为 10-4rad. 要点分析: 碰撞应考虑入射粒子和电子方向改变.并不是像教材中的入射粒子与靶核的碰撞(靶核不 动).注意这里电子要动. 证明:设α粒子的质量为M α,碰撞前速度为V ,沿X 方向入射;碰撞后,速度为V',沿θ方向散 射。电子质量用me 表示,碰撞前静止在坐标原点O 处,碰撞后以速度v 沿φ方向反冲。α粒子-电子系统在此过程中能量与动量均应守恒,有: (1) ?θααcos cos v m V M V M e +'= (2)

? θ α sin sin 0v m V M e - ' = (3)作运算:(2)×sinθ±(3)×cosθ,得 ) sin( sin ? θ θ α+ =V M v m e (4) ) sin( sin ? θ ? α α+ ='V M V M (5)再将(4)、(5)二式与(1)式联立,消去V’与v, ) ( sin sin ) ( sin sin 2 2 2 2 2 2 2 2 ? θ θ ? θ ? α α α+ + + =V m M V M V M e 化简上式,得 θ ? ? θα2 2 2sin sin ) ( sin e m M + = + (6)若记 α μ M m e = ,可将(6)式改写为 θ ? μ ? θ μ2 2 2sin sin ) ( sin+ = + (7)视θ为φ的函数θ(φ),对(7)式求θ的极值,有 )] (2 sin 2 sin [ )] sin( 2 [sin? θ ? μ ? θ μ θ ? θ + + - = + - d d 令 = ? θ d d ,则 sin2(θ+φ)-sin2φ=0 即 2cos(θ+2φ)sinθ=0 若 sinθ=0, 则θ=0(极小)(8) (2)若cos(θ+2φ)=0 ,则θ=90o-2φ(9)

原子物理学 原子核物理概论 (7.10.2)--第七章原子核物理概论作业解答

第七章作业及解答 7-1试计算核素40Ca 和56Fe 的结合能和比结合能. 分析:此题可采用两种算法,一是按核结合能公式;另一是按魏扎克核质量计算公式. 一.按核子结合能公式计算 解:1 ) 对于核素40Ca ,A =40,Z =20,N =20 由结合能公式 B =Z m p +Z m e -M = (20×1.007825+20×1.008665-39.9625)u =0.36721u×931.5MeV/u=342MeV 比结合能 B /A =342/40=8.55MeV 2 )对于核素56Fe ,A =56,Z =26,N =30 由结合能公式 B =Z m p +Z m e -M = (26×1.007825+30×1.008665-55.9349)u =0.5285u×931.5MeV/u=492.29775MeV 比结合能 B /A =492.29775/56MeV=8.79MeV 二.按魏扎克公式计算 对于题目中所给的40Ca 和56Fe 都是偶偶核. 依B=a V A-a s A 2/3-a c Z 2A -1/3-a sys (Z-N)2+a p A 1/2+B 壳,代入相应常数计算也可. 7-2 1mg 238U 每分钟放出740个α粒子,试证明:1g 238U 的放射性活度为0.33μC i ,238U 的半衰期为4.5x109a . 31060 740-?=A )(1033.0)(103.12613Ci S --?=?=) (1087.41002.6103.121182323813--?=???==S N A λ故9718105.41015.3/1087.4/693.02ln ?=??==--λT (年) 7-3活着的有机体中,14C 对12C 的比与大气中是相同的,约为1.3x10-12.有机体死亡后,由于14C 的放射性衰变,14C 的含量就不断减少,因此,测量每克碳的衰变率就可计算有机体的死亡时间.现测得:取之于某一骸骨的100g碳的β衰变率为300次衰变/min,试问该骸骨已有多久历史? 解:100g 碳14的放射性活度 A=300次/min=5次/s , 又14C 的半衰期 T 1/2=5730a, 1克碳中碳14的含量为12103.1-?=M (克)

光电效应、量子理论、原子及原子核物理(专题考试)

光电效应、量子理论、原子及原子核物理(专题复习) 一、光地波动性(略) 二、光地粒子性 1、光电效应 (1)光电效应在光(包括不可见光)地照射下,从物体发射出电子地现象称为光电效应. (2)光电效应地实验规律: 装置: ①任何一种金属都有一个极限频率,入射光地频率必须大于这个极限频率才能发生光电效应,低于极限频率地光不能发生光电效应. ②光电子地最大初动能与入射光地强度无关,光随入射光频率地增大而增大. ③大于极限频率地光照射金属时,光电流强度(反映单位时间发射出地光电子数地多 少),与入射光强度成正比. ④金属受到光照,光电子地发射一般不超过10-9秒. 2、波动说在光电效应上遇到地困难 波动说认为:光地能量即光地强度是由光波地振幅决定地与光地频率无关.所以波动 说对解释上述实验规律中地①②④条都遇到困难 3、光子说 (1)量子论:1900年德国物理学家普郎克提出:电磁波地发射和吸收是不连续地,而是一份一份地,每一份电磁波地能量E=hv (2)光子论:1905年受因斯坦提出:空间传播地光也是不连续地,而是一份一份地,每一份称为一个光子,光子具有地能量与光地频率成正比. 即:E=hv ,其中h为普郎克恒量h=6.63×10-34J·s 4、光子论对光电效应地解释 金属中地自由电子,获得光子后其动能增大,当功能大于脱出功时,电子即可脱离金属表面,入射光地频率越大,光子能量越大,电子获得地能量才能越大,飞出时最大初功能也越大. 三、波粒二象性 1、光地干涉和衍射现象,说明光具有波动性,光电效应,说明光具有粒子性,所以光具有波粒二象性. 2、个别粒子显示出粒子性,大量光子显示出波动性,频率越低波动性越显著,频率越高粒子性越显著 3、光地波动性和粒子性与经典波和经典粒子地概念不同 (1)光波是几率波,明条纹是光子到达几率较大,暗条纹是光子达几率较小 这与经典波地振动叠加原理有所不同 (2)光地粒了性是指光地能量不连续性,能量是一份一份地光子,没有一定地形状,也不占有一定空间,这与经典粒子概念有所不同

原子物理学课后习题详解第6章(褚圣麟)

第六章 磁场中的原子 6.1 已知钒原子的基态是2/34F 。(1)问钒原子束在不均匀横向磁场中将分裂为几束?(2)求基态钒原子的有效磁矩。 解:(1)原子在不均匀的磁场中将受到力的作用,力的大小与原子磁矩(因而于角动量)在磁场方向的分量成正比。钒原子基态2/34F 之角动量量子数2/3=J ,角动量在磁场方向的分量的个数为412 3 212=+?=+J ,因此,基态钒原子束在不均匀横向磁场中将分裂为4束。 (2)J J P m e g 2=μ h h J J P J 2 15)1(= += 按LS 耦合:5 2 156)1(2)1()1()1(1==++++-++ =J J S S L L J J g B B J h m e μμμ7746.05 15 215252≈=???= ∴ 6.2 已知He 原子0111S P →跃迁的光谱线在磁场中分裂为三条光谱线,其间距 厘米/467.0~=?v ,试计算所用磁场的感应强度。 解:裂开后的谱线同原谱线的波数之差为: mc Be g m g m v πλλ4)(1'1~1122-=-=? 氦原子的两个价电子之间是LS 型耦合。对应11 P 原子态,1,0,12-=M ;1,1,0===J L S , 对应01S 原子态,01=M ,211.0,0,0g g J L S =====。 mc Be v π4/)1,0,1(~-=? 又因谱线间距相等:厘米/467.04/~==?mc Be v π。 特斯拉。00.1467.04=?= ∴e mc B π 6.3 Li 漫线系的一条谱线)23(2/122/32P D →在弱磁场中将分裂成多少条谱线?试作出相应的能级跃迁图。

原子与原子核物理学张国营习题答案

1 1.1 若卢瑟福散射用的α粒子是放射性物质镭'C 放射的,其动能为6 7.6810?电子伏特。散射物质是原子序数79Z =的金箔。试问散射角150ο θ=所对应的瞄准距离b 多大? 解:根据卢瑟福散射公式: 得到: 2192 1501522 12619 079(1.6010) 3.97104(48.8510)(7.681010) Ze ctg ctg b K ο θαπεπ---??===??????米 式中2 12 K Mv α=是α粒子的功能。 1.3 钋放射的一种α粒子的速度为71.59710?米/秒,正面垂直入射于厚度为7 10-米、密度 为4 1.93210?3 /公斤米的金箔。试求所有散射在90οθ>的α粒子占全部入射粒子数的百 分比。已知金的原子量为197。 解:散射角在d θθθ+:之间的α粒子数dn 与入射到箔上的总粒子数n 的比是: 其中单位体积中的金原子数:0//Au Au N m N A ρρ== 而散射角大于0 90的粒子数为:2 ' dn dn nNt d ππσ =?=? 所以有: 2 ' dn Nt d n ππσ=? 等式右边的积分:180******** 3 cos sin 2221sin sin 2 2 d I d οο ο οθθ θθ θ =? =?= 故 即速度为7 1.59710/?米秒的α粒子在金箔上散射,散射角大于90ο 以上的粒子数大约是 4008.510-?。 1.4能量为3.5兆电子伏特的细α粒子束射到单位面积上质量为2 2 /1005.1米公斤-?的银 箔上,α粒子与银箔表面成ο 60角。在离L=0.12米处放一窗口面积为2 5 100.6米-?的计数 器。测得散射进此窗口的α粒子是全部入射α粒子的百万分之29。若已知银的原子量为107.9。试求银的核电荷数Z 。 解:设靶厚度为' t 。非垂直入射时引起α度' t ,而是ο 60sin /'t t =,如图1-1所示。

原子及原子核物理(郭江编)_课后答案

第一章 原子的基本状况 1.1 若卢瑟福散射用的α粒子是放射性物质镭' C 放射的,其动能为6 7.6810?电子伏特。散射物质是原子序数79Z =的金箔。试问散射角150ο θ=所对应的瞄准距离b 多大? 解:根据卢瑟福散射公式: 2 02 22 442K Mv ctg b b Ze Ze αθ πεπε== 得到: 21921501522 12619 079(1.6010) 3.97104(48.8510)(7.681010) Ze ctg ctg b K ο θαπεπ---??===??????米 式中2 12K Mv α=是α粒子的功能。 1.2已知散射角为θ的α粒子与散射核的最短距离为 2202 1 21 ()(1)4sin m Ze r Mv θ πε=+ ,试问上题α粒子与散射的金原子核之间的最短距离m r 多大? 解:将1.1题中各量代入m r 的表达式,得:2min 202 1 21 ()(1)4sin Ze r Mv θπε=+ 1929 619479(1.6010)1 910(1)7.6810 1.6010sin 75 ο--???=???+??? 143.0210-=?米 1.3 若用动能为1兆电子伏特的质子射向金箔。问质子与金箔。问质子与金箔原子核可 能达到的最小距离多大?又问如果用同样能量的氘核(氘核带一个e +电荷而质量是质子的两倍,是氢的一种同位素的原子核)代替质子,其与金箔原子核的最小距离多大? 解:当入射粒子与靶核对心碰撞时,散射角为180ο 。当入射粒子的动能全部转化为两粒子间的势能时,两粒子间的作用距离最小。 根据上面的分析可得: 22 0min 124p Ze Mv K r πε==,故有:2min 04p Ze r K πε= 1929 13 619 79(1.6010)910 1.141010 1.6010 ---??=??=???米 由上式看出:min r 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代

原子核物理第三章课后习题答案

3-3. 60Co 是重要的医用放射性同位素,半衰期为5.26年,试问1g 60Co 的放射性强度?100mCi 的钴源中有多少质量60Co ? 解:放射性强度公式为: 000.693,==t t A dN m A N e N N N e N N dt T M λλλλλ--=- ===其中,,,T 为半衰期,0A 231330.6930.6931 6.022*******.2636524360059.93384.1977810/1.13510t dN m A N e N N dt T M Ci λλλ-∴=- ===?=?????≈?≈?次秒 其中103.710/i C =?次核衰变秒, 1039100 3.71010/i mC -=????10010=3.7次核衰变秒,利用公式 00.693t A dN m A N e N N dt T M λλλ-=- ===,可知2390.6930.693 6.022*********.2636524360059.9338 A m m A N T M ==??=???? 3.7 解可得,-58.8141088.14m g g μ=?= 3-5用氘轰击55Mn 可生成β-放射性核素56Mn ,56Mn 的产生率为8510/s ?, 已知56Mn 的半衰期2.579h,试计算轰击10小时后,所生成的56 Mn 的放射性强度。 解:利用放射性强度公式 /(1)(12),P t t T A N P e P λλ--==-=-其中为核素的产生率。 可知生成的56 Mn 的放射性强度为: /810/2.57988(12)510(12) 4.6610 4.6610t T A P Bq --=-=??-≈??次核衰变/秒=。 3-6已知镭的半衰期为1620a ,从沥青油矿和其他矿物中的放射性核素数目226()N Ra 与238()N U 的比值为73.5110-?,试求238U 的半衰期。

卓顶精文最新原子核物理第二版-习题答案-杨福家-复旦大学出版社.docx

第一章 1-3.试计算核素He和Li,并对比结合能之差别作讨论。 1-4.试计算ZY,ZY,ZY,三个核素的中子分离能;比较这三个分离能,可得出 什么重要结论? 1-5.求出U的平均结合能;如果近似假定中等质量原子核的平均结合能为8.5MeV,试估计一个U核分裂成两个相同的中等原子核时,能放出多少能量?

1-6.试由质量半经验公式,试计算Ca和Co的质量,并与实验值进行比较。 1-7.利用质量半经验公式来推导稳定核素的电荷数Z与质量数A的关系式,并与β稳定线的经验公式作比较? 1-8.试利用镜核(A相同,中子数N和质子数Z互换的一对核)N和C质量差以及质量半经验公式来近似估算原子核半径参量Y。

1-11.在核磁共振法研究原子Mg的基态(=5/2+)的磁特性实验中,当恒定磁场的强度=5.4Gs以及高频磁场的频率为v=1.40MHz时,发现了能量的共振吸收,试求gI因子及核磁矩。 1-12.假定核电荷Ze均匀分布在两个主轴分别为a和c(c沿对称轴)的旋转椭球内,试推导公式(1.6.6)。(Q=Z(-))

第二章 2-1.核力有哪些主要性质?对每一种性质,要求举一个实验事实。

2-3.试计算从中取出一个质子所需的能量;并进行比较,从中可得出什么结论? 2-4.由质量半经验公式估算和的基态质量差,并与实验值比较。(Y0取1.4fm) 2-5.根据壳层模型决定下列一些核的基态自旋和宇称: ,,,,,,,

2-6.实验测得的最低三个能级Iπ为3/2-(基态),1/2-和3/2+;测得的最低4个能级的Iπ为3/2-(基态),5/2-,1/2-和7/2-,试与单粒子壳模型的预言相比较,并对比较结果作出定性说明。 第三章 3-1.一个放射性核素的平均寿命为10d,试问经过5天衰变的数目以及在第五天内发生衰变的数目是原来的多少(百分比)? 3-2.已知1mg每分钟放出740个α粒子,试计算1g的放射性强度 (T=4.5Y10^9年)。 3-3.是重要医用放射性同位素,半衰期为5.26年,试问1g的放射性强度?100mCi的钴源中有多少质量Co?

原子物理学第四,五,六,七章课后习题答案

第四章 碱金属原子 1. 已知Li 原子光谱主线系最长波长0 A 6707=λ,辅线系系限波长 A 3519=∞λ.求Li 原子第一激发电势和电离电势. 解:主线系最长波长是原子从第一激发态跃迁至基态的光谱线的波长 E h hc νλ?== 第一激发电势 1eU E =? 3481197 6.626210310V 1.850V 1.602210 6.70710 E hc U e e λ---????====??? 辅线系系限波长是原子从无穷处向第一激发态跃迁产生的 辅线系 ~ ~ *2n R n νν∞=-,~~* n n νν∞→∞= 192 5.648910J hc eU λ-∞ ==? 2 3.526V U = 电离电势:U =U 1+U 2=5.376V 2. Na 原子的基态3S .已知其共振线波长为58930 A ,漫线系第一条的波长为81930 A ,基线系第一条的波长为184590 A ,主线系的系限波长为24130 A 。试求3S 、3P 、3D 、4F 各谱项的项值. 解:主线系波数

~ p 22 s p ,3,4,(3)() n R R n n ν=-=-?- ? ~ ~ p 2 s ,(3)n R n νν∞→∞== -? 系限波长:p λ∞=24130 A =72.41310m -? ~ 161 3S 7 1m 4.144210m 2.41310T ν--∞-== =?? 共振线为主线系第一条线, 是原子从3P 到3S 跃迁产生的光谱线 共振线波长:λp1=58930 A =75.89310m -? ~ 61 p 13S 3P 71 1.696910m 5.89310m T T ν--=-= =?? 1616S 3P 3m 104473.2m 106969.1--?=?-=T T 漫线系(第一辅线系)波数 ~ d 22 p d ,3,4,(3)() n R R n n ν=-=-?- ? 漫线系第一条线是原子从3D 到3P 跃迁产生的光谱线 漫线系第一条光谱线的波长7d18.19310m λ-=? 1 67D 3P 31~ d m 102206.1m 10193.81--?=?=-=T T ν 1616P 3D 3m 102267.1m 102206.1--?=?-=T T 基线系(柏格曼线系)波数 ,5,4,) ()3(2 f 2d ~ f =?--?-=n n R R n ν 基线系第一条线是原子从4F 到3D 跃迁产生的光谱线 基线系第一条光谱线的波长6f1 1.845910m λ-=?

相关主题
文本预览
相关文档 最新文档