当前位置:文档之家› 第八章原子物理学X射线教案讲解

第八章原子物理学X射线教案讲解

第八章原子物理学X射线教案讲解
第八章原子物理学X射线教案讲解

《原子物理学》课程章节教案

注:1.根据课程教学进度计划表填写章节教案首页;

2.教案或讲义正文附后,手书打印均可。

原子物理学 杨福家 第四版(完整版)课后答案

原子物理学杨福家第四版(完整版)课后答案 原子物理习题库及解答 第一章 111,222,,mvmvmv,,,,,,,ee222,1-1 由能量、动量守恒 ,,,mvmvmv,,,,,,ee, (这样得出的是电子所能得到的最大动量,严格求解应用矢量式子) Δp θ mv2,,,得碰撞后电子的速度 p v,em,m,e ,故 v,2ve, 2m,p1,mv2mv4,e,eee由 tg,~,~~,~,2.5,10(rad)mvmv,,,,pm400, a79,2,1.44,1-2 (1) b,ctg,,22.8(fm)222,5 236.02,102,132,5dN(2) ,,bnt,3.14,[22.8,10],19.3,,9.63,10N197 24Ze4,79,1.441-3 Au核: r,,,50.6(fm)m22,4.5mv,, 24Ze4,3,1.44Li核: r,,,1.92(fm)m22,4.5mv,, 2ZZe1,79,1.4412E,,,16.3(Mev)1-4 (1) pr7m 2ZZe1,13,1.4412E,,,4.68(Mev)(2) pr4m 22NZZeZZeds,,242401212dN1-5 ()ntd/sin()t/sin,,,,,2N4E24EAr2pp 1323,79,1.44,106.02,101.5123,,(),,1.5,10,, 24419710(0.5) ,822,610 ,6.02,1.5,79,1.44,1.5,,8.90,10197 3aa,,1-6 时, b,ctg,,,,6012222 aa,,时, b,ctg,,1,,902222 32()2,dNb112 ?,,,32dN1,b222()2 ,32,324,101-7 由,得 b,bnt,4,10,,nt

原子物理学教学大纲

原子物理学理论课教学大纲 《原子物理学》课程教学大纲新06年8月课程编号:02300009 课程名称:原子物理学 英文名称: Atomic Physics 课程类型:专业基础课 总学时: 54 学分: 2.5 适用对象:物理、电子信息科学专业本科生 先修课程:高等数学、力学、电磁学、光学 1.课程简介 本课程着重从光谱学、电磁学、X射线等物理实验规律出发,以原子结构为中心,按照由现象到本质、由实验到理论的过程帮助学生建立起微观世界量子物理的基本概念,并利用这些基本概念说明原子、分子以及原子核和粒子的结构和运动规律,介绍在现代科学技术上的重大应用。是近代物理的入门课程,是物理专业的一门重要基础课。本课程需在高等数学、力学、电磁学、光学之后开设,是理论物理课程中量子力学部分的前导课程,拟在第三学年第一学期开出。 2.课程性质、目的和任务

本课程是物理专业学生必修课。是力学、电磁学和光学的后续课程、近代物理课的入门课程。是量子力学、固体物理学、原子核物理学、激光、近代物理实验等课程的基础课。目的是引导学生从实验入手,用量子化和微观思维方式,分析微观高速运动物体的规律。主要任务是:通过本课程的教学,让学生对原子及原子核的结构、性质、相互作用及运动规律有概括而系统的认识。通过对重要实验现象以及理论体系逐步完善过程的分析,使学生建立丰富的微观世界的物理图像和物理概念,培养学生用微观思维方式分析问题和解决问题的能力。 3.教学基本要求 (1)了解原子物理学、原子核物理学发展的历程,培养科学研究的素质,加深对辩证唯物主义的理解。 (2)了解原子和原子核所研究的内容和前沿研究领域的概况,培养有现代意识、有远见的新一代大学生。 (3)掌握原子、原子核物理学的基本原理、基本概念和基本规律;掌握处理原子、原子核物理学现象及问题的手段和途径。培养学生掌握科学研究的基本方法。 (4)使学生了解无限分割的物质世界中的依次深入的不同结构层次,理解原子核的结构和基本性质、基本运动规律; (5)结合一些物理学史介绍,使学生了解物理学家对物理结构的实验——理论——再实验——再理论的认识过程,了解微观物理学对现代科学技术重大影响和各种应用,并为以后继续学习量子力学和有关课程打下基础。 4.教学内容及要求

最新原子物理学杨福家1-6章 课后习题答案

原子物理学杨福家1-6章课后习题答案

原子物理学课后前六章答案(第四版) 杨福家著(高等教育出版社) 第一章:原子的位形:卢瑟福模型 第二章:原子的量子态:波尔模型 第三章:量子力学导论 第四章:原子的精细结构:电子的自旋 第五章:多电子原子:泡利原理 第六章:X 射线 第一章 习题1、2解 1.1 速度为v 的非相对论的α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角约为10-4rad. 要点分析: 碰撞应考虑入射粒子和电子方向改变.并不是像教材中的入射粒子与靶核的碰撞(靶核不动).注意这里电子要动. 证明:设α粒子的质量为Mα,碰撞前速度为V ,沿X 方向入射;碰撞后,速度为V',沿θ方向散射。电子质量用me 表示,碰撞前静止在坐标原点O 处,碰撞后以速度v 沿φ方向反冲。α粒子-电子系统在此过程中能量与动量均应守恒,有: (1) ? θααcos cos v m V M V M e +'= (2)

? θ α sin sin 0v m V M e - ' = (3)作运算:(2)×sinθ±(3)×cosθ,得 ) sin( sin ? θ θ α+ =V M v m e (4) ) sin( sin ? θ ? α α+ ='V M V M (5)再将(4)、(5)二式与(1)式联立,消去V’与v, ) ( sin sin ) ( sin sin 2 2 2 2 2 2 2 2 ? θ θ ? θ ? α α α+ + + =V m M V M V M e 化简上式,得 θ ? ? θα2 2 2sin sin ) ( sin e m M + = + (6)若记 α μ M m e = ,可将(6)式改写为 θ ? μ ? θ μ2 2 2sin sin ) ( sin+ = + (7)视θ为φ的函数θ(φ),对(7)式求θ的极值,有 )] (2 sin 2 sin [ )] sin( 2 [sin? θ ? μ ? θ μ θ ? θ + + - = + - d d 令 = ? θ d d ,则 sin2(θ+φ)-sin2φ=0 即 2cos(θ+2φ)sinθ=0 若 sinθ=0, 则θ=0(极小)(8) (2)若cos(θ+2φ)=0 ,则θ=90o-2φ(9)

原子物理学期末自测题电子教案

1、原子半径的数量级是: A.10-10cm; B.10-8m C.10-10m D.10-13m 2、原子核式结构模型的提出是根据α粒子散射实验中: A.绝大多数α粒子散射角接近180° B. α粒子只偏差2°~ 3° C.以小角散射为主也存在大角散射 D.以大角散射为主也存在小角散射 3、进行卢瑟福理论实验验证时发现小角散射与实验不符这说明: A.原子不一定存在核式结构 B.散射物太厚 C.卢瑟福理论是错误的 D.小角散射时一次散射理论不成立 4、用相同能量的α粒子束和质子束分别与金箔正碰,测量金原子核半径的上限.试问用质子束所得结果是用α粒子束所得结果的几倍? A.1/4 B.1/2 C.1 D.2 =40keV的α粒子对心接近Pb(z=82)核而产生散射,则最小距离 5、动能E K 为(m): A.5.9 B.3.0 C.5.9╳10-12 D.5.9╳10-14 6、如果用相同动能的质子和氘核同金箔产生散射,那么用质子作为入射粒子测得的金原子半径上限是用氘核子作为入射粒子测得的金原子半径上限的几倍? A.2 B.1/2 C.1 D .4 7、在金箔引起的α粒子散射实验中,每10000个对准金箔的α粒子中发现有4个粒子被散射到角度大于5°的范围内.若金箔的厚度增加到4倍,那么被散射的α粒子会有多少? A. 16 B.8 C.4 D.2 8、在同一α粒子源和散射靶的条件下观察到α粒子被散射在90°和60°角方向上单位立体角内的粒子数之比为: A.4:1 B.2:2 C.1:4 D.1:8 9、在α粒子散射实验中,若把α粒子换成质子,要想得到α粒子相同的角分布,在散射物不变条件下则必须使: A.质子的速度与α粒子的相同; B.质子的能量与α粒子的相同; C.质子的速度是α粒子的一半; D.质子的能量是α粒子的一半 10、氢原子光谱莱曼系和巴耳末系的系线限波长分别为: A.R/4 和R/9 B.R 和R/4 C.4/R 和9/R D.1/R 和4/R

原子物理学 杨福家第二章习题答案

第二章习题 2-1 铯的逸出功为1.9eV ,试求: (1)铯的光电效应阈频率及阈值波长; (2)如果要得到能量为1.5eV 的光电子,必须使用多少波长的光照射? 解:(1) ∵ E =hν-W 当hν=W 时,ν为光电效应的最低频率(阈频率),即 ν =W /h =1.9×1.6×10-19/6.626×10-34 =4.59×1014 ∵ hc /λ=w λ=hc /w =6.54×10-7(m) (2) ∵ mv 2/2=h ν-W ∴ 1.5= h ν-1.9 ν=3.4/h λ=c /ν=hc /3.4(m)=3.65×10-7m 2-2 对于氢原子、一次电离的氦离子He +和两次电离的锂离子Li ++,分别计算它们的: (1)第一、第二玻尔轨道半径及电子在这些轨道上的速度; (2)电子在基态的结合能; (3)由基态到第一激发态所需的激发能量及由第一激发态退激到基态所放光子的波长. n e e πε Z n a ∴H: r 1H =0.053×12/1nm=0.053nm r 2 H =0.053×22/1=0.212nm V 1H =2.19 ×106×1/1=2.19 ×106(m/s) V 2H =2.19 ×106×1/2=1.095 ×106(m/s) ∴He+: r 1He+=0.053×12/2nm=0.0265nm r 2He+=0.053×22/2=0.106nm

V 1 He+=2.19 ×106×2/1=4.38 ×106(m/s) V 2 He+=2.19 ×106×2/2=2.19 ×106(m/s) Li ++: r 1 Li++=0.053×12/3nm=0.0181nm r 2 Li++=0.053×22/3=0.071nm V 1 Li++=2.19 ×106×3/1=6.57 ×106(m/s) V 2 Li++=2.19 ×106×3/2=3.28 ×106(m/s) (2) 结合能:自由电子和原子核结合成基态时所放出来的能量,它 ∵ 基态时n =1 H: E 1H =-13.6eV He+: E 1He+=-13.6×Z 2=-13.6×22=-54.4eV Li ++: E 1Li+=-13.6×Z 2 2(3) 由里德伯公式 =Z 2×13.6× 3/4=10.2Z 2 注意H 、He+、Li++的里德伯常数的近似相等就可以算出如下数值。 2-3 欲使电子与处于基态的锂离子Li ++发生非弹性散射,试问电子至少具有多大的动能? 要点分析:电子与锂质量差别较小, 可不考虑碰撞的能量损失.可以近似认为电子的能量全部传给锂,使锂激发. 解:要产生非弹性碰撞,即电子能量最小必须达到使锂离子从基态达第一激发态,分析电子至少要使Li ++从基态n =1激发到第一激发态n =2. 因为Z n ++ ⊿E =E 2-E 1=Z 2R Li ++hc (1/12-1/22)≈32×13.6×3/4eV=91.8eV 讨论:锂离子激发需要极大的能量

高中物理教学浅探

高中物理教学浅探 高中物理教育,是与九年义务教育相衔接的高一层次的基础教育,高中物理的教学宗旨是进一步提高学生的思想道德品质、文化科学知识、审美情趣和身体心理素质,培养学生的创新精神、实践能力、终身学习的能力和适应社会生活的能力,促进学生的全面发展。如何在新课改的前提下搞好高中物理教学,构建和谐的人文课堂?高中学生都普遍感到物理难懂难学,思想负担较重,减轻学生负担,注重物理的学习方法,变革考试制度、创新课堂教学模式显得尤为重要。本文就上述几个方面浅谈笔者的见解,以求教于方家。 一、关于物理的学习方法 所谓物理学习方法,简单的说就是研究或学习和应用物理的方法。方法是研究问题的门路和程序,是方式和办法的综合。首先,学好物理要识记、理解物理概念、规律及条件,要解决描述物理问题,就要会对物理问题进行唯象的研究,然后进一步研究它的原因、规律,再寻求解决的方法。在中学物理课中我们只要注意到参考系、速度、质量、力、动量、能量、功等概念和牛顿运动定律、万有引力定律、动量守恒定律、动能定理、动量定理、动量守恒定律、机械能守恒定律等规律,以及时空观、物理模型、数学工具(矢量、图象、变化率)等在热学、电学、光学、原子物理学中的应用和分析、解决的方法,就会对此有所体会。研究物理的规律,也要从历史上看,学会从描述物理过程开始,判断什么物理问题说明用什么物理概念、物理量去描述物体的状态,用什么方程可以描绘物体的运动状况,变化关系,从而可以解决控制物理的问题。如:质点的位置、速度、加速度及其时间是描述运动学的物理量,匀变速直线运动公式,抛体运动公式,匀速圆周运动公式等,都是我们在研究运动学动力学问题时常常要用到的。从动力学角度看运动学概念、规律能加深理解,能知道它的本质。如:加速度是力产生的,它建立了运动学和动力学的联系;抛体运动是质点在恒力作用下的加速度恒定的曲线运动;简谐运动是质点在线性回复力作用下的运动等。又如:从动力学角度能判定运动独立性原理不存在,分运动的独立性是有条件的。可见,明确题设的物理情境,理解物理过程是解决物理问题的关键。教学过程必须始终贯穿物理思想和物理方法,这是授之渔和受之渔的根本。方法是沟通思想、知识和能力的桥梁,物理方法是物理思想的具体表现。研究物理的方法很多,如有观察法、实验法、假设法、极限法、类比法、比较法、分析法、综合法、变量控制法、图表法、归纳法、总结法、发散思维法、抽象思维法、逆向思维法、模拟想象法、知识迁移法、数学演变法等。对于上述各方法的灵活运用需要学生们在解题过程中加以揣摩和总结。 二、减轻学生精神负担,变革考试制度 学校的考试制度不改变,学生精神上的压力就不会减少,学生在生理上和心理上就不会得到应有的放松,能力就不会得到较好的发挥。传统的考试制度、形式、内容及评估方式,对学生精神压力太大,以分定位,一榜定论,像一具精神枷锁枷走了年青人的朝气,锁住了孩子们的兴趣。重知轻能使同学们钻入了“高分低能”的怪圈,个性得不到发展,特长难以发挥,总是围绕高考指挥棒游来转去:凡是考试内容,深挖细究,猜题押宝,填鸭硬灌,反之一略而过,甚至置之不理,纯属应试教育。 为了改变这种被动局面,我们摸索了一套行之有效的考试方式和新评估模

原子物理学第四章习题解答

第四章习题解答 41 一束电子进入1、2T得均匀磁场时,试问电子得自旋平行于与反平行于磁场得电子得能量差为多大? 解:∵磁矩为得磁矩,在磁场中得能量为: U = ·= B 电子自旋磁矩 = ∴电子自旋平行于与反平行于磁场得能量差u =B – (B) =2B ∴u = 2B =2 ×0、5788×eV·× 1、2 T = 1、39 × eV 42试计算原子处于状态得磁矩μ及投影μz得可能值、 解:由可知 S= J= L=2 ∴=+=+= 又= = =1、55 ∴=1、55 又又 ∴ 或 即 43试证实:原子在状态得磁矩等于零,并根据原子矢量模型对这一事实作出解释、 解:由可知:S = J = L = 4 ∴ ∴ 即原子在状态得磁矩等于零。 解释:∵原子得总角动量为 ,而处于态原子各角动量为: 则它们得矢量关系如图示:

与同时绕旋进,相对取项保持不变 由三角形余弦定理可知: 22222211()[(1)(1)(1)]22 L J L J S L L J J S S ?=+-+++-+u r u r h h h = 而 ∴相应得磁矩 由于磁矩随着角动量绕旋进,因而对外发生效果得就是在方向上得分量。其大小计算如下: 此结果说明,垂直于,因而原子总磁矩 44 在史特恩盖赫拉实验中,处于基态得窄得银原子束通过极不均匀得横向磁场,并射到屏上,磁极得纵向范围d=10cm,磁极中心到屏得距离D=25cm 、如果银原子得速率为400m/s,线束在屏上得分裂间距为2、0mm,试问磁场强度得梯度值应为多大?银原子得基态为,质量为107、87u 、 解:原子束通过非均匀磁场时,如果磁场在Z 方向,可以证明:落在屏幕上得原子束偏离中心得距离为: (式中T 为炉温,d 为不均匀磁场得线度,D 就是磁场中心到屏得距离,就是横向不均匀磁场梯度,就是原子得总磁矩在Z 方向得分量),分裂后得原子束偏离中心得

原子物理学课程教学大纲

原子物理学课程教学大纲 一、课程说明 (一)课程名称、所属专业、课程性质、学分; 课程名称:原子物理学 所属专业:物理学专业 课程性质:基础课 学分:4 (二)课程简介、目标与任务; 原子物理学是物理类专业本科生的专业必修课,以物质结构的第一个微观层次(原子)为研究对象,是联接经典物理和近代物理的一门承上启下的课程。在理论方法上,该课程揭露经典理论在原子这一微观层次遭遇到的困难,并且为了解决这些困难而引入量子力学,学生将在本课程中较为系统地学习到量子力学的基本概念、基本原理、基本思想和方法。在应用实践上,通过本课程的学习,学生将系统性地了解和掌握原子物理学的发展历史,获得有关原子的电子结构、性质及其与外场相互作用的系统性知识,为以后从事相关的科学研究、生产应用和教学工作打下良好的基础。 (三)先修课程要求,与先修课之间的逻辑关系和内容衔接; 先修课程:《高等数学》、《数学物理方法》、《力学》、《理论力学》、《热学》、《电磁学》、《光学》 关系:《高等数学》和《数学物理方法》是学习原子物理学的数学基础。《力学》、《理论力学》、《热学》、《电磁学》和《光学》包含了学生在学习原子物理学之前需要掌握的必要的经典物理知识。有了这些准备知识才能理解为何不能用经典理论来研究原子体系,从而必须引入量子力学。 (四)教材与主要参考书; 选用教材:杨福家, 《原子物理学》第四版, 高等教育出版社, 2010 主要参考书:

1, C. J. Foot,《Atomic Physics》, Oxford University Press, 2005 2, H. Friedrich,《Theoretical Atomic Physics》, Springer, 2006 3, 褚圣麟,《原子物理学》,高等教育出版社, 1987 4, 曾谨言,《量子力学》,科学出版社, 2000 5, 卢希庭,《原子核物理》,原子能出版社, 1981 二、课程内容与安排 绪论原子物理学的发展历史(2学时)【了解】 第一章原子的组成和结构(5学时) 第一节原子的质量和大小【掌握】 第二节电子的发现【了解】 第三节原子结构模型【了解】 第四节原子的核式结构,卢瑟福散理论【重点掌握】【难点】 第五节卢瑟福理论的成功和不足【掌握】 第二章原子的量子态,玻尔理论(8学时) 第一节背景知识:黑体辐射、光电效应和氢原子光谱【掌握】 第二节玻尔的氢原子理论【重点掌握】【难点】 第三节玻尔理论的实验验证【掌握】 第四节玻尔理论的推广:椭圆轨道理论和碱金属原子光谱【重点掌握】 第五节玻尔理论的成功与缺陷【掌握】 第三章量子力学导论(18学时)【重点掌握】【难点】 第一节波粒二象性 第二节不确定关系 第三节波函数及其统计解释 第四节态叠加原理 第五节薛定谔方程 第六节薛定谔方程应用举例 第七节平均值和算符 第八节量子力学总结 第九节氢原子/类氢离子的量子力学解法 第十节爱因斯坦关于辐射和吸收的唯象理论 第十一节量子跃迁理论,含时微扰论

中学物理教材分析

一、分析教材对教学的意义和要求 (一)教材分析的意义 现代教学论认为,要实现教学最优化,就必须实现教学目标最优化和教学过程最优化。教材的分析和教法的研究,正是实现教学过程最优化的重要内容和手段。教材分析是教师备课中一项重要的工作,是教师进行教学设计编写教案、制订教学计划的基础;是备好课、上好课和达到预期的教学目的的前提和关键,对顺利完成教学任务具有十分重要的意义。在教学过程中如何促进学生的发展,培养学生的能力,是现代教学思路的一个基本着眼点。教学过程不仅是知识的传授过程,而且是能力的培养过程。培养能力需要认识和比较各种知识的能力价值,而知识的能力价值具有隐蔽性,表现为“不思则无,深思则远,远思则宽”。只有通过对教材的深入分析,才可能挖掘出教材本身没有写出来的知识的能力价值,以利于对学生能力的培养。 教材分析和教法研究的过程,既是教师教学工作的重要内容,又是教师进行教学研究的一种主要方法,这个过程能够充分体现教师的教学能力和创造性的劳动。所以,教材分析的过程,就是教师不断提高业务素质和加深对教育理论理解的过程,对提高教学质量,提高教师自身的素质都具有十分重要的意义。 (二)教材分析总的要求 教材分析总的要求是:深入理解和钻研课程标准,充分领会教材的编写意图,熟悉整个教材的基本内容,了解教材的各个部分在整个学科、篇、章或课时中所处的地位;具体分析教材的内容,包括教材的知识结构体系、教材的教学目的和要求、教材的特点、教材的重点、难点和关键。能根据教学目的、内容和教学原则,按照教学要求,结合学校、教师和学生的实际情况,研究如何优化处理教材,如何突出重点、抓住关键、克服难点,明确教材中培养学生的能力因素,选择恰当的教学方法和教学手段,写出可行的教学方案,通过教材分析提高教学质量,提高教师的教学业务能力。 (三)分析教材的基本依据 教材分析的主要依据是课程标准、教材和学生,同时还需要参阅必要的教学参考书。分析教材时,主要应以以下几个方面的要求为依据: 1.课程标准与教材 课程标准是学科教学最权威的指导性文件,是指导教学和编写教材的依据,也是评价教学和考试命题的依据。教师必须认真学习和钻研课程标准,按照课程标准的规定和精神进行教学,才能做好教学工作。 中学物理课程标准包括四大部分:第一部分是课程性质、课程基本理念及课程的设计思路。明确了中学物理课程的课程性质;明确了在课程目标、课程结构、课程内容、课程实施及课程评价等方面的基本精神;说明了中学物理课程的设计思路。第二部分是课程目标。提出了中学物理课程总的课程目标和知识与技能、过程与方法、情感态度与价值观等具体目标。第三部分是内容标准。规定了中学物理课程中对学生科学探究和实验的要求及对中学物理知识的基本内容和活动建议等,具体地规定了教学内容的课题、学生实验、演示实验等项目,并对某些课题的要求作了说明或限定。第四部分是实施建议。从教学、评价、教科书编写、课程资源利用与开发等四个方面阐述了教学和评价中应注意的原则问题以及教科书编写及课程资源开发等的要点。钻研课程标准首先要吃透课程标准的精神,并能联系教学实际来分析教材和设计教学过程。 课程标准规定的教学内容以及所要求达到的程度,教师应当准确理解。特别是在新课改实行的一个课程标准多种版本教材的情况下,准确理解和掌握课程标准更为重要。这样才能对不同教材进行分析比较,以便在使用中做到删选取舍,达到物理教学目的的要求。 2.物理学的知识体系

原子物理学课后习题详解第4章(褚圣麟)教学内容

第四章 碱金属原子 4.1 已知Li 原子光谱主线系最长波长ολA 6707=,辅线系系限波长ο λA 3519=∞。求锂原子第一激发电势和电离电势。 解:主线系最长波长是电子从第一激发态向基态跃迁产生的。辅线系系限波长是电子从无穷处向第一激发态跃迁产生的。设第一激发电势为1V ,电离电势为∞V ,则有: 伏特。伏特375.5)11(850.111=+=∴+===∴=∞ ∞∞ ∞λλλλλλ e hc V c h c h eV e hc V c h eV 4.2 Na 原子的基态3S 。已知其共振线波长为5893οA ,漫线系第一条的波长为8193ο A ,基线系第一条的波长为18459οA ,主线系的系限波长为2413ο A 。试求3S 、3P 、3D 、4F 各谱项的项值。 解:将上述波长依次记为 οοοολλλλλλλλA A A A p f d p p f d p 2413,18459,8193,5893, ,,,max max max max max max ====∞∞即 容易看出: 1 6max 3416max 331 6max 316310685.0110227.1110447.21110144.41~---∞-∞ ∞ ?=-=?=- =?=-=?===米米米米f D F d p D p P P P S T T T T T v T λλλλλ 4.3 K 原子共振线波长7665οA ,主线系的系限波长为2858οA 。已知K 原子的基态4S 。试求4S 、4P 谱项的量子数修正项p s ??,值各为多少? 解:由题意知:P P s p p v T A A λλλο ο/1~,2858,76654max ====∞∞

原子物理学杨福家1-6章课后习题答案

原子物理学课后前六章答案(第四版) 福家著(高等教育) 第一章:原子的位形:卢瑟福模型 第二章:原子的量子态:波尔模型 第三章:量子力学导论 第四章:原子的精细结构:电子的自旋 第五章:多电子原子:泡利原理 第六章:X 射线 第一章 习题1、2解 1.1 速度为v 的非相对论的α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角约为 10-4rad. 要点分析: 碰撞应考虑入射粒子和电子方向改变.并不是像教材中的入射粒子与靶核的碰撞(靶核不 动).注意这里电子要动. 证明:设α粒子的质量为M α,碰撞前速度为V ,沿X 方向入射;碰撞后,速度为V',沿θ方向散 射。电子质量用me 表示,碰撞前静止在坐标原点O 处,碰撞后以速度v 沿φ方向反冲。α粒子-电子系统在此过程中能量与动量均应守恒,有: (1) ?θααcos cos v m V M V M e +'= (2)

? θ α sin sin 0v m V M e - ' = (3)作运算:(2)×sinθ±(3)×cosθ,得 ) sin( sin ? θ θ α+ =V M v m e (4) ) sin( sin ? θ ? α α+ ='V M V M (5)再将(4)、(5)二式与(1)式联立,消去V’与v, ) ( sin sin ) ( sin sin 2 2 2 2 2 2 2 2 ? θ θ ? θ ? α α α+ + + =V m M V M V M e 化简上式,得 θ ? ? θα2 2 2sin sin ) ( sin e m M + = + (6)若记 α μ M m e = ,可将(6)式改写为 θ ? μ ? θ μ2 2 2sin sin ) ( sin+ = + (7)视θ为φ的函数θ(φ),对(7)式求θ的极值,有 )] (2 sin 2 sin [ )] sin( 2 [sin? θ ? μ ? θ μ θ ? θ + + - = + - d d 令 = ? θ d d ,则 sin2(θ+φ)-sin2φ=0 即 2cos(θ+2φ)sinθ=0 若 sinθ=0, 则θ=0(极小)(8) (2)若cos(θ+2φ)=0 ,则θ=90o-2φ(9)

原子物理学杨福家第六章习题答案

练习六习题1-2解 6-1 某一X 射线管发出的连续X 光谱的最短波长为0.0124nm ,试 问它的工作电压是多少?解:依据公式 答:它的工作电压是100kV . 6-2莫塞莱的实验是历史上首次精确测量原子序数的方法.如测得某元素的K α )(10Z ;将值代入上式, 10 246.0101010 )??= = =1780 Z =43 即该元素为43号元素锝(Te). 第六章习题3,4 6-3 钕原子(Z=60)的L 吸收限为0.19nm ,试问从钕原子中电离一个K 电子需作多少功? 6-4 证明:对大多数元素K α1射线的强度为K α2射线的两倍. 第六章习题5,6参考答案 6-5 已知铅的K 吸收限为0.014 1nm,K 线系各谱线的波长分别为:0.016 7nm(K α);0.0146nm(K β);0.0142nm(K γ),现请: (1) 根据这些数据绘出有关铅的X 射线能级简图; (2) 计算激发L 线系所需的最小能量与L α线的波长. 分析要点:弄清K 吸收限的含义. K 吸收限指在K 层产生一个空穴需要能量. 即K 层电子的结合能或电离能.

解: (1)由已知的条件可画出X 射线能级简图. K K α L α K β K γ (2) 激发L 线系所需的能量: K 在L 壳层产生一个空穴所需的能量 E LK = φK -φL φL =φK - E LK =87.94 keV -84.93keV=3.01 keV φ为结合能. 或

即有 m 即L α线的波长为0.116nm. 6-6 一束波长为0.54 nm 的单色光入射到一组晶面上,在与入射束偏离为120?的方向上产生一级衍射极大,试问该晶面的间距为多大? ?的方向上产生一级衍射极大sin θ n =1 解得 d =0.312 nm 第六章习题8参考答案 6-7 在康普顿散射中,若入射光子的能量等于电子的静止能,试求散射光子的最小能量及电子的最大动量. 6-8 在康普顿散射中,若一个光子能传递给一个静止电子的最大能量为10 keV ,试求入射光子的能量. (1)其中c m 光子去的能量为电子获得的能量 k E h h ='-νν 依题意,如果电子获得最大能量,则出射光子的能量为最小,(1)式E 由此可算出: ν γγh E E 22=+

基于应用型课程原子物理学的教学改革与实践思考 精选文档

基于应用型课程原子物理学的教学改革与实践思 考 1.引言 原子物理学是物理学专业的一门应用型很强的基础课,它是物理学发展史上承上启下的一门学科,成为经典物理和量子力学知识的桥梁和纽带,原子物理在物理学发展中起到非常重要的作用[1-3],从宏观到微观尺度的过渡,原子物理学所涉及的知识、理论和实验,是学习理论物理和从事材料科学、化学、生命科学、能源科学、量子物理、信息科学、光学、激光技术、环境科学以及空间科学研究的基础[4-6]。在内容体系上,原子物理学在普通物理知识的基础上,给出了原子尺度范围的粒子的量子特性及粒子运动和变化的基本规律,研究和讨论物质结构在原子、电子、原子核及基本粒子等层次的性质、结构、特点和运动规律[6-8],很多基本理论及实验仍然是材料科学、化学、生命科学等一些高技术应用领域的基础。所以,针对社会的实际需求,相应的在课堂教学与实验中,需要对课程内容、教学手段、教学方法、实验技能等方面进行改革和创新,以适应当代大学生综合素质的培养和社会发展的实际需要。 自我院成立至今,原子物理学这门课程一直是物理学专业学生的必修课。为了进一步改善原子物理学课程的教学效果,2000 年先后分几次组织物理系的老师重新编写了课堂教学纲要和实

验教学大纲,并设置了如原子核物理、物理学史、近物实验研究.等选修课,以辅助对原子物理课程的教学改革。在2010-2015年,学校和学院对人才培养方案和课程设置进行了四次修订,这也加大了我院课程教学改革的力度,原子物理学的教学及实验改革也多次在教研室活动中开展讨论。结合学校的质量工程项目和人才培养方案,原子物理学的课程改革势在必行。 2.现存主要问题 随着高新科技的发展和前沿相关知识的应用,许多旧理论和知识没有得到更新,相应的实验设备、实验技术也停留在很多年前,部分课程的内容显得很无新意。目前学院一直使用的原子物理学教材是?圣麟先生编写,由于编写时间较早,在与时俱进、科技同步发展的内容上缺少对前沿领域新知识、新技术、新实验、新功能、新应用的介绍和更新[9-10],导致原子物理的教学内容与现代物理、现代科技的迅猛发展实际相脱离,这就要求我们对原子物理的教学纲要及教学内容进行重新审定,同时改善现有的教学方法和教学手段。如何把原子物理里的量子理论及实验和现代高科技技术应用恰当的结合,让学生容易接受,便于吸收消化,并能用于创新实验和实践,成了原子物理学课程教学改革的一个急需解决的问题。 3.课程教学改革与实践的具体实施 本着加强基础知识,结合前沿领域,促进实验与实践创新,提出关于原子物理课程教学改革与实践的一些办法。

原子物理学教案ATOMIC3

第三章 量子力学导论 ? 问题的提出 玻尔理论的成功、历史评价、困难。 比如:卢瑟福的质疑、薛定谔的非难。 “当电子从一个能态跳到另一能态时,您必须假设电子事先就知道它要往那里跳”。 “电子从一个轨道跃迁到另一个轨道时,按照相对论,它的速度不能无限大,即不能超过光速,因此它必须经历一段时间。在这一段时间里,电子已经离开E 1态,尚未到达E 2态,那时电子处在什么状态呢?” ? 问题的解决(量子力学的基本概念) 波粒二象性(De-broglie 波假设)p h = λ、 不确定关系h x p ≥ΔΔ、波函数Ψ统计解释2Ψ。 De-Broglie 在1929年领取Nobel 奖时说:“一方面,并不能认为光的量子论是令人满意的,因为它依照方程E=hv 定义了光粒子的能量,而这个方程却包含着频率v 。在一个单纯的微粒理论中,没有什么东西可以使我们定义一个频率;单单这一点就迫使我们在光的情形中必须同时引入微粒的观念和周期性的观念”。 Bohr 在1922年领取Nobel 奖时承认“这一理论还是十分初步的,许多基本问题还没有解决”。 ? 不确定关系揭示的是一条重要的物理规律:粒子在客观上不能同时具有确 定的坐标位置及相应的动量。这个不确定性是由衍射现象决定的,是粒子波粒二象性的反映和体现。因此说玻尔的轨道是不存在的,应该用几率的观点来阐述电子的位置分布。 ? 假设微观粒子的状态用波函数描述,其模的平方决定粒子在空间中某位置 的概率。体现微观粒子具有波动性以及其运动的无规则、无轨道。测不准关系对这种运动给予了合理的解释。 本章内容属于选教内容,由专门的专业课《量子力学》课程完成。 历史进程: 19世纪末的三大发现:(近代物理的序幕) X 射线(1895年,第六章); 放射性(1896年,第七章); 电子(1900年,第一章)。 旧量子论的形成: 辐射源能量量子化的概念(1900,卢瑟福,黑体辐射) 光量子的概念(1905,爱因斯坦,光电效应) 量子态的概念(1913,玻尔,氢光谱) 泡利不相容原理,电子自旋假设(1925,泡利、乌伦贝克、古兹米特,塞曼效应、元素周期表) 本章内容:

原子物理学第四版-课后答案---标准版

原子物理习题库及解答 第一章 1-1 由能量、动量守恒 ?????' +'='+'=e e e e v m v m v m v m v m v m ααα αα ααα222 212121 (这样得出的是电子所能得到的最大动量,严格求解应用矢量式子) Δ 得碰撞后电子的速度 e e m m v m v +='ααα2 p 故 αv v e 2≈' 由)(105.2400 1 ~22~ ~ ~4rad m m v m v m v m v m p p tg e e e e -?== ' ?αα αα ααθθ 1-2 (1) )(8.225 244 .127922fm ctg a b =???== θ (2) 523 2 132 1063.9197 1002.63.19]10 8.22[14.3--?=?????==nt b N dN π

1-3 Au 核: )(6.505.4244 .1794422fm v m Ze r m =???==α α Li 核:)(92.15.4244 .134422fm v m Ze r m =???==α α 1-4 (1))(3.167 44.17912 21Mev r e Z Z E m p =??== (2))(68.44 44.11312 21Mev r e Z Z E m p =??== 1-5 2 sin /)4(2sin /)4(42022 2 142221θρθr ds t A N E e Z Z ntd E e Z Z N dN p p ?=Ω= 4 2323213)5.0(1105.1105.11971002.6)41044.179(????????=-- 68 221090.8197 10 5.144.1795.102.6--?=?????= 1-6 ο 60=θ时,2 32221?== a ctg a b θ ο90=θ时,12 222?==a ctg a b θ 3)2 1()2 3( 22 2 221 2 1 == =∴b b dN dN ππ 1-7 由3 2 104-?=nt b π,得nt b π3 2 10 4-?= 由2 2θ ctg a b = ,得 2 3233232)67.5(102181 1002.614.310410104)2(??????= ?=---οntctg a π )(10 96.5224 cm -?=

从原子物理学的发展看原子物理学的特点及其教学任务_金蓉

第29卷湖北师范学院学报(自然科学版)V o l129第1期Journal o fH ube iN or m a lU n i versity(N at u ra l Sc i ence)N o11,2009 从原子物理学的发展 看原子物理学的特点及其教学任务 金蓉 (西华大学理化学院物理系,四川成都610039) 摘要:介绍原子物理学的发展概况,指出原子物理学的特点,探讨了原子物理学的教学任务. 关键词:原子物理学;发展概况;特点;教学 中图分类号:O571文献标识码:A文章编号:1009-2714(2009)01-0092-04 原子物理学是研究原子的结构、运动规律及相互作用的物理学分支。原子物理学理论的形成和发展主要发生在19世纪末至20世纪二十年代中叶,它的发展同时促进了量子力学这门反映微观粒子运动规律的理论的的诞生.此后原子物理在量子力学理论的指导下进一步发展,并同时推动着其他相关学科的发展.如今它在天体物理、光物理、凝聚态物理、量子物理、等离子体物理、大气物理、化学、生命科学、计量科学、材料科学、能源科学、考古学、地质学、矿物学等方面的重要作用,无不向世人彰显其在理论和应用领域中的重要价值。因此,它理应作为物理专业的一门专业基础课。了解原子物理学的发展概况,认识其特点将有利于我们更好地搞好原子物理学的教学。 1原子物理学的发展概况 原子物理的迅猛发展,始于19世纪末人类关于X射线、放射性和电子的发现。特别是后两个发现向人们充分表明原子具有其内部结构,彻底粉碎了原子不可分的理论。1898年,汤姆逊大胆地提出了原子的/枣糕模型0:原子的带正电部分是一个原子那么大的,具有弹性的冻胶状球体,正电荷均匀分布在这球内或球面上,有负电子镶嵌着,这些电子在其平衡位置上作简谐振动,原子发光频率即为电子振动频率。此模型能解释原子的稳定性和原子的电中性问题,但是在对原子光谱和放射性问题进行解释时遇到困难。随着1909年马斯顿和盖革两人作了著名的/A粒子散射实验0后,汤姆逊模型遇到了难以克服的困难,即它无法解释有1/8000几率的A粒子被靶物质/反弹0的现象,因而该模型被推翻。1911年3月,英国物理学家卢瑟夫在曼彻斯特经过长期探索以及上述实验结果的提示,确定原子中有高密度的核,据此提出了全新的原子核式结构模型.该模型被后人形象地称为/行星模型0,其内容是在原子的中心存在一个带正电的,占有原子绝大多数的质量,体积非常小的原子核,电子在其外绕核做高速圆周运动,原子的发光频率即为电子的运动频率。但是,当人们试图用经典物理学对原子结构以及原子光谱等现象进行说明时遇到了不能克服的困难。因为按照经典电磁理论,电子绕核运转要对外辐射电磁波,形成连续光谱,同时电子因失去能量而沿螺旋线落向原子核.这与原子的线状光谱和原子的稳定性事实相违背.为解决原子结构带来的上述困难,1913年,年仅28岁的丹麦人尼耳斯#玻尔博士,在普朗克能量子概念和爱因斯坦光量子假设的基础上,基于原子的稳定性和原子光谱的实验定律,提出的三条著名的假设,建立了原子的/玻尔模型0.也是在1913年,英国的物理学家莫塞莱发表了关于x射线谱的研究工作,建立了莫塞莱定律,引入了原子序数的概念。1914 收稿日期:2008)11)08 作者简介:金蓉(1964)),女,四川彭州人,硕士,副教授,从事基础物理教学与研究1

原子物理学

《原子物理学》课程 一.课程简介 课程号: 06120850 课程名称: 原子物理学 英文名称:Atomic Physics 周学时: 3 学分: 3 预修课程: 微积分, 大学物理(力学, 热力学, 光学, 电磁学) 课程性质:专业课 授课对象:物理专业大学生 内容简介:(中英文) 《原子物理学》是物理学本科专业的一门重要基础课。内容包括原子模型、电子自旋和原子磁矩、元素周期律、X射线、核模型、核衰变、核反应、核裂变与聚变等内容。通过学习,不仅可掌握原子和原子核物理方面的基础知识,还可了解量子力学的基本概念和实验背景,为以后近代物理学的学习打下扎实基础。 This course is a degree program for undergraduate students in the department of physics, Zhejiang University. The contents of the course include the models of atoms, spin of electrons and magnetic moment of atoms, periodic law of the elements, X-ray, models of the nuclei, decay of the nuclei, nuclear reactions, nuclear fission and fusion etc. After study the course, students will understand the basic knowledge of atomic and nuclear physics, the basic ideas and experimental background of quantum physics, which are very important for further studying modern physics. 二.教材和参考书 1.教材:《原子物理学》, 杨福家著, 高等教育出版社, 第四版,2010年12月1日 2. 参考书: (1)《原子物理学》,苟清泉主编, 高等教育出版社, 1983年版 (2)《原子物理学》,卢希庭主编, 原子能出版社, 1982年版 (3)《原子物理学》,褚圣麟主编,人民教育出版社,1979年6月版 (4)《Physics of Atoms and Molecules》, B. H. Bransden and C. J. Joachain, 1983

《原子物理学》教案

《原子物理学》教案 课程简介:《原子物理学》是在经典物理课程(力学、热学、电磁学、光学)之后的一门重要必修课程。它上承经典物理,下接量子力学,属于近代物理的范畴。它以力、热、光、电磁等课程的知识为基础,从物理实验规律出发,引进量子化概念,探讨原子、原子核及基本粒子的结构和运动规律,从微观机制解释物质的宏观性质,同时介绍原子物理学知识在现代科学技术上的重大应用。本课程强调物理实验的分析、微观物理概念和物理图像的建立和理解。通过本课程教学,使学生初步了解物质的微观结构和运动规律,了解物质世界中三个递进的结构层次,为学习量子力学和后续专业课程打下基础。 在内容体系的描述上,原子物理学采用了普通物理的描述风格,讲述量子物理的基本概念和物理图像,以及支配物质运动和变化的基本相互作用。该课程大致分为三个层次:第一是成熟、已有定论的基本内容,要求学生掌握并能运用;第二是目前已取得的最新研究成果,要求学生明确其物理概念和物理图像;第三是前沿研究课题内容,要求学生了解并知道其研究方向。 本课程注重智能方面的培养,力求讲清基本概念,而大多数问题需经学生通过阅读思考去掌握。部分内容由学生自行学习。 本课程原则上采用SI 单位制,同时在计算中广泛采用复合常数以简化数值运算。[通常用?(1?=10-10 m )描 写原子线度,用fm (m fm 15 101-=)描写核的线度,用eV 、MeV 描述原子和核的能量等。] 第一章 原子的位形:卢瑟福模型 §1-1背景知识 “原子”概念(源于希腊文,其意为“不可分割的” )提出已2000多年,至19世纪,人们对原子已有了相当的了解。 由气体动理论知,1mol 原子物质含有的原子数是1 23 10022.6-?=mol N A 。因此可由原子的相对质量求出 原子的质量,如最轻的氢原子质量约为kg .27 10 671-?;原子的大小也可估计出来,其半径是nm .10(m 10 10-) 量级。这些是其外部特征,深层的问题:原子为何会有这些性质?原子的内部结构是怎样的? 一、电子的发现 1879年,克鲁克斯(英)以实验说明阴极射线是带电粒子,为电子的发现奠定基础。 1883年,法拉第(英)提出电解定律,据此推得:1mol 任何原子的单价离子均带有相同的电量。由此可联想到电荷存在最小的单位。 1881年,斯通尼(英)提出用“电子”这一名子来命名这些电荷的最小单位。 1897年,汤姆逊(son J.J.T hom ,1856-1940,英,15岁进入欧文学院读书,20岁进入剑桥三一学院学习,

相关主题
文本预览
相关文档 最新文档