当前位置:文档之家› 电容柜的原理

电容柜的原理

电容柜的原理
电容柜的原理

一、电容器组的操作

为了保证电容器组的安全运行,电容器组的操作应遵守以下各项:

1.正常情况下全站停电操作时,应先拉开电容器组断路器(或隔离开关),后拉开各路出线断路器,最后拉开进线断路器。恢复送电时,应先合进线断路器,再合各出线断路器,最后合电容器组的断路器(或隔离开关)。事故情况下,全站无电后必须将电容器组断路器(或隔离开关)拉开。

这是因为变电所母线无负荷时,母线电压可能较高,有可能超过电容器的允许电压,对电容器的绝缘不利。另外,电容器组可能与空载变压器产生共振而使过流保护动作。因此应尽量避免无负荷空投电容器这一情况。

2.电容器组断路器掉闸后不应立即抢送,保护熔丝熔断后,再为查明原因之前也不准更换丝送电。

这是因为电容器组断路器掉闸或熔丝熔断都可能是电容器故障引起的。只有经过检查确系外部原因造成的掉闸或熔丝熔断后,才能再次合闸试送。

3.电容器组禁止带电荷合闸。电容器组切除3min后才能进行再次合闸。

在交流电路中,如果电容器带有电荷时合闸,则可能使电容器承受2倍左右的额定电压的峰值,甚至更高。这对电容器是有害的,同时也会造成很大的冲击电流,使断路器掉闸或熔丝熔断。因此,电容器组每次切除后必须随即进行放电,待电荷消失后方可再次合闸。所以电容器组每次重新合闸,必须在电容器组断开3min后进行。

二、运行中电容器组的巡视和检查

对运行中的电容器组应进行日常巡视检查、定期停电检查。在发生断路器掉闸、熔丝熔断等现象后,应进行额外的特殊巡视检查。

1.电容器组的日常巡视检查应由变、配电站的运行值班人员进行。夏季的巡视检查应安排在室温最高时进行,其它时间可在系统电压最高时进行。如果不停电检查有困难时,可以短时间停电以便更好地进行检查。进行这种检查时,主要应注意观察电容器外壳有无膨胀,有无漏油的痕迹,有无异常的声响及火花,示温蜡片的溶化情况;检查熔丝是否熔断;观察电压表、电流表、温度表的数值并记入运行记录簿,对发现的其它缺陷亦应进行纪录。

上述巡视检查如须将电容器组停电时,除电容器组自动放电外,还应进行人工放电,并悬挂临时接地线。否则运行值班人员不能触及电容器。

2.电容器组的定期停电检查,一般应进行1次/月。其检查内容除同日常巡视检查项目外,尚应检查各部螺栓紧固点的松紧及接触情况,检查放电回路的完整性,检查通风道的灰尘并清扫电容器的外壳、绝缘子及支架等处的灰尘,检查电容器外壳的保护接地线,检查电容器组的继电保护装置的动作情况,检查电容器组的断路器、馈线等

3.当电容器组发生断路器跳闸、保护熔丝熔断等现象后,应立即进行特殊巡视检查。对室外电容器组、遇雷、风、雨、雪等恶劣天气时,也应进行特殊巡视检查。特殊巡视检查的项目除上述各项外,必要时应对电容器进行试验,在查不出故障原因之前不应合闸送电

三、电容器运行中的异常现象和故障处理

1.渗漏油

由于搬运方法不当,提拿瓷套管,致使其法兰焊接处产生裂缝,或在接线时紧固螺母用力过大,造成瓷套管焊接处损伤以及产品制造过程中存在的一些缺陷,均可能造成电容器出现渗漏油现象。同时,由于电容器投入运行后温度变化剧烈,内部压力增加,则会使渗漏油现象更为严重。另外,由于长时间运行后,可能造成电容器外壳漆层剥落,铁皮锈蚀,也是造成运行中电容器渗漏油的一个原因。

电容器渗漏油的后果是使浸渍剂减少,元件上部容易受潮并击穿使电容器损坏,因此必须及时进行修理。

2.外壳膨胀

由于电容器内部介质在电压作用下发生游离,使介质分解而析出气体或者由于部分元件击穿、极对外壳放电等均会使介质析出气体。这些气体在密封的外壳中将引起压力的增加,因而引起外壳膨胀。所以,电容器外壳膨胀是电容器发生故障或故障前的征兆。在运行过程中若发现电容器外壳膨胀应及时采取措施,膨胀严重者应立即停止使用,以免事故扩大。

3.电容器爆破

当电容器内部发生极间或极对外壳击穿时,与之并联运行的电容器组将对它放电,此时由于能量极大可能造成电容器爆破。由于低压电容器内部一般均装有元件保护熔丝,因此这种事故多发生在没有安装内部元件保护的高压电容器组。电容器爆破的后果,可能会危及其他电气设备,甚至引起电容器室(柜)发生

火灾。为了防止电容器发生爆破事故,除要求加强运行中的巡视检查外,最主要的时安装电容器内部元件的保护装置,使电容器在酿成爆炸事故前及时从电网中切除。

4.温度过高

由于电容器室(柜)设计、安装不合理造成通风条件差,电容器组长期过电压运行,以及由于附近的整流元件造成的高次谐波电流的影响使电容器过电流等,均可使电容器超过允许的温升。另外,由于电容器长期运行后介质老化,介质损耗(tgδ)不断增加,也可能使电容器温升过高。电容器长期在超过规定温度的情况下运行,将严重影响其使用寿命,并会导致绝缘击穿等事故使电容器损坏。

因此,在运行中应严格监视和控制其环境温度,并采取措施使之不超过允许温升。如采取措施后,仍然超过规定的允许温升的,应将电容器组停止运行。

夏季运行时,值班人员必须根据巡视检查及气温情况及时打开低压室排风扇,降低低压室温度,以利于电容器组的运行。

5.瓷绝缘表面闪络

由于电容器在运行中缺乏清扫和维护,其瓷绝缘表面因污秽可能引起放电。在污秽严重地区,尤其是在天气条件恶劣(如风、雨、雪、雷等),或遇有各种内、外过电压和系统谐振的情况下,均可造成瓷绝缘表面污秽闪络事故,造成电容器损坏和开关跳闸。因此,对运行中的电容器组应进行定期的清扫检查,对污秽严重地区应采取其他适当措施。

6.异常响声

电容器在运行过程中不应该发出特殊响声。如果在运行中发有“滋滋”声或“咕咕”声,则说明外部或内部有局部放电现象。“咕咕”声是电容器内部绝缘崩溃的先兆,因此必须立即停止运行,查找故障电容器。

处理故障电容器时,因首先拉开电容器的开关及上、下刀闸。如果采用熔断器控制和保护则应取下其熔丝管。此时,电容器组虽然已经经过放电电阻自行放电,但仍有部分残余电荷,因此必须进行人工放电。放电时,应先将临时接地线的接地端与接地网连接好,再用接地棒多次对电容器放电,直至无火化和无放电声为止。最后,将接地线与电容器母线连接牢固。

对于故障电容器本身还应特别注意,其两极间还可能有残余电荷。这是因为故障电容器可能是内部断线或熔丝熔断,也可能是引线接触不良,这样在自动放电或人工放电时,它的残余电荷是不会被放掉的。所

以,运行或检修人员在接触故障电容器前,还应带好绝缘手套,用短路线短接故障电容器的两极,使其放电,然后方可开始拆卸。此外,对串联接线的电容器也应进行单独放电。总之,因为电容器的两极具有残余电荷的特点,所以必须从各个方面考虑将其电荷放尽,否则容易发生触电事故。

无功补偿及低压补偿装置原理简介

无功补偿及低压补偿装置原理简介 一、一次电路 一次电路的构成如下图所示,包括隔离开关QS、10组熔断器FUI~FUIO、接触器KM1~KMIO、热继电器FRl~F'R10、补偿电容器CI~CIO.另外还有电流互感器TAa、TAh和TAc.避雷器BLI、BL2和BL3。其中熔断器和热继电器用于对电容器进行短路及过电流保护;接触器是对电容器进行手动或自动投入、切除的开关器件;电流互感器获取的电流信号用于测量无功补偿柜补偿电流的大小:避雷器用子吸收电容器投入、切除操作时可能产生的过电压,是一种额定电压为AC220V的低压避雷器。 二、二次控制电路 包括一个物理结构分为7层的转换开关2SA、无功补偿自动控制器(以下简称补偿控制器)等元器件。转换开关2SA用来手动控制投入或切除1~10路补偿电容器,并完成自动控制器电压信号、电流信号的接人或退出。补偿控制器可以根据功率因数的高低或无功功率r与用蠛的大小自动投入或切除电容器,并在系统电压较高时自动切除电容嚣。具体电路见下图。 转换开关2SA有一个操作手柄,出下图可见,该手柄有自动、零位和手动l~lo共12个挡位,每旋转30°即可转换一个挡位。 在每个挡位,会有桐应的转换开关触点接通.2SA共可转换13对触点,分别是(7)、(8)、(9)、(10)等等,一直到下部的(1)、(2)触点。为了标示出转换开关2SA在不同的挡位与各组触点之问的对应关系,与12个挡位相对应的有12条纵向虚线,虚线与每一组触点(略偏下、无形相交的位置,可能标注有圆点或不标注圆点。标注有圆点的,表示转换开关旋转至该档位时,圆点(略偏上)位

置的一组触点是接通的,否则该组触点星开路状态。例如,在触点(7)、(8)略偏下位置,手动1.手动IO挡位时均标注有圆点,表示这10个挡位时触点(7)、(8)均接通。而在手动l挡位,只在触点(7)、(8)和(1)、(2)位置标注有圆点,说明在该挡位这两组触点是接通的。 无功补偿屏如欲进入自动控制投切状态,需给补偿控制器接人进线柜或待补偿电路总进线处A相电流互感器二次的电流信号I^,B桐、C相电压信号,以及接触器线圈吸合所需的工作电源。具体接线见下图中补偿控制器接线端子图。 图中US1、US2端干连接的103、104号线即是B相、C相电压信号(转换开关2SA在自动挡位时,103号线经2SA的(3)、(4)触点、熔断器FU13、X12端子、隔离开关Qs,连接至B桐电源;104号线沿类似线路连接至C相电源);ISI、IS2端子连接的即是进线柜的电流信号(经由转换开关2SA转接).COM端连接的l 号线即是接触器线圈吸合所需的丁作电源(1号线经熔断器FU11、XI1端子、隔离开关Qs,连接至A桐电源)。B相、C桐电压信号及A相电流信号在补偿控制器内部经过微处理器运算判断后,计算出功率因数的高低、无功功率的大小,一方面经过LED显示器显示功率因数值,同时发送电容器投切指令,例如补偿控制器发出投入电容器CI的指令时,其接线端子中的1号端子经内部继电器触点与COM端(1号线.A相电源)连通,该端子经3号线连接至接触器KMI线圈的左端,线圈的右端经热继电器FR1的保护触点接至2号线.即电源零线N。接触器KM1线圈得电后,主触点闭合.将电容器CI投入,实现无功补偿。此同时.KMI的辅助触点闭合,接通指示灯HL1,指示第一路电容器已经投入.如果无功功率数值较大,补偿控制器则控制各路电容器依次投入,直到功率因数补偿到接近于1。每一路电容器投入时的时间间隔是可调的,通常将其调整为几秒至儿十秒之间。补偿控制器遵

电容补偿柜在配电系统中的作用

一. 电容补偿柜之作用: 用于补偿发电机无功电流、减轻发电机工作负荷,增加发电机可使用容量,可减少工厂一定的用电量、节省工业电力,提高发供电设备的供电质量和供电能力。 二 . 电容柜工作原理 用电设备除电阻性负载外,大部分用电设备均属感性用电负载(如日光灯、变压器、马达等用电设备)这些感应负载,使供电电源电压相位发生改变(即电流滞后于电压),因此电压波动大,无功功率增大,浪费大量电能。当功率因数过低时,以致供电电源输出电流过大而出现超负载现象。电容补偿柜内的电脑电容控制系统可解决以上弊端,它可根据用电负荷的变化,而自动设置。电容组数的投入,进行电流补偿,从而减低大量无功电流,使线路电能损耗降到最低程度,提供一个高素质的电力源。 三 . 电容补偿技术: 在工业生产中广泛使用的交流异步电动机,电焊机、电磁铁工频加热器导用点设备都是感性负载。这些感性负载在进行能量转换过程中,使加在其上的电压超前电流一个角度。这个角度的余弦,叫做功率因数,这个电流(既有电阻又有电感的线圈中流过的电流)可分解为与电压相同相位的有功分量和落后于电压90 度的无功分量。这个无功分量叫做电感无功电流。与电感无功电流相应的功率叫做电感无功功率。当功率因数很低时,也就是无功功率很大时会有以下危害:? 增长线路电流使线路损耗增大,浪费电能。 ? 因线路电流增大,可使电压降低影响设备使用。 ? 对变压器而言,无功功率越大,则供电局所收的每度电电费越贵,当功率因数低于0.7 时,供电局可拒绝供电。 ? 对发电机而言,以310KW 发电机为例。 310KW 发电机的额定功率为280KW ,额定电流为530A ,当负载功率因数0.6 时功率= 380 x 530 x 1.732 x 0.6 = 210KW 从上可看出,在负载为530A 时,机组的柴油机部分很轻松,而电球以不堪重负,如负荷再增加则需再开一台发电机。加接入电容补偿柜,让功率因数达到0.96 ,同样210KW 的负荷。字串5 电流=210000/ (380x1.732x0.96 )=332A 补偿后电流降低了近200A ,柴油机和电球部分都相当轻松,再增加部分负荷也能承受,不需再加开一台发电机,可节约大量柴油。也让其他机组充分休息。从以上可看出,电容补偿的经济效益可观,是低压配电系统中不可缺少的重要成员。 此文例子是按理论上的计算选择需要加入电容自动补偿柜, 但是一般实际工程中柴油发电机很少再加入电容自动补偿柜, 原因: 1、电容自动补偿柜价格高,不太经济; 2、柴油发电机一般接的是应急负荷的多,不经常使用;

无功补偿控制器及动态补偿装置工作原理

无功功率补偿装置在电子供电系统中所承担的作用是提高电网的功率因数,降低供电变压器及输送线路的损耗,提高供电效率,改善供电环境。所以无功功率补偿装置在电力供电系统中处在一个不可缺少的非常重要的位置。合理的选择补偿装置,可以做到最大限度的减少网络的损耗,使电网质量提高。反之,如选择或使用不当,可能造成供电系统,电压波动,谐波增大等诸多因素。 一、按投切方式分类: 1.延时投切方式 延时投切方式即人们熟称的”静态”补偿方式。这种投切依靠于传统的接触器的动作,当然用于投切电容的接触器专用的,它具有抑制电容的涌流作用,延时投切的目的在于防止接触器过于频繁的动作时,电容器造成损坏,更重要的是防备电容不停的投切导致供电系统振荡,这是很危险的。当电网的负荷呈感性时,如电动机、电焊机等负载,这时电网的电流滞带后电压一个角度,当负荷呈容性时,如过量的补偿装置的控制器,这是电网的电流超前于电压的一个角度,即功率因数超前或滞后是指电流与电压的相位关系。通过补偿装置的控制器检测供电系统的物理量,来决定电容器的投切,这个物理量可以是功率因数或无功电流或无功功率。 下面就功率因数型举例说明。当这个物理量满足要求时,如COSΦ超前且》0.98,滞后且》0.95,在这个范围内,此时控制器没有控制信号发出,这时已投入的电容器组不退出,没投入的电容器组也不投入。当检测到COSΦ不满足要求时,如COSΦ滞后且《0.95,那么将一组电容器投入,并继续监测COSΦ如还不满足要求,控制器则延时一段时间(延时时间可整定),再投入一组电容器,直到全部投入为止。当检测到超前信号如COSΦ《0.98,即呈容性载荷时,那么控制器就逐一切除电容器组。要遵循的原则就是:先投入的那组电容器组在切除时就要先切除。如果把延时时间整定为300S,而这套补偿装置有十路电容器组,那么全部投入的时间就为30分钟,切除也这样。在这段时间内无功损失补只能是逐步到位。如果将延时时间整定的很短,或没有设定延时时间,就可能会出现这样的情况。当控制器监测到COSΦ〈0.95,迅速将电容器组逐一投入,而在投

电容补偿柜常见故障和排除措施

电容补偿柜基本介绍 新柜调试前应将所有电容器断开,并在不通电情况下测试主回路相间通断,和对“N”通断;手动投切检查一切正常后再将电容接上,无涌流投切器及动补调节器没接N线,会使其直接损坏及炸毁。 一.无功补偿电容柜用途 TSC数字全自动动态无功功率补偿装置是一种具有国际先进水平、功能高度集成化的无功补偿设备。它广泛应用于机械制造、冶金、矿山、铁道、轻工、化工、建材、油田、港口、高层建筑、城镇小区等低压配电网,对电力系统降损节能有重大的技术经济意义,为国家重点推荐的节约电能的高新技术项目。 二、无功补偿电容柜的作用 功率补偿装置在电子供电系统中所承担的作用是提高电网的功率因数,降低供电变压器及输送线路的损耗,提高供电效率,改善供电环境。所以无功功率补偿装置在电力供电系统中处在一个不可缺少的非常重要的位置。合理的选择补偿装置,可以做到最大限度的减少网络的损耗,使电网质量提高。反之,如选择或使用不当,可能造成供电系统,电压波动,谐波增大等诸多因素。所以功率因数是供电局非常在意的一个系数,用户如果没有达到理想的功率因数,相对地就是在消耗供电局的资源,所以这也是为什么功率因数是一个法规的限制。目前就国内而言功率因数规定是必须介于电感性的0.9~1之间,低于0.9,或高于1.0都需要接受处罚。 三、投切方式分类:

1. 延时投切方式 延时投切方式即人们熟称的"静态"补偿方式。这种投切依靠于传统的接触器的动作,当然用于投切电容的接触器专用的,它具有抑制电容的涌流作用,延时投切的目的在于防止接触器过于频繁的动作时,造成电容器损坏,更重要的是防备电容不停的投切导致供电系统振荡,这是很危险的。当电网的负荷呈感性时,如电动机、电焊机等负载,这时电网的电流滞带后电压一个角度,当负荷呈容性时,如过量的补偿装置的控制器,这是时电网的电流超前于电压的一个角度,即功率因数超前或滞后是指电流与电压的相位关系。通过补偿装置的控制器检测供电系统的物理量,来决定电容器的投切量,这个物理量可以是功率因数或无功电流或无功功率。 下面就功率因数型举例说明。当这个物理量满足要求时,如cos Φ超前且>0.98,滞后且>0.95,在这个范围内,此时控制器没有控制信号发出,这时已投入的电容器组不退出,没投入的电容器组也不投入。当检测到cosΦ不满足要求时,如cosΦ滞后且<0.95,那么将一组电容器投入,并继续监测cosΦ如还不满足要求,控制器则延时一段时间(延时时间可整定),再投入一组电容器,直到全部投入为止。当检测到超前信号如cosΦ<0.98,即呈容性载荷时,那么控制器就逐一切除电容器组。要遵循的原则就是:先投入的那组电容器组在切除时就要先切除。如果把延时时间整定为300s,而这套补偿装置有十路电容器组,那么全部投入的时间就为30分钟,切除也是这样。在这段时间内无功损失补偿只能是逐步到位。如果将延时时间整定的很

成套低压电容补偿柜

Yg生于⑦雄封测、将于②〇①①年⑦月①号、离开⑦雄、享年③百余天。记忆曾经的守候……风吹奶罩乳飞扬目录 1、课题内容简介 、实训目的 (2) 、主要内容 (2) 、工作原理 (2) 2、电容器补偿柜的及其作用 、电容器柜功能及其结构 (3) 、电容器补偿柜的作用 (3) 3、一次电路原理分析及安装 、电容器柜一次电路原理介绍 (4) 、一次电路的工作原理过程 (4) 、元器件的作用分析 (5) 、一次电路的的安装图 (9) 、一次电路连接母线安装及其安装实物图 (10) 4、二次回路原理图分析及安装 、二次原理图 (16) 、二次电路工作原理的过程 (17) 、二次电路元器件布置图 (17) 、二次电路安装接线图 (18) 、二次电路的安装工艺 (18) 、安装步骤 (19) 5、绝缘电阻测试、介电强度试验 、以500伏绝缘摇表测试法测试绝缘电阻 (20) 、工频及冲击耐压 (20) 附1图表 (21) 保护电路有效性 绝缘电阻及交流耐压 6、心得体会 (22) 7、结束语 (23)

1、课题内容简介 、实训目的 1、学会电容器补偿柜操作使用,并知道它们的作用。 2、进一步认知电容补偿柜的类型及其结构。 3、进一步认知各种电器元器件外形、结构、参数。 4、学会阅读和绘制电容器补偿柜的主电路图、二次电路图、安装接线图。 5、学会选用开关元器件,并学会母排、母线、电线规格选择。 、主要内容 1、电容器补偿柜柜主电路介绍 2、主电路元器件介绍 3、一次电路元器件安装 4、一次电路元器件安装 5、二次电路元器件安装 、工作原理 合上刀熔开关和断路器,无功功率补偿控制器根据进线柜电压和电流的相位差输出控制信号,控制交流接触器闭合和断开,从而控制电容器投入和退出。

成套低压电容补偿柜详解

成套电容补偿柜详解 1、课题内容简介 1.1、实训目的 (2) 1.2、主要内容 (2) 1.3、工作原理 (2) 2、电容器补偿柜的及其作用 2.1、电容器柜功能及其结构 (3) 2.2、电容器补偿柜的作用 (3) 3、一次电路原理分析及安装 3.1、电容器柜一次电路原理介绍 (4) 3.2、一次电路的工作原理过程 (4) 3.3、元器件的作用分析 (5) 3.4、一次电路的的安装图 (9) 3.5、一次电路连接母线安装及其安装实物图 (10) 4、二次回路原理图分析及安装 4.1、二次原理图 (16) 4.2、二次电路工作原理的过程 (17) 4.3、二次电路元器件布置图 (17) 4.4、二次电路安装接线图 (18) 4.5、二次电路的安装工艺 (18) 4.6、安装步骤 (19) 5、绝缘电阻测试、介电强度试验 5.1、以500伏绝缘摇表测试法测试绝缘电阻 (20) 5.2、工频及冲击耐压 (20) 附1图表 (21) 保护电路有效性 绝缘电阻及交流耐压

1、课题内容简介 1.1、实训目的 1、学会电容器补偿柜操作使用,并知道它们的作用。 2、进一步认知电容补偿柜的类型及其结构。 3、进一步认知各种电器元器件外形、结构、参数。 4、学会阅读和绘制电容器补偿柜的主电路图、二次电路图、安装接线图。 5、学会选用开关元器件,并学会母排、母线、电线规格选择。 1.2、主要内容 1、电容器补偿柜柜主电路介绍 2、主电路元器件介绍 3、一次电路元器件安装 4、一次电路元器件安装 5、二次电路元器件安装 1.3、工作原理 合上刀熔开关和断路器,无功功率补偿控制器根据进线柜电压和电流的相位差输出控制信号,控制交流接触器闭合和断开,从而控制电容器投入和退出。

高低压电容补偿柜各元器件地作用及其选型

高低压电容补偿柜各元器件的作用及选型 概述 高压断路器短路电流的开合 并联电容器的保护 并联电容器的运行与维护 1.接线类型及优缺点: 目前在系统中运行的电力电容器组的接线有两种:即星形接线和三角形接线。电力企业变电所采用星形居多,工矿企业变电所采用三角形居多。 三角形接线优点: 可以滤过3倍次谐波电流,利于消除电网中的3倍次谐波电流的影响。 三角形接线缺点: 当电容器组发生全击穿短路时,故障点的电流不仅有故障相健全电容器的放电涌流,还有其他两相电容器的放电涌一、并联电力电容器的接线流和系统短路电流。故障电流的能量往往超过电容器油箱能耐受的爆裂能量,因而常会造成电容器的油箱爆裂,扩大事故。 星形接线优点: 当电容器发生全击穿短路时,故障电流受到健全相容抗的限制,来自系统的工频短路电流将大大降低,最大不超过电容器额定电流的3倍,并没有其他两相电容器的放电涌流,只有故障相健全电容器的放电电流。故障电流能量小,因而故障不容易造成电容器的油箱爆裂。在电容器质量相同的情况下,星形接线的电容器组可靠性较高。 并联电力电容器的接线与电容器的额定电压、容量,以及单台电容器的容量、所连接系统的中性点接地方式等因素有关。

220~500kV变电所,并联电力电容器组常用的接线方式: (1)中性点不接地的单星形接线。 (2)中性点接地的单星形接线。 (3)中性点不接地的双星形接线。 (4)中性点接地的双星形接线。 6~66kV为非直接接地系统时,采用星形接线的电容器中性点不接地方式 2.电容器的内部接线 (1)先并联后串联:此种接线应优先选用,当一台电容器出现击穿故障,故障电流由来自系统的工频故障电流和健全电容器的放电电流组成。流过故障电容器的保护熔断器故障电流较大,熔断器能快速熔断,切除故障电容器,健全电容器可继续运行。 (2)先串联后并联:当一台电容器出现击穿故障时,故障电流因受与故障电容器串联的健全电容器容抗限制,流过故障电容器的保护熔断器故障电流较小,熔断器不能快速熔断切除故障电容器,故障持续时间长,健全电容器可能因长时间过电压而损坏,扩大事故。 3.并联电容器的接线及各元件基本要求: (1)电容器 1)型式的选择 可由单台电容器组成或采用集合式电容器组。单台电容器组合灵活、方便,更换容易,故障切除的电容器少,剩余电容器只要过电压允许可继续运行。但电容器组占地面积大布置不方便。集合式电容器组和大容量箱式电容器组,占地面积小、施工方便、维护工作少,但电容器故障要整组切除,更换故障电容器不方便,有时甚至要返厂检修,运行的可靠性不如单台电容器组。在具体工

补偿电容的作用和工作原理

电容补尝柜的作用和工作原理 一.电容补偿柜之作用: 用于补偿发电机无功电流、减轻发电机工作负荷,增加发电机可使用容量,可减少工厂一定的用电量、节省工业电力,提高发供电设备的供电质量和供电能力。 二.电容柜工作原理 用电设备除电阻性负载外,大部分用电设备均属感性用电负载(如日光灯、变压器、马达等用电设备)这些感应负载,使供电电源电压相位发生改变(即电流滞后于电压),因此电压波动大,无功功率增大,浪费大量电能。当功率因数过低时,以致供电电源输出电流过大而出现超负载现象。电容补偿柜内的电脑电容控制系统可解决以上弊端,它可根据用电负荷的变化,而自动设置。电容组数的投入,进行电流补偿,从而减低大量无功电流,使线路电能损耗降到最低程度,提供一个高素质的电力源。 三.电容补偿技术:

在工业生产中广泛使用的交流异步电动机,电焊机、电磁铁工频加热器导用点设备都是感性负载。这些感性负载在进行能量转换过程中,使加在其上的电压超前电流一个角度。这个角度的余弦,叫做功率因数,这个电流(既有电阻又有电感的线圈中流过的电流)可分解为与电压相同相位的有功分量和落后于电压90度的无功分量。这个无功分量叫做电感无功电流。与电感无功电流相应的功率叫做电感无功功率。当功率因数很低时,也就是无功功率很大时会有以下危害: ?增长线路电流使线路损耗增大,浪费电能。 ?因线路电流增大,可使电压降低影响设备使用。 ?对变压器而言,无功功率越大,则供电局所收的每度电电费越贵,当功率因数低于0.7时,供电局可拒绝供电。 ?对发电机而言,以310KW 发电机为例。 310KW 发电机的额定功率为280KW ,额定电流为530A ,当负载功率因数0.6 时 功率= 380 x 530 x 1.732 x0.6 = 210KW

电容补偿柜的作用与工作原理

电容补尝柜的作用和工作原理 一. 电容补偿柜之作用: 用于补偿发电机无功电流、减轻发电机工作负荷,增加发电机可使用容量,可减少工厂一定的用电量、节省工业电力,提高发供电设备的供电质量和供电能力。 二. 电容柜工作原理 用电设备除电阻性负载外,大部分用电设备均属感性用电负载(如日光灯、变压器、马达等用电设备)这些感应负载,使供电电源电压相位发生改变(即电流滞后于电压),因此电压波动大,无功功率增大,浪费大量电能。当功率因数过低时,以致供电电源输出电流过大而出现超负载现象。电容补偿柜内的电脑电容控制系统可解决以上弊端,它可根据用电负荷的变化,而自动设置。电容组数的投入,进行电流补偿,从而减低大量无功电流,使线路电能损耗降到最低程度,提供一个高素质的电力源。 三. 电容补偿技术: 在工业生产中广泛使用的交流异步电动机,电焊机、电磁铁工频加热器导用点设备都是感性负载。这些感性负载在进行能量转换过程中,使加在其上的电压超前电流一个角度。这个角度的余弦,叫做功率因数,这个电流(既有电阻又有电感的线圈中流过的电流)可分解为与电压相同相位的有功分量和落后于电压90 度的无功分量。这个无功分量叫做电感无功电流。与电感无功电流相应的功率叫做电感无功功率。当功率因数很低时,也就是无功功率很大时会有以下危害:

?增长线路电流使线路损耗增大,浪费电能。 ?因线路电流增大,可使电压降低影响设备使用。 ?对变压器而言,无功功率越大,则供电局所收的每度电电费越贵,当功率因数低于0.7 时,供电局可拒绝供电。 ?对发电机而言,以310KW 发电机为例。 310KW 发电机的额定功率为280KW ,额定电流为530A ,当负载功率因数0.6 时 功率= 380 x 530 x 1.732 x 0.6 = 210KW 从上可看出,在负载为530A 时,机组的柴油机部分很轻松,而电球以不堪重负,如负荷再增加则需再开一台发电机。加接入电容补偿柜,让功率因数达到0.96 ,同样210KW 的负荷。 电流=210000/ (380x1.732x0.96 )=332A 补偿后电流降低了近200A ,柴油机和电球部分都相当轻松,再增加部分负荷也能承受,不需再加开一台发电机,可节约大量柴油。也让其他机组充分休息。从以上可看出,电容补偿的经济效益可观,是低压配电系统中不可缺少的重要成员。 原理:把具有容性负荷的装置与感性负荷并联接在同一电路,当容性负荷释放能量时,感性负荷吸收能量;而感性负荷释放能量时,容 性负荷却在吸收能量,能量在两种负荷之间互相交换.这样,感性负荷 所吸收的无功功率可由容性负荷输出的无功功率中得到补偿,这就是他的补偿原理

成套低压电容补偿柜详解

成套低压电容补偿柜详 解 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

成套电容补偿柜详解1、课题内容简介 、实训目的 (2) 、主要内容 (2) 、工作原理 (2) 2、电容器补偿柜的及其作用 、电容器柜功能及其结构 (3) 、电容器补偿柜的作用 (3) 3、一次电路原理分析及安装 、电容器柜一次电路原理介绍 (4) 、一次电路的工作原理过程 (4) 、元器件的作用分析 (5) 、一次电路的的安装图 (9) 、一次电路连接母线安装及其安装实物图 (10) 4、二次回路原理图分析及安装 、二次原理图 (16) 、二次电路工作原理的过程 (17) 、二次电路元器件布置图 (17) 、二次电路安装接线图 (18) 、二次电路的安装工艺 (18) 、安装步骤 (19)

5、绝缘电阻测试、介电强度试验 、以500伏绝缘摇表测试法测试绝缘电阻 (20) 、工频及冲击耐压 (20) 附1图表 (21) 保护电路有效性 绝缘电阻及交流耐压 1、课题内容简介 、实训目的 1、学会电容器补偿柜操作使用,并知道它们的作用。 2、进一步认知电容补偿柜的类型及其结构。 3、进一步认知各种电器元器件外形、结构、参数。 4、学会阅读和绘制电容器补偿柜的主电路图、二次电路图、安装接线图。 5、学会选用开关元器件,并学会母排、母线、电线规格选择。 、主要内容 1、电容器补偿柜柜主电路介绍 2、主电路元器件介绍 3、一次电路元器件安装 4、一次电路元器件安装 5、二次电路元器件安装 、工作原理

合上刀熔开关和断路器,无功功率补偿控制器根据进线柜电压和电流的相位差输出控制信号,控制交流接触器闭合和断开,从而控制电容器投入和退出。 2、电容器补偿柜的及其作用 、电容器柜功能及其结构 外部结构内部结构 、电容器补偿柜的作用 电容补偿柜的作用是提高负载功率因数,降低无功功率,提高供电设备的效率;电容柜是否正常工作可通过功率因数表的读数判断,功率因数表读数如果在左右可视为工作正常。 3、一次电路原理分析及安装 、电容器柜一次电路原理介绍 主电路图 、一次电路的工作原理过程 合上刀熔开关和断路器,无功功率补偿控制器根据进线柜电压和电流的相位差输出控制信号,控制交流接触器闭合和断开,从而控制电容器投入和退出。 、元器件的作用分析 HH15-160A刀熔开关 HH15(QSA)系列开关熔断器组集负荷开关和熔断器短路保护功能于一体,结构紧凑,使用安全,主要用于具有高短路电流的配电

成套低压电容补偿柜详解

成套电容补偿柜详解1、课题内容简介 、实训目的 (2) 、主要内容 (2) 、工作原理 (2) 2、电容器补偿柜的及其作用 、电容器柜功能及其结构 (3) 、电容器补偿柜的作用 (3) 3、一次电路原理分析及安装 、电容器柜一次电路原理介绍 (4) 、一次电路的工作原理过程 (4) 、元器件的作用分析 (5) 、一次电路的的安装图 (9) 、一次电路连接母线安装及其安装实物图 (10) 4、二次回路原理图分析及安装 、二次原理图 (16) 、二次电路工作原理的过程 (17) 、二次电路元器件布置图 (17) 、二次电路安装接线图 (18) 、二次电路的安装工艺 (18) 、安装步骤 (19) 5、绝缘电阻测试、介电强度试验 、以500伏绝缘摇表测试法测试绝缘电阻 (20)

、工频及冲击耐压 (20) 附1图表....... 保护电路有效性绝缘电阻及交流耐压 1、课题内容简介 、实训目的 1 、学会电容器补偿柜操作使用,并知道它们的作用。 2、进一步认知电容补偿柜的类型及其结构。 3、进一步认知各种电器元器件外形、结构、参数。 4、学会阅读和绘制电容器补偿柜的主电路图、二次电路图、安装接线图。 5 、学会选用开关元器件,并学会母排、母线、电线规格选择。 、主要内容 1 、电容器补偿柜柜主电路介绍 2、主电路元器件介绍 3、一次电路元器件安装

4、一次电路元器件安装 5、二次电路元器件安装 、工作原理 合上刀熔开关和断路器,无功功率补偿控制器根据进线柜电压和电流的相位差输出控制信号,控制交流接触器闭合和断开,从而控制电容器投入和退出。 2、电容器补偿柜的及其作用 、电容器柜功能及其结构 外部结构内部结构 、电容器补偿柜的作用 电容补偿柜的作用是提高负载功率因数,降低无功功率,提高供电设备的效率;电容柜是否正常工作可通过功率因数表的读数判断,功率因数表读数如果在左右可视为工作正常。

电容补偿柜加装放电器的必要性

电容补偿柜加装放电器的必要性 早期电容补偿柜都装有白炽灯放电,或用白炽信号灯放电。现在电容补偿柜另加装放电器的已不多,是不是当前技术发展了再装放电器已没有必要?本刊2008年11期有作者对电容补偿柜中配置放电灯作了论述。类似文章在其他刊物也有作者提出对电容器要进行放电的问题及具体设置办法的文章。 但有一种观点认为现在电容器柜中可以不另装放电器,其理由是:现在无功补偿控制器绝大部分都具有先投先切,后投后切,循环投切的功能,电容器切除后已有足够放电时间;现在自愈式低压并联电容器都已装有放电电阻。 1.自愈式低压并联电容器靠内装放电电阻放电,电容器电压降到允许再投入电 压,放电时间约按200s考虑。 国标G B∕T 12747.1-2004《标称电压1kV及以下交流电力系流用自愈式并联电容器》要求:“电容器从电源上断开后应在3min内将√2 U N峰值电压降到75V或更低”。电容器内所装放电电阻就是依据这一要求设计的。该标准对电容器再投入允许剩余电压为:“电容器剩余电压降至10%额定电压才允许再投入”。靠电容内所装放电电阻放电,电压降到允许再投入电压的放电时间,经计算:0.4kV电容器所需时间为236s,0.48kV电容器所需时间为217s,0.525kV电容器所需时间为208s。又由于各制造厂考虑留有安全裕度,一般放电电阻采用值都比设计值要降低些,所以实际放电时间要比规定小一些。综合以上情况这个时间折衷粗略取值可按200s考虑。认为电容器切除后待放电200s后才允许再投入。 2.具有先投先切,后投后切,循环投切功能无功补偿控制器,并不能充分保证 电容器切除后已有足够的放电时间。 在实际运用中,电容器补偿装置安装容量比实际需要容量比较宽裕情况时,负荷又处在轻负荷时,无功补偿控制器才能发挥先投先切,后投后切,循环投切得理想功能,投切延时时间又设置确当,电容器切除后能够达到200s放电后再投入的安全要求。如果电容器补偿装置安装容量比实际需要容量较接近或欠补情况时,电容器就不能保证有200s后再投入的情况发生。举例说明:某台补偿柜共有12路电容器,电容器设置容量又不是太宽裕,在重负荷时12路电容器全部投入,当负荷减小,该切除的应是第一路电容器,其他11路电容器仍在运行中,过后负荷增加,控制器指令投电容器也仅有第一路电容器可以投入,就会发生这第一路电容器不足200s放电又投入。在这种情况时先投先切,后投后切,循环投切是不起作用的。 有的控制器带有切除后強迫200s延时后才投入的功能,对这种控制器而言以上所述就不存在了。但这种控制器会带来补偿效果欠缺的问题。有好多高压计量的用户反映,功率因数经常补偿到0﹒96左右了,无功还欠补,每月还罚款。这虽然主要是变压器本身无功没有补偿的缘故,但是负荷侧补偿不及时更是扩大了无功欠补量,这就是为什么強调补偿效果的原因。 3.电容器来不及放电到允许投入电压就投入的情况还可以在以下情况下发生 a)短时停电又送电

电力电容器的补偿原理精编版

电力电容器的补偿原理公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

1电力电容器的补偿原理 电容器在原理上相当于产生容性无功电流的发电机。其无功补偿的原理是把具有容性功率负荷的装置和感性功率负荷并联在同一电容器上,能量在两种负荷间相互转换。这样,电网中的变压器和输电线路的负荷降低,从而输出有功能力增加。在输出一定有功功率的情况下,供电系统的损耗降低。比较起来电容器是减轻变压器、供电系统和工业配电负荷的最简便、最经济的方法。因此,电容器作为电力系统的无功补偿势在必行。当前,采用并联电容器作为无功补偿装置已经非常普遍。 2电力电容器补偿的特点 优点 电力电容器无功补偿装置具有安装方便,安装地点增减方便;有功损耗小(仅为额定容量的 %左右);建设周期短;投资小;无旋转部件,运行维护简便;个别电容器组损坏,不影响整个电容器组运行等优点。 缺点 电力电容器无功补偿装置的缺点有:只能进行有级调节,不能进行平滑调节;通风不良,一旦电容器运行温度高于70 ℃时,易发生膨胀爆炸;电压特性不好,对短路稳定性差,切除后有残余电荷;无功补偿精度低,易影响补偿效果;补偿电容器的运行管理困难及电容器安全运行的问题未受到重视等。 3无功补偿方式 高压分散补偿 高压分散补偿实际就是在单台变压器高压侧安装的,用以改善电源电压质量的无功补偿电容器。其主要用于城市高压配电中。 高压集中补偿

高压集中补偿是指将电容器装于变电站或用户降压变电站6 kV~10 kV高压母线的补偿方式;电容器也可装设于用户总配电室低压母线,适用于负荷较集中、离配电母线较近、补偿容量较大的场所,用户本身又有一定的高压负荷时,可减少对电力系统无功的消耗并起到一定的补偿作用。其优点是易于实行自动投切,可合理地提高用户的功率因素,利用率高,投资较少,便于维护,调节方便可避免过补,改善电压质量。但这种补偿方式的补偿经济效益较差。 低压分散补偿 低压分散补偿就是根据个别用电设备对无功的需要量将单台或多台低压电容器组分散地安装在用电设备附近,以补偿安装部位前边的所有高低压线路和变压器的无功功率。其优点是用电设备运行时,无功补偿投入,用电设备停运时,补偿设备也退出,可减少配电网和变压器中的无功流动从而减少有功损耗;可减少线路的导线截面及变压器的容量,占位小。缺点是利用率低、投资大,对变速运行,正反向运行,点动、堵转、反接制动的电机则不适应。 低压集中补偿 低压集中补偿是指将低压电容器通过低压开关接在配电变压器低压母线侧,以无功补偿投切装置作为控制保护装置,根据低压母线上的无功符合而直接控制电容器的投切。电容器的投切是整组进行,做不到平滑的调节。低压补偿的优点:接线简单、运行维护工作量小,使无功就地平衡,从而提高配变利用率,降低网损,具有较高的经济性,是目前无功补偿中常用的手段之一。 4电容器补偿容量的计算 无功补偿容量宜按无功功率曲线或无功补偿计算方法确定,其计算公式如下: QC=p(tgφ1-tgφ2)或是QC=pqc(1) 式中:Qc:补偿电容器容量; P:负荷有功功率; COSφ1:补偿前负荷功率因数; COSφ2:补偿后负荷功率因数; qc:无功功率补偿率,kvar/kw。 5电力电容器的安全运行

最新动态电容补偿柜精编版

2020年动态电容补偿 柜精编版

如何选择低压无功功率补偿装置 无功功率补偿装置在电子供电系统中所承担的作用是提高电网的功率因数,降低供电变压器及输送线路的损耗,提高供电效率,改善供电环境。所以无功功率补偿装置在电力供电系统中处在一个不可缺少的非常重要的位置。合理的选择补偿装置,可以做到最大限度的减少网络的损耗,使电网质量提高。反之,如选择或使用不当,可能造成供电系统,电压波动,谐波增大等诸多因素。 一、按投切方式分类: 1. 延时投切方式 延时投切方式即人们熟称的"静态"补偿方式。这种投切依靠于传统的接触器的动作,当然用于投切电容的接触器专用的,它具有抑制电容的涌流作用,延时投切的目的在于防止接触器过于频繁的动作时,电容器造成损坏,更重要的是防备电容不停的投切导致供电系统振荡,这是很危险的。当电网的负荷呈感性时,如电动机、电焊机等负载,这时电网的电流滞后电压一个角度,当负荷呈容性时,如过量的补偿装置的控制器,这时电网的电流超前于电压的一个角度,即功率因数超前或滞后是指电流与电压的相位关系。

通过补偿装置的控制器检测供电系统的物理量,来决定电容器的投切,这个物理量可以是功率因数或无功电流或无功功率。 下面就功率因数型举例说明。当这个物理量满足要求时,如cosΦ超前且>0.98,滞后且>0.95,在这个范围内,此时控制器没有控制信号发出,这时已投入的电容器组不退出,没投入的电容器组也不投入。当检测到cosΦ不满足要求时,如cosΦ滞后且 <0.95,那么将一组电容器投入,并继续监测cosΦ如还不满足要求,控制器则延时一段时间(延时时间可整定),再投入一组电容器,直到全部投入为止。当检测到超前信号如cosΦ<0.98,即呈容性载荷时,那么控制器就逐一切除电容器组。要遵循的原则就是:先投入的那组电容器组在切除时就要先切除。如果把延时时间整定为300s,而这套补偿装置有十路电容器组,那么全部投入的时间就为30分钟,切除也这样。在这段时间内无功损失补只能是逐步到位。如果将延时时间整定的很短,或没有设定延时时间,就可能会出现这样的情况。当控制器监测到cosΦ〈0.95,迅速将电容器组逐一投入,而在投入期间,此时电网可能已是容性负载即过补偿了,控制器则控制电容器组逐一切除,周而复始,形成震荡,导致系统崩溃。是否能形成振荡与负载的性质有密切关系,所以说这个参数需要根据现场情况整定,要在保证系统安全的情况下,再考虑补偿效果。

电力电容器的补偿原理

1电力电容器的补偿原理 电容器在原理上相当于产生容性无功电流的发电机。其无功补偿的原理是把具有容性功率负荷的装置和感性功率负荷并联在同一电容器上,能量在两种负荷间相互转换。这样,电网中的变压器和输电线路的负荷降低,从而输出有功能力增加。在输出一定有功功率的情况下,供电系统的损耗降低。比较起来电容器是减轻变压器、供电系统和工业配电负荷的最简便、最经济的方法。因此,电容器作为电力系统的无功补偿势在必行。当前,采用并联电容器作为无功补偿装置已经非常普遍。 2电力电容器补偿的特点 2.1优点 电力电容器无功补偿装置具有安装方便,安装地点增减方便;有功损耗小(仅为额定容量的0.4 %左右);建设周期短;投资小;无旋转部件,运行维护简便;个别电容器组损坏,不影响整个电容器组运行等优点。 2.2缺点 电力电容器无功补偿装置的缺点有:只能进行有级调节,不能进行平滑调节;通风不良,一旦电容器运行温度高于70 ℃时,易发生膨胀爆炸;电压特性不好,对短路稳定性差,切除后有残余电荷;无功补偿精度低,易影响补偿效果;补偿电容器的运行管理困难及电容器安全运行的问题未受到重视等。 3无功补偿方式 3.1高压分散补偿 高压分散补偿实际就是在单台变压器高压侧安装的,用以改善电源电压质量的无功补偿电容器。其主要用于城市高压配电中。 3.2高压集中补偿

高压集中补偿是指将电容器装于变电站或用户降压变电站6 kV~10 kV高压母线的补偿方式;电容器也可装设于用户总配电室低压母线,适用于负荷较集中、离配电母线较近、补偿容量较大的场所,用户本身又有一定的高压负荷时,可减少对电力系统无功的消耗并起到一定的补偿作用。其优点是易于实行自动投切,可合理地提高用户的功率因素,利用率高,投资较少,便于维护,调节方便可避免过补,改善电压质量。但这种补偿方式的补偿经济效益较差。 3.3低压分散补偿 低压分散补偿就是根据个别用电设备对无功的需要量将单台或多台低压电容器组分散地安装在用电设备附近,以补偿安装部位前边的所有高低压线路和变压器的无功功率。其优点是用电设备运行时,无功补偿投入,用电设备停运时,补偿设备也退出,可减少配电网和变压器中的无功流动从而减少有功损耗;可减少线路的导线截面及变压器的容量,占位小。缺点是利用率低、投资大,对变速运行,正反向运行,点动、堵转、反接制动的电机则不适应。 3.4低压集中补偿 低压集中补偿是指将低压电容器通过低压开关接在配电变压器低压母线侧,以无功补偿投切装置作为控制保护装置,根据低压母线上的无功符合而直接控制电容器的投切。电容器的投切是整组进行,做不到平滑的调节。低压补偿的优点:接线简单、运行维护工作量小,使无功就地平衡,从而提高配变利用率,降低网损,具有较高的经济性,是目前无功补偿中常用的手段之一。 4电容器补偿容量的计算 无功补偿容量宜按无功功率曲线或无功补偿计算方法确定,其计算公式如下: QC=p(tgφ1-tgφ2)或是QC=pqc(1) 式中:Qc:补偿电容器容量; P:负荷有功功率; COSφ1:补偿前负荷功率因数; COSφ2:补偿后负荷功率因数; qc:无功功率补偿率,kvar/kw。 5电力电容器的安全运行

低压电容补偿柜电气设计回路元器件选型和装配工艺

低压电容补偿柜电气设计回路元器件选型 和装配工艺 一、柜内元器件介绍及分类 1、低压电器:是指在500V以下的供配电系统中对电能的生产、输送、分配与应用起转换、控制、保护与调节等作用的电器。 2、低压配电电器的分类与用途。 1)刀熔开关:用于线路和设备的短路或过载保护,作为不频繁地手动接通和分断交流电路用。

2)刀开关:作为不频繁地手动接通和分断交流电路或作隔离开关用。 3)断路器:用于线路的过载、短路或欠压保护,也可用于不频繁操作的电器。 4)熔断器:用于线路和设备的短路或过载保护。 5)动态补偿调节器:半导体电子开关,用于电容器组的接入或断开电网的智能开关器件。具有零电流投入,浪涌电流小,过、欠压保护、缺相保护、空载保护、自诊断故障保护等功能。与普通交流接触器相比,能耗低,能有效地保护电容器和大大减少浪

涌电流对电网的冲击。 6)动态补偿控制器:用于电容器组的控制和保护,能控制多组动态补偿调节器的投入和切出。能记录和储存对电网实时监测数据和电容器组投入和切出的数据。具有高低压保护,报警,循环投切和优化投切等功能。 7)电容器:用于通过动态补偿控制器对电网的实时监控,在电网的无功功率超过设定的范围时,通过动态补偿调节器接入电网或断开和电网的连接。提高电网的功率因数,达到减少电网无功损耗,提高电网运行效率,节约电能的目的。 dqltwk|电气论坛https://www.doczj.com/doc/5d17501360.html,

二、操作工艺 1、工艺流程:安装过程原则上先主电路,后辅助电路,自上而下。 2、安装和选用方法。 1)刀开关的选用和安装。 a)刀开关的额定电压不小于线路的额定电压;额定电流不小于线路的计算负载电流;极限通断能力不小于线路中最大的短路电流。 b)为防止分断时喷弧造短路,应将与自动开关连接的母线在

低压柜为什么要进行电容补偿在低压配电部分有进线柜

低压柜为什么要进行电容补偿? 在低压配电部分有进线柜、出线柜、当然也少不了电容补尝柜,那么电容补偿柜有什么作用呢,顾名思意就是起电容补尝作用的,先来看看电容补尝原理,电容补尝时电容和负载是并联连接的,电容就和电库一样,当负载增大时,由于电源存在内阻,电源输出电压就会下降,由于电容的两端要维持原来的电压,也就是电容内的电畺要流出一部分,延缓了电压的下降趋势,就是电容补尝原理。 1、电力电容器的补偿原理 电容器在原理上相当于产生容性无功电流的发电机。其无功补偿的原理是把具有容性功率负荷的装置和感性功率负荷并联在同一电容器上,能量在两种负荷间相互转换。这样,电网中的变压器和输电线路的负荷降低,从而输出有功能力增加。在输出一定有功功率的情况下,供电系统的损耗降低。比较起来电容器是减轻变压器、供电系

统和工业配电负荷的最简便、最经济的方法。因此,电容器作为电力系统的无功补偿势在必行。当前,采用并联电容器作为无功补偿装置已经非常普遍 2、电力电容器补偿的特点 优点 电力电容器无功补偿装置具有安装方便,安装地点增减方便;有功损耗小(仅为额定容量的0.4 %左右);建设周期短;投资小;无旋转部件,运行维护简便;个别电容器组损坏,不影响整个电容器组运行等优点。 缺点 电力电容器无功补偿装置的缺点有:只能进行有级调节,不能进行平滑调节;通风不良,一旦电容器运行温度高于70 ℃时,易发生膨胀爆炸;电压特性不好,对短路稳定性差,切除后有残余电荷;无功补偿精度低,易影响补偿效果;补偿电容器的运行管理困难及电容器安全运行的问题未受到重视等。 3、无功补偿方式 高压分散补偿 高压分散补偿实际就是在单台变压器高压侧安装的,用以改善电源电压质量的无功补偿电容器。其主要用于城市高压配电中。 高压集中补偿

电容柜基本操作技能有哪些

电容柜基本操作技能有哪些 电气作业人员都知道:电容柜在保障电力供应,配电运行中占有极其重要的地位!几乎每个配电室都离不开电容柜,那么电容柜的投切操作流程,停送电操作顺序是怎么样的呢?正确的操作和使用电容柜是每个电力人员所必需的! 一,电容柜投切操作流程。 1,电容柜在投入时须先投一次部分,再投二次部分;切出反之。 2,操作电容柜的投切顺序。

1、手动投入:投隔离开关→将二次控制开关至手动位置依次投入各组电容器。 2、手动切除:将二次控制开关至手动位置依次切除各组电容→切出隔离开关。 3、自动投切:投隔离开关→将二次控制开关至自动位置,功补仪将自动投切电容器。 注:电容柜运行时如需退出运行,可在功补仪上按清零键或将二次控制开关调至零位档退出电容器。不可用隔离开关直接退出运行运行中的电容器! 4、手动或自动投切时,应注意电容器组在短时间内反复投切,投切延时时间不少于30秒,最好为60秒以上,让电容器有足够的放电时间。 二,电容柜的停送电操作。 1、电容柜送电前断路器应处于断开位置,操作面板上指令开关置于“停止”位置,无功功率自动补偿控制器开关处于“OFF”位置。 2、应在系统全部供电且运行正常后才能给电容柜送电。 3、电容柜的手动操作:合上电容柜的断路器,将操作面板上的指令开关转到1、2…… 位置时,将可手动投入1、2……组电容器投入补偿;将指令开关置于“试验”位置时,电容柜将对电容器组进行试验。

4、电容柜的自动操作:合上电容柜的断路器,将操作面板上的指令开关转到“自动” 位置,合上无功功率自动补偿控制器开关(ON),将指令开关置于“运行”位置时,电容柜将根据系统设置对系统进行无功功率自动补偿。 5、电容柜仅在自动补偿失去作用时,方可采用手动投入补偿。 6、将电容柜操作面板上的指令开关转到“停止”位置时,电容柜将停止运行。 三,关于电容柜的补充知识。 为什么电容补偿柜都没有装空气开关而靠熔断器提供短路保护? 1,熔断器主要为短路保护应选用快速熔断器,微断路器(微断)与熔断器特性曲线不同,微断的分断能力太低( <=6000A ),遇到事故响应时间没有熔断器快,当遇到高次谐波时,微断分断不了负荷电流会造成开关炸开损坏,因为故障电流过大,结果微断触点烧死了,断不了扩大故障范围,严重时发生短路引起全厂停电事故。所以电容柜不能用微断路器代替熔断器。 2,熔断器的工作原理 熔体与被保护的电路串联。正常时,熔体允许通过一定的电流;当电路发生短路或严重过载时,熔体中流过很大的故障电流,当电流产生的热量达到熔体的熔点时,熔体熔断,切断电路,从而达到保护目的。

相关主题
文本预览
相关文档 最新文档