当前位置:文档之家› 补偿电容的作用和工作原理

补偿电容的作用和工作原理

补偿电容的作用和工作原理
补偿电容的作用和工作原理

电容补尝柜的作用和工作原理

一.电容补偿柜之作用:

用于补偿发电机无功电流、减轻发电机工作负荷,增加发电机可使用容量,可减少工厂一定的用电量、节省工业电力,提高发供电设备的供电质量和供电能力。

二.电容柜工作原理

用电设备除电阻性负载外,大部分用电设备均属感性用电负载(如日光灯、变压器、马达等用电设备)这些感应负载,使供电电源电压相位发生改变(即电流滞后于电压),因此电压波动大,无功功率增大,浪费大量电能。当功率因数过低时,以致供电电源输出电流过大而出现超负载现象。电容补偿柜内的电脑电容控制系统可解决以上弊端,它可根据用电负荷的变化,而自动设置。电容组数的投入,进行电流补偿,从而减低大量无功电流,使线路电能损耗降到最低程度,提供一个高素质的电力源。

三.电容补偿技术:

在工业生产中广泛使用的交流异步电动机,电焊机、电磁铁工频加热器导用点设备都是感性负载。这些感性负载在进行能量转换过程中,使加在其上的电压超前电流一个角度。这个角度的余弦,叫做功率因数,这个电流(既有电阻又有电感的线圈中流过的电流)可分解为与电压相同相位的有功分量和落后于电压90度的无功分量。这个无功分量叫做电感无功电流。与电感无功电流相应的功率叫做电感无功功率。当功率因数很低时,也就是无功功率很大时会有以下危害:

?增长线路电流使线路损耗增大,浪费电能。

?因线路电流增大,可使电压降低影响设备使用。

?对变压器而言,无功功率越大,则供电局所收的每度电电费越贵,当功率因数低于0.7时,供电局可拒绝供电。

?对发电机而言,以310KW 发电机为例。

310KW 发电机的额定功率为280KW ,额定电流为530A ,当负载功率因数0.6 时

功率= 380 x 530 x 1.732 x0.6 = 210KW

从上可看出,在负载为530A 时,机组的柴油机部分很轻松,而电机以不堪重负,如负荷再增加则需再开一台发电机。加接入电容补偿柜,让功率因数达到0.96 ,同样210KW 的负荷。

电流=210000/ (380x1.732x0.96 )=332A

补偿后电流降低了近200A ,柴油机和电机部分都相当轻松,再增加部分负荷也能承受,不需再加开一台发电机,可节约大量柴油。也让其他机组充分休息。从以上可看出,电容补偿的经济效益可观,是低压配电系统中不可缺少的重要成员。

原理:把具有容性负荷的装置与感性负荷并联接在同一电路,当容性负荷释放能量时,感性负荷吸收能量;而感性负荷释放能量时,容性负荷却在吸收能量,能量在两种负荷之间互相交换.这样,感性负荷所吸收的无功功率可由容性负荷输出的无功功率中得到补偿,这就是他的补偿原理

低压电容补偿柜是在变压器的低压侧运行的,一般它受功率因素控制而自动运行的。因所带负载的种类不同而确定电容的容量及电容组的数量,当供用电系统正常时,由控制器捕捉功率因素来控制投入的电容组的数量。

与有功功率的计量相反,无功功率的计量应该是:电压电流完全同相位时(纯电阻负载),无功表示应该是“0”。那么取AC电压与B相电流的道理应该是,它们的向量关系为90度(电角度),对于纯电阻负载,此时计量值为“0”,而如果是非电阻性负载,上述相位差角度就大于或小于90度,此时无功计量表就有数值。

电容补偿的作用:

补偿无功功率,提高电能质量,降低损耗,同时提供配电运行数据低压电容补偿柜是在变压器的低压侧运行的,一般它受功率因素控制而自动运行的。因所带负载的种类不同而确定电容的容量及电容组的数量,当供用电系统正常时,由控制器捕捉功率因素来控制投入的电容组的数量。

1.降低配电线路无功电能的输送,所以可以减少配电线路上的电能损耗。

2.挖掘设备的潜力,提高设备的出力,充分提高设备的利用率(比如变压器)

3.补偿感性无功,提高功率因数,节约电能,减少电费开支

4.提高电压,改善电能质量

低压串联电抗器的作用:

当低压电网中有大量整流、变流装置等谐波源时,其产生的高次谐波严重危害主变及其它电器设备的安全运行。干式铁芯串联电抗器广泛用于低压无功补偿柜中,与电容器串联后,能有效吸收电网谐波,改善系统的电压波形,提高系统功率因数,并能有效抑制合闸涌流及操作过电压,有效保护了电容器的运行。

电容的作用

1、滤波电容 它并接在电路正负极之间,把电路中无用的交流电流去掉,一般采用大容量电解电容器,也有采用其他固定电容器的. 2、退耦电容 并接于电路正负极之间,可防止电路通过电源内阻形成的正反馈通路而引起的寄生振荡. 3 、耦合电容 连接于信号源和信号处理电路或两级放大器之间,用以隔断直流电,让交流电或脉动信号通过,使相信的放大器直流工作点互不影响. 4、旁路电容 并接在电阻两端或由某点直接跨接至共用电信为交直流信号中的交流或脉动信号设置一条通路,避免交流成分在通过电阻时产生压降. 5、中和电容 连接于三极管基极与集电极之间,用于克服三极管极间电容而引起的自激振荡. 6、槽路电容(调谐电容) 连接于谐振电路或振荡电路线圈两端的电容. 7、垫整电容 在电路在能使振荡信号的频率范围减小,而且显著提高低频端振荡频率的电容,它是与槽路主电容串联的. 8、补偿电容 在振荡电路中,能使振荡信号的频率范围得到扩大的电容,它与主电容并联起辅助作用. 9、逆程电容 并接在行输出管集电极与发射极之间,用来产生行扫描锯齿波逆程的电容. 10、自举升压电容 利用其储能来提升电路由某的电位,使其电位值高于为该点供电的电源电压. 11、“S”校正电容 串接于偏转线圈回路中,用于校正两边延伸失真. 12、稳频电容 在振荡电路中,用来稳定振荡频率的电容. 13、定时电容 在RC定时电路中与电阻R串联共同决定时间长短的电容. 14、降压限流电容 串接于交流电路中用于它对交流电的容抗进行分压限流. 15、缩短电容 这种电容是在UHF高频头中为了缩短振荡电感的长度而串接的电容. 16、克拉泼电容 在电容三点式振荡电路中,串接在振荡电感线圈的电容,为了水运晶体管结电容的影响,提高频率稳定性. 17、锡拉电容 在电容三点式振荡电路中,并接在振荡电感线圈两端的电容,为了消除晶体管结电容的影响,使其振荡频率越就越容易起振. 18、加速电容 接在振荡反馈电路中,使正反馈过程加速,提高振荡幅度. 19、预加重电容 为了防止音频调制信号在调制时可能使高频分量产生衰减或丢失,而适当提升高频分量的

无功补偿控制器及动态补偿装置工作原理

无功功率补偿装置在电子供电系统中所承担的作用是提高电网的功率因数,降低供电变压器及输送线路的损耗,提高供电效率,改善供电环境。所以无功功率补偿装置在电力供电系统中处在一个不可缺少的非常重要的位置。合理的选择补偿装置,可以做到最大限度的减少网络的损耗,使电网质量提高。反之,如选择或使用不当,可能造成供电系统,电压波动,谐波增大等诸多因素。 一、按投切方式分类: 1.延时投切方式 延时投切方式即人们熟称的”静态”补偿方式。这种投切依靠于传统的接触器的动作,当然用于投切电容的接触器专用的,它具有抑制电容的涌流作用,延时投切的目的在于防止接触器过于频繁的动作时,电容器造成损坏,更重要的是防备电容不停的投切导致供电系统振荡,这是很危险的。当电网的负荷呈感性时,如电动机、电焊机等负载,这时电网的电流滞带后电压一个角度,当负荷呈容性时,如过量的补偿装置的控制器,这是电网的电流超前于电压的一个角度,即功率因数超前或滞后是指电流与电压的相位关系。通过补偿装置的控制器检测供电系统的物理量,来决定电容器的投切,这个物理量可以是功率因数或无功电流或无功功率。 下面就功率因数型举例说明。当这个物理量满足要求时,如COSΦ超前且》0.98,滞后且》0.95,在这个范围内,此时控制器没有控制信号发出,这时已投入的电容器组不退出,没投入的电容器组也不投入。当检测到COSΦ不满足要求时,如COSΦ滞后且《0.95,那么将一组电容器投入,并继续监测COSΦ如还不满足要求,控制器则延时一段时间(延时时间可整定),再投入一组电容器,直到全部投入为止。当检测到超前信号如COSΦ《0.98,即呈容性载荷时,那么控制器就逐一切除电容器组。要遵循的原则就是:先投入的那组电容器组在切除时就要先切除。如果把延时时间整定为300S,而这套补偿装置有十路电容器组,那么全部投入的时间就为30分钟,切除也这样。在这段时间内无功损失补只能是逐步到位。如果将延时时间整定的很短,或没有设定延时时间,就可能会出现这样的情况。当控制器监测到COSΦ〈0.95,迅速将电容器组逐一投入,而在投

电容器的工作原理及结构

电容器工作原理这得从电容器的结构上说起。最简单的电容器是由两端的极板和中间的绝缘电介质(包括空气)构成的。通电后,极板带电,形成电压(电势差),但是由于中间的绝缘物质,所以整个电容器是不导电的。不过,这样的情况是在没有超过电容器的临界电压(击穿电压)的前提条件下的。我们知道,任何物质都是相对绝缘的,当物质两端的电压加大到一定程度后,物质是都可以导电的,我们称这个电压叫击穿电压。电容也不例外,电容被击穿后,就不是绝缘体了。不过在中学阶段,这样的电压在电路中是见不到的,所以都是在击穿电压以下工作的,可以被当做绝缘体看。但是,在交流电路中,因为电流的方向是随时间成一定的函数关系变化的。而电容器充放电的过程是有时间的,这个时候,在极板间形成变化的电场,而这个电场也是随时间变化的函数。实际上,电流是通过场的形式在电容器间通过的。 电容 diànróng 1. [capacitance;electric capacity]:电容是表征电容器容纳电荷的本领的物理量,非导电体的下述性质:当非导电体的两个相对表面保持某一电位差时(如在电容器中),由于电荷移动的结果,能量便贮存在该非导电体之中 2. [capacitor;condenser]:电容器的俗称 [编辑本段]概述 定义: 电容(或称电容量[4])是表征电容器容纳电荷的本领的物理量。我们把电容器的两极板间的电势差增加1伏所需的电量,叫做电容器的电容。电容从物理学上讲,它是一种静态电荷存储介质(就像一只水桶一样,你可以把电荷充存进去,在没有放电回路的情况下,刨除介质漏电自放电效应/电解电容比较明显,可能电荷会永久存在,这是它的特征),它的用途较广,它是电子、电力领域中不可缺少的电子元件。主要用于电源滤波、信号滤波、信号耦合、谐振、隔直流等电路中。 电容的符号是C。 在国际单位制里,电容的单位是法拉,简称法,符号是F,常用的电容单位有毫法(mF)、微法(μF)、纳法(nF)和皮法(pF)(皮法又称微微法)等,换算关系是: 1法拉(F)= 1000毫法(mF)=1000000微法(μF) 1微法(μF)= 1000纳法(nF)= 1000000皮法(pF)。 相关公式: 一个电容器,如果带1库的电量时两级间的电势差是1伏,这个电容器的电容就是1法,即:C=Q/U 但电容的大小不是由Q或U决定的,即:C=εS/4πkd 。其中,ε是一个常数,S为电容极板的正对面积,d为电容极板的距离,k则是静电力常量。常见的平行板电容器,电容为C=εS/d.(ε为极板间介质

电容工作原理

电容工作原理 电容串联可以隔直通交,并联可以滤波。 电容器就是两片不相连的金属板.电容器在电子线路中的作用一般概括为:通交流、阻直流。电容器通常起滤波、旁路、耦合、去耦、转相等电气作用,是电子线路必不可少的组成部分。滤波电路是把脉冲通到地去了,不是通到输出端。 正因为通交流,才能把交流成分通向地,保留直流成分. 一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。 低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。因此在使用中会因电解液的频繁极化而产生较大的热量。而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。 其实主要是充放电的工作原理。其实电容就相当于 一个水库,让过来的有波动的水变的很平稳 电解电容的作用有滤波,一般用在整流桥的后面。 你可以看一下电容是并连还是串连在回路里,并联的话是率除高频,串联的话是率除低频。还有降压电容。还有隔直的作用,一般做保护用! 电容串联和并联在电路中各有什么作用? 电容的作用是储存、释放电荷,可起到隔直通交、滤波、振荡作用 电容在电路中:如串联使用一般作为交流信号隔离,如音频功放、视频放大器等 如并联使用一般作为滤波,如电源、信号处理电路中噪声去除等 如与电感或其他芯片并联可组成振荡回路,如无线信号发射、接收、调制、解调等 电容并联可增大电容量,串联减小。比如手头没有大电容,只有小的,就可以并起来用,反之,没有小的就可以用大的串起来用。 在集成电路、超大规模集成电路已经大行其道的今天,电容器作为一种分立式无源元件仍然大量使用于各种功能的电路中,其在电路中所起的重要作用可见一斑。 作贮能元件也是电容器的一个重要应用领域,同电池等储能元件相比,电容器可以瞬时充放电,并且充放电电流基本上不受限制,可以为熔焊机、闪光灯等设备提供大功率的瞬时脉冲电流。 电容器还常常被用以改善电路的品质因子,如节能灯用电容器。 隔直流:作用是阻止直流通过而让交流通过。 旁路(去耦):为交流电路中某些并联的元件提供低阻抗通路。 耦合:作为两个电路之间的连接,允许交流信号通过并传输到下一级电路 滤波:将整流以后的锯齿波变为平滑的脉动波,接近于直流。 温度补偿:针对其它元件对温度的适应性不够带来的影响,而进行补偿,改善电路的稳定性。计时:电容器与电阻器配合使用,确定电路的时间常数。 调谐:对与频率相关的电路进行系统调谐,比如手机、收音机、电视机。 整流:在预定的时间开或者关半闭导体开关元件。

成套低压电容补偿柜

Yg生于⑦雄封测、将于②〇①①年⑦月①号、离开⑦雄、享年③百余天。记忆曾经的守候……风吹奶罩乳飞扬目录 1、课题内容简介 、实训目的 (2) 、主要内容 (2) 、工作原理 (2) 2、电容器补偿柜的及其作用 、电容器柜功能及其结构 (3) 、电容器补偿柜的作用 (3) 3、一次电路原理分析及安装 、电容器柜一次电路原理介绍 (4) 、一次电路的工作原理过程 (4) 、元器件的作用分析 (5) 、一次电路的的安装图 (9) 、一次电路连接母线安装及其安装实物图 (10) 4、二次回路原理图分析及安装 、二次原理图 (16) 、二次电路工作原理的过程 (17) 、二次电路元器件布置图 (17) 、二次电路安装接线图 (18) 、二次电路的安装工艺 (18) 、安装步骤 (19) 5、绝缘电阻测试、介电强度试验 、以500伏绝缘摇表测试法测试绝缘电阻 (20) 、工频及冲击耐压 (20) 附1图表 (21) 保护电路有效性 绝缘电阻及交流耐压 6、心得体会 (22) 7、结束语 (23)

1、课题内容简介 、实训目的 1、学会电容器补偿柜操作使用,并知道它们的作用。 2、进一步认知电容补偿柜的类型及其结构。 3、进一步认知各种电器元器件外形、结构、参数。 4、学会阅读和绘制电容器补偿柜的主电路图、二次电路图、安装接线图。 5、学会选用开关元器件,并学会母排、母线、电线规格选择。 、主要内容 1、电容器补偿柜柜主电路介绍 2、主电路元器件介绍 3、一次电路元器件安装 4、一次电路元器件安装 5、二次电路元器件安装 、工作原理 合上刀熔开关和断路器,无功功率补偿控制器根据进线柜电压和电流的相位差输出控制信号,控制交流接触器闭合和断开,从而控制电容器投入和退出。

电容的作用

电容的作用 作为无源元件之一的电容,其作用不外乎以下几种: 1、应用于电源电路,实现旁路、去藕、滤波和储能的作用,下面分类详述之:1)旁路 旁路电容是为本地器件提供能量的储能器件,它能使稳压器的输出均匀化,降低负载需求。就像小型可充电电池一样,旁路电容能够被充电,并向器件进行放电。为尽量减少阻抗,旁路电容要尽量靠近负载器件的供电电源管脚和地管脚。这能够很好地防止输入值过大而导致的地电位抬高和噪声。地弹是地连接处在通过大电流毛刺时的电压降。 2)去藕 去藕,又称解藕。从电路来说,总是可以区分为驱动的源和被驱动的负载。如果负载电容比较大,驱动电路要把电容充电、放电,才能完成信号的跳变,在上升沿比较陡峭的时候,电流比较大,这样驱动的电流就会吸收很大的电源电流,由于电路中的电感,电阻(特别是芯片管脚上的电感,会产生反弹),这种电流相对于正常情况来说实际上就是一种噪声,会影响前级的正常工作。这就是耦合。 去藕电容就是起到一个电池的作用,满足驱动电路电流的变化,避免相互间的耦合干扰。 将旁路电容和去藕电容结合起来将更容易理解。旁路电容实际也是去藕合的,只是旁路电容一般是指高频旁路,也就是给高频的开关噪声提高一条低阻抗泄防途径。高频旁路电容一般比较小,根据谐振频率一般是0.1u,0.01u等,而去耦合电容一般比较大,是10uF或者更大,依据电路中分布参数,以及驱动电流的变化大小来确定。 旁路是把输入信号中的干扰作为滤除对象,而去耦是把输出信号的干扰作为滤除对象,防止干扰信号返回电源。这应该是他们的本质区别。 3)滤波 从理论上(即假设电容为纯电容)说,电容越大,阻抗越小,通过的频率也越高。但实际上超过1uF的电容大多为电解电容,有很大的电感成份,所以频率高后反而阻抗会增大。有时会看到有一个电容量较大电解电容并联了一个小电

电容器的工作原理及作用

电容器通常简称其为电容,用字母C表示。 定义1:电容器,顾名思义,是‘装电的容器’,是一种容纳电荷的器件。英文名称:capacitor。电容是电子设备中大量使用的电子元件之一,广泛应用于电路中的隔直通交,耦合,旁路,滤波,调谐回路,能量转换,控制等方面。 定义2:电容器,任何两个彼此绝缘且相隔很近的导体(包括导线)间都构成一个电容器。 原理 电容器是由两个电极及其间的介电材料构成的。介电材料是一种电介质,当被置于两块带有等量异性电荷的平行极板间的电场中时,由于极化而在介质表面产生极化电荷,遂使束缚在极板上的电荷相应增加,维持极板间的电位差不变。这就是电容器具有电容特征的原因。电容器中储存的电量Q等于电容量C与电极间的电位差U的乘积。电容量与极板面积和介电材料的介电常数ε成正比,与介电材料厚度(即极板间的距离)成反比。 用途 电力电容器按用途可分为8种: 1.并联电容器。原称移相电容器。主要用于补偿电力系统感性负荷的无功功率,以提高功率因数,改善电压质量,降低线路损耗。 2.串联电容器。串联于工频高压输、配电线路中,用以补偿线路的分布感抗,提高系统的静、动态稳定性,改善线路的电压质量,加长送电距离和增大输送能力。 3.耦合电容器。主要用于高压电力线路的高频通信、测量、控制、保护以及在抽取电能的装置中作部件用。 4.断路器电容器。原称均压电容器。并联在超高压断路器断口上起均压作用,使各断口间的电压在分断过程中和断开时均匀,并可改善断路器的灭弧特性,提高分断能力。 5.电热电容器。用于频率为40~24000赫的电热设备系统中,以提高功率因数,改善回路的电压或频率等特性。

6.脉冲电容器。主要起贮能作用,用作冲击电压发生器、冲击电流发生器、断路器试验用振荡回路等基本贮能元件。 7.直流和滤波电容器。用于高压直流装置和高压整流滤波装置中。⑧标准电容器。用于工频高压测量介质损耗回路中,作为标准电容或用作测量高压的电容分压装置。 如有侵权请联系告知删除,感谢你们的配合!

电容器在电路中的作用(很全)

电容器的基本特性是“通交流、隔直流”。所以在电路中可用作耦合、滤波、旁路、去耦…… 。电容器的容抗是随频率增高而下降;电感的感抗是随频率增高而增大。所以在电容、电感的串联或并联电路中,总会有一个频率下容抗与感抗的数值相等,这时就产生谐振现象。所以电容与电感可以用来制作滤波器(低通、高通、带通)、陷波器、均衡器等。用在振荡电路中,制作LC、RC振荡电路。滤波电容并接在整流后的电源上,用于补平脉冲直流的波形。 耦合电容连接在交流放大电路级与级之间作信号通路,因为放大电路的输入端和输出端都有直流工作点,采用电容耦合可隔断直流通过工作点,耦合电容其实就是起隔直作用,所以也叫隔直电容; 旁路电容作用与滤波电容相似,但旁路电容不是接在电源上,而是接在电子电路的某一工作点,用于滤去谐振或干扰产生的杂波; 滤波电容、感性负载供电线路上的补偿电容、LC谐振电路上的电容都是起储能作用。 如何选择电路中的电容 通常音频电路中包括滤波、耦合、旁路、分频等电容,如何在电路中更有效地选择使用各种不同类型的电容器对音响音质的改善具有较大的影响。1.滤波电容整流后由于滤波用的电容器容量较大,故必须使用电解电容。滤波电容用于功率放大器时,其值应为10000μF以上,用于前置放大器时,容量为1000μF左右即可。当电源滤波电路直接供给放大器工作时,其容量越大音质越好。但大容量的电容将使阻抗从10KHz附近开始上升。这时应采取几个稍小电通常音频电路中包括滤波、耦合、旁路、分频等电容,如何在电路中更有效地选择使用 各种不同类型的电容器对音响音质的改善具有较大的影响。 1.滤波电容 整流后由于滤波用的电容器容量较大,故必须使用电解电容。滤波电容用于功率放大器 时,其值应为10000μF 以上,用于前置放大器时,容量为1000μF 左右即可。 当电源滤波电路直接供给放大器工作时,其容量越大音质越好。但大容量的电容将使阻 抗从10KHz 附近开始上升。这时应采取几个稍小电容并联成大电容同时也应并联几个薄 膜电容,在大电容旁以抑制高频阻抗的上升,如下图所示。 图 1 滤波电路的并联 2.耦合电容 耦合电容的容量一般在0.1μF~ 1μF 之间,以使用云母、丙烯、陶瓷等损耗较小的 电容音质效果较好。 3.前置放大器、分频器等 前置放大器、音频控制器、分频器上使用的电容,其容量在100pF~0.1μF 之间,而扬 声器分频LC 网络一般采用1μF~ 数10μF 之间容量较大的电容,目前高档分频器中采 用CBB电容居多。 小容量时宜采用云母,苯乙烯电容。而LC 网络使用的电容,容量较大,应使用金属化 塑料薄膜或无极性电解电容器,其中无机性电解电容如采用非蚀刻式,则更能获取极佳 音质。 电容的基础知识 —————————————— 一、电容的分类和作用 电容(Ele ct ric ca pa ci ty),由两个金属极,中间夹有绝缘材料(介质)构成。由于绝缘材料的不同,所构成的电容器的种类也有所不同: 按结构可分为:固定电容,可变电容,微调电容。 按介质材料可分为:气体介质电容,液体介质电容,无机固体介质电容,有机固体介质电容电解电容。 按极性分为:有极性电容和无极性电容。我们最常见到的就是电解电容。 电容在电路中具有隔断直流电,通过交流电的作用,因此常用于级间耦合、滤波、去耦、旁路及信号调谐 二、电容的符号

补偿电容的作用和工作原理

电容补尝柜的作用和工作原理 一.电容补偿柜之作用: 用于补偿发电机无功电流、减轻发电机工作负荷,增加发电机可使用容量,可减少工厂一定的用电量、节省工业电力,提高发供电设备的供电质量和供电能力。 二.电容柜工作原理 用电设备除电阻性负载外,大部分用电设备均属感性用电负载(如日光灯、变压器、马达等用电设备)这些感应负载,使供电电源电压相位发生改变(即电流滞后于电压),因此电压波动大,无功功率增大,浪费大量电能。当功率因数过低时,以致供电电源输出电流过大而出现超负载现象。电容补偿柜内的电脑电容控制系统可解决以上弊端,它可根据用电负荷的变化,而自动设置。电容组数的投入,进行电流补偿,从而减低大量无功电流,使线路电能损耗降到最低程度,提供一个高素质的电力源。 三.电容补偿技术:

在工业生产中广泛使用的交流异步电动机,电焊机、电磁铁工频加热器导用点设备都是感性负载。这些感性负载在进行能量转换过程中,使加在其上的电压超前电流一个角度。这个角度的余弦,叫做功率因数,这个电流(既有电阻又有电感的线圈中流过的电流)可分解为与电压相同相位的有功分量和落后于电压90度的无功分量。这个无功分量叫做电感无功电流。与电感无功电流相应的功率叫做电感无功功率。当功率因数很低时,也就是无功功率很大时会有以下危害: ?增长线路电流使线路损耗增大,浪费电能。 ?因线路电流增大,可使电压降低影响设备使用。 ?对变压器而言,无功功率越大,则供电局所收的每度电电费越贵,当功率因数低于0.7时,供电局可拒绝供电。 ?对发电机而言,以310KW 发电机为例。 310KW 发电机的额定功率为280KW ,额定电流为530A ,当负载功率因数0.6 时 功率= 380 x 530 x 1.732 x0.6 = 210KW

电容补偿柜的作用与工作原理

电容补尝柜的作用和工作原理 一. 电容补偿柜之作用: 用于补偿发电机无功电流、减轻发电机工作负荷,增加发电机可使用容量,可减少工厂一定的用电量、节省工业电力,提高发供电设备的供电质量和供电能力。 二. 电容柜工作原理 用电设备除电阻性负载外,大部分用电设备均属感性用电负载(如日光灯、变压器、马达等用电设备)这些感应负载,使供电电源电压相位发生改变(即电流滞后于电压),因此电压波动大,无功功率增大,浪费大量电能。当功率因数过低时,以致供电电源输出电流过大而出现超负载现象。电容补偿柜内的电脑电容控制系统可解决以上弊端,它可根据用电负荷的变化,而自动设置。电容组数的投入,进行电流补偿,从而减低大量无功电流,使线路电能损耗降到最低程度,提供一个高素质的电力源。 三. 电容补偿技术: 在工业生产中广泛使用的交流异步电动机,电焊机、电磁铁工频加热器导用点设备都是感性负载。这些感性负载在进行能量转换过程中,使加在其上的电压超前电流一个角度。这个角度的余弦,叫做功率因数,这个电流(既有电阻又有电感的线圈中流过的电流)可分解为与电压相同相位的有功分量和落后于电压90 度的无功分量。这个无功分量叫做电感无功电流。与电感无功电流相应的功率叫做电感无功功率。当功率因数很低时,也就是无功功率很大时会有以下危害:

?增长线路电流使线路损耗增大,浪费电能。 ?因线路电流增大,可使电压降低影响设备使用。 ?对变压器而言,无功功率越大,则供电局所收的每度电电费越贵,当功率因数低于0.7 时,供电局可拒绝供电。 ?对发电机而言,以310KW 发电机为例。 310KW 发电机的额定功率为280KW ,额定电流为530A ,当负载功率因数0.6 时 功率= 380 x 530 x 1.732 x 0.6 = 210KW 从上可看出,在负载为530A 时,机组的柴油机部分很轻松,而电球以不堪重负,如负荷再增加则需再开一台发电机。加接入电容补偿柜,让功率因数达到0.96 ,同样210KW 的负荷。 电流=210000/ (380x1.732x0.96 )=332A 补偿后电流降低了近200A ,柴油机和电球部分都相当轻松,再增加部分负荷也能承受,不需再加开一台发电机,可节约大量柴油。也让其他机组充分休息。从以上可看出,电容补偿的经济效益可观,是低压配电系统中不可缺少的重要成员。 原理:把具有容性负荷的装置与感性负荷并联接在同一电路,当容性负荷释放能量时,感性负荷吸收能量;而感性负荷释放能量时,容 性负荷却在吸收能量,能量在两种负荷之间互相交换.这样,感性负荷 所吸收的无功功率可由容性负荷输出的无功功率中得到补偿,这就是他的补偿原理

电容的作用

电容的作用 1.电容器主要用于交流电路及脉冲电路中,在直流电路中电容器一般起隔断直流的作用。 2.电容既不产生也不消耗能量,是储能元件。 3.电容器在电力系统中是提高功率因数的重要器件;在电子电路中是获得振荡、滤波、相移、旁路、耦合等作用的主要元件。 4.因为在工业上使用的负载主要是电动机感性负载,所以要并电容这容性负载才能使电网平衡. 5.在接地线上,为什么有的也要通过电容后再接地咧? 答:在直流电路中是抗干扰,把干扰脉冲通过电容接地(在这次要作用是隔直——电路中的电位关系);交流电路中也有这样通过电容接地的,一般容量较小,也是抗干扰和电位隔离作用. 6.电容补尝功率因数是怎么回事? 答:因为在电容上建立电压首先需要有个充电过程,随着充电过程,电容上的电压逐步提高,这样就会先有电流,后建立电压的过程,通常我们叫电流超前电压90度(电容电流回路中无电阻和电感元件时,叫纯电容电路)。电动机、变压器等有线圈的电感电路,因通过电感的电流不能突变的原因,它与电容正好相反,需要先在线圈两端建立电压,后才有电流(电感电流回路中无电阻和电容时,叫纯电感电路),纯电感电路的电流滞后电压90度。由于功率是电压乘以电流,当电压与电流不同时产生时(如:当电容器上的电压最大时,电已充满,电流为0;电感上先有电压时,电感电流也为0),这样,得到的乘积(功率)也为0!这就是无功。那么,电容的电压与电流之间的关系正好与电感的电压与电流的关系相反,就用电容来补偿电感产生的无功,这就是无功补偿的原理。 汹涌的河水流入到湖泊中,再让它流出来,那就显得平静而柔和了.电容就应该是充当了湖泊的作用吧.让电流更纯净没有杂波. 所谓电容,就是容纳和释放电荷的电子元器件。电容的基本工作原理就是充电放电, 当然还有整流、振荡以及其它的作用。另外电容的结构非常简单,主要由两块正负电极和 夹在中间的绝缘介质组成,所以电容类型主要是由电极和绝缘介质决定的。在计算机系统 的主板、插卡、电源的电路中,应用了电解电容、纸介电容和瓷介电容等几类电容,并以 电解电容为主。 纸介电容是由两层正负锡箔电极和一层夹在锡箔中间的绝缘蜡纸组成,并拆叠成扁体 长方形。额定电压一般在63V~250V之间,容量较小,基本上是pF(皮法)数量级。现代纸介电容由于采用了硬塑外壳和树脂密封包装,不易老化,又因为它们基本工作在低压区,且耐压值相对较高,所以损坏的可能性较小。万一遭到电损坏,一般症状为电容外表发热。 瓷介电容是在一块瓷片的两边涂上金属电极而成,普遍为扁圆形。其电容量较小,都 在pμF(皮微法)数量级。又因为绝缘介质是较厚瓷片,所以额定电压一般在1~3kV左右, 很难会被电损坏,一般只会出现机械破损。在计算机系统中应用极少,每个电路板中分别 只有2~4枚左右。 电解电容的结构与纸介电容相似,不同的是作为电极的两种金属箔不同(所以在电解 电容上有正负极之分,且一般只标明负极),两电极金属箔与纸介质卷成圆柱形后,装在 盛有电解液的圆形铝桶中封闭起来。因此,如若电容器漏电,就容易引起电解液发热,从 而出现外壳鼓起或爆裂现象。电解电容都是圆柱形(图1),体积大而容量大,在电容器上 所标明的参数一般有电容量(单位:微法)、额定电压(单位:伏特),以及最高工作温度(单

电力电容器的补偿原理精编版

电力电容器的补偿原理公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

1电力电容器的补偿原理 电容器在原理上相当于产生容性无功电流的发电机。其无功补偿的原理是把具有容性功率负荷的装置和感性功率负荷并联在同一电容器上,能量在两种负荷间相互转换。这样,电网中的变压器和输电线路的负荷降低,从而输出有功能力增加。在输出一定有功功率的情况下,供电系统的损耗降低。比较起来电容器是减轻变压器、供电系统和工业配电负荷的最简便、最经济的方法。因此,电容器作为电力系统的无功补偿势在必行。当前,采用并联电容器作为无功补偿装置已经非常普遍。 2电力电容器补偿的特点 优点 电力电容器无功补偿装置具有安装方便,安装地点增减方便;有功损耗小(仅为额定容量的 %左右);建设周期短;投资小;无旋转部件,运行维护简便;个别电容器组损坏,不影响整个电容器组运行等优点。 缺点 电力电容器无功补偿装置的缺点有:只能进行有级调节,不能进行平滑调节;通风不良,一旦电容器运行温度高于70 ℃时,易发生膨胀爆炸;电压特性不好,对短路稳定性差,切除后有残余电荷;无功补偿精度低,易影响补偿效果;补偿电容器的运行管理困难及电容器安全运行的问题未受到重视等。 3无功补偿方式 高压分散补偿 高压分散补偿实际就是在单台变压器高压侧安装的,用以改善电源电压质量的无功补偿电容器。其主要用于城市高压配电中。 高压集中补偿

高压集中补偿是指将电容器装于变电站或用户降压变电站6 kV~10 kV高压母线的补偿方式;电容器也可装设于用户总配电室低压母线,适用于负荷较集中、离配电母线较近、补偿容量较大的场所,用户本身又有一定的高压负荷时,可减少对电力系统无功的消耗并起到一定的补偿作用。其优点是易于实行自动投切,可合理地提高用户的功率因素,利用率高,投资较少,便于维护,调节方便可避免过补,改善电压质量。但这种补偿方式的补偿经济效益较差。 低压分散补偿 低压分散补偿就是根据个别用电设备对无功的需要量将单台或多台低压电容器组分散地安装在用电设备附近,以补偿安装部位前边的所有高低压线路和变压器的无功功率。其优点是用电设备运行时,无功补偿投入,用电设备停运时,补偿设备也退出,可减少配电网和变压器中的无功流动从而减少有功损耗;可减少线路的导线截面及变压器的容量,占位小。缺点是利用率低、投资大,对变速运行,正反向运行,点动、堵转、反接制动的电机则不适应。 低压集中补偿 低压集中补偿是指将低压电容器通过低压开关接在配电变压器低压母线侧,以无功补偿投切装置作为控制保护装置,根据低压母线上的无功符合而直接控制电容器的投切。电容器的投切是整组进行,做不到平滑的调节。低压补偿的优点:接线简单、运行维护工作量小,使无功就地平衡,从而提高配变利用率,降低网损,具有较高的经济性,是目前无功补偿中常用的手段之一。 4电容器补偿容量的计算 无功补偿容量宜按无功功率曲线或无功补偿计算方法确定,其计算公式如下: QC=p(tgφ1-tgφ2)或是QC=pqc(1) 式中:Qc:补偿电容器容量; P:负荷有功功率; COSφ1:补偿前负荷功率因数; COSφ2:补偿后负荷功率因数; qc:无功功率补偿率,kvar/kw。 5电力电容器的安全运行

电容在电路中的作用及电容滤波原理..

电容在电路中的作用及电容滤波原理 电容器在电子电路中几乎是不可缺少的储能元件,它具有隔断直流、连通交流、阻止低频的特性。广泛应用在耦合、隔直、旁路、滤波、调谐、能量转换和自动控制等电路中。熟悉电容器在不同电路中的名称意义,有助于我们读懂电子电路图。 1、滤波电容:接在直流电源的正、负极之间,以滤除直流电源中不需要的交流成分,使直流电变平滑。一般采用大容量的电解电容器或钽电容,也可以在电路中同时并接其他类型的小容量电容以滤除高频交流电。 2、去耦电容:幷接在放大电路的电源正、负极之间,防止由于电源内阻形成的正反馈而引起的寄生震荡。 3、耦合电容:接在交流信号处理电路中,用于连接信号源和信号处理电路或者作两放大器的级间连接,用以隔断直流,让交流信号或脉冲信号通过,使前后级放大电路的直流工作点互不影响。 4、旁路电容:接在交、直流信号的电路中,将电容并接在电阻两端或由电路的某点跨接到公共电位上,为交流信号或脉冲信号设置一条通路,避免交流信号成分因通过电阻产生压降衰减。 5、调谐电容:连接在谐振电路的振荡线圈两端,起到选择振荡频率的作用。 6、衬垫电容与谐振电容:主电容串联的辅助性电容,调整它可使振荡信号频率范围变小,幷能显著地提高低频端的振荡频率。 是当地选定衬垫电容的容量,可以将低端频率曲线向上提升,接近于理想频率跟踪曲线。 7、补偿电容:与谐振电路主电容并联的辅助性电容,调整该电容能使振荡信号频率范围扩大。 8、中和电容:并接在三极管放大器的基极与发射极之间,构成负反馈网络,以抑制三极管间电容造成的自激振荡。 9、稳频电容:在振荡电路中起稳定振荡频率的作用。 10、定时电容:在RC时间常数电路中与电阻R串联,共同决定充放电时间长短的电容。 11、加速电容:接在振荡器反馈电路中,使正反馈过程加速,提高振荡信号的幅度。 12、缩短电容:在UHF高频头电路中,为了缩短振荡电感器长度而串接的电容。 13、克拉泼电容:在电容三点式振荡电路中,与电感振荡线圈串联的电容,起到消除晶体管结电容对频率稳定性影响的作用。 14、锡拉电容:在电容三点式振荡电路中,与电感振荡线圈两端并联的电容,起到消除晶体管结电容的影响,使振荡器在高频端容易起振。 15、稳幅电容:在鉴频器中,用于稳定输出信号的幅度。 16、预加重电容:为了避免音频调制信号在处理过程中造成对分频量衰减和丢失,而设

电力电容器的补偿原理

1电力电容器的补偿原理 电容器在原理上相当于产生容性无功电流的发电机。其无功补偿的原理是把具有容性功率负荷的装置和感性功率负荷并联在同一电容器上,能量在两种负荷间相互转换。这样,电网中的变压器和输电线路的负荷降低,从而输出有功能力增加。在输出一定有功功率的情况下,供电系统的损耗降低。比较起来电容器是减轻变压器、供电系统和工业配电负荷的最简便、最经济的方法。因此,电容器作为电力系统的无功补偿势在必行。当前,采用并联电容器作为无功补偿装置已经非常普遍。 2电力电容器补偿的特点 2.1优点 电力电容器无功补偿装置具有安装方便,安装地点增减方便;有功损耗小(仅为额定容量的0.4 %左右);建设周期短;投资小;无旋转部件,运行维护简便;个别电容器组损坏,不影响整个电容器组运行等优点。 2.2缺点 电力电容器无功补偿装置的缺点有:只能进行有级调节,不能进行平滑调节;通风不良,一旦电容器运行温度高于70 ℃时,易发生膨胀爆炸;电压特性不好,对短路稳定性差,切除后有残余电荷;无功补偿精度低,易影响补偿效果;补偿电容器的运行管理困难及电容器安全运行的问题未受到重视等。 3无功补偿方式 3.1高压分散补偿 高压分散补偿实际就是在单台变压器高压侧安装的,用以改善电源电压质量的无功补偿电容器。其主要用于城市高压配电中。 3.2高压集中补偿

高压集中补偿是指将电容器装于变电站或用户降压变电站6 kV~10 kV高压母线的补偿方式;电容器也可装设于用户总配电室低压母线,适用于负荷较集中、离配电母线较近、补偿容量较大的场所,用户本身又有一定的高压负荷时,可减少对电力系统无功的消耗并起到一定的补偿作用。其优点是易于实行自动投切,可合理地提高用户的功率因素,利用率高,投资较少,便于维护,调节方便可避免过补,改善电压质量。但这种补偿方式的补偿经济效益较差。 3.3低压分散补偿 低压分散补偿就是根据个别用电设备对无功的需要量将单台或多台低压电容器组分散地安装在用电设备附近,以补偿安装部位前边的所有高低压线路和变压器的无功功率。其优点是用电设备运行时,无功补偿投入,用电设备停运时,补偿设备也退出,可减少配电网和变压器中的无功流动从而减少有功损耗;可减少线路的导线截面及变压器的容量,占位小。缺点是利用率低、投资大,对变速运行,正反向运行,点动、堵转、反接制动的电机则不适应。 3.4低压集中补偿 低压集中补偿是指将低压电容器通过低压开关接在配电变压器低压母线侧,以无功补偿投切装置作为控制保护装置,根据低压母线上的无功符合而直接控制电容器的投切。电容器的投切是整组进行,做不到平滑的调节。低压补偿的优点:接线简单、运行维护工作量小,使无功就地平衡,从而提高配变利用率,降低网损,具有较高的经济性,是目前无功补偿中常用的手段之一。 4电容器补偿容量的计算 无功补偿容量宜按无功功率曲线或无功补偿计算方法确定,其计算公式如下: QC=p(tgφ1-tgφ2)或是QC=pqc(1) 式中:Qc:补偿电容器容量; P:负荷有功功率; COSφ1:补偿前负荷功率因数; COSφ2:补偿后负荷功率因数; qc:无功功率补偿率,kvar/kw。 5电力电容器的安全运行

电容降压式电源原理及电路

电容降压式电源原理及电路 电容降压式电源 将交流市电转换为低压直流的常规方法是采用变压器降压后再整流滤波,当受体积和成本等因素的限制时,最简单实用的方法就是采用电容降压式电源。 一、电路原理 电容降压式简易电源的基本电路如图1,C1为降压电容器,D2为半波整流二极

管,D1在市电的负半周时给C1提供放电回路,D3是稳压二极管,R1为关断电源后C1的电荷泄放电阻。在实际应用时常常采用的是图2的所示的电路。当需要向负载提供较大的电流时,可采用图3所示的桥式整流电路。 整流后未经稳压的直流电压一般会高于30伏,并且会随负载电流的变化发生很大的波动,这是因为此类电源内阻很大的缘故所致,故不适合大电流供电的应用场合。 二、器件选择 1.电路设计时,应先测定负载电流的准确值,然后参考示例来选择降压电容器的容量。因为通过降压电容C1向负载提供的电流Io,实际上是流过C1的充放电电流Ic。C1容量越大,容抗Xc越小,则流经C1的充、放电电流越大。当负载电流Io小于C1的充放电电流时,多余的电流就会流过稳压管,若稳压管的最大允许电流Idmax小于Ic-Io时易造成稳压管烧毁。 2.为保证C1可靠工作,其耐压选择应大于两倍的电源电压。 3.泄放电阻R1的选择必须保证在要求的时间内泄放掉C1上的电荷。 三、设计举例 图2中,已知C1为0.33μF,交流输入为220V/50Hz,求电路能供给负载的最大电流。 C1在电路中的容抗Xc为: Xc=1 /(2 πf C)= 1/(2*3.14*50*0.33*10-6)= 9.65K 流过电容器C1的充电电流(Ic)为: Ic = U / Xc = 220 / 9.65 = 22mA。 通常降压电容C1的容量C与负载电流Io的关系可近似认为:C=14.5 I,其中C的容量单位是μF,Io的单位是A。 电容降压式电源是一种非隔离电源,在应用上要特别注意隔离,防止触电。 请看: 电容降压式电源电路的计算与元件选择 电容降压式电源电路又称恒流电源电路,由于省去了笨重的交流电源变压器,体

电容柜基本操作技能有哪些

电容柜基本操作技能有哪些 电气作业人员都知道:电容柜在保障电力供应,配电运行中占有极其重要的地位!几乎每个配电室都离不开电容柜,那么电容柜的投切操作流程,停送电操作顺序是怎么样的呢?正确的操作和使用电容柜是每个电力人员所必需的! 一,电容柜投切操作流程。 1,电容柜在投入时须先投一次部分,再投二次部分;切出反之。 2,操作电容柜的投切顺序。

1、手动投入:投隔离开关→将二次控制开关至手动位置依次投入各组电容器。 2、手动切除:将二次控制开关至手动位置依次切除各组电容→切出隔离开关。 3、自动投切:投隔离开关→将二次控制开关至自动位置,功补仪将自动投切电容器。 注:电容柜运行时如需退出运行,可在功补仪上按清零键或将二次控制开关调至零位档退出电容器。不可用隔离开关直接退出运行运行中的电容器! 4、手动或自动投切时,应注意电容器组在短时间内反复投切,投切延时时间不少于30秒,最好为60秒以上,让电容器有足够的放电时间。 二,电容柜的停送电操作。 1、电容柜送电前断路器应处于断开位置,操作面板上指令开关置于“停止”位置,无功功率自动补偿控制器开关处于“OFF”位置。 2、应在系统全部供电且运行正常后才能给电容柜送电。 3、电容柜的手动操作:合上电容柜的断路器,将操作面板上的指令开关转到1、2…… 位置时,将可手动投入1、2……组电容器投入补偿;将指令开关置于“试验”位置时,电容柜将对电容器组进行试验。

4、电容柜的自动操作:合上电容柜的断路器,将操作面板上的指令开关转到“自动” 位置,合上无功功率自动补偿控制器开关(ON),将指令开关置于“运行”位置时,电容柜将根据系统设置对系统进行无功功率自动补偿。 5、电容柜仅在自动补偿失去作用时,方可采用手动投入补偿。 6、将电容柜操作面板上的指令开关转到“停止”位置时,电容柜将停止运行。 三,关于电容柜的补充知识。 为什么电容补偿柜都没有装空气开关而靠熔断器提供短路保护? 1,熔断器主要为短路保护应选用快速熔断器,微断路器(微断)与熔断器特性曲线不同,微断的分断能力太低( <=6000A ),遇到事故响应时间没有熔断器快,当遇到高次谐波时,微断分断不了负荷电流会造成开关炸开损坏,因为故障电流过大,结果微断触点烧死了,断不了扩大故障范围,严重时发生短路引起全厂停电事故。所以电容柜不能用微断路器代替熔断器。 2,熔断器的工作原理 熔体与被保护的电路串联。正常时,熔体允许通过一定的电流;当电路发生短路或严重过载时,熔体中流过很大的故障电流,当电流产生的热量达到熔体的熔点时,熔体熔断,切断电路,从而达到保护目的。

电容器基本原理

电容器基本原理 电容器的电路符号很形象的表明了它的根本功能:隔直通交。电容器的一切功用都源自于此。对于恒定直流电来说,理想的电容器就像一个断开的开关,表现为开路状态;而对于交流电来讲,理想电容器则为一个闭合开关,表现为通路状态。 在上面的图中详细描述了直流电受电容器阻隔的原因。事实上,电容器并非立刻将直流电阻隔,当电路刚接通时,电路中会产生一个极大的电流值,然后随着电容器不断充电,极板电压逐渐增强,电路中的电流在不断减小,最终电容器电压和电源电压相等且反向,从而达到和电源平衡的状态。 而在交流电方面,为方便记忆,我们可以不太严谨但形象的认为交流电能够“跳过”电容器这道“峡谷”,从而保持“正常传导”。 这里有很关键的一点需要明确:无论是直流环境还是交流环境,理想的电容器内部是

不会有任何电荷(电流)通过的,只是两极板电荷量对比发生了变化,从而产生了电场。 要想了解电容器的各种功用,我们还需要了解一下傅立叶级数。各位苦于微积分的朋友不用头晕,我们不需要去研究那些复杂的数学公式,仅仅是需要一个简单的结论:任何一个波,都可认为是多个不同的波形叠加之产物。即,一个波可以拆分成多个振幅、频率都不相同的波(包括振幅和频率为零的波)。这其实正如一个数字也能被拆分成多个其他数字的组合一样,例如3 = 1+2 = 1+1+1 = 0+3。 振幅或频率为零的波是什么?直线。对于电来说,那就是直流电,即电压恒定不变。正如世界上没有绝对的直线一样,世界上也没有绝对的直流电。尽管人们在追求尽可能理想的直流电,但直流和交流总是同时存在的。直流电中含有交流成分,交流电中也包含直流成分。当直流成分占主导地位时,就认为其乃直流电;当交流成分占主导地位时,就认为是交流电。这很像太极所描述的阴中有阳,阳中有阴。 直流和交流总是共存的 事物的具体应用都是由基本原理派生出的,哪怕你不理解只是死记硬背,同样也能够很容易得理解它的具体应用。毕竟,对于基本原理来说,往往仅仅需要知其然即可,例如1+1=2。对于电容器来说,我们需要明白两点:隔直通交和不走电荷。 基于电容器隔直通交和不走电荷的原理,其应用方式也就应运而生了。在目前我们在电脑板卡上常见的电容器应用主要有:电源滤波、耦合与去藕、信号滤波。 电容器的应用:电源滤波 正如之前所说,世界上没有绝对的直流电,为了给设备提供尽可能理想化的直流供电,我们需要一些途径将交流成分尽量剔除。因此,供电滤波电路成为了每一块主板和显卡必备的电路组成部分,没了它们,我们的电脑就无法正常工作。

电容补偿柜常见故障及排除措施

电容补偿柜基本介绍 新柜调试前应将所有电容器断开,并在不通电情况下测试主回路相间通断,和对“N”通断;手动投切检查一切正常后再将电容接上,无涌流投切器及动补调节器没接N线,会使其直接损坏及炸毁。 一.无功补偿电容柜用途 TSC数字全自动动态无功功率补偿装置是一种具有国际先进水平、功能高度集成化的无功补偿设备。它广泛应用于机械制造、冶金、矿山、铁道、轻工、化工、建材、油田、港口、高层建筑、城镇小区等低压配电网,对电力系统降损节能有重大的技术经济意义,为国家重点推荐的节约电能的高新技术项目。 二、无功补偿电容柜的作用 功率补偿装置在电子供电系统中所承担的作用是提高电网的功率因数,降低供电变压器及输送线路的损耗,提高供电效率,改善供电环境。所以无功功率补偿装置在电力供电系统中处在一个不可缺少的非常重要的位置。合理的选择补偿装置,可以做到最大限度的减少网络的损耗,使电网质量提高。反之,如选择或使用不当,可能造成供电系统,电压波动,谐波增大等诸多因素。所以功率因数是供电局非常在意的一个系数,用户如果没有达到理想的功率因数,相对地就是在消耗供电局的资源,所以这也是为什么功率因数是一个法规的限制。目前就国内而言功率因数规定是必须介于电感性的0.9~1之间,低于0.9,或高于1.0都需要接受处罚。 三、投切方式分类:

1. 延时投切方式 延时投切方式即人们熟称的"静态"补偿方式。这种投切依靠于传统的接触器的动作,当然用于投切电容的接触器专用的,它具有抑制电容的涌流作用,延时投切的目的在于防止接触器过于频繁的动作时,造成电容器损坏,更重要的是防备电容不停的投切导致供电系统振荡,这是很危险的。当电网的负荷呈感性时,如电动机、电焊机等负载,这时电网的电流滞带后电压一个角度,当负荷呈容性时,如过量的补偿装置的控制器,这是时电网的电流超前于电压的一个角度,即功率因数超前或滞后是指电流与电压的相位关系。通过补偿装置的控制器检测供电系统的物理量,来决定电容器的投切量,这个物理量可以是功率因数或无功电流或无功功率。 下面就功率因数型举例说明。当这个物理量满足要求时,如cos Φ超前且>0.98,滞后且>0.95,在这个范围内,此时控制器没有控制信号发出,这时已投入的电容器组不退出,没投入的电容器组也不投入。当检测到cosΦ不满足要求时,如cosΦ滞后且<0.95,那么将一组电容器投入,并继续监测cosΦ如还不满足要求,控制器则延时一段时间(延时时间可整定),再投入一组电容器,直到全部投入为止。当检测到超前信号如cosΦ<0.98,即呈容性载荷时,那么控制器就逐一切除电容器组。要遵循的原则就是:先投入的那组电容器组在切除时就要先切除。如果把延时时间整定为300s,而这套补偿装置有十路电容器组,那么全部投入的时间就为30分钟,切除也是这样。在这段时间内无功损失补偿只能是逐步到位。如果将延时时间整定的很

相关主题
文本预览
相关文档 最新文档