当前位置:文档之家› 基于MasterCAM X6的圆柱凸轮的建模与数控仿真

基于MasterCAM X6的圆柱凸轮的建模与数控仿真

基于MasterCAM X6的圆柱凸轮的建模与数控仿真
基于MasterCAM X6的圆柱凸轮的建模与数控仿真

圆柱分度凸轮机构的设计及凸轮的数控加工

文章编号:1004-2539(2002)04-0050-03 圆柱分度凸轮机构的设计及凸轮的数控加工 (山东大学自动化研究所, 山东济南 250061)  金作成 (山东诸城锻压机床股份有限公司, 山东诸城 262200) 陈龙宝 摘要 空间分度凸轮机构主要应用于冲压机械、包装机械、制药机械及需要固定转位的自动化机械 中。根据应用的场合、应用精度及分度数的不同,空间分度凸轮机构分为平行分度凸轮机构、弧面分度凸轮机构和圆柱分度凸轮机构3大类。本文主要介绍圆柱分度凸轮机构的设计及凸轮的数控加工。 关键词 圆柱分度凸轮 设计 数控加工 1 圆柱分度凸轮机构的设计 图1为圆柱分度凸轮机构的结构示意图,凸轮作 为主动轴,分度盘作为从动轴旋转。由于凸轮曲线是由曲线部分和直线部分组成,就形成了分度盘的间歇运动。圆柱分度凸轮机构尤其适用于分度数较多的自动机械中 。 图1 圆柱分度凸轮机构的结构示意图 1.1 分度数和分度角 分度数n 的大小是由所应用的自动机械决定的。这种形式的分度机构一般适合于n =6~60的情况。 n 太小时压力角太大,传动特性很差;n 过大时,结构 很复杂,分度盘尺寸过大,转动惯量限制其不能高速运转或消耗功率过大。n 确定之后,分度盘的分度角则为Q 10=Q h =360°/2n 。1.2 分度盘直径 分度盘的直径与机构的外形尺寸和分度数有关,从图1可见,从动滚子之间的距离H 应大于工作机构 的最大外形尺寸A 。留一定空隙的σ。一般σ=10mm ~20mm ,于是从动盘滚子中心的节圆半径可用下式计算 l = H 2sin πn = A +σ 2sin π n 1.3 滚子尺寸 滚子半径通常取r 1=(0.25~0.30)H 滚子宽度通常取b 1=(0.8~1.2)r 1 1.4 凸轮尺寸 凸轮尺寸的确定原则是在保证接触应力最大值小于许用应力的前提下,尽可能紧凑一些。根据压力角计算公式可推出,圆柱凸轮的基圆直径可由下式算出 D 2= 2H V m Q 2h tan a m 式中,V m 为最大无因次速度;a m 为最大压力角。 圆柱凸轮的外径则为D 2e =D 2+b 0,凸轮槽深度 h 一般应略大于滚子宽度b 0。在确定凸轮体宽度B 2 时,为了保证分度运动时的连续性,应有适当的啮合重叠段为宜。在图1所示的机构中,B 2的取值范围为2(1-r 1)>B 2>H 。1.5 中心距 中心距是凸轮中心线与分度盘中心线之间的距离。可以用下式求得 c =l cos π n ±a 式中,a 为凸轮中心线偏离滚子起始与终止位置中心连线的距离,一般情况下a =0。凸轮中心线与分度盘基准面的距离取决于凸轮体外径D 2e 、滚子销轴向尺寸和分度盘厚度等结构参数的选取,应尽量使凸轮外缘靠近分度盘底面,以减少滚子销轴的悬臂分度。1.6 结构形式 圆柱分度的结构形式大体分3种,一种是凸脊定位,另有偏凸脊定位,还有槽定位。由于凸脊定位精度高,所以凸脊定位形式较常见。1.7 凸轮的动程角与动静比 由于分度凸轮主要功能就是实现间歇运动,因此对动静比的要求就非常严格,对动程角也有一定要求。动程角的大小是由用户提出的。但是通常希望动静比 5 机械传动 2002年

VB凸轮轮廓线数控加工程序设计源代码

八附源程序 模块 Option Explicit Public ptx(3600) As Double '曲线存储点数组 Public pty(3600) As Double '由于存储最终输出的点 Public low As Double '数组下标 Public countnum As Integer '存储当前为第几段曲线输入的值 Public Const PI = 3.14159 Public area As Double '存储角度范围的值 Public sch As Double '总升程 Public tch As Double '输入曲线的推程 Public Huan As Double '坐标变换数据 Public Gao As Double Public a1 As String, a2 As String, a3 As String Public b1 As Double Public savetime As Double Public i As Double FrmView 主窗口 Option Explicit Dim j% Public bch As String, zbx As String, M As Integer, sd As String Private Sub CmbSlect_Click() '选择曲线类型 Select Case CmbSlect.ListIndex Case 0 '等加速运动 dengjiasu.NumStr.Text = "" '清空Text文本框 dengjiasu.NumEnd.Text = "" dengjiasu.NumH.Text = "" dengjiasu.NumStr.Text = area '设定default范围 dengjiasu.NumStr.Enabled = False dengjiasu.NumEnd.Enabled = True If CountAll.Caption = CountNow.Caption Then '最后一段曲线dengjiasu.NumEnd.Text = "360" '输入时,自动输入dengjiasu.NumEnd.Enabled = False '默认值dengjiasu.NumH.Text = -b1 End If dengjiasu.Show 1 Case 1 '等速运动 dengsu.NumStr.Text = "" dengsu.NumEnd.Text = "" dengsu.NumH.Text = "" dengsu.NumStr.Text = area dengsu.NumStr.Enabled = False

参数化圆柱凸轮的proe做法

4.1 参数化设计原理 采用Pro/ENGINEER 进行参数化设计,所谓参数化设计就是用数学运算方式建立模型各尺寸参数间的关系式,使之成为可任意调整的参数。当改变某个尺寸参数值时,将自动改变所有与它相关的尺寸,实现了通过调整参数来修改和控制零件几何形状的功能。采用参数化造型的优点在于它彻底克服了自由建模的无约束状态,几何形状均以尺寸参数的形式被有效的控制,再需要修改零件形状的时候,只需要修改与该形状相关的尺寸参数值,零件的形状会根据尺寸的变化自动进行相应的改变 【17】 。参数化设计不同于传统的设计, 它储存了设计的整个过程,能设计出一族而非单一的形状和功能上具有相似性的产品模型。参数化为产品模型的可变性、可重用性、并行设计等提供了手段,使用户可以利用以前的模型方便地重建模型,并可以在遵循原设计意图的情况下方便地改动模型,生成系列产品 【18】 。 4.2 建立滚轮中心轨迹曲线方程 圆柱凸轮最小外径为: min 2m D r B =?+ (37) 由式(37)、(7)、(31)得:

4 1m in 4 1 4100095.161080003224tan cos 100095.1610800032tan cos 2000 95.1610380002tan cos m h Ft h D r B h Ft h h Ft h D D ρα α ραα α α ---????+ ? ??=?+=? + ????+ ? ??= + ????+ ? ??= + (38) 圆柱周长L 4 200095.1610380002tan cos h Ft h D D L D ππαα-??????+ ? ??? ?==+ ? ??? (39) 单个滚轮中心轨迹按周长展开,如图10所示: 图10 单个滚轮中心轨迹按周长展开

外文翻译----宽槽圆柱凸轮数控加工技术的研究

附录1外文翻译及原文 外文翻译 宽槽圆柱凸轮数控加工技术的研究 摘要:针对传统铣削方法加工圆柱凸轮所产生的一些问题,提出了一种针对槽宽大于刀具直径的圆柱凸轮槽的数控铣削加工方法。通过分析研究,建立了一种正确的坐标转换模型,并依此加工出符合要求的宽槽圆柱凸轮。 关键词:数控加工坐标转换宽槽圆柱凸轮 圆柱凸轮槽一般是按一定规律环绕在圆柱面上的等宽槽。对圆柱凸轮槽的数控铣削加工必须满足以下要求:1.圆柱凸轮槽的工作面即两个侧面的法截面线必须严格平行;2.圆柱凸轮槽在工作段必须等宽。这是保证滚子在圆柱凸轮槽中平稳运动的必要条件。当圆柱凸轮槽宽度不大时,可以找到相应直径的立铣刀沿槽腔中心线进行加工,比较容易加工出符合上述要求的圆柱凸轮槽。据现有资料介绍,目前圆柱凸轮的铣削加工都是用这种办法来实现。由于这种方法有太多的局限性,给实际铣削加工带来许多困难。例如一旦找不到与槽宽尺寸相等的标准刀具时,就必须对刀具进行改制。 对于槽宽尺寸较大的圆柱凸轮槽,很难找到直径与槽宽相等的标准刀具。即使有相应的刀具,还要考虑机床主轴输出功率及主轴和工装夹具刚度的限制,特别是机床主轴结构对刀具的限制。例如数控机床主轴头为7∶24的40号内锥,配用JT40的工具系统,则最大只能使用φ20mm的立铣刀(不论直柄还是锥柄)。这对于槽宽为38mm的圆柱凸轮(就是本文所叙述的加工凸轮)来说是无法加工的,必须寻求新的加工方法。 下面根据实践经验和分析研究,介绍一种用直径小于凸轮槽宽的立铣刀对圆柱凸轮槽进行数控加工的方法,称之为宽槽圆柱凸轮的数控加工。 一、加工工艺 圆柱凸轮槽是环绕在圆柱面上的等宽槽,其加工时沿圆周表面铣削的范围往往大于360°,适于用带有数控回转台的立式数控铣床进行加工。根据圆柱凸轮的实际结构,选用带键的心轴作凸轮加工时径向和周向定位基准,以心轴的台肩作轴向定位基准,并用心轴前端部的螺纹通过螺母压紧圆柱凸轮。圆柱凸轮的轴向和径向尺寸一般较大,为了克服由于悬臂加工时切削力所造成的心轴变形和加工过程中产生的振颤,使用一个支承于尾座上的、与数控转台的回转轴线同轴的顶尖顶住心轴中心孔作辅助支承。 圆柱凸轮槽的底部在每一个截面上通常是等深的,一般选用平底圆柱立铣刀加工。圆柱凸轮铣削加工前通常是一个实心的圆柱体,要经过开槽、粗加工、半精加工、精加工等工序;由于槽腔宽度较大,因此,除开槽工序及粗加工工序的一部分刀位轨迹可以沿槽腔的中心线生成之外,其余刀位轨、迹则必须是沿槽腔中心线向左、右两边按相应的距离等距偏置生成,如图1所示。

槽凸轮的加工工艺规划及数控加工

槽凸轮的加工工艺规划及数控加工 作者姓名 专业机械设计制造及其自动化 指导教师姓名 专业技术职务副教授

目录 摘要 (4) 第一章绪论 (4) 1.1 课题内容 (4) 1.2 选题意义 (5) 1.3 与课题内容相关的现状及发展趋势 (5) 第二章零件的工艺分析 (5) 2.1 零件的图样分析 (5) 2.1.1 零件的结构特点 (5) 2.1.2 零件的技术条件分析 (5) 2.2 零件的工艺分析 (6) 第三章毛坯的粗加工 (7) 3.1 毛坯的选择 (7) 3.1.1 毛坯的种类 (7) 3.1.2 毛坯选择应考虑的因素 (7) 3.2 加工余量的确定 (7) 3.2.1 加工余量的概念 (7) 3.2.2 影响加工余量的因素 (7) 3.2.3确定加工余量的方法 (8) 3.3 毛坯的加工方案 (8) 3.3.1 确定毛坯的加工方案 (8)

3.3.2 确定各工序所用的设备 (9) 3.3.3 表面加工方法的选择 (9) 3.3.4 各工序的切削用量 (10) 第四章零件的数控加工 (10) 4.1数控机床 (10) 4.1.1数控机床简介 (11) 4.1.2数控加工 (11) 4.1.3数控加工的过程 (12) 4.2零件的数控加工工艺 (12) 4.2.1确定工艺路线 (11) 4.2.2确定各工序所用设备 (11) 4.2.3工件的装夹 (11) 4.2.4定位基准的选择 (11) 4.2.5方案的具体实施 (12) 4.3零件的数控编成 (14) 4.3.1加工编成概述 (15) 4.3.2加工编成的分类 (15) 4.3.3程序 (16) 第五章小结及参考文献 (19)

凸轮的数控加工编程

毕业论文 姓名:学号: 系别:机械工程系 专业:机械制造与自动化 论文题目:凸轮的数控加工手工编程 指导教师: 2011年05 月

摘要 本论文主要介绍了凸轮结构的组成、凸轮结构的特点和功能及凸轮的应用。并且介绍了FANUC数控铣床,通过对FANUC数控铣床的认识,了解它的结构、编程中运用到的数控指令、应用范围及实际操作所运用到的理论知识。 This paper mainly introduces the composition, CAM CAM mechanism structure characteristics and function and CAM application. And FANUC CNC milling machine is introduced, through the understanding of FANUC CNC milling machine, to learn the structure, programming of CNC using to instruction, application scope and practical operation applied the theory of knowledge. 关键词: 凸轮;数控加工:FANUC ;数控铣床:手工编程 CAM; Nc machining: FANUC; CNC milling machine: manual programming

目录 1凸轮机构的组成…………………………………………………………………… 1.1凸轮……………………………………………………………………………… 1.2凸轮机构的组成…………………………………………………………………2凸轮机构的类型…………………………………………………………………… 2.1按照凸轮的形状分……………………………………………………………… 2.2按照从动件的形状分…………………………………………………………… 2.3按照从动件的运动形式………………………………………………………… 2.4按照凸轮与从动件维持高副接触的方法分……………………………………2.5其它………………………………………………………………………………3机构的特点和功能……………………………………………………………… 3.1凸轮机构的特点………………………………………………………………… 3.2功能………………………………………………………………………………4常用从动件的运动规律…………………………………………………………… 4.1等速运动规律……………………………………………………………………… 4.2等加速等减速运动规律……………………………………………………………5盘形凸轮轮廓曲线的确定………………………………………………………… 5.1应用“反转法”绘制尖顶式对心移动从动件盘形凸轮的一般步骤………………… 5.2凸轮机构的压力角、基圆半径………………………………………………………6FANUC系统………………………………………………………………………… 6.1FNUC数控系统概述……………………………………………………………… 6.2常用编程指令……………………………………………………………………… 6.2.1准备功能………………………………………………………………………… 6.2.2辅助功能………………………………………………………………………… 6.3坐标系编程指令………………………………………………………………… 6.3.1有关坐标和坐标系的指令………………………………………………………

凸轮工件的数控加工工艺分析

凸轮工件的数控加工工艺 分析 Newly compiled on November 23, 2020

摘要: 凸轮轴作为汽车发动机配气机构中的关键部件,其性能直接影响着发动机整体性 能。因此凸轮轴的加工工艺有特殊要求,合理的加工工艺对于降低加工成本、减少生产 环节以及合理布置凸轮轴生产线具有很大的现实意义。本文针对凸轮轴的加工特点,结 合工厂的实际,从前期规划开始,对凸轮轴的加工工艺进行了深入的分析、研究。建立 了用数控无靠模方法。对凸轮廓形进行计算和推倒,对凸轮轮廓的加工进行了探讨并提 出适用于发动机凸轮轴的加工方法。 关键词:发动机;凸轮轴;工艺分析 目录 摘要: (1) 目录 (2) 1 引言 (1) 2 凸轮轴生产线前期规划 (1) 产品规格 (1) 工艺设计原则及凸轮轴加工工艺分析 (2) 小结 (3) 3 凸轮轴生产线工艺分析 (3) 生产线布置 (3) 工艺设计 (4) 工艺分析 (5) 工艺特点 (7) 工艺难点 (9) 4 凸轮廓形理论计算及加工控制参数 (10) 凸轮轴凸轮的廓形要求 (10) 包络线理论 (13) 凸轮廓形坐标 (14)

砂轮的中心坐标 (17) 磨削圆周进给量计算 (18) 等周速曲线 (20) 砂轮座加速度 (20) 光顺处理 (21) 工件主轴转速配置 (21) 磨削用量数据 (22) 5结论 (23) 参考文献 (23)

1 引言 随着现代行业的不断发展,再加上配件的需求,使得凸轮轴的需求量一直高居不下。建立一条集先进性与经济性为一体的凸轮轴生产线是非常必要的。面对国外汽车行业的冲击,我们国产汽车业应该加紧研究、建立符合中国国情的,我们自己的基础制造业,提高质量、降低成本,这样才能保住我们国产汽车的市场。 凸轮轴在发动机中的重要地位决定了国内发动机生产厂家都建有自己的凸轮轴生产线,这样可以在保证整机质量的前提下,尽可能的降低成本,提高竞争力。 本文主要围绕汽车凸轮轴生产线的工艺分析,从前期准备、工艺设计、理论计算、生产实践、和产品检测这几个方面,阐述了凸轮轴加工的一整套设计思路和方法,对发动机制造业中的零部件加工具有重要的参考作用。 2 凸轮轴生产线前期规划 产品规格 2.1.1零件的结构特点 凸轮轴生产线承担每台发动机凸轮轴的机加工,每台发动机上使用一根凸轮轴。 材料:(FCA-3)铜铬钼合金铸铁,各主轴颈及端面的硬度HB180~240,凸轮HRC48. 2.1.2凸轮轴简图 图1

【数控专业中文翻译】宽槽圆柱凸轮数控加工技术的研究

译文: 宽槽圆柱凸轮数控加工技术的研究 摘要:针对传统铣削方法加工圆柱凸轮所产生的一些问题,提出了一种针对槽宽大于刀具直径的圆柱凸轮槽的数控铣削加工方法。通过分析研究,建立了一种正确的坐标转换模型,并依此加工出符合要求的宽槽圆柱凸轮。 关键词:数控加工坐标转换宽槽圆柱凸轮 圆柱凸轮槽一般是按一定规律环绕在圆柱面上的等宽槽。对圆柱凸轮槽的数控铣削加工必须满足以下要求:1.圆柱凸轮槽的工作面即两个侧面的法截面线必须严格平行;2.圆柱凸轮槽在工作段必须等宽。这是保证滚子在圆柱凸轮槽中平稳运动的必要条件。当圆柱凸轮槽宽度不大时,可以找到相应直径的立铣刀沿槽腔中心线进行加工,比较容易加工出符合上述要求的圆柱凸轮槽。据现有资料介绍,目前圆柱凸轮的铣削加工都是用这种办法来实现。由于这种方法有太多的局限性,给实际铣削加工带来许多困难。例如一旦找不到与槽宽尺寸相等的标准刀具时,就必须对刀具进行改制。 对于槽宽尺寸较大的圆柱凸轮槽,很难找到直径与槽宽相等的标准刀具。即使有相应的刀具,还要考虑机床主轴输出功率及主轴和工装夹具刚度的限制,特别是机床主轴结构对刀具的限制。例如数控机床主轴头为7∶24的40号内锥,配用JT40的工具系统,则最大只能使用φ20mm的立铣刀(不论直柄还是锥柄)。这对于槽宽为38mm的圆柱凸轮(就是本文所叙述的加工凸轮)来说是无法加工的,必须寻求新的加工方法。 下面根据实践经验和分析研究,介绍一种用直径小于凸轮槽宽的立铣刀对圆柱凸轮槽进行数控加工的方法,称之为宽槽圆柱凸轮的数控加工。 一、加工工艺 圆柱凸轮槽是环绕在圆柱面上的等宽槽,其加工时沿圆周表面铣削的范围往往大于360°,适于用带有数控回转台的立式数控铣床进行加工。根据圆柱凸轮的实际结构,选用带键的心轴作凸轮加工时径向和周向定位基准,以心轴的台肩作轴向定位基准,并用心轴前端部的螺纹通过螺母压紧圆柱凸轮。圆柱凸轮的轴向和径向尺寸一般较大,为了克服由于悬臂加工时切削力所造成的心轴变形和加工过程中产生的振颤,使用一个支承于尾座上的、与数控转台的回转轴线同轴的顶尖顶住心轴中心孔作辅助支承。 圆柱凸轮槽的底部在每一个截面上通常是等深的,一般选用平底圆柱立铣刀加工。圆柱凸轮铣削加工前通常是一个实心的圆柱体,要经过开槽、粗加工、半精加工、精加工等工序;由于槽腔宽度较大,因此,除开槽工序及粗加工工序的一部分刀位轨迹可以沿槽腔的中心线生成之外,其余刀位轨、迹则必须是沿槽腔中心线向左、右两边按相应的距离等距偏置生成,如图1所示。 图 1 圆柱凸轮槽的二维展开图 二、求解模型

凸轮工件的数控加工工艺分析

摘要: 凸轮轴作为汽车发动机配气机构中的关键部件,其性能直接影响着发动机整体性能。因此凸轮轴的加工工艺有特殊要求,合理的加工工艺对于降低加工成本、减少生产环节以及合理布置凸轮轴生产线具有很大的现实意义。本文针对凸轮轴的加工特点,结合工厂的实际,从前期规划开始,对凸轮轴的加工工艺进行了深入的分析、研究。建立了用数控无靠模方法。对凸轮廓形进行计算和推倒,对凸轮轮廓的加工进行了探讨并提出适用于发动机凸轮轴的加工方法。 关键词:发动机;凸轮轴;工艺分析 目录 摘要: (1) 目录 (2) 1 引言 (1) 2 凸轮轴生产线前期规划 (1) 2.1产品规格 (1) 2.2工艺设计原则及凸轮轴加工工艺分析 (2) 2.3小结 (3) 3 凸轮轴生产线工艺分析 (3) 3.1生产线布置 (3) 3.2工艺设计 (4) 3.3工艺分析 (5) 3.4工艺特点 (7) 3.5工艺难点 (9) 4 凸轮廓形理论计算及加工控制参数 (10) 4.1凸轮轴凸轮的廓形要求 (10) 4.2包络线理论 (13) 4.3凸轮廓形坐标 (14) 4.4砂轮的中心坐标 (17) 4.5磨削圆周进给量计算 (18) 4.6等周速曲线 (20) 4.7砂轮座加速度 (20) 4.8光顺处理 (21)

4.9工件主轴转速配置 (21) 4.10磨削用量数据 (22) 5结论 (23) 参考文献 (23)

1 引言 随着现代行业的不断发展,再加上配件的需求,使得凸轮轴的需求量一直高居不下。建立一条集先进性与经济性为一体的凸轮轴生产线是非常必要的。面对国外汽车行业的冲击,我们国产汽车业应该加紧研究、建立符合中国国情的,我们自己的基础制造业,提高质量、降低成本,这样才能保住我们国产汽车的市场。 凸轮轴在发动机中的重要地位决定了国内发动机生产厂家都建有自己的凸轮轴生产线,这样可以在保证整机质量的前提下,尽可能的降低成本,提高竞争力。 本文主要围绕汽车凸轮轴生产线的工艺分析,从前期准备、工艺设计、理论计算、生产实践、和产品检测这几个方面,阐述了凸轮轴加工的一整套设计思路和方法,对发动机制造业中的零部件加工具有重要的参考作用。 2 凸轮轴生产线前期规划 2.1产品规格 2.1.1零件的结构特点 凸轮轴生产线承担每台发动机凸轮轴的机加工,每台发动机上使用一根凸轮轴。 材料:(FCA-3)铜铬钼合金铸铁,各主轴颈及端面的硬度HB180~240,凸轮HRC48. 2.1.2凸轮轴简图 图1 2.1.3 发动机凸轮轴主要加工内容和精度要求 (1)支承轴径 前轴径前端φ015.0045.032--,后端φ02 .004.032--,表面粗糙度Rz3.2 中间轴径φ09.0115.05.47--,表面粗糙度Rz3.2 后轴径φ06.0085.05.48--,表面粗糙度Rz3.2 (2)凸轮

基于UG的圆柱凸轮参数化建模与仿真加工

万方数据

208高东强等:基于UG的圆柱凸轮参数化建模与仿真加工第10期 2基于UG的设计方法与三维造型 对于凸轮的设计,其关键是建立凸轮工作部分的轮廓曲线,圆柱凸轮是在圆柱表面按理论轮廓曲线轨迹建立凹槽或是凸橼,当凸轮绕定轴转动时带动滚子从动件实现各种不同的运动规律。 基于UG的圆柱凸轮参数化设计与建模主要是应用UG建模中的规律曲线功能,通过建立UG表达式来生成凸轮的理论轮廓曲线,再采用扫掠、回转、曲线缠绕以及布尔运算等操作,建立圆柱凸轮的三维实体模型。如要设计一单滚子直动从动件圆柱凸轮,已知滚子从动件行程h=30mm,槽宽a=24mm,槽深b=20mm,凸轮基圆半径r=60mm,滚子从动件运动规律: 推程为余弦加速运动,推程角咖。=60。;远休止角qb2=160。;回程也为余弦加速运动,回程角咖r--600;近休止角#,。 2.1推导UG表达式 .tooo 参考【1】建立圆柱凸轮理论轮廓曲线的参数方程: l一耐 {y=rsinj(oo巧<360。) l:=s 式中:r一基圆半径: ,一凸轮转角; s—升程; 茗、y、一曲线上任意点坐标。 建立理论轮廓曲线参数方程后,接下来的工作是根据从动件运动规律推导升程s的表达式翻, 推程(余弦加速度): s=争[,一(磊9)】鲜【o,钡】 远休止期:s---h 回程(余弦加速度): s=争[1-c。s(云妒)】非[o,如】 近休止期:s=0 对于其它运动规律的公式推导可参阅回。 以上参数方程和表达式是应用UG建模生成凸轮轮廓曲线的理论基础,为了方便操作,必须将以上各式转化成UG可以识男H的表达式,如图l所示,当凸轮从动件的运动规律及参数发生改变时,只需在UG表达式文件中更改相关公式和数据即可,真正实现了圆柱凸轮建模的参数化、系统化。 图l凸轮理论轮廓曲线的UG表达式性图2圆柱凸轮理论轮廓曲线2.2创建凸轮三维模型 (1)应用UG的规律曲线功能,按上步建立的UG表达式生成plj段规律的样条曲线,如图2所示。通过UG规律曲线功能得到圆柱凸轮的理论轮廓曲线后,可以由两种不同的方式来建立三维实体模型:一是线~面.—体的创建方法,其基本操作是先由理论轮廓曲线得到凸轮槽底部曲面,再通过加厚片体得到凸轮槽实体,最后创建圆柱体并与凸轮槽实体进行布尔运算;二是引导截面法,即建立凸轮槽的截面曲线,然后运用扫掠选项得到凸轮槽实体,而最后一步与一相同。需要注意的是在这里绝不能通过拉伸命令来创建凸轮槽实体,因为该操作所得到的实体是不等宽的。下面我们主要以第二种方式来示例操作:(2)为了得到槽宽a=24mm,槽深b=20mm的沟槽,我们应用到UG建模中的扫掠功能,如图2所示在XOZ平匝创建长24mm、宽20ram的矩形,并以圆柱凸轮理论轮廓曲线为引导线进行扫掠,定位方法选择按矢量=方向定位,得如图3(a)所示三维实体。(3)创建底圆半径r=6(hllm的圆柱体(保证所求理论轮廓曲线与圆柱体同轴)。然后使其与上步图3(a)所示三维实体进行布尔运算,得到如图3(c)所示的三维模型。 (a)(b)(c) 图3圆柱凸轮三维实体模型 3运动仿真及分析 运动仿真模块是CAE应用软件,主要用于建立运动机构模型,分析其运动规律。基于UG的运动仿真可以进行机构的干涉分析,跟踪零件的运动轨迹,分析机构运动过程中零件位移、速度、加速度、作用力、反作用力以及力矩等的变化规律。通过运动仿真结果,可以对零件的结构及材料等属性进行修改,并将所修改的参数直接反映到装配主模型上,以完成最终的优化设计。 基于UG的运动仿真主要分为三个过程:一是前处理,包括创建连杆(Links)、运动副(joints)和定义运动驱动(MotionDriver);二是运动仿真,主要有关节运动(Articulation)和运动仿真(Animation)两种形式,其中前者是基于位移的运动,后者是基于时间的运动;三是运动分析,即以图表(Graphing)和电子表格(SpreadsheetRun)等形式分析相关零件的运动规律。 3.1前处理 如图4所示创建连杆,将圆柱凸轮定义为L001,滚子定义为L002,并在圆柱凸轮上创建旋转副J001,添加驱动类型为恒定,初速度l80dmino在滚子E电帽}_1吲}动副J002,需注意的是移动副J002自勺=黾动方向设定为沿圆柱凸轮的母线方向。为了保证凸轮与滚子在整个运动翅程中始终是彼此接触,还需仓!膳}-—个3D拦触COOl。3.2运动仿真 打开解算方案窗口,选择基于时间的机构运动仿真,定义时间为 2s,步长为100,其它选择默认值,点击确认进行运动方案求解。万方数据

PROE圆柱凸轮参数化建模

% 转角:0~120 h=160 phi1=2*pi/3 x=100*((2*pi/3)*t) y=h*(1-cos(pi*120*t/phi1))/2 z=0 % 转角:120~150 h=160 x=200*pi/3+100*(pi/6*t) y=h z=0 % 转角:150~300 h=160 phi=5*pi/6 x=100*(5*pi/6)+100*(5*pi/6)*t y=h*(1+cos(pi*150*t/phi))/2 z=0 % 转角:300~360 x=100*5*pi/3+100*pi/3*t y=0 z=0 L圆柱凸轮的建模——PROE4.0 PROESKILL 圆柱凸轮建模与盘形凸轮略有区别。但是前面的步骤是相同的。下面用一个实例来说明。任务: 生成一个圆柱凸轮,外径D=200,长度L=240,滚子半径Rr=30.从动件运动规律:凸轮转角0——120度时,从动件以余弦运动规律向一端移动160;从120——150度时,从动件静止(远休止);从150——300度时,从动件以余弦运动规律向另一端移动160,回来;300——360度时,从动件又不动。 一、新建文件 大家都很熟悉,所以就不多说了。

二、生成位移曲线 操作相同,但是位移曲线就必须注意了。 1.单击(插入基准曲线),选择“从方程”,“完成”。

2.弹出如下对话框。选择坐标系PRT_CSYS_DEF,在新弹出的【菜单管理器】中,选择【设置坐标类型/笛卡儿】。 3.输入方程。 注意:在盘形凸轮建模中,一般以转角为X轴,范围0——360,从动件位移为Y轴。但是在此,我们将圆柱凸轮展开,可以看成一个长方体,这样凸轮的沟槽就自动呈现在我们眼前,这沟槽就是我们要的位移曲线。 因此,位移曲线是这样的:X轴范围为0——PI*D,也就是底面圆的周长。Y轴仍然是从动件位移。 STEP1

圆柱凸轮加工方法及应用

西 南 交 通 大 学 本科毕业设计(论文) 圆柱凸轮加工方法及应用 年 级:2005级 学 号:20055355 姓 名:商飞 专 业:制造工程 指导老师:彭新宇 2009年6月

院 系 机械工程学院 专 业 制造工程 年 级 2005级 姓 名 商飞 题 目 圆柱凸轮加工方法及应用 指导教师 评 语 指导教师 (签章) 评 阅 人 评 语 评 阅 人 (签章) 成 绩 答辩委员会主任 (签章) 年 月 日

毕业设计(论文)任务书 班级 2005制造工程一班学生姓名商飞学号 20055355 发题日期:2009 年 3 月 5 日完成日期:2009年 6 月 15 日 题目圆柱凸轮加工方法及应用 1、本论文的目的、意义空间凸轮是空间凸轮机构中的关键零件,其传统方法加工难度大,周期长,加工精度低,对操作工人技术水平要求高。本文研究了采用CAD/CAM技术采用数控机床进行空间凸轮加工的方法。讨论整个加工工艺过程的决策。并采用UG/CAM技术针对具体凸轮的重要加工工序完成了加工程序和刀路仿真,并针对该重要工序设计夹具。通过对本课题的研究,能让学生深刻理解当前进行此类产品进行加工工艺决策的理论,有助于将其在几年大学所学习知识与实践结合并得到综合运用。使其初步具备从事技术和科研工作的能力。 2、学生应完成的任务收集并吸收关于此类产品的加工工艺决策理论的资料,深刻理解基于CAD/CAM的数控编程技术,将二者有机的结合在一起并运用于空间凸轮重要工序的加工程序编制并设计夹具(提供NC程序及电子或纸质夹具图)。

3、论文各部分内容及时间分配:(共 15 周) 第一部分 收集资料,吸收消化 ( 3周) 第二部分 确定技术路线,整理论文思路 (1 周) 第三部分 完成论文初稿 ( 6周) 第四部分 修改论文 ( 1周) 第五部分 定稿及其他 ( 1周) 评阅及答辩 ( 周) 备 注 指导教师: 年 月 日 审 批 人: 年 月 日

曲面接触原理及其在空间凸轮数控加工中应用

河 北 工 业 科 技 第19卷 第4期 第5页H EBE I JOU RNAL O F I NDU STR I AL V o l.19 N o.4 P.5总第74期 2002年SC IEN CE&T ECHNOLO GY Sum74 2002 文章编号:100821534(2002)0420005203 曲面接触原理及其在空间 凸轮数控加工中应用 何兆太1,刘鹄然2 (11黄石高等专科学校机械系,湖北黄石 435003;21中南大学铁道学院,湖南长沙 410075) 摘 要:将曲面与曲面之间的接触原理应用于数控加工中,解决了圆柱凸轮、圆锥凸轮等空间凸轮的精密加工问题。该方法是通过凸轮展开后,凸轮的轴向坐标、周向坐标和转角的几何关系及其曲线方程,解算出凸轮的切向矢量,进而求出圆柱型铣刀接触点的法向矢量及其接触点的坐标,即完成凸轮转角与刀具轴向移动间的对应关系——刀具轨迹计算,实现凸轮的数控加工。 关键词:凸轮;数控加工;刀具轨迹 中图分类号:TH721 文献标识码:A 曲面与曲面之间的接触条件是数学几何中的常用原理,将其应用于数控加工中,解决了圆柱凸轮、非圆齿轮和复杂曲面的数控加工计算问题。该方法是通过凸轮展开后,凸轮的轴向坐标、周向坐标和转角的几何关系及其曲线方程,解算出凸轮的切向矢量,进而求出圆柱型铣刀接触点的法向矢量及其接触点的坐标,即完成凸轮转角与刀具轴向移动间的对应关系——刀具轨迹计算,实现凸轮的数控加工[1,2]。 精密络筒机导轮圆柱凸轮及其展开图分别如图1、图2所示,x,Ν分别为轴向和周向坐标,轮廓曲线由x=x(Ν)表示,见图3。设圆柱的半径为r,圆心角为?,有Ν=r?,?=Ν r ,则凸轮曲线的方程可表示为 收稿日期:2002201224;修回日期:2002204208 责任编辑:卞铜身 作者简介:何兆太(19492),男,湖北大冶人,副教授,研究方向为机械制造自动化与曲面加工。 图1 圆柱凸轮的展开图 F ig.1 T he unfo lding figure of cylinder cam x=x,y=r co sΥ,z=r sin?。 Υ为凸轮上的角度位置坐标,当转过<角后有: x=x,y=r co s(?+<),z=r sin(?+<)。 <为凸轮转角,切线矢量为 t x=1,t y=-r d? d x sin(?+<),z=r d? d x co s(?+<)。 加工的刀具为圆柱指状铣刀,其半径为r s,

圆柱凸轮建模

成一个圆柱凸轮,外径D=100,长度L=240,滚子半径Rr=30.从动件运动规律:凸轮转角0——120度时,从动件以余弦运动规律向一端移动160;从120——1150度时,从动件静止(远休止);从150——100度时,从动件以余弦运动规律向另一端移动160,回来;300——360度时,从动件又不动。 一、新建文件 大家都很熟悉,所以就不多说了。 二、生成位移曲线 操作相同,但是位移曲线就必须注意了。 1.单击(插入基准曲线),选择“从方程”,“完成”。 2.弹出如下对话框。选择坐标系PRT_CSYS_DEF,在新弹出的【菜单管理器】中,选择【设置坐标类型/笛卡儿】。 3.输入方程。 注意:在盘形凸轮建模中,一般以转角为X轴,范围0——360,从动件位移为Y轴。但是在此,我们将圆柱凸轮展开,可以看成一个长方体,这样凸轮的沟槽就自动呈现在我们眼前,这沟槽就是我们要的位移曲线。

因此,位移曲线是这样的:X轴范围为0——PI*D,也就是底面圆的周长。Y轴仍然是从动件位移。 STEP1 现在我们来输入推程段(转角0——120)的方程: 说明:X的方程中,100是半径,是转角。由于底面圆展开成横轴X,因此X 即为弧长(为半径乘以转角),即为。 STEP2 点击记事本的【文件/保存】,然后退出。 点击【曲线:从方程】中的【确定】。产生如图的曲线。 同理可以输入另外三段曲线方程,这里不重复说明,例如远休止段(120——150)为: 150——300段: 300——360段:

最终生成结果如图: 4.保存为IGES格式。 确定,弹出下面的对话框,做出如图的选择,确定,完成IGES副本的保存。 三、生成凸轮凹槽 1.拉伸出基体 大家都很熟悉,故不详述了。 (1) (2)绘制一个矩形。 (3)工具——关系

圆柱分度凸轮的精确建模与数控编程

文章编号:1001-2265(2010)10-0091-03 收稿日期:2010-04-16 作者简介:王卫兵(1974 ),男,江西南昌人,江西赣江职业技术学院副教授,硕士,主要从事机械设计与制造相关技术的研究,(E -m ail) w _oli ve @si na .co m 。 圆柱分度凸轮的精确建模与数控编程 王卫兵,董燕,胡志新 (江西赣江职业技术学院,南昌 330108) 摘要:应用UG 的二次开发工具UG /Gr i p 开发了圆柱分度凸轮的建模系统,实现了圆柱分度凸轮的三维数字化精确建模,再利用UG CAM 模块的可变轴曲面轮廓铣对凸轮沟槽进行数控编程与加工,提高了圆柱分度凸轮数控加工的质量和效率。 关键词:圆柱分度凸轮;二次开发;多轴编程;UG /Grip 中图分类号:TH 16;TG65 文献标识码:A Prec iseM ode ling and NC Programm ing of C ylindrical Indexing Ca m Based on A pplication D evelop m ent of U nigraphics WANG W ei b i n g ,DONG Yan,HU Zh i x i n g (Jiangx i Ganjiang V ocational Co llege ,Nanchang 330108,Ch i n a) Abst ract :On t he basis of t he analysis of surf ace c har acteristics f o r cylindrical indexing ca m ,has estab lished modeling syste m of t hree di m ensional dig itization model f o r cylindrical indexing ca m by UG /Grip ofUG re development tool .On t he basis of discussing f our axis machining appr oach of cy lindrical indexing ca m gr oove ,t he f our axis tool pat h of t he cy lindrical indexing ca m is gener ated by variable cont ourmac hining sche ma in U nigr aphics . K ey w ords :cy lindrical indexing ca m ;UG /G rip ;NC pr ogr a m ming ;r e develop ment of unigr aphics 0 引言 圆柱分度凸轮机构用于两垂直交错轴间的间隙分度步进运动,具有定位精度高、承载能力大、运动平稳等特点。广泛应用于各种机床与机械设备的间 隙步进机构与步进供料装置等[1] 。圆柱分度凸轮是机构中的关键部件,决定了整个机构的运动学和动力学性能。因此,对凸轮廓面的精确设计与数控加工精度保证的研究至关重要。 使用常规的C AD 建模工具进行圆柱分度凸轮的三维造型比较困难,采用传统的加工方法也难以保证凸轮槽的加工精度。龙村等[2] 、李俊源[3] 分别在AutoCAD 与So lid W orks 环境下,利用VB A 开发了圆柱凸轮的三维CAD 系统,未能实现造型与编程的集成。为了达到较高的凸轮廓面精度,必须对圆柱分度凸轮进行数控加工。圆柱凸轮沟槽的数控加工传统上采用三轴联动的范成等径加工或非等径加工,通过工件的旋转,铣刀作XY 联动,切割加工出凸轮的沟槽 [4 5] 。等径加工的刀具直径必须与滚子相等, 由于不可避免的刀具磨损,因此很难保证加工精度。非等径加工存在的问题有:一是不能按照零件的精确形状进行走刀;二是由于零件的旋转与主轴的移动不能完全同步产生较大误差;三是切削过程中不同的切削位置其实际的切削进给并不相等。因而这种加工方法的精度受到限制。 UG NX 是广泛应用于机械工程领域的集成化C AD /CAM /C AE 软件,其提供UG /Grip 可以对软件功能进行二次开发,以增强UG 的功能,并实现用户 化的定制[6] 。本文利用UG /Grip 编程工具开发了圆柱分度凸轮辅助建模系统,可方便地实现不同结构参数的圆柱分度凸轮精确建模,再利用UG NX 加工模块的可变轴曲面轮廓铣编制凸轮沟槽的多轴加工程序。 1 圆柱分度凸轮精确建模 1 1 圆柱分度凸轮的方程 [1 2] 圆柱分度凸轮机构的坐标系包括有:与机架相连的定坐标系X 0Y 0Z 0,与凸轮相连的动坐标系 91 2010年第10期 工艺与装备

自动车床凸轮设计教程

1.自动车床主要靠凸轮来控制加工过程,能否设计出一套好的凸轮,是体现自动车床师傅的技术高低的一个标准。凸轮设计计算的资料不多,在此,我将一些基本的凸轮计算方法送给大家。凸轮是由一组或多组螺旋线组成的,这是一种端面螺旋线,又称阿基米德螺线。其形成的主要原理是:由A点作等速旋转运动,同时又使A点沿半径作等速移动,形成了一条复合运动轨迹的端面螺线。这就是等速凸轮的曲线。 凸轮的计算有几个专用名称: 1、上升曲线——凸轮上升的起点到最高点的弧线称为上升曲线 2、下降曲线——凸轮下降的最高点到最低点的弧线称为下降曲线 3、升角——从凸轮的上升起点到最高点的角度,即上升曲线的角度。我们定个代号为φ。 4、降角——从凸轮的最高点到最低点的角度,即下降曲线的角度。代号为φ1。 5、升距——凸轮上升曲线的最大半径与最小半径之差。我们给定代号为h,单位是毫米。 6、降距——凸轮下降曲线的最大半径与最小半径之差。代号为h1。 7、导程——即凸轮的曲线导程,就是假定凸轮曲线的升角(或降角)为360°时凸轮的升距(或降距)。代号为L,单位是毫米。 8、常数——是凸轮计算的一个常数,它是通过计算得来的。代号为K。 凸轮的升角与降角是给定的数值,根据加工零件尺寸计算得来的。 凸轮的常数等于凸轮的升距除以凸轮的升角,即K=h/φ。由此得h=Kφ。 凸轮的导程等于360°乘以常数,即L=360°K。由此得L=360°h/φ。 举个例子: . .

一个凸轮曲线的升距为10毫米,升角为180°,求凸轮的曲线导程。(见下图) 解:L=360°h/φ=360°×10÷180°=20毫米 升角(或降角)是360°的凸轮,其升距(或降距)即等于导程。 这只是一般的凸轮基本计算方法,比较简单,而自动车床上的凸轮,有些比较简单,有些则比较复杂。在实际运用中,许多人只是靠经验来设计,用手工制作,不需要计算,而要用机床加工凸轮,特别是用数控机床加工凸轮,却是需要先计算出凸轮的导程,才能进行电脑程序设计。 要设计凸轮有几点在开始前就要了解的. 在我们拿到产品图纸的时候,看好材料,根据材料大小和材质将这款产品 的 主轴转速先计算出来. 计算主轴转速公式是[切削速度乘1000]除以材料直径. 切削速度是根据材质得来的,在购买材料时供应商提供.单位是米/分钟. 材料硬度越大,切削速度就越小,切的太快的话热量太大会导致材料变形, 所以切削速度已知的. 切削速度乘1000就是把米/分钟换算成毫米/分钟,在除以材料直径就是 主 轴每分钟的转速了.材料直径是每转的长度,切削速度是刀尖每分钟可以移动的 距离. 主轴转速求出来了,就要将一个产品需要多少转可以做出来,这个转的圈数求出来.主轴转速除以每个产品需要的圈数就是生产效率.[单位.个/分钟] . .

相关主题
文本预览
相关文档 最新文档