当前位置:文档之家› 集成电路试卷及答案

集成电路试卷及答案

集成电路试卷及答案
集成电路试卷及答案

一、名词解释

1. 运放输入失调电压Uos

为了使集成运放在零输入时达到零输出,需在其输入端加一个直流补偿电压,这个直流补偿电压的大小即为输入失调电压,两者的方向相反。

2.共模拟制比CMRR

集成运放工作于线性区时,其差模电压增益Aud 与共模电压增益Auc 之比称为共模抑制比,

即 或

3.单位增益带宽GW

指集成运放在闭环增益为1倍状态下,当用正弦小信号驱动时,其闭环增益下降至0.707倍时频率。

4.电压比较器鉴别灵敏度

鉴别灵敏度又称为分辨率或转换精度,它是指电压比较器的输出状态发生跳变所需要的输入模拟信号电压的最小变化量。

5.D/A 转换器分辨率

是指DAC 能分辨的最小输出模拟增量,取决于输入数字量的二进制位数。

6.A/D 转换器分辨率

对应于最小数字量的模拟电压值称为分辨率,它表示对模拟信号进行数字化能够达到多细的程度。

二、简答题

1.仪器放大器的特点

仪器放大器是具有高增益、高增益精度、高共模抑制比、高输入电阻、低噪声、高线性度的集成放大器;主要应用于小信号放大。

2.迟滞电压比较器与普通电压比较器的区别

迟滞电压比较器具有两个门限电位:上门限电位、下门限电位,并具有正反馈回路,从而获得迟滞特性,同时也加快了比较器的转换过程。

3.新型低压差集成稳压器的特点,其主要应用于怎样的系统? 新型低压差集成稳压器把输入/输出电压差降低到0.5~0.6V 。甚至65~150mV ,显著提高了稳压电源的效率。在笔记本电脑、小型数字仪表和测量装置及通信设备等电池供电的系统中得到广泛应用。

uc ud

CMRR A A =(dB) lg 20CMRR uc ud ???

? ??=A A

1.简述逐次比较型A/D转换器的工作原理,并绘出其原理框图。

(1)MSB高位输出为1,其余个位全为0,U X与D/A转换器输出U0比较,若U X﹥U0

比较器输出为低电平,使寄存器的输出不变。若U X﹤U0,比较器输出为高电平,寄存器MSB 的高位输出变为0

(2)MSB次高位输出为1 U X与D/A转换器输出U0比较,若U X﹥U0比较器输出为低电平,使寄存器的输出不变。若U X﹤U0,比较器输出为高电平,寄存器MSB的次高位输出变为0 (3)其他位依次类推,完成N位的逐次比较、输出。

数字集成电路复习笔记

数集复习笔记 By 潇然名词解释专项 摩尔定律:一个芯片上的晶体管数目大约每十八个月增长一倍。 传播延时:一个门的传播延时t p定义了它对输入端信号变化的响应有多快。它表示一个信号通过一个门时所经历的延时,定义为输入和输出波形的50%翻转点之间的时间。 由于一个门对上升和下降输入波形的响应时间不同,所以需定义两个传播延时。 t pLH定义为这个门的输出由低至高翻转的响应时间,而t pHL则为输出由高至低翻转 的响应时间。传播延时t p定义为这两个时间的平均值:t p=(t pLH+t pHL)/2。 设计规则:设计规则是指导版图掩膜设计的对几何尺寸的一组规定。它们包括图形允许的最小宽度以及在同一层和不同层上图形之间最小间距的限制与要求。定义设计规则 的目的是为了能够很容易地把一个电路概念转换成硅上的几何图形。设计规则的 作用就是电路设计者和工艺工程师之间的接口,或者说是他们之间的协议。 速度饱和效应:对于长沟MOS管,载流子满足公式:υ= -μξ(x)。公式表明载流子的速度正比于电场,且这一关系与电场强度值的大小无关。换言之,载流子的迁移率 是一个常数。然而在(水平方向)电场强度很高的情况下,载流子不再符合 这一线性模型。当沿沟道的电场达到某一临界值ξc时,载流子的速度将由于 散射效应(即载流子间的碰撞)而趋于饱和。 时钟抖动:在芯片的某一个给定点上时钟周期发生暂时的变化,即时钟周期在每个不同的周期上可以缩短或加长。 逻辑综合:逻辑综合的任务是产生一个逻辑级模型的结构描述。这一模型可以用许多不同的方式来说明,如状态转移图、状态图、电路图、布尔表达式、真值表或HDL描 述。 噪声容限:为了使一个门的稳定性较好并且对噪声干扰不敏感,应当使“0”和“1”的区间越大越好。一个门对噪声的灵敏度是由低电平噪声容限NM L和高电平噪声容限 NM H来度量的,它们分别量化了合法的“0”和“1”的范围,并确定了噪声的 最大固定阈值: NM L =V IL - V OL NM H =V OH - V IH

清华大学2012年集成电路设计实践课程课件

集成电路设计实践
李福乐 lifule@https://www.doczj.com/doc/5a1840243.html, @ g 清华大学微电子学研究所 助教: 李玮韬 王少鹏 liwt07@https://www.doczj.com/doc/5a1840243.html, wspeng511799@https://www.doczj.com/doc/5a1840243.html,
1

集成电路设计实践
课程简介 设计题目与实例 集成电路的制作与设计流程 可测性设计注意事项 芯片规格及封装 基础知识
版图的基本概念 版 的基本概念 CMOS工艺中的元件 版图设计规则 版图设计准则
设计工具的使用(实验课)
2

一、课程简介 一 课程简介
基本情况 学分: 学分:2 时间:春季学期(部分)+秋季学期(部分) 内容: 内容 电路设计、版图设计、芯片加工、样片 封装、样片测试、总结报告。 封装 样片测试 总结报告
3

一、课程简介(续) 、课程简介(续)
课程特点: 课程特点
完整的IC设计流程训练 重点在物理层和后端设计
工艺 集成元件 版图 芯片测试
实践为主, 工作量大 测试结果最重要
4

一、课程简介(续) 、课程简介(续)
安排: 1. 前期:设计题目选择、设计方案、电路 1 前期 设计题目选择 设计方案 电路 设计和仿真、版图设计 2. 中期:芯片加工、整理设计文档。 2 中期 芯片加工 整理设计文档 3. 后期(秋季学期):样片测试、总结报 告、答辩。
5

一、课程简介(续) 、课程简介(续)
第1~9周 第1 9周 教师向学生提供设计规则、版图要求、报告 格式要求;介绍必要的版图知识、设计方法 格式要求 介绍必要的版图知识 设计方法 及工具;有关测试、封装及注意事项;设计 题目介绍等。 2.学生选题与分组 3. 完成可测性电路设计方案及版图设计总体方 案(包括关键电路的处理、管脚安排、PAD 要求、测试点、测试方法等) 第六周与老师讨论前端设计,通过后方可进 第六周与老师讨论前端设计 通过后方可进 行版图设计!
1.
6

集成电路设计实验报告

集成电路设计 实验报告 时间:2011年12月

实验一原理图设计 一、实验目的 1.学会使用Unix操作系统 2.学会使用CADENCE的SCHEMA TIC COMPOSOR软件 二:实验内容 使用schematic软件,设计出D触发器,设置好参数。 二、实验步骤 1、在桌面上点击Xstart图标 2、在User name:一栏中填入用户名,在Host:中填入IP地址,在Password:一栏中填入 用户密码,在protocol:中选择telnet类型 3、点击菜单上的Run!,即可进入该用户unix界面 4、系统中用户名为“test9”,密码为test123456 5、在命令行中(提示符后,如:test22>)键入以下命令 icfb&↙(回车键),其中& 表示后台工作,调出Cadence软件。 出现的主窗口所示: 6、建立库(library):窗口分Library和Technology File两部分。Library部分有Name和Directory 两项,分别输入要建立的Library的名称和路径。如果只建立进行SPICE模拟的线路图,Technology部分选择Don’t need a techfile选项。如果在库中要创立掩模版或其它的物理数据(即要建立除了schematic外的一些view),则须选择Compile a new techfile(建立新的techfile)或Attach to an existing techfile(使用原有的techfile)。 7、建立单元文件(cell):在Library Name中选择存放新文件的库,在Cell Name中输 入名称,然后在Tool选项中选择Composer-Schematic工具(进行SPICE模拟),在View Name中就会自动填上相应的View Name—schematic。当然在Tool工具中还有很多别的

数字集成电路--电路、系统与设计(第二版)复习资料

第一章 数字集成电路介绍 第一个晶体管,Bell 实验室,1947 第一个集成电路,Jack Kilby ,德州仪器,1958 摩尔定律:1965年,Gordon Moore 预言单个芯片上晶体管的数目每18到24个月翻一番。(随时间呈指数增长) 抽象层次:器件、电路、门、功能模块和系统 抽象即在每一个设计层次上,一个复杂模块的内部细节可以被抽象化并用一个黑匣子或模型来代替。这一模型含有用来在下一层次上处理这一模块所需要的所有信息。 固定成本(非重复性费用)与销售量无关;设计所花费的时间和人工;受设计复杂性、设计技术难度以及设计人员产出率的影响;对于小批量产品,起主导作用。 可变成本 (重复性费用)与产品的产量成正比;直接用于制造产品的费用;包括产品所用部件的成本、组装费用以及测试费用。每个集成电路的成本=每个集成电路的可变成本+固定成本/产量。可变成本=(芯片成本+芯片测试成本+封装成本)/最终测试的成品率。 一个门对噪声的灵敏度是由噪声容限NM L (低电平噪声容限)和NM H (高电平噪声容限)来度量的。为使一个数字电路能工作,噪声容限应当大于零,并且越大越好。NM H = V OH - V IH NM L = V IL - V OL 再生性保证一个受干扰的信号在通过若干逻辑级后逐渐收敛回到额定电平中的一个。 一个门的VTC 应当具有一个增益绝对值大于1的过渡区(即不确定区),该过渡区以两个有效的区域为界,合法区域的增益应当小于1。 理想数字门 特性:在过渡区有无限大的增益;门的阈值位于逻辑摆幅的中点;高电平和低电平噪声容限均等于这一摆幅的一半;输入和输出阻抗分别为无穷大和零。 传播延时、上升和下降时间的定义 传播延时tp 定义了它对输入端信号变化的响应有多快。它表示一个信号通过一个门时所经历的延时,定义为输入和输出波形的50%翻转点之间的时间。 上升和下降时间定义为在波形的10%和90%之间。 对于给定的工艺和门的拓扑结构,功耗和延时的乘积一般为一常数。功耗-延时积(PDP)----门的每次开关事件所消耗的能量。 一个理想的门应当快速且几乎不消耗能量,所以最后的质量评价为。能量-延时积(EDP) = 功耗-延时积2 。 第三章、第四章CMOS 器件 手工分析模型 ()0 12' 2 min min ≥???? ??=GT DS GT D V V V V V L W K I 若+-λ ()DSAT DS GT V V V V ,,m in min = 寄生简化:当导线很短,导线的截面很大时或当 所采用的互连材料电阻率很低时,电感的影响可 以忽略:如果导线的电阻很大(例如截面很小的长 铝导线的情形);外加信号的上升和下降时间很慢。 当导线很短,导线的截面很大时或当所采用的互 连材料电阻率很低时,采用只含电容的模型。 当相邻导线间的间距很大时或当导线只在一段很短的距离上靠近在一起时:导线相互间的电容可 以被忽略,并且所有的寄生电容都可以模拟成接 地电容。 平行板电容:导线的宽度明显大于绝缘材料的厚 度。 边缘场电容:这一模型把导线电容分成两部分: 一个平板电容以及一个边缘电容,后者模拟成一 条圆柱形导线,其直径等于该导线的厚度。 多层互连结构:每条导线并不只是与接地的衬底 耦合(接地电容),而且也与处在同一层及处在相邻层上的邻近导线耦合(连线间电容)。总之,再多层互连结构中导线间的电容已成为主要因素。这一效应对于在较高互连层中的导线尤为显著,因为这些导线离衬底更远。 例4.5与4.8表格 电压范围 集总RC 网络 分布RC 网络 0 → 50%(t p ) 0.69 RC 0.38 RC 0 → 63%(τ) RC 0.5 RC 10% → 90%(t r ) 2.2 RC 0.9 RC 0 → 90% 2.3 RC 1.0 RC 例4.1 金属导线电容 考虑一条布置在第一层铝上的10cm 长,1μm 宽的铝线,计算总的电容值。 平面(平行板)电容: ( 0.1×106 μm2 )×30aF/μm2 = 3pF 边缘电容: 2×( 0.1×106 μm )×40aF/μm = 8pF 总电容: 11pF 现假设第二条导线布置在第一条旁边,它们之间只相隔最小允许的距离,计算其耦合电 容。 耦合电容: C inter = ( 0.1×106 μm )×95 aF/μm2 = 9.5pF 材料选择:对于长互连线,铝是优先考虑的材料;多晶应当只用于局部互连;避免采用扩散导线;先进的工艺也提供硅化的多晶和扩散层 接触电阻:布线层之间的转接将给导线带来额外的电阻。 布线策略:尽可能地使信号线保持在同一层上并避免过多的接触或通孔;使接触孔较大可以降低接触电阻(电流集聚在实际中将限制接触孔的最大尺寸)。 采电流集聚限制R C , (最小尺寸):金属或多晶至n+、p+以及金属至多晶为 5 ~ 20 Ω ;通孔(金属至金属接触)为1 ~ 5 Ω 。 例4.2 金属线的电阻 考虑一条布置在第一层铝上的10cm 长,1μm 宽的铝线。假设铝层的薄层电阻为0.075Ω/□,计算导线的总电阻: R wire =0.075Ω/□?(0.1?106 μm)/(1μm)=7.5k Ω 例4.5 导线的集总电容模型 假设电源内阻为10k Ω的一个驱动器,用来驱动一条10cm 长,1μm 宽的Al1导线。 电压范围 集总RC 网络 分布RC 网络 0 → 50%(t p ) 0.69 RC 0.38 RC 0 → 63%(τ) RC 0.5 RC 10% → 90%(t r ) 2.2 RC 0.9 RC 0 → 90% 2.3 RC 1.0 RC 使用集总电容模型,源电阻R Driver =10 k Ω,总的集总电容C lumped =11 pF t 50% = 0.69 ? 10 k Ω ? 11pF = 76 ns t 90% = 2.2 ? 10 k Ω ? 11pF = 242 ns 例4.6 树结构网络的RC 延时 节点i 的Elmore 延时: τDi = R 1C 1 + R 1C 2 + (R 1+R 3) C 3 + (R 1+R 3) C 4 + (R 1+R 3+R i ) C i 例4.7 电阻-电容导线的时间常数 总长为L 的导线被分隔成完全相同的N 段,每段的长度为L/N 。因此每段的电阻和电容分别为rL/N 和cL/N R (= rL) 和C (= cL) 是这条导线总的集总电阻和电容()()()N N RC N N N rcL Nrc rc rc N L DN 2121 (22) 22 +=+=+++?? ? ??=τ 结论:当N 值很大时,该模型趋于分布式rc 线;一条导线的延时是它长度L 的二次函数;分布rc 线的延时是按集总RC 模型预测的延时的一半. 2 rcL 22=RC DN = τ 例4.8 铝线的RC 延时.考虑长10cm 宽、1μm 的Al1导线,使用分布RC 模型,c = 110 aF/μm 和r = 0.075 Ω/μm t p = 0.38?RC = 0.38 ? (0.075 Ω/μm) ? (110 aF/μm) ? (105 μm)2 = 31.4 ns Poly :t p = 0.38 ? (150 Ω/μm) ? (88+2?54 aF/μm) ? (105 μm)2 = 112 μs Al5: t p = 0.38 ? (0.0375 Ω/μm) ? (5.2+2?12 aF/μm) ? (105 μm)2 = 4.2 ns 例4.9 RC 与集总C 假设驱动门被模拟成一个电压源,它具有一定大小的电源内阻R s 。 应用Elmore 公式,总传播延时: τD = R s C w + (R w C w )/2 = R s C w + 0.5r w c w L 2 及 t p = 0.69 R s C w + 0.38 R w C w 其中,R w = r w L ,C w = c w L 假设一个电源内阻为1k Ω的驱动器驱动一条1μm 宽的Al1导线,此时L crit 为2.67cm 第五章CMOS 反相器 静态CMOS 的重要特性:电压摆幅等于电源电压 → 高噪声容限。逻辑电平与器件的相对尺寸无关 → 晶体管可以采用最小尺寸 → 无比逻辑。稳态时在输出和V dd 或GND 之间总存在一条具有有限电阻的通路 → 低输出阻抗 (k Ω) 。输入阻抗较高 (MOS 管的栅实际上是一个完全的绝缘体) → 稳态输入电流几乎为0。在稳态工作情况下电源线和地线之间没有直接的通路(即此时输入和输出保持不变) → 没有静态功率。传播延时是晶体管负载电容和电阻的函数。 门的响应时间是由通过电阻R p 充电电容C L (电阻R n 放电电容C L )所需要的时间决定的 。 开关阈值V M 定义为V in = V out 的点(在此区域由于V DS = V GS ,PMOS 和NMOS 总是饱和的) r 是什么:开关阈值取决于比值r ,它是PMOS 和NMOS 管相对驱动强度的比 DSATn n DSATp p DD M V k V k V V = ,r r 1r +≈ 一般希望V M = V DD /2 (可以使高低噪声容限具有相近的值),为此要求 r ≈ 1 例5.1 CMOS 反相器的开关阈值 通用0.25μm CMOS 工艺实现的一个CMOS 反相器的开关阈值处于电源电压的中点处。 所用工艺参数见表3.2。假设V DD = 2.5V ,最小尺寸器件的宽长比(W/L)n 为1.5 ()()()()()()()() V V L W V V V V k V V V V k L W L W M p DSATp Tp M DSATp p DSATn Tn M DSATn n n p 25.125.55.15.35.320.14.025.1263.043.025.10.163.01030101152266==?==----?-???----=---= 分析: V M 对于器件比值的变化相对来说是不敏感 的。将比值设为3、2.5和2,产生的V M 分别为 1.22V 、1.18V 和 1.13V ,因此使PMOS 管的宽度小于完全对称所要求的值是可以接受的。 增加PMOS 或NMOS 宽度使V M 移向V DD 或GND 。不对称的传输特性实际上在某些设计中是所希望的。 噪声容限:根据定义,V IH 和V IL 是dV out /dV in = -1(= 增益)时反相器的工作点 逐段线性近似V IH = V M - V M /g V IL = V M + (V DD - V M )/g 过渡区可以近似为一段直线,其增益等于 在开关阈值V M 处的增益g 。它与V OH 及V OL 线的交点 用来定义V IH 和V IL 。点。

集成电路设计实训

研究生课程开设申请表 开课院(系、所):集成电路学院 课程申请开设类型:新开√重开□更名□(请在□内打勾,下同)

一、课程介绍(含教学目标、教学要求等)(300字以内) 本课程将向学生提供集成电路设计的理论与实例相结合的培养训练,讲述包括电路设计与仿真、版图设计和验证以及寄生参数提取的完整全定制集成电路设计流程以及CADENCE与IC制造厂商的工艺库配合等内容。通过系统的理论学习与上机实践,学生可掌握集成电路设计流程以及各阶段所使用的工具,并能进行集成电路的设计工作。 掌握资料查询、文献检索及运用现代信息技术获取相关信息的基本方法;培养学生具有一定的设计,归纳、整理、分析设计结果,撰写论文,参与学术交流的能力。 指导学生学会如何利用现代的EDA工具设计集成电路,培养学生的工程设计意识,启发学生的创新思想。 全面了解集成电路设计、制造、封装、测试的完整芯片制成技术,提高综合运用微电子技术知识的能力和实践能力。 二、教学大纲(含章节目录):(可附页) 第一章cadence集成电路设计软件介绍 第二章偏置电路设计 第三章基本运放和高性能运放 第四章比较器、振荡器设计 第五章电源系统设计(LDO与DC-DC) 三、教学周历

四、主讲教师简介: 常昌远,男,1961年10月出生,2000年东南大学微电子专业博士毕业,现为东南大学副教授,硕士研究生导师。长期从事微电子和自动控制领域内的教学、科研和指导研究生工作。参加过国家自然科学基金重点项目的研究、并主持与IC设计企业合作的多项横向研究课题。近年来主要从事显示控制芯片和电源管理芯片DC-DC、LDO等产品的开发,在CMOS数字集成电路、模拟集成电路的分析、设计与研发、系统的建模和稳定性设计等方面积累了较丰富的实际工作经验。教学方面,主讲包括与研究方向有关的“半导体功率器件”,“自动控制原理”,CMOS模拟集成电路设计等课程。已在国内核心刊物上发表学术论文20余篇,获国家专利1项。目前在东南大学IC学院负责集成电路设计与MPW项目建

#《数字集成电路设计》复习提纲

《数字集成电路设计》复习提纲(1-7章) 2011-12 1. 数字集成电路的成本包括哪几部分? ● NRE (non-recurrent engineering) costs 固定成本 ● design time and effort, mask generation ● one-time cost factor ● Recurrent costs 重复性费用或可变成本 ● silicon processing, packaging, test ● proportional to volume ● proportional to chip area 2. 数字门的传播延时是如何定义的? 一个门的传播延时tp 定义了它对输入端信号变化的响应有多快。 3. 集成电路的设计规则(design rule)有什么作用? ? Interface between designer and process engineer ? Guidelines for constructing process masks ? Unit dimension: Minimum line width ? scalable design rules: lambda parameter (可伸缩设计规则,其不足:只能在有限 的尺寸范围内进行。) ? absolute dimensions (micron rules,用绝对尺寸来表示。) 4. 什么是MOS 晶体管的体效应? 5. 写出一个NMOS 晶体管处于截止区、线性区、饱和区的判断条件,以及各工作区的源漏电流表达式(考虑短沟效应即沟道长度调制效应,不考虑速度饱和效应) 注:NMOS 晶体管的栅、源、漏、衬底分别用G 、S 、D 、B 表示。 6. MOS 晶体管的本征电容有哪些来源? 7. 对于一个CMOS 反相器的电压传输特性,请标出A 、B 、C 三点处NMOS 管和PMOS 管各自处于什么工作区? V DD 8. 在CMOS 反相器中,NMOS 管的平均导通电阻为R eqn ,PMOS 管的平均导通电阻为R eqp ,请写出该反相器的总传播延时定义。 9. 减小一个数字门的延迟的方法有哪些?列出三种,并解释可能存在的弊端。 ? Keep capacitances small (减小CL ) ? Increase transistor sizes(增加W/L) ? watch out for self-loading! (会增加CL ) ? Increase VDD (????) V out V in 0.5 11.522.5

集成电路设计方法的发展历史

集成电路设计方法的发展历史 、发展现状、及未来主流设 计方法报告 集成电路是一种微型电子器件或部件,为杰克·基尔比发明,它采用一定的工艺,把一个电路中所需的晶体管、二极管、电阻、电容和电感等元件及布线互连一起,制作在一小块或几小块半导体晶片或介质基片上,然后封装在一个管壳内,成为具有所需电路功能的微型结构;其中所有元件在结构上已组成一个整体,使电子元件向着微小型化、低功耗和高可靠性方面迈进了一大步。集成电路具有体积小,重量轻,引出线和焊接点少,寿命长,可靠性高,性能好等优点,同时成本低,便于大规模生产。它不仅在工、民用电子设备如收录机、电视机、计算机等方面得到广泛的应用,同时在军事、通讯、遥控等方面也得到广泛的应用。用集成电路来装配电子设备,其装配密度比晶体管可提高几十倍至几千倍,设备的稳定工作时间也可大大提高。 一、集成电路的发展历史: 1947年:贝尔实验室肖克莱等人发明了晶体管,这是微电子技术发展中第一个里程碑; 1950年:结型晶体管诞生; 1950年: R Ohl和肖特莱发明了离子注入工艺; 1951

年:场效应晶体管发明; 1956年:C S Fuller发明了扩散工艺; 1958年:仙童公司Robert Noyce与德仪公司基尔比间隔数月分别发明了集成电路,开创了世界微电子学的历史; 1960年:H H Loor和E Castellani发明了光刻工艺;1962年:美国RCA公司研制出MOS场效应晶体管; 1963年:和首次提出CMOS技术,今天,95%以上的集成电路芯片都是基于CMOS工艺; 1964年:Intel摩尔提出摩尔定律,预测晶体管集成度将会每18个月增加1倍; 1966年:美国RCA公司研制出CMOS集成电路,并研制出第一块门阵列; 1967年:应用材料公司成立,现已成为全球最大的半导体设备制造公司; 1971年:Intel推出1kb动态随机存储器,标志着大规模集成电路出现; 1971年:全球第一个微处理器4004Intel公司推出,采用的是MOS工艺,这是一个里程碑式的发明; 1974年:RCA公司推出第一个CMOS微处理器1802; 1976年:16kb DRAM和4kb SRAM问世; 1978年:64kb动态随机存储器诞生,不足平方厘米的硅片上集成了14万个晶体管,标志着超大规模集成电路时

专用集成电路

实验一 EDA软件实验 一、实验目的: 1、掌握Xilinx ISE 9.2的VHDL输入方法、原理图文件输入和元件库的调用方法。 2、掌握Xilinx ISE 9.2软件元件的生成方法和调用方法、编译、功能仿真和时序仿真。 3、掌握Xilinx ISE 9.2原理图设计、管脚分配、综合与实现、数据流下载方法。 二、实验器材: 计算机、Quartus II软件或xilinx ISE 三、实验内容: 1、本实验以三线八线译码器(LS74138)为例,在Xilinx ISE 9.2软件平台上完成设计电 路的VHDL文本输入、语法检查、编译、仿真、管脚分配和编程下载等操作。下载芯片选择Xilinx公司的CoolRunner II系列XC2C256-7PQ208作为目标仿真芯片。 2、用1中所设计的的三线八线译码器(LS74138)生成一个LS74138元件,在Xilinx ISE 9.2软件原理图设计平台上完成LS74138元件的调用,用原理图的方法设计三线八线译 码器(LS74138),实现编译,仿真,管脚分配和编程下载等操作。 四、实验步骤: 1、三线八线译码器(LS 74138)VHDL电路设计 (1)三线八线译码器(LS74138)的VHDL源程序的输入 打开Xilinx ISE 6.2编程环境软件Project Navigator,执行“file”菜单中的【New Project】命令,为三线八线译码器(LS74138)建立设计项目。项目名称【Project Name】为“Shiyan”,工程建立路径为“C:\Xilinx\bin\Shiyan1”,其中“顶层模块类型(Top-Level Module Type)”为硬件描述语言(HDL),如图1所示。 图1 点击【下一步】,弹出【Select the Device and Design Flow for the Project】对话框,在该对话框内进行硬件芯片选择与工程设计工具配置过程。

数字集成电路必备考前复习总结

Digital IC:数字集成电路是将元器件和连线集成于同一半导体芯片上而制成的数字逻辑电路 或系统 第一章引论 1、数字IC芯片制造步骤 设计:前端设计(行为设计、体系结构设计、结构设计)、后端设计(逻辑设计、电路设计、版图设计) 制版:根据版图制作加工用的光刻版 制造:划片:将圆片切割成一个一个的管芯(划片槽) 封装:用金丝把管芯的压焊块(pad)与管壳的引脚相连 测试:测试芯片的工作情况 2、数字IC的设计方法 分层设计思想:每个层次都由下一个层次的若干个模块组成,自顶向下每个层次、每个模块分别进行建模与验证 SoC设计方法:IP模块(硬核(Hardcore)、软核(Softcore)、固核(Firmcore))与设计复用Foundry(代工)、Fabless(芯片设计)、Chipless(IP设计)“三足鼎立”——SoC发展的模式 3、数字IC的质量评价标准(重点:成本、延时、功耗,还有能量啦可靠性啦驱动能力啦 之类的) NRE (Non-Recurrent Engineering) 成本 设计时间和投入,掩膜生产,样品生产 一次性成本 Recurrent 成本 工艺制造(silicon processing),封装(packaging),测试(test) 正比于产量 一阶RC网路传播延时:正比于此电路下拉电阻和负载电容所形成的时间常数 功耗:emmmm自己算 4、EDA设计流程 IP设计系统设计(SystemC)模块设计(verilog) 综合 版图设计(.ICC) 电路级设计(.v 基本不可读)综合过程中用到的文件类型(都是synopsys版权): 可以相互转化 .db(不可读).lib(可读) 加了功耗信息

集成电路设计方法--复习提纲

集成电路设计方法--复习提纲 2、实际约束:设计最优化约束:建立时钟,输入延时,输出延时,最大面积 设计规则约束:最大扇出,最大电容 39.静态时序分析路径的定义 静态时序分析通过检查所有可能路径上的时序冲突来验证芯片设计的时序正确性。时序路径的起点是一个时序逻辑单元的时钟端,或者是整个电路的输入端口,时序路径的终点是下一个时序逻辑单元的数据输入端,或者是整个电路的输出端口。 40.什么叫原码、反码、补码? 原码:X为正数时,原码和X一样;X为负数时,原码是在X的符号位上写“1”反码:X为正数是,反码和原码一样;X为负数时,反码为原码各位取反 补码:X为正数时,补码和原码一样;X为负数时,补码在反码的末位加“1” 41.为什么说扩展补码的符号位不影响其值? SSSS SXXX = 1111 S XXX + 1 —— 2n2n12n1例如1XXX=11XXX,即为XXX-23=XXX+23-24. 乘法器主要解决什么问题? 1.提高运算速度2.符号位的处理 43.时钟网络有哪几类?各自优缺点? 1. H树型的时钟

网络: 优点:如果时钟负载在整个芯片内部都很均衡,那么H 树型时钟网络就没有系统时钟偏斜。缺点:不同分支上的叶节点之间可能会出现较大的随机偏差、漂移和抖动。 2. 网格型的时钟网络 优点:网格中任意两个相近节点之间的电阻很小,所以时钟偏差也很小。缺点:消耗大量的金属资源,产生很大的状态转换电容,所以功耗较大。 3.混合型时钟分布网络优点:可以提供更小的时钟偏斜,同时,受负载的影响比较小。缺点:网格的规模较大,对它的建模、自动生成可能会存在一些困难。 总线的传输机制? 1. 早期:脉冲式机制和握手式机制。 脉冲式机制:master发起一个请求之后,slave在规定的t时间内返回数据。 握手式机制:master发出一个请求之后,slave在返回数据的时候伴随着一个确认信号。这样子不管外设能不能在规定的t时间内返回数据,master都能得到想要的数据。 2. 随着CPU频率的提高,总线引入了wait的概念 如果slave能在t时间内返回数据,那么这时候不能把wait信号拉高,如果slave不能在t时间内返回数据,那么必须在t时间内将wait信号拉高,直到slave将可以返回

数字集成电路复习指南..

1. 集成电路是指通过一系列特定的加工工艺,将晶体管、二极管、MOS管等有源器件和阻、电容、电感等无源器件,按一定电路互连,“集成”在一块半导体晶片(硅或砷化镓)上,封装在一个外壳内,执行特定电路或系统功能的一种器件。 2.集成电路的规模大小是以它所包含的晶体管数目或等效的逻辑门数目来衡量。等效逻辑门通常是指两输入与非门,对于CMOS集成电路来说,一个两输入与非门由四个晶体管组成,因此一个CMOS电路的晶体管数除以四,就可以得到该电路的等效逻辑门的数目,以此确定一个集成电路的集成度。 3.摩尔定律”其主要内容如下: 集成电路的集成度每18个月翻一番/每三年翻两番。 摩尔分析了集成电路迅速发展的原因, 他指出集成度的提高主要是三方面的贡献: (1)特征尺寸不断缩小,大约每3年缩小1.41倍; (2)芯片面积不断增大,大约每3年增大1.5倍; (3)器件和电路结构的改进。 4.反标注是指将版图参数提取得到的分布电阻和分布电容迭加到相对应节点的参数上去,实际上是修改了对应节点的参数值。 5.CMOS反相器的直流噪声容限:为了反映逻辑电路的抗干扰能力,引入了直流噪声容限作为电路性能参数。直流噪声容限反映了电流能承受的实际输入电平与理想逻辑电平的偏离范围。 6. 根据实际工作确定所允许的最低输出高电平,它所对应的输入电平定义为关门电平;给定允许的最高输出低电平,它所对应的输入电平为开门电平 7. 单位增益点. 在增益为0和增益很大的输入电平的区域之间必然存在单位增益点,即dV out/dVin=1的点 8. “闩锁”现象 在正常工作状态下,PNPN四层结构之间的电压不会超过Vtg,因 此它处于截止状态。但在一定的外界因素触发下,例如由电源或 输出端引入一个大的脉冲干扰,或受r射线的瞬态辐照,使 PNPN四层结构之间的电压瞬间超过Vtg,这时,该寄生结构中就 会出现很大的导通电流。只要外部信号源或者Vdd和Vss能够提供 大于维持电流Ih的输出,即使外界干扰信号已经消失,在PNPN四 层结构之间的导通电流仍然会维持,这就是所谓的“闩锁”现象 9. 延迟时间: T pdo ——晶体管本征延迟时间; UL ——最大逻辑摆幅,即最大电源电压; Cg ——扇出栅电容(负载电容); Cw ——内连线电容; Ip ——晶体管峰值电流。

集成电路设计流程

集成电路设计流程 . 集成电路设计方法 . 数字集成电路设计流程 . 模拟集成电路设计流程 . 混合信号集成电路设计流程 . SoC芯片设计流程 State Key Lab of ASIC & Systems, Fudan University 集成电路设计流程 . 集成电路设计方法 . 数字集成电路设计流程 . 模拟集成电路设计流程 . 混合信号集成电路设计流程 . SoC芯片设计流程 State Key Lab of ASIC & Systems, Fudan University 正向设计与反向设计 State Key Lab of ASIC & Systems, Fudan University 自顶向下和自底向上设计 State Key Lab of ASIC & Systems, Fudan University Top-Down设计 –Top-Down流程在EDA工具支持下逐步成为 IC主要的设计方法 –从确定电路系统的性能指标开始,自系 统级、寄存器传输级、逻辑级直到物理 级逐级细化并逐级验证其功能和性能 State Key Lab of ASIC & Systems, Fudan University Top-Down设计关键技术 . 需要开发系统级模型及建立模型库,这些行 为模型与实现工艺无关,仅用于系统级和RTL 级模拟。 . 系统级功能验证技术。验证系统功能时不必 考虑电路的实现结构和实现方法,这是对付 设计复杂性日益增加的重要技术,目前系统 级DSP模拟商品化软件有Comdisco,Cossap等, 它们的通讯库、滤波器库等都是系统级模型 库成功的例子。 . 逻辑综合--是行为设计自动转换到逻辑结构 设计的重要步骤 State Key Lab of ASIC & Systems, Fudan University

专用集成电路AD的设计

A/D转换器的设计 一.实验目的: (1)设计一个简单的LDO稳压电路 (2)掌握Cadence ic平台下进行ASIC设计的步骤; (3)了解专用集成电路及其发展,掌握其设计流程; 二.A/D转换器的原理: A/D转换器是用来通过一定的电路将模拟量转变为数字量。 模拟量可以是电压、电流等电信号,也可以是压力、温度、湿度、位移、声音等非电信号。但在A/D转换前,输入到A/D转换器的输入信号必须经各种传感器把各种物理量转换成电压信号。符号框图如下: 数字输出量 常用的几种A/D器为; (1):逐次比较型 逐次比较型AD由一个比较器和DA转换器通过逐次比较逻辑构成,从MSB 开始,顺序地对每一位将输入电压与内置DA转换器输出进行比较,经n次比较而输出数字值。其电路规模属于中等。其优点是速度较高、功耗低,在低分辩率(<12位)时价格便宜,但高精度(>12位)时价格很高。 (2): 积分型 积分型AD工作原理是将输入电压转换成时间(脉冲宽度信号)或频率(脉冲频率),然后由定时器/计数器获得数字值。其优点是用简单电路就能获得高分辨率,但缺点是由于转换精度依赖于积分时间,因此转换速率极低。初期的单片AD转换器大多采用积分型,现在逐次比较型已逐步成为主流。 (3):并行比较型/串并行比较型

并行比较型AD采用多个比较器,仅作一次比较而实行转换,又称FLash(快速)型。由于转换速率极高,n位的转换需要2n-1个比较器,因此电路规模也极大,价格也高,只适用于视频AD转换器等速度特别高的领域。 串并行比较型AD结构上介于并行型和逐次比较型之间,最典型的是由2个n/2位的并行型AD转换器配合DA转换器组成,用两次比较实行转换,所以称为Half flash(半快速)型。还有分成三步或多步实现AD转换的叫做分级型AD,而从转换时序角度又可称为流水线型AD,现代的分级型AD中还加入了对多次转换结果作数字运算而修正特性等功能。这类AD速度比逐次比较型高,电路规模比并行型小。 一.A/D转换器的技术指标: (1)分辨率,指数字量的变化,一个最小量时模拟信号的变化量,定义为满刻度与2^n的比值。分辨率又称精度,通常以数字信号的位数来表示。 (2)转换速率,是指完成一次从模拟转换到数字的AD转换所需的时间的倒数。积分型AD的转换时间是毫秒级属低速AD,逐次比较型AD是微秒级,属中速AD,全并行/串并行型AD可达到纳秒级。采样时间则是另外一个概念,是指两次转换的间隔。为了保证转换的正确完成,采样速率必须小于或等于转换速率。因此有人习惯上将转换速率在数值上等同于采样速率也是可以接受的。常用单位ksps 和Msps,表示每秒采样千/百万次。 (3)量化误差,由于AD的有限分辩率而引起的误差,即有限分辩率AD的阶梯状转移特性曲线与无限分辩率AD(理想AD)的转移特性曲线(直线)之间的最大偏差。通常是1 个或半个最小数字量的模拟变化量,表示为1LSB、1/2LSB。(4)偏移误差,输入信号为零时输出信号不为零的值,可外接电位器调至最小。(5)满刻度误差,满度输出时对应的输入信号与理想输入信号值之差。 (6)线性度,实际转换器的转移函数与理想直线的最大偏移,不包括以上三种误差。 三、实验步骤 此次实验的A/D转换器用的为逐次比较型,原理图如下:

集成电路设计实习报告-孙

集成电路版图设计实习报告 学院:电气与控制工程学院 专业班级:微电子科学与工程1101班 姓名:孙召洋 学号:1106080113

一、实验要求: 1. 熟悉Cadence的工作环境。 2. 能够熟练使用Cadence工具设计反相器,与非门等基本电路。 3. 熟记Cadence中的快捷操作。比如说“W”是连线的快捷键。 4. 能够看懂其他人所画的原理图以及仿真结果,并进行分析等。 二、实验步骤: 1、使用用户名和密码登陆入服务器,右击桌面,在弹出菜单中单击open Terminal;在弹出的终端中键入Unix命令icfb&然后按回车启动Cadence。Cadence启动完成后,关闭提示信息。设计项目的建立 2、点击Tools-Library Manager启动设计库管理软件。点击File-New-Library 新建设计库文件。在弹出的菜单项中输入你的设计库的名称,比如My Design,点击OK。选择关联的工艺库文件,点击OK。在弹出的菜单中的Technology Library下拉菜单中选择需要的工艺库,然后单击OK。 3、设计的项目库文件建立完成,然后我们在这个项目库的基础上建立其子项目。点击选择My Design,然后点击File-New-Cell View。输入子项目的名称及子项目的类型,这设计版图之前我们假定先设计原理图:所以我们选择Composer-Schematic,然后点击OK。 4、进入原理图编辑平台,原理图设计,输入器件:点击Instance按键或快捷键I插入器件。查找所需要的器件类型-点击Browse-tsmc35mm-pch5点击Close。更改器件参数,主要是宽和长。点击Hide,在编辑作业面上点击插入刚才设定的器件。如果想改参数器件,点击选择该器件,然后按Q,可以修改参数器件使用同样的方法输入Nmos,工艺库中叫nch5. 点击Wire(narrow)手动连线。完成连线后,输入电源标志和地标志:在analogLib库中选择VDD和GND,输入电源线标示符。接输入输出标示脚:按快捷键P,输入引脚名称in, Direction选择input,点击Hide,并且和输入线连接起来。同理设置输出引脚Out。 5、版图初步建立新的Cell,点击File-New-Cell View 还是建立名称为inv的版图编辑文件,Tool选择Virtuoso版图编辑软件,点击OK,关闭信息提示框。进入版图编辑环境根据之前仿真所得宽长比和反相器inv或与非门NAND的原理图画出反相器inv或与非门NAND的IC版图; 6、完成后使用版图验证系统进行DRC(设计规则检查)。 三、实验设计规则: 1、Linux常用的文件和目录命令: cd //用于切换子目录 pwd//用于显示当前工作子目录 ls//用于列出当前子目录下的所有内容清单 rm//用于删除文件 touch//用于建立文件或是更新文件的修改日期 mkdir//用于建立一个或者几个子目录

集成电路的设计方法探讨

集成电路的设计方法探讨 摘要:21世纪,信息化社会到来,时代的进步和发展离不开电子产品的不断进步,微电子技术对于各行各业的发展起到了极大的推进作用。集成电路(integratedcircuit,IC)是一种重要的微型电子器件,在包括数码产品、互联网、交通等领域都有广泛的应用。介绍集成电路的发展背景和研究方向,并基于此初步探讨集成电路的设计方法。 关键词集成电路设计方法 1集成电路的基本概念 集成电路是将各种微电子原件如晶体管、二极管等组装在半导体晶体或介质基片上,然后封装在一个管壳内,使之具备特定的电路功能。集成电路的组成分类:划分集成电路种类的方法有很多,目前最常规的分类方法是依据电路的种类,分成模拟集成电路、数字集成电路和混合信号集成电路。模拟信号有收音机的音频信号,模拟集成电路就是产生、放大并处理这类信号。与之相类似的,数字集成电路就是产生、放大和处理各种数字信号,例如DVD重放的音视频信号。此外,集成电路还可以按导电类型(双极型集成电路和单极型集成电路)分类;按照应用领域(标准通用集成电路和专用集成电路)分类。集成电路的功能作用:集成电路具有微型化、低能耗、寿命长等特点。主要优势在于:集成电路的体积和质量小;将各种元器件集中在一起不仅减少了外界电信号的干扰,而且提高了运行

速度和产品性能;应用方便,现在已经有各种功能的集成电路。基于这些优异的特性,集成电路已经广泛运用在智能手机、电视机、电脑等数码产品,还有军事、通讯、模拟系统等众多领域。 2集成电路的发展 集成电路的起源及发展历史:众所周知,微电子技术的开端在1947年晶体管的发明,11年后,世界上第一块集成电路在美国德州仪器公司组装完成,自此之后相关的技术(如结型晶体管、场效应管、注入工艺)不断发展,逐渐形成集成电路产业。美国在这一领域一直处于世界领先地位,代表公司有英特尔公司、仙童公司、德州仪器等大家耳熟能详的企业。集成电路的发展进程:我国集成电路产业诞生于六十年代,当时主要是以计算机和军工配套为目标,发展国防力量。在上世纪90年代,我国就开始大力发展集成电路产业,但由于起步晚、国外的技术垄断以及相关配套产业也比较落后,“中国芯”始终未能达到世界先进水平。现阶段我国工业生产所需的集成电路主要还是依靠进口,从2015年起我国集成电路进口额已经连续三年比原油还多,2017年的集成电路进口额超过7200亿元。因此,在2018年政府工作报告中把推动集成电路产业发展放在了五大突出产业中的首位,并且按照国家十三五规划,我国集成电路产业产值到2020年将会达到一万亿元。中国比较大型的集成电路设计制造公司有台积电、海思、中兴等,目前已在一些技术领域取得了不错的成就。集成电路的发展方向:提到集成电路的发展,就必须要说到摩尔定律:集成度每18个月翻一番。而现今正处在

相关主题
文本预览
相关文档 最新文档