当前位置:文档之家› 甜菜碱型两性离子聚合物的水解及其对抗菌性能影响的研究

甜菜碱型两性离子聚合物的水解及其对抗菌性能影响的研究

甜菜碱型两性离子聚合物的水解及其对抗菌性能影响的研究
甜菜碱型两性离子聚合物的水解及其对抗菌性能影响的研究

两性表面活性剂

https://www.doczj.com/doc/5a15419337.html, 两性表面活性剂是在同一分子中既含有阴离子亲水基又含有阳离子亲水基的表面活性剂。最大特征在于它既能给出质子又能接受质子。在使用过程中具有以下特点:对织物有优异的柔软平滑性和抗静电性;有一定的杀菌性和抑霉性;有良好的乳化性和分散性。两性表面活性剂生产厂家哪家好?淮南华俊新材料科技有限公司来为您解答! 它是一种温和性的表面活性剂。两性表面活性剂分子与单一的阴离子型、阳离子型不同,在分子的一端同时存在有酸性基和碱性基。酸性基大都是羧基、磺酸基或磷酸基,碱性基则为胺基或季铵基,能与阴离子、非离子型表面活性剂混配,能耐酸、碱、盐以及碱土金属盐。 淮南华俊新材料科技有限公司 https://www.doczj.com/doc/5a15419337.html,

https://www.doczj.com/doc/5a15419337.html, 蛋黄里的卵磷脂是天然的两性表面活性剂。现在常用的人工合成两性表面活性剂,其阴离子部分大多是羧酸基,也有少数是磺酸基。其阳离子部分大多是胺盐或季胺盐。由胺盐构成阳离子部分的叫氨基酸型;由季胺盐构成阳离子部分的叫甜菜碱型。 两性表面活性剂通常具有良好的洗涤、分散、乳化、杀菌、柔软纤维和抗静电等性能,可用作织物整理助剂、染色助剂、钙皂分散剂、干洗表面活性剂和金属缓蚀剂等。但是,这类表面活性剂的价格较贵,实际应用范围较其他类型的表面活性剂小。 淮南华俊新材料科技有限公司是安徽省高新技术企业,目前增设上海、广州两家办事处。是以表面活性剂和聚丙烯酸及丙烯酰胺系列聚合物的研发、生产、销售于一体的企业,产品广泛应用于日化、石油开采、水处理、农药助剂、水性涂料、金属加工液等多个领域。我公司的主要产品有阳离子表面活性剂系列、两性表面活性剂系列、非离子表面活性剂系列、增稠剂系列产品以及其他产品。 淮南华俊新材料科技有限公司 https://www.doczj.com/doc/5a15419337.html,

两性离子催化剂的研究进展

CHEMICAL INDUSTRY AND ENGINEERING PROGRESS 2013年第32卷第10期·2396· 化工进展 两性离子催化剂的研究进展 聂万丽1,曹蓉2,Maxim V Borzov1 (1乐山师范学院化学学院,四川乐山 614000;2西北大学化学与材料科学学院,陕西西安 710069)摘 要:两性离子催化剂按照配体的结构特征和金属元素种类可分为两性离子茂金属配合物、非茂前过渡以及后过渡金属两性离子配合物三大类。两性离子茂金属配合物根据阴离子在配体上所连接区域的不同又可以分为Girdle型、Bridge型和Ring型三种。本文对各类两性离子配合物的合成方法、结构特征和催化反应活性进行了归纳总结,发现两性离子催化剂对催化烯烃聚合表现出较好的活性,而非茂的两性离子配合物不仅是良好的烯烃聚合催化剂,还可以催化多种类型的小分子反应。作为一种新型高效的单组份活性催化剂,目前,有关两性离子催化剂的应用研究还有很多未知的领域有待开发,尤其是在小分子的活化、催化领域。 关键词:两性离子催化剂;烯烃聚合;茂金属配合物;非茂金属配合物 中图分类号:O 6-1文献标志码:A 文章编号:1000–6613(2013)10–2396–07 DOI:10.3969/j.issn.1000-6613.2013.10.022 Research progress of zwitterionic catalysts NIE Wanli 1,CAO Rong2,Maxim V Borzov1 (1School of Chemistry,Leshan Normal University,Leshan 614000,Sichuan,China;2Department of Chemistry and Materials,Northwest University,Xi’an 710069,Shaanxi,China) Abstract:By their structural features,zwitterionic catalysts can be divided into metallocene and non-metallocene (early and late transition metal) complexes. According to the location of counterions in the molecule structure,zwitterionic metallocenes can be classified into girdle-,bridge- and ring-type families. Extensive data on the synthesis,structural characteristics and catalytic activity of the zwitterionic systems for olefin polymerization are reviewed. While zwitterionic catalysts exhibit good activity in respect to olefin polymerization,non-metallocene catalysts possess certain activity in reactions of small molecules as well. Research on these potential single-component catalysts for olefin polymerization and other processes (especially in part concerning small molecule activation) is still required. Key words:zwitterionic catalyst;olefin polymerization;metallocene;non-metallocene 在过去的三十年里,有关茂金属催化剂在聚烯烃工业中表现的研究备受关注。茂金属催化剂在催化烯烃均相聚合反应中所表现出的高催化活性、单一活性中心和高立构规整性使它成为20世纪80年代金属有机化学领域的研究热点之一。 有关茂金属催化剂体系催化烯烃聚合的过程相对较复杂[1-4]。已被广泛认可的机理为:催化剂前体(中性的第四副族茂金属二氯化物及二甲基衍生物)与一个作为助催化剂的强路易斯酸反应,得到一个中心金属离子具有14电子结构的阳离子活性反应中心。在催化反应过程中,保证这一阳离子反应活性中心不受到反应体系中碱性杂质或其它物质的影响是维持催化剂寿命的关键因素。工业生产中为了提高聚合活性,反应中通常需要使用大量的助催化剂甲基铝氧烷MAO(Al∶M = 100~10000∶ 收稿日期:2013-02-28;修改稿日期:2013-04-26。 第一作者及联系人:聂万丽(1972—),女,副教授。E-mail niew126@ https://www.doczj.com/doc/5a15419337.html,。

阳离子和两性离子聚合物汇总

钻井液用具阳离子聚合物 1.降滤失剂 1.1阳离子单体:2-羟基-3-甲基丙烯酰氧丙基三甲基氯化铵( HMOPTA) (1)AM/AA/HMOPTA阳离子型共聚物 《油田化学品》P116(某年某版?); 《钻井液与完井液研究文集》P185(某年某版?) 《HMOPTA/AM/AA具阳离子型共聚物泥浆降滤失剂的合成》(某年某版?) (2)AM/AA/AMPS/HMOPTA 两性离子型共聚物 《AM/AMPS/AA/HMOPTA共聚物的合成及性能》.精细石油化工进展,2001年10期,杨小华,王中华 (3)AM/AMPS/MAA/HMOPTA四元两性共聚物 《AM/AMPS/MAA/HMOPTA四元共聚物的合成及作为钻井液处理剂的性能》.油田化学,2002年第03期,杨小华,刘明华,王中华 (4)AMPS/AM/HMOPTA两性共聚物 《AMPS/HMOPTA/AM共聚物降滤失剂的合成及性能》.精细石油化工进展.2005年03期,刘明华,周乐群,杨小华 (5)AA/AS/HMOPTA两性聚合物 《HMOPTA_AA_AS聚合物的合成及性能评价》杨小华,王中华 (6)AM/丙烯酸钾/ HMOPTA/玉米淀粉CGS-2具阳离子型接枝改性淀粉 《油田化学品》P130; 《研究文集》P119 1.2阳离子单体:甲基丙烯酰胺基丙基三甲基氯化铵(MAPTAC或MPTMA) (1)AA/AM/MPTMA两性离子共聚物 《钻井液与完井液研究文集》P195 (2)AM/AMPS/MPTMA两性离子共聚物 《钻井液与完井液研究文集》P144; 《MPTMA/AMPS/AM的合成及其在钻井液中的应用》,河南化工,1993年10期,王中华 (3)AM/AA/ MPTMA/淀粉接枝两性共聚物

Macromolecules:超分子添加剂引发两性离子聚合物在脲基-嘧啶酮基生物材料表面的可控原子转移自由基聚合

Macromolecules:超分子添加剂引发两性离子聚合物在脲基-嘧啶酮基生物材料表面的可控原子转移自由基聚合 DOI:10.1021/acs.macromol.0c00160 表面引发的受控自由基聚合是一种常用的生物材料改性技术,例如,防污聚合物。在此,研究者报告了通过大分子引发剂添加剂的原子转移自由基聚合,将含两性离子聚(磺基甜菜碱甲基丙烯酸酯)的超分子生物材料功能化,该添加剂嵌入在脲基-嘧啶酮基材料的硬相中。从这些表面成功地聚合了聚(磺基甜菜碱甲基丙烯酸酯),聚合后的磺基甜菜碱含量以及相应的防污性能取决于大分子引发剂的添加浓度和聚合时间。此外,大分子引发剂添加剂的聚合成功地转化为功能性电纺支架,显示出该功能化策略在超分子材料系统中的潜力。 图1.本研究中使用方法的示意图。(A)UPy改性的聚己内酯(PCLdiUPy)超分子基材料,UPy-BiB大分子引发剂添加剂和磺基甜菜碱甲基丙烯酸酯(SBMA)单体的结构和图形表示。(B)通过UPy二聚和组装形成的纤维状硬相的示意图。(C)含UPy-BiB引发剂添加剂的SBMA的SI-ATRP示意图。

图2.在表面聚合3、6和24 h之前和之后,含0、1、5和10%UPy-BiB大分子引发剂添加剂的PCLdiUPy溶液浇铸薄膜的AFM相显微照片。比例尺指示100 nm。 图3.(A)3 h反应时间样品中AFM相显微照片的放大图。比例尺指示100 nm。(B)用SBMA域覆盖的溶液流延表面的百分比,以及这些域的高度。数据表示为平均值±标准差(SD),相关的显著性差异以星号表示。

图4.(A)在表面聚合3、6和24 h之前和之后,在含0、1、5和10%UPy-BiB 的溶液浇铸薄膜上测量的水接触角。数据表示为平均值±SD。具有统计意义的差异在图S4B中进行了描述。SBMA特有的季氮和硫组分的贡献通过溶液浇铸薄膜的XPS光谱计算得出。

两性离子色谱的综述

Analytica Chimica Acta 652 (2009) 3–21 Contents lists available at ScienceDirect Analytica Chimica Acta j o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /a c a Review Zwitterionic ion-exchangers in ion chromatography:A review of recent developments Ekaterina P.Nesterenko a ,Pavel N.Nesterenko b ,Brett Paull a ,? a Irish Separation Science Cluster,National Centre for Sensor Research,Dublin City University,Glasnevin,Dublin 9,Ireland b ACROSS –Australian Centre for Research on Separation Science,School of Chemistry,University of Tasmania,Private Bag 75,Hobart,TAS 7001,Australia a r t i c l e i n f o Article history: Received 28March 2009 Received in revised form 2June 2009Accepted 3June 2009 Available online 9 June 2009 Keywords: Ion chromatography Zwitterionic stationary phases Inorganic and organic ions Simultaneous separations of anions and cations Binary extraction a b s t r a c t Signi?cant advances within the ?eld of ion chromatography (IC)have often had their roots in research focussed on the development of new phase technologies,aimed to both simultaneously increase ef?-ciency and vary selectivity.To increase selectivity it is necessary to develop new selective ion-exchangers,achieved by varying the nature of functional groups and the matrix of the stationary phase.In this compre-hensive review,developments over the past decade in the production and application of zwitterionic and amphoteric ion-exchangers are presented and discussed.Zwitterionic and amphoteric ion-exchangers,where positive and negative charges are located in close proximity,exhibit alternative ion selectivity to standard anion and cation ion-exchangers,such as those traditionally used in IC,and have the potential for selectivity optimisation in IC due to control of the ratio of electrostatic attraction/repulsion forces between analyte ions and ion-exchange groups.This can result in the ability to utilise relatively dilute eluents,which increases detector sensitivity,with further advantages of zwitterionic ion-exchangers including their possible application to the simultaneous separation of cationic and anionic species. ? 2009 Elsevier B.V. All rights reserved. Contents 1.Introduction (4) 2. Zwitterionic stationary phases with covalently attached zwitterionic molecules..................................................................72.1.Stationary phases with covalently bonded zwitterionic molecules .........................................................................72.2.Stationary phases for hydrophilic interaction liquid chromatography (HILIC)..............................................................92.3.Immobilised arti?cial membranes...........................................................................................................92.4.Surface con?ned ionic liquid stationary phases .............................................................................................123. Stationary phases dynamically coated with zwitterionic molecules................................................................................133.1.Hydrophobic phases dynamically coated with zwitterionic molecules .....................................................................133.2.Binary extracting agents......................................................................................................................143.3.Other types of dynamically modi?ed materials .............................................................................................154. Pellicular type zwitterionic ion-exchangers.........................................................................................................154.1.Poly(amino acid)functionalised stationary phases https://www.doczj.com/doc/5a15419337.html,tex-coated porous monoliths..............................................................................................................164.3.Centrally localised ion-exchangers with anion-exchange core..............................................................................174.4.Immobilised ionenes......................................................................................................................... 17 Abbreviations:API,active pharmaceutical ingredients;CHAPS,3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate;CHAPSO,3-[(3-cholamidopropyl)dimethylammonio]-2-hydroxy-1-propanesulfonate;CSP,chiral stationary phase;DDAPS,3-(N -dodecyl-N ,N -dimethilammonio)propane-1-sulfonate;DDMAB,N -(dodecyl-N ,N -dimethylammonio)butyrate;DDMAU,N -(dodecyl-N ,N -dimethylammonio)undecanoate;DMAES,2-(dimethylamino)ethanesulfonic acid;DMPC,dimyristoylphosphadylcholine;DPPC,l -?-dipalmitoyl-phosphatidylcholine;EDTA,ethylenediaminetetraacetic acid;HEMA,2-hydroxyethyl methacrylate;HILIC,hydrophilic interaction chromatography;IAM,immobilised arti?cial membranes;IC,ion chromatography;LiSC,liquid separation cell technology;NSH,nano-polymer silica hybrid;ODS,octadecylsilica;PBS,physiological buffer;SCIL,surface con?ned ionic liquid;SCX,strong cation-exchange;Trizma,tris(hydroxymethyl)aminomethane hydrochloride;WAX,weak anion-exchange;ZIC,zwitterionic ion chromatography;Zwittergent-3-14,N -tetradecyl-N ,N -dimethylammonium-1-propane-3-sulfonate.?Corresponding author.Tel.:+35317005060;fax:+35317005503.E-mail address:Brett.Paull@dcu.ie (B.Paull).0003-2670/$–see front matter ? 2009 Elsevier B.V. All rights reserved.doi:10.1016/j.aca.2009.06.010

表面活性剂的分类

表面活性剂的分类 根据分子组成特点和极性基团的解离性质,将表面活性剂分为离子表面活性剂和非离子表面活性剂。根据离子表面活性剂所带电荷,又可分为阳离子表面活性剂、阴离子表面活性剂和两性离子表面活性剂。一些表现出较强的表面活性同时具有一定的起泡、乳化、增溶等应用性能的水溶性高分子,称为高分子表面活性剂,如海藻酸钠、羧甲基纤维素钠、甲基纤维素、聚乙烯醇、聚维酮等,但与低分子表面活性剂相比,高分子表面活性剂降低表面张力的能力较小,增溶力、渗透力弱,乳化力较强,常用做保护胶体。 一、离子表面活性剂 (一)阴离子表面活性剂 阴离子表面活性剂起表面活性作用的部分是阴离子。 1.高级脂肪酸盐系肥皂类,通式为(RCOO-)nMn+。脂肪酸烃链R一般在C11~C17之间,以硬脂酸、油酸、月桂酸等较常见。根据M的不同,又可分碱金属皂(一价皂)、碱土金属皂(二价皂)和有机胺皂(三乙醇胺皂)等。它们均具有良好的乳化性能和分散油的能力,但易被酸破坏,碱金属皂还可被钙、镁盐等破坏,电解质可使之盐析。一般只用于外用制剂。 2.硫酸化物主要是硫酸化油和高级脂肪醇硫酸酯类,通式为R·O·SO3-M+,其中脂肪烃链R在C12~C18范围。硫酸化油的代表是硫酸化蓖麻油,俗称土耳其红油,为黄色或桔黄色粘稠液,有微臭,约含48.5%的总脂肪油,可与水混合,为无刺激性的去污剂和润湿剂,可代替肥皂洗涤皮肤,也可用于挥发油或水不溶性杀菌剂的增溶。高级脂肪醇硫酸酯类中常用的是十二烷基硫酸钠(SDS,又称月桂醇硫酸钠、SLS)、十六烷基硫酸钠(鲸蜡醇硫酸钠)、十八烷基硫酸钠(硬脂醇硫酸钠)等。它们的乳化性也很强,并较肥皂类稳定,较耐酸和钙、镁盐,但可与一些高分子阳离子药物发生作用而产生沉淀,对粘膜有一定的刺激性,主要用做外用软膏的乳化剂,有时也用于片剂等固体制剂的润湿剂或增溶剂。 3.磺酸化物系指脂肪族磺酸化物和烷基芳基磺酸化物等。通式分别为R·SO3-M+和RC6H5·SO3-M+。它们的水溶性及耐酸、耐钙、镁盐性比硫酸化物稍差,但即使在酸性水溶液中也不易水解。常用的品种有二辛基琥珀酸磺酸钠(阿洛索-OT)、二己基琥珀酸磺酸钠、十二烷基苯磺酸钠等,后者为目前广泛应用的洗涤剂。另外,甘胆酸钠、牛磺胆酸钠等胆酸盐也属此类,常用做胃肠道脂肪的乳化剂和单硬脂酸甘油酯的增溶剂。 (二)阳离子表面活性剂 这类表面活性剂起作用的部分是阳离子,亦称阳性皂。其分子结构的主要部分是一个五价的氮原子,所以也称为季铵化物,其特点是水溶性大,在酸性与碱性溶液中较稳定,具有良好的表面活性作用和杀菌作用。常用品种有苯扎氯铵和苯扎溴铵等。 (三)两性离子表面活性剂 这类表面活性剂的分子结构中同时具有正、负电荷基团,在不同pH值介质中可表现出阳离子或阴离子表面活性剂的性质。 1.卵磷脂卵磷脂是天然的两性离子表面活性剂。其主要来源是大豆和蛋黄,根据来源不同,又可称豆磷脂或蛋磷脂。卵磷脂的组成十分复杂,包括各种甘油磷脂,如脑磷脂、磷脂酰胆碱、磷脂酰乙醇胺、丝氨酸磷脂、肌醇磷脂、磷脂酸等,还有糖脂、中性脂、胆固醇和神经鞘脂等,其基本结构为: 在不同来源和不同制备过程的卵磷脂中各组分的比例可发生很大的变化,从而影响其使用性能。例如,在磷脂酰胆碱含量高时可作为水包油型乳化剂,而在肌醇磷脂含量高时则为油包

两性表面活性剂之椰油酰胺丙基甜菜碱

舒肤佳中的两性表面活性剂 ——椰油酰胺丙基甜菜碱 一、英文名CocoamidopropylBetaine简称(商品名):CAB 二、相关说明 化学名:椰油酰胺丙基二甲胺乙内酯 分子式:C19H38N2O3 分子量:342.52 CAS登记号:61789-40-0 (86438-79-1) 三、化学结构式[RCONH(CH2)3N﹢(CH3)2CH2COOˉ] 四、技术指标 1.外观(25oC):微黄色透明液体 2.活性物(%):30±1 3.氯化钠(%):≤6.0 4.PH值(1%水溶液): 5.0-7.0 5.游离胺含量(%):≤0.10 6. 固含量(%):≥35.0 五、用途与用量 1.用途:广泛用于中高级香波、沐浴液、洗手液、泡沫洁面剂等和家居洗涤剂配制中;是制备温和婴儿香波、婴儿泡沫浴、婴儿护肤产品的主要成分;在护发和护肤配方中是一种优良的柔软调理剂;还可用作洗涤剂、润湿剂、增稠剂、抗静电剂及杀菌剂等。 2.推荐用量:①香波和浴液中为3-10%;②美容化妆品中为1-2%。 六、性能 本品是一种两性离子表面活性剂,在酸性及碱性条件下均具有优良的稳定性,分别呈现阳和阴离子性,常与阴、阳离子和非离子表面活性剂并用,其配伍性能良好。刺激性小,易溶于水,对酸碱稳定,泡沫多,去污力强,具有优良的增稠性、柔软性、杀菌性、抗静电性、生物降解性、抗硬水性。能显著提高洗涤类产品的柔软、调理和低温稳定性。 七、产生机理 椰油酰胺丙基甜菜碱是由椰油酰胺丙基叔胺与氯乙酸钠进行乙内酯化反应制成的两性离子表面活性剂。以椰子油为原料,通过与N、N二甲基丙二胺的缩合生成PKO再和氯乙酸钠(一氯乙酸与碳酸钠制得)季铵化两步反应,制取椰油酰胺丙基甜菜碱,产率达90%左右。 [RCONH(CH2)3N+(CH2)2CH2COO-] + NaCl 八、其他作用说明 椰油酰胺丙基甜菜碱是一个及其温和的两性表面活性剂,对皮肤、眼黏膜无刺激、无过敏性反应。能与阴、阳、非离子表面活性剂配伍而得到透明的液体或胶体;其泡沫稳定、细腻;与阴离子表面活性剂复配,在pH5.5~6.5条件下,能提高料体粘度,增稠效果明显。椰油酰胺丙基甜菜碱具有柔软性、杀菌性及抗静电性能,是优异的头发调理剂;可配制精品洗发香波、浴剂、洗面奶(膏)及婴儿护肤用品;椰油酰胺丙基甜菜碱也是纺织印染行业中一种性能优良的柔软处理剂。

[高分子材料] 封面文章-北京大学吕华:两性离子聚合物的研究进展

封面说明:背景中“双星体系”分别代表两性离子聚合物中的阴离子和阳离子。阴阳离子的同时存在使得两性离子聚合物不仅兼具离子型和中性聚合物的性质(如极强的亲水性、较好的生物相容性),而且表现出某些独特特征(如“反聚电解质效应”)。正是由于这些优异的性能,两性离子聚合物被广泛应用于防污涂层、蛋白质改性、药物递送及膜分离材料等多个领域。科研工作者对于两性离子聚合物的探究(如拓宽种类、构效关系、作用机理、应用前景等)正如人类对宇宙奥秘的探索一样永不止步。 两性离子聚合物是一类整体呈电中性,且在同一单体侧链上同时含有阴、阳离子基团的聚电解质。由于阴阳离子的存在使得两性离子聚合物具有极高的亲水性,被认为是聚乙二醇的一种理想替代物。迄今为止,两性离子聚合物在防污涂层、蛋白质改性、药物递送、膜分离材料等多个领域展现出良好的应用前景。 两性离子聚合物自身超强的亲水性使其能够在材料表面形成致密的水化层,从而有效阻碍蛋白质、血小板、细胞、微生物等在医用材料表面的非特异性吸附(防污涂层),防污效果可达到100%。另外,利用两性离子聚合物对酶类和蛋白质类药物(如酶、胰岛素、干扰素等)进行修饰,可有效延长药物蛋白在体内的循环时间并降低其免疫原性。并且两性离子聚合物还可以通过增强酶与底物之间的疏水作用来提高两者之间的亲和力,进而提高酶的活性。此外,两性离子聚合物的优异防污性能和生物相容性使其成为一种重要的

纳米药物载体。两性离子的修饰不仅能够增加载药体系的溶解性和稳定性,还能降低或克服“加快血液清除”(ABC) 现象的发生。另一方面,在分离膜(污水处理、海水淡化、血液透析等)中引入两性离子聚合物可有效提高膜表面的耐污染性,保持较高的水通量和选择性,延长使用寿命。 两性离子聚合物还在医疗诊断、生物传感器、石油工业、电池电极、结晶控制等众多研究领域有着广泛应用。未来,在拓宽两性离子聚合物种类和应用领域的基础上,可从以下几个方面进行考虑:(1)进一步探讨两性离子聚合物的构效关系及作用机理,如离子种类、离子间间距、亲疏水性、主链结构等对材料性能的影响;(2)简化合成工艺,降低两性离子聚合物的制备成本;(3)合成结构精确的两性离子聚合物。通过与其他不同性质材料相结合,制备性能优异且能满足多种需求的复合材料。 北京大学化学与分子工程学院吕华课题组的研究工作主要致力于氨基酸单体的可控开环聚合、聚氨基酸等生态高分子材料以及蛋白质-高分子偶联物等,在J. Am. Chem., ACS Cent. Sci., Adv. Funct. Mater., Biomaterials, ACS Appl. Mater. Interfaces, ACS Macro Lett., Chem. Commun.等期刊发表多篇文章。 上述工作发表在《功能高分子学报》2020年第1期(DOI:),并作为期刊封面文章介绍。第一作者为北京大学化学与分子工程学院博士生闫树鹏,通讯作者为北京大学化学与分子工程学院张冲博士及吕华研究员。该研究工作获得了国家自然科学基金等资助。 通讯作者简介:

磺基甜菜碱型氟碳表面活性剂在化学中的应用

磺基甜菜碱型氟碳表面活性剂在油田化学中的应用前言:目前表面活性剂是人们生活和社会的生产领域中一类非常重要的精细化学药品,也是石油行业中重要的化学药剂。氟碳表面活性剂已经逐步大范围的应用在石油、消防、化学、胶皮制造等许多技术经济的领域,且享有“工业味精”的良好称号。氟碳表面活性剂是一种特殊的表面活性剂,应用范围大,但因为与其他一般表面活性剂相比较,合成过程复杂、利用成本高,使其研究发展的进度较缓慢,但是氟碳表面活性剂在高温、高矿化度、高酸碱度等的苛刻条件下,具有很好的耐高温、高矿化度、高酸碱度的能力,是一般的表面活性剂不能相题并论的。因此,氟碳表面活性剂在三次采油领域具有很大的应用潜力,具有广阔的应用前景和市场价值,是目前国内众多科研单位及油田化学工作者竞相研究的课题。 氟碳表面活性剂的应用前景及优点 近几年来,由于世界能源危机,我国的经济突飞猛进的发展,对能源的需求越来越紧迫,逐渐加大了对油气田开采的力度,我国的老油田由于大多数依靠注水进行开采,水驱时间一长,产生的综合含水率逐渐升高,几乎高达80%~90%,由于油气田的含水率很高导致开采的难度也越来越大。目前,三次采油和其他的新技术已成为开采油气田的发展趋势,三次采油是指二次采油(注入水或气)后的采油。这种采油方法是向地层下注入特殊的流体(各种化学剂、C02)来提高采收率的方法。三次采油方法一般可分为四大类:热力驱、混相驱、化学驱、微生物采油,化学驱中表面活性剂驱、复合驱及泡沫驱就少不了表面

活性剂,因此,表面活性剂在提高采收率起到非同小可的作用,现在发现的油藏一般条件比较苛刻和一些老油田开发难度也是日益加大,那对表面活性剂所具有的能力必须逐渐强大,不仅有较好的洗油效率和低损耗值,还提出了耐高盐、耐高温的要求,泡沫驱中还必须在高温高油藏条件下保持良好的泡沫性能,氟碳表面活性剂比其他普通表面活性剂就具备了“三高”(高表面活性、高耐温稳定性和高化定性)、“两憎”(憎水和憎油)的性能,且湿渗透性和起泡稳定性良好、易与碳氢活性剂复配、环境友好、抗静电性等性能。因此,开展氟碳表面活性剂的研究很要,为氟碳表面活性剂在油气田开发中得到大范围推广打下理论知识和实践基础。 分子结构 氟碳表面活性剂是指碳氢链疏水基团中的氢原子被氟原子部分 或全部代替的表面活性剂。它的化学结构如下图: 图l-1氟碳表面活性剂的结构 Figl-1 Structure of the fluorocarbon surfactant 普通表面活性剂是由1个非极性部分RF(憎水憎油的氟碳链亲油 部分)和1个极性部分X(亲水部分)组成。与一般碳氢表面活性剂一样可以根据X的变化得到四种类型阴离子型、阳离子型、非离子型和两性型的氟碳表面活性剂,根据阴离子结构的不同,可分为羧酸盐型(ROSOO-M+)、磺酸盐型(RFS03M+)、硫酸酯盐型(RFOS03-M+小)和磷酸醋盐型(RpP(o)022。M2+)等几大类。其中RF为氟碳疏水基(即疏油基),M为无机或有机阳离子。

两性表面活性剂综述

两性表面活性剂概述 摘要:两性表面活性剂是整个表面活性剂家族中的一个重要组成部分。从结构上来说,是指分子中同时具有两种或以上离子性质的表面活性剂。从性质上来说,是分子具有阳离子亲水基团、又同时具有阴离子亲水基团的表面活性剂。与其他表面活性剂比较,具有很多独特的优点,如:①对皮肤及眼睛的低刺激性;②在较宽pH范围内具有良好的表面活性;③对硬水稳定性良好,能耐酸碱和各种金属离子;④与其他表面活性剂复配,有良好的协同效应,与很多染料助剂可以同浴处理; ⑤具有优良的柔软和抗静电作用,各类纤维和织物经其处理后,手感柔软,穿着舒适;⑥匀染性好,对很多纤维,特别是羊毛纤维染色时,可作为优异的匀染剂;⑦具有良好的去污泡和乳化作用;⑧除可作纤维润湿和洗涤剂外,还对纤维有保护作用;⑨生物降解性能好,无毒性,污染少。本文对两性表面活性剂的类型进行划分,概述其基本的合成方法的路线;探讨各种两性表面活性剂的应用性能;对两性表面活性剂的发展和在油品中的使用进行了动态分析。 关键词:两性;表面活性剂;合成方法;性能指标;油品应用 1 两性表面活性剂的基本分类

目前文献上常按两性表面活性剂的亲水/亲油性质、分子结构、正电荷中心或负电荷中心类型等等方法进行分类。本文按照两性表面活性剂分子结构中的亲水基团特征,对其进行综合分类,见表1。

2典型两性表面活性剂的合成方法、路线和性能指标 2.1咪唑啉类两性表面活性剂 2.1.1 有机硼系咪唑啉表面活性剂 先由脂肪酸和羟乙基乙二胺形成中间体(HEAI),再和硼酸进行酯化应。反应式如下 此种表面活性剂在有机溶剂中无明确的cmc ,表面张力约26 mN/m~27 mN/m, 泡沫表1 两性表面活性剂的综合分类

两性表面活性剂的合成及性能表征

两性表面活性剂 两性表面活性剂,是指同时具有阴、阳两种离子性质的表面活性剂。从它的结构来看,与憎水基团相连接的既有阳离子,也有阴离子。其结构可表示如下:它是一种温和性的表面活性剂。两性表面活性剂分子与单一的阴离子型、阳离子型不同,在分子的一端同时存在有酸性基和碱性基。酸性基大都是羧基、磺酸基或磷酸基,碱性基则为胺基或季铵基,能与阴离子、非离子型表面活性剂混配,能耐酸、碱、盐以及碱土金属盐。 蛋黄里的卵磷脂是天然的两性表面活性剂。现在常用的人工合成两性表面活性剂,其阴离子部分大多是羧酸基,也有少数是磺酸基。其阳离子部分大多是胺盐或季胺盐。由胺盐构成阳离子部分的叫氨基酸型;由季胺盐构成 阳离子部分的叫甜菜碱型。 氨基酸型两性表面活性剂的水溶液呈碱性。如果在搅拌下,慢慢加入盐酸,变为中性时仍无变化。至微酸性时则生成沉淀。如果再加入盐酸至强酸性时,沉淀又溶解。这就说明,呈碱性时表现为,呈酸性时,表现为。但是,当阳离子性和阴离子性正好在平衡的等电点时,亲水性变小,就生成沉淀。 甜菜碱型两性表面活性剂,最大的特点是无论在酸性、中性或碱性的水溶液中都能溶解。即使在等电点时也无沉淀。此外,渗透力、去污力及抗静电等性能也较好。因此,是较好的、柔软剂。 等电点是指两性电解质在溶液中电离时,酸和碱的电离度相等时的状态。 其分子溶于水发生电离后,与亲油基相连的亲水基是同时带有阴阳两种电荷的。亲油基一般是长碳链烃基,亲水基中的阳离子都是由基或季铵基组成的,阴离子可以由羧基、磺酸基或磷酸基组成。实际应用的品种主要是氨基酸型和甜菜碱型两性表面活性剂,产量是表面活性剂中最小的。 两性表面活性剂通常具有良好的洗涤、分散、乳化、杀菌、柔软纤维和抗静电等性能,可用作织物整理助剂、染色助剂、钙皂分散剂、干洗表面活性剂和金属缓蚀剂等。但是,这类表面活性剂的价格较贵,实际应用范围较其他类型的表面活性剂小。 分子中的阴离子为羧基,阳离子为铵盐。这类表面活性剂随介质pH的变化而显示不同的表面活性,如十二烷基氨基丙酸(C12H25N+H2CH2CH2COO-)在氢氧化钠介质中可转变成十二烷基氨基丙酸钠(C12H25 NHCH2CH2COO-Na+),表现为能溶于水的阴离子表面活性剂。它在盐酸介质中可以转变成十二烷基氨基丙酸的盐酸盐〔(C12H25N+H2CH2CH2COOH)Cl-〕,表现为能溶于水的阳离子表面活性剂。若调节介质的pH,使阳电性和阴电性正好平衡,它就转变成内盐(C12H25N+H2CH2CH2C

第6章 两性表面活性剂

第6章两性表面活性剂 6.1 两性表面活性剂概述 6.1.1 两性表面活性剂的特性 两性表面活性剂的特性 1.具有等电点; 2.可以和所有其他类型的表面活性剂复配; 3.毒性低、对皮肤眼睛刺激性小; 4.耐水硬性和耐高浓度电解质性好,甚至在海水中也可以有效地使用; 5.对织物有优异的柔软平滑性和抗静电性; 6.具有良好的乳化性和分散性; 7.具有良好的润湿性和发泡性; 8.有一定的杀菌性和抑霉性; 9.良好的生物降解性。 6.1.2 两性表面活性剂的分类 1.按阴离子部分的亲水基团分类 (1)羧酸盐型 (2)磺酸盐型 (3)硫酸酯盐型 (4)磷酸酯盐型 (1)羧酸盐型(阴离子结构 -COOM) (2)磺酸盐型(阴离子结构 -SO3M) 咪唑啉型结构通式 3M)

氨基酸型结构通式 甜菜碱型结构通式 咪唑啉型结构通式 2.按整体化学结构分类 (1)甜菜碱型 甜菜碱是在分子内以季铵盐基作为阳离子部分、以羧基作为阴离子部分的化合物。最具代表性的结构: 阴离子部分还可以是磺酸基、硫酸酯基;阳离子部分还可以是磷、硫。 (2)咪唑啉型

(3)氨基酸型 β-氨基丙酸型 α-亚氨基羧酸型 特点:对环境和生物体的安全性高,对皮肤和头发有亲和性,最好的应用前景是对安全性要求 极高的化妆品。 (4)氧化胺型 6.2 两性表面活性剂的性质 1.两性表面活性剂的等电点 两性界面活性剂的最大特征在于它既能给出质子,又能接受质子。以β-N-烷基氨基羧酸型两性界面活性剂为例,它在酸性及碱性介质中呈显如下的平衡: 又如,甜菜碱在酸性及碱性介质中呈显如下的平衡: 可见,两性表面活性剂的所带电荷随其应用介质或溶液的pH 值的变化而引起很大的不同。

相关主题
文本预览
相关文档 最新文档