当前位置:文档之家› 论述题-重大-岩石力学-历年

论述题-重大-岩石力学-历年

论述题-重大-岩石力学-历年
论述题-重大-岩石力学-历年

三、论述题

1、结合岩石力学与工程实际,简要叙述工程岩体结构面的基本力学属性(2003)(看ppt)

结构面是指岩体中存在着的各种不同成因和不同特性的地质界面,包括物质的分界面、不连续面如节理、片理、断层、不整合面等。其工程力学性质主要包含三个方面:法向变形、剪切变形、抗剪强度。

2、论述岩石的流变性以及蠕变变形曲线特征(2004,2006,2009)或:简要说明岩石的流变性(2005,2008)或:简要论述岩石的蠕变特征(2003)

岩石的流变性:就是指岩石的应力-应变关系与时间因素有关的性质,包括蠕变、松弛与弹

性后效三个方面。

蠕变:当载荷不变时,变形随着时间而增长的现象;

松弛:当应变保持不变时,应力随着时间增长而减小的现象;

弹性后效:当加载或卸载时,弹性应变滞后于应力的现象。

当岩石在某一较小的恒定载荷持续作用下,其变形量虽然随时间增长而有所增加,但蠕变

变形的速率则随时间增长而减小,最后变形趋于一个稳定的极限值,这是稳定蠕变。当荷载较

大时,蠕变不能稳定于某一极限值,而是无限增长直到破坏。这是不稳定蠕变,根据应变速率

不同,分为以下三个阶段:(附上图)

1减速蠕变阶段(ab段):应变速率随时间增加而减小

2等速蠕变阶段(bc段):应变速率保持恒定

3加速蠕变阶段(cd段):应变速率迅速增加直到岩石破坏

稳定蠕变和不稳定蠕变的临界应力为岩石的长期强度。

3、论述岩石在复杂应力状态下的破坏类型,并阐述其在工程岩体稳定性研究中的意义(2004)

在关于岩石破裂的所有讨论中,破裂面的性质和描述是最重要的,出现的破裂类型可用下图中岩石在各种围压下的行为来说明。

在无围压受压条件下,观测到不规则的纵向裂缝[见图(a)],这个普通现象的解释至今仍然不十分清楚;加中等数量的围压后,图(a)中的不规则性态便由与方向倾斜小于45度角的单一破裂面所代替[图(b)],这是压应力条件下的典型破裂,并将其表述为剪切破坏,它的特征是沿破裂面的剪切位移,对岩石破裂进行分类的Griggs和Handin(1960)称它为断层;因为它符合地质上的断层作用,后来有许多作者追随着他们;然而,更可取的似乎是限制术语断层于地质学范围,保留术语剪切破裂于试验范围更好;如果继续增加围压,使得材料成为完全延性的,则出现剪切破裂的网格[图(c)],并伴有个别晶体的塑性。

破裂的第二种基本类型是拉伸破裂,它典型地出现于单轴拉伸中,它的特征是明显的分离,而在表面间没有错动[图(d)]。

在较为复杂的应力条件下出现的破裂,可以认为上述类型之一或其它。如果平板在线载荷之间受压[图(e)],则在载荷之间出现一个拉伸破裂,如果这些载荷是由环绕材料的外套挤入材

料的裂缝中引起的,则将破裂表述为侵入破裂,当检查图(a)情况中的破裂面时,它们中的一些部分有剪切破裂的状态。而其他一些部分显然是拉伸破裂。岩石破裂中,注意力还将集中于重要的扩容现象,它发生于岩石试件的单轴和三轴受压期间.通常,在三轴试验中,围压是由流体通过一个刚度可忽略不计的不渗透膜来施加的,在这样的试验中,试件的径间膨胀和扩容显然不会由于围压的增加而被局部或均匀地阻挡;如果试件被更多的岩石包围,象实际情形中听发生的那样,那就将是这种情况,不管围岩是否破坏,预料它所提供的阻力会有增加最小主应力值的效应,因此趋于阻止破坏和集中破裂于有限的体积内。

4、论述影响岩石力学性质的主要因素(2005,2006)

论述影响岩石力学性质的因素很多,如水、温度、风化程度、加荷速度、围压的大小、各向异性等等,对岩石的力学性质都有影响。如下:

1水对岩石力学性质的影响。主要表现在连接作用、润滑作用、水楔作用、孔隙压力作用、溶蚀及潜蚀作用;

2温度对岩石力学性质的影响。随着温度的增高,岩石的延性加大,屈服点降低,强度也降低;

3 加荷速度对岩石力学性质的影响。加荷速度越大,测得的弹性模量越大,获得的强度指标值越高。

4围压对岩石力学性质的影响。围压的增大使得岩石的变形、强度和弹性极限都有显著的增大

5随着温度的增高,岩石的延性加大,屈服点降低,强度也降低;

6 风化对岩石力学性质的影响。产生新的裂隙、矿物成分发生变化、结构和构造发生变化。

5、论述在单轴压缩载荷作用时岩石试件的端部约束效应(2005,2010)

由于岩石材料与铁板之间的泊松比值存在差异,这将在试件端面与铁板之间的接触面上产生摩擦力,该摩擦力将影响岩石试件的横向变形和岩石试件端面附件区域的应力状态。 由于该摩擦力的存在,导致岩石试件内部应力分布不均,致使岩石试件并非只产生纵向劈裂破坏(亦称拉伸破坏),还有可能产生X状共轭斜面剪切破坏和单斜面剪切破坏等破坏形式。

为了尽量减小试件端面与铁板之间的接触面上产生摩擦力,以保证岩石试件端面附件区域的应力状态也为单向受力状态,必须要在试件端面与铁板之间的接触面上添加缓冲材料。

国际岩石岩石力学学会建议在试件端面与铁板之间使用与同样直径大小的钢件垫块。6、详述岩石试件在单轴压缩荷载作用下破坏时,试件可产生的三种破坏形式(2007)

岩石在单轴压缩荷载下达到破坏前所能承受的最大压应力称为岩石的单轴抗压强度。

试件在单轴压缩荷载作用下破坏的三种形式:

1. X状共轭斜面剪切破坏,如图b

2. 单斜面剪切破坏,如图c

这两种破坏都是由于破坏面上的剪应力超过极限引起的,因而被视为剪切破坏。

3. 拉伸破坏,在轴向压应力作用下,在横向将产生拉应力。这是柏松效应的结果。这种类型的破坏就是横向拉应力超过岩石抗拉极限所引起的。如图d

7、论述岩体结构的基本类型(2008)

77页中从“这个分类依据可以具体说明如下”后面。。。。。。。。。。。。。到“2.2.2分类方案”以前,就按书上格式答。

8、什么是岩石的岩石的应力——应变曲线?简要说明岩石应力——应变全过程曲线的基本

特征(在单向压缩荷载条件下,岩石的应力——应变曲线可分为哪四个阶段?)(2004,2006,2008)

全应力应变曲线:岩石试件在单轴压缩荷载作用下直到破坏的全过程的应力应变关系曲线,包括破坏前和破坏后部分。

四个阶段:书上53页(附图)

9、研究应力-应变全过程曲线的意义是什么?

51页用黑笔划了的部分

四、计算题

2007年:

某均质岩石的强度曲线为:c +=φστtan ,其中,MPa c 40=,φ=30°,试求在侧向围岩应力MPa 203=σ的条件下,岩石的极限抗压强度及破坏面的方位,并用莫尔圆表示。(sin30°=0.5,cos30°=0.866)

2008年:

设莫尔(Mohr )理论的强度包络线为一直线,?、c 分别为岩石的凝聚力和内摩擦角,试证明:

1、岩石的强度条件为:

?σσ?σσsin 23

131=++?-ctg c 2、岩石的单轴抗压强度?σ、与c c 之间的关系为:

??? ?

?-?=2452?σtg c c 2011年:

1.某均质岩石的强度曲线为:c +=φστtan ,其中,C=30MPa ,φ=30°,试求在侧向围岩应力MPa 103=σ的条件下,岩石的极限抗压强度及破坏面的方位角。(注:sin30°=0.5,cos30°=0.866)(答案:60°)

2.在岩体内某一点的应力值为:MPa x 70.14=σ,MPa y 20.8=σ,MPa xy 45.2=τ,按照平面应变考虑,试确定其主应力大小与方位角。(答案:15.52,7.38,18.5°)

一、 什么是岩石的水理性?如何描述岩石的水理性?(2010)(20分

回答要点:

1. 岩石的水理性的定义;(3分)

2. 岩石的天然含水率;(2分)

3. 岩石的吸水性(定义、吸水率、饱水率和饱水系数)(6分)

4. 岩石的透水性(定义、渗透系数)(3分)

5. 岩石的软化性(定义、软化系数)(3分)

6. 岩石的抗冻性(定义、抗冻系数)(3分)

二、试评述单轴压缩载荷作用下的端部约束效应。(20分)

回答要点:

1.单轴压缩载荷条件的定义;(2分)

2.材料的泊松效应;(4分)

3.岩石受载端面与钢压板间的摩擦力;(5分,其中示意图2分)

4.岩石端面的复杂应力状态分析;(5分,其中示意图2分)

5.改善端面约束效应的主要方法。(4分)

三、试述莫尔(Mohr)强度理论的基本内容,并评述之。(20分)

回答要点:

1.岩石强度理论的定义(包括对强度理论(2分)、强度准则(破坏条件)(1分)、

强度曲线(曲面)(1分)等的解释)及其一般数学表示方法(2分)

2.莫尔(Mohr)强度理论的基本观点(3分)及基本函数关系(|τ|=f(σ))(1

分)

3.莫尔(Mohr)强度包络线(2分)及其拟合(包括双直线、二次抛物、双曲线

等)(3分)

4.莫尔(Mohr)强度理论的优缺点(4分)及其适用性讨论(1分)

岩石力学-硕士研究生课程报告-中南大学

硕士研究生课程报告 题目顺层高边坡稳定性影响因素 及工程灾害防治 姓名曾义 专业班级岩土13级 任课教师阳军生张学民 中南大学土木工程学院

引言 近年来,随着铁路公路建设步伐加快,铁路公路等级不断提高,边坡防护建设工程中所遇到的岩土边坡安全稳定性问题也相应增多,并成为岩土工程中比较常见的技术难题。由于工程建设的需要,往往在一定程度上破坏或扰动原来较为稳定的岩土体而形成新的人工边坡,因而普遍存在着边坡稳定的问题需要解决。国家实施西部大开发战略以来,西部山区高等级公路得到迅速发展。在山区修建高等级公路不可避免会遇到大量的深挖高填路基,就目前建设的高速公路情况看:一般情况下,100km长的山区高等级公路,挖填方路基段落长度占路线总长度的60%以上。已建高速公路最高的填方已达到50多米,最高的挖方边坡高度已超过100m。尽管山区高等级公路的建设越来越倡导环境保护,尽量避免深挖高填,但路基作为公路的主要结构,其边坡稳定问题不可避免。在山区复杂多变的地质条件下建设高等级公路,其边坡稳定性问题必将受到人们的普遍关注,高边坡岩土安全状况直接关系到公路交通运输安全。 虽然计算理论方法、地质探测技术、现代监测技术、边坡加固技术及施工技术不断的在进步,但顺层边坡稳定性问题和高边坡稳定性问题,时至今日依然是国内外学者研究的热点问题,并逐步涌现出许多的新的研究方向。 1、顺倾高边坡稳定性研究现状 随着人类工程活动的发展,对边坡问题的研究也在不断深入,归纳前人对边坡问题的研究大致可分为以下几个阶段: 人们对边坡稳定性的关注和研究最早是从滑坡现象开始的(张倬元等,2001)。19世纪末和20世纪初期,伴随着欧美资本主义国家的工业化而兴起的大规模土木工程建设(如修筑铁路、公路,露天采矿,天然建材开采等),出现了较多的人工边坡,诱发了大量滑坡和崩塌,造成了很大的损失。这时,人们才开始重视边坡失稳给人类造成的危害,并开始借用一般材料分析中的工程力学理论对滑坡进行半经验、半理论的研究。 20世纪50年代,我国学者引进苏联工程地质的体系,继承和发展了“地质历史分析”法,并将其应用于滑坡的分析和研究中,对边坡稳定性研究起到了推动作用(张倬元等,1994)。该阶段学者们着重边坡地质条件的描述和边坡类型的划分,采用工程地质类比法评价边坡稳定性。 20世纪60年代,世界上几起灾难性的边坡失稳事件的发生(如意大利的瓦依昂滑坡造成近3000人死亡和巨大的经济损失)(张倬元等,1994),使人们逐渐认识到了结构面对边坡稳定性的控制作用以及边坡失稳的时效特征,初步形

《岩石力学与工程》蔡美峰版总结

《岩石力学与工程》内容概要总结 地应力是存在于地层中的为受工程扰动的天然应力。也称为岩体初始应力、绝对应力或原岩应力。 地质软岩:单轴抗压强度小于25MPa的松散、破碎、软化及风化膨胀性一类岩体的总称。 工程软岩:工程力作用下能产生显著性变形的工程岩体。声发射:材料在受到外载荷作用时,其内部贮存的应变能快速释放产生弹性波,发生声响。 岩石岩石地下工程:地下岩石中开挖并临时获永久修建的各种工程。 围岩:在岩石地下地下工程中,由于受开挖影响而发生应力状态改变的周围岩体。 锚喷支护:锚杆与喷射混凝土联合支护的简称。 边坡:岩体、土体在自然重力作用或人为作用而形成一定倾斜度的临空面。 岩石:自然界各种矿物的集合体,是天然地质作用的产物。 容重:岩石单位体积的重量。根据含水情况将岩石的容重分为天然容重、干容重、饱和容重。孔隙性:天然岩石中包含着数量不等、成因各异的孔隙和裂隙。 孔隙率:指岩石孔隙的体积与岩石总体积的比值,以百分数表示。分为总孔隙率、总开孔隙率、大开孔隙率、小开孔隙率、和闭孔隙率。孔隙率愈大,岩石力学性能越差。 水理性:岩石与水相互作用时所表现的性质。 包括岩石的吸水性、透水性、软化性和抗冻性。 岩石强度:岩石在各种载荷作用下达到破坏时所能承受的最大应力。 单轴抗压强度:岩石在单轴压缩载荷作用下达到破坏前所能承受的最大压应力。 岩石破坏形式:x状共轭斜面剪切破坏。这种破坏形式是最常见的破坏形式;单斜面剪切破坏。这两种破坏都是由于破坏面上的剪应力超过极限引起的。 拉伸破坏:横向拉应力超过岩石抗拉极限引起的。 流变破坏:岩石的三轴抗压强度:岩石在三向荷载作用下,达到破坏时所能承受的最大压应力。 莫尔强度包络线:同一种岩石对应各种应力状态下破坏莫尔应力圆外公切线。直线型、抛物线型、双曲线型。 点载荷试验:试验所获得的强度指标值可以用做岩石分级的一个指标。点载荷实验装置是便携式的,可带到岩土工程现场去做实验。点载荷试验对试件的要求不严格。缺点是要根据经

储层岩石力学概述

储层岩石力学概述 发表时间:2019-09-11T14:30:47.063Z 来源:《基层建设》2019年第11期作者:王祥程 [导读] 摘要:岩石力学是一门边缘交叉学科,它与工程实践密切联系而得到发展。 成都理工大学能源学院 610059 摘要:岩石力学是一门边缘交叉学科,它与工程实践密切联系而得到发展。深入了解研究岩石力学的性质和相关参数对于工程上的开发具有十分重要的作用。 关键词:岩石力学;石油工程;研究方法 1. 岩石力学的概述 岩石包括组成岩石的固体骨架、孔隙、裂缝以及其中的流体,因此岩石力学往往会应用到弹性力学、塑性力学、流体力学、渗流力学等力学学科的诸多理论方法。岩石的性质几乎牵涉到所有力学分支,岩石力学的研究是各种力学理论的综合运用。不同岩石力学问题的研究,可能包括瞬时变形运动,也可能包含与地质演化时间相关的长期变形运动。 岩石力学是力学的一部分。岩石材料赋存于地下,其力学性质难于直接测试和观察,而若将其取至地面进行测试则岩石的力学性质往往发生了较大的变化,加之岩石中的流体存在于裂隙或孔隙之中,与岩石骨架相互作用,使岩石的受力情况更加复杂。 2.岩石力学的研究方法 岩石力学是一门边缘交叉学科,它与工程实践密切联系而得到发展。岩石具有特殊的固体介质力学特性,这个特殊的力学性质与它所处的环境有关,如天然岩石所处应力状态一般称为岩石的初始应力状态。在岩石受到工程活动扰动后,岩体的应力出现了变化,这时岩石所处的应力状态称为次生应力状态。此时将岩石力学和工程地质相结合进行研究是十分重要和必要的。对于节理岩体,特别需要了解岩体结构面的分布、网络特性、岩体结构类型,才能进行岩体的数值模拟和分析。 一般而言,岩石力学的研究方法可分为如下四大类: (1)地质研究方法:对岩体进行地质方面的研究始终是岩石力学研究的基础,在整个岩石工程过程中,地质性质的研究应当列在第一位。①岩石岩相、盐层特征的研究,如软弱岩体的成分、可溶盐类、含水蚀变矿物、不抗风化岩体成分以及原生结构。②岩体结构的地质特性研究,如断续结构面的几何特征、岩体力学特征、软弱面的充填物及地质特性。③赋存地质环境的研究,如地应力的成因、地下水分布与化学特征以及地质构造对环境的影响。 (2)物理力学研究方法:①岩体结构的探测,应用地球物理化学方法和技术来探查各种结构面的力学特征和化学特征。②地质环境的物理性质分析与测量,如地应力的形成机制及分布、地质环境中热力与水力存在的性状、水化学的分布特征,应用大规模地质构造层析技术、地质雷达探测技术确定岩体构造。③岩体物理力学性质的测定,如岩块力学特性的室内试验、原位岩体的力学性质测试、钻孔测试、工程变形监测、位移反分析等。主要运用的手段是基于震动的动态测试,如超声波测试、地震波测试、电磁波测试、计算机层析方法(CT)测试。这些测试利用岩体的波动特性,来研究岩体的力学特性。 (3)数学力学分析方法:岩石力学的研究,除了以上地质方法、物理力学方法的研究外,还要进行数学力学方法研究,从而构成岩石力学的理论基础,包括:①岩石本构关系的研究-对岩石进行宏观到细观甚至微观的力学特性研究。②数值分析方法。由于计算机计算性能的发展,岩石力学的数值分析方法得到了大力发展。在数值分析方法方面,由岩体连续力学发展到非连续力学,出现了离散元法(DEN)和不连续变形分析法(DDA)、流形法(BEM)、无单元法(EFM)和快速拉格朗日法(FLAC)。③多元统计和随机分析。这两种方法可以深人地研究因岩体介质的随机分布特性而造成传统方法难以解决的问题。④物理和数值模拟仿真分析。 (4)整体综合分析法:就整个工程进行多种分析的方法,并以系统工程为基础的综合分析。 3.石油工程岩石力学研究对象及特点 石油工程岩石力学所研究的,所涉及的地层深度大多在8000m范围内,研究对象主要是沉积岩层,岩石处于较高的围压、温度和孔院压力作用下其性质已完全不同于浅部地层,它可能经过脆-塑性转变成塑性,也可能由于高孔院压力的作用呈现脆性破坏。 (1)石油工程岩石力学所涉及的围压可达200MPa。非均匀的原地应力场形成了地层之间的围压,若垂向应力源于地层自重,那么应力梯度平均为0.023MPa/m,多数地区最大水平应力往往大于垂向应力,且两个水平地应力梯度的比值通常达到1.4~1.5以上。在山前构造带地区,不但地应力梯度高,最大和最小水平地应力的比值也很大。因此在研究地应力分布规律(包括数值大小及主方向)时,主要依靠水力压裂、岩石剩磁分析、地震和构造资料反演、测井资料解释等间接方法。 (2)石油工程岩石力学所涉及的温度可达250℃。一般的地温梯度是3℃/100m,高的可超过4℃/100m,具体的地温梯度往往需要实际测定。当温度超过150℃后,温度对岩石性质的影响将变得十分明显。 (3)石油工程岩石力学中所涉及到的孔隙和裂隙中的高压流体的孔隙压力可高达200MPa.一般情况下,常规的静水孔隙压力梯度为 0.00981MPa/m,但是异常高压可超过0.02MPa/m。 4.结束语 岩石力学是一门十分重要的,它涉及到了工程领域的各个行业。因此,正确理解学习岩石力学的理论知识以及探究其影响等具有十分重要的意义。 参考文献 [1]王路,徐亮,王瑞琮.岩石力学在石油工程中的应用[J].石化技术,2017, 24(3):157-157. [2]陈勉.我国深层岩石力学研究及在石油工程中的应用[J].岩石力学与工程学报,2003,23(14):2455-2462. [3]杨永明,鞠杨,刘红彬,etal.孔隙结构特征及其对岩石力学性能的影响[J].岩石力学与工程学报,2009,28(10):2031-2038. [4]陈新,杨强,何满潮,etal.考虑深部岩体各向异性强度的井壁稳定分析[J].岩石力学与工程学报,2005(16):2882-2888. [5]陈德光,田军,王治中,etal.钻井岩石力学特性预测及应用系统的开发[J].石油钻采工艺,1995,17(5):012-16. [6]王大勋,刘洪,韩松,etal.深部岩石力学与深井钻井技术研究[J].钻采工艺,2006,29(3):6-10. [7]阎铁.深部井眼岩石力学分析及应用[D].2001. [8]陈新,杨强,何满潮,etal.考虑深部岩体各向异性强度的井壁稳定分析[J].岩石力学与工程学报,2005(16):2882-2888.

高等岩石力学试题答案1

1. 简述岩石的强度特性和强度理论,并就岩石的强度理论进行简要评述。 答:岩石作为一种天然工程材料的时候,它具有不均匀性、各向异性、不连续等特点,并且受水力学作用显著。在地表部分,岩石的破坏为脆性破坏,随着赋存深度的增加,其破坏向延性发展。 岩石强度理论是判断岩石试样或岩石工程在什么应力、应变条件下破坏。当然岩石的破坏与诸多因素有关,如温度、应变率、湿度、应变梯度等。但目前岩石强度理论大多只考虑应力的影响,其他因素影响研究并不深入,故未予考虑。 (1). 剪切强度准则 a. Coulomb-Navier 准则 Coulomb-Navier 准则认为岩石的破坏属于在正应力作用下的剪切破坏,它不仅与该剪切面上剪应力有关,而且与该面上的正应力有关。岩石并不沿着最大剪切应力作用面产生破坏,而是沿其剪切应力和正应力最不利组合的某一面产生破裂。即: ?στtan +=C 式中?为岩石材料的内摩擦角,σ为正应力,C 为岩石粘聚力。 b. Mohr 破坏准则 根据实验证明:在低围压下最大主应力和最小主应力关系接近于线性关系。但随着围压的增大,与关系明显呈现非线性。为了体现这一特点,莫尔准则在压剪和三轴破坏实验的基础上确定破坏准则方程,即: ()στf = 此方程可以具体简化为斜直线、双曲线、抛物线、摆线以及双斜直线等各种曲线形式,具体视实验结果而定。 虽然从形式上看,库仑准则和莫尔准则区别只是在于后者把直线推广到曲线,但莫尔准则把包络线扩大或延伸至拉应力区。 c. 双剪的强度准则 Mohr 强度准则是典型的单剪强度准则,没有考虑第二主应力的作用。我国学者俞茂宏从正交八面体的三个主应力出发,提出了双剪强度理论和适用于岩土介质的广义双剪强度理论,并得到了双剪统一强度理论: () 3211t b b σσσασ=+--α ασσσ++≤1312 ()t b b σασσσ=-++31211 αασσσ++≥1312 式中α和b 为两个材料常数,是岩石单轴抗拉强度。在主应力空间里,上式代表一个以静水应力轴为中心轴具有不等边十二边形截面的锥体表面。 (2). 屈服强度准则 a. Tresca 屈服准则

高等岩石力学答案

3、简述锚杆支护作用原理及不同种类锚杆的适用条件。 答:岩层和土体的锚因是一种把锚杆埋入地层进行预加应力的技术。锚杆插入预先钻凿的孔眼并固定于其底端,固定后,通常对其施加预应力。锚杆外露于地面的一端用锚头固定,一种情况是锚头直接附着在结构上,以满足结构的稳定。另一种情况是通过梁板、格构或其他部件将锚头施加的应力传递于更为宽广的岩土体表面。岩土锚固的基本原理就是依靠锚杆周围地层的抗剪强度来传递结构物的拉力或保持地层开挖面自身的稳定。岩土锚固的主要功能是: (1)提供作用于结构物上以承受外荷的抗力,其方问朝着锚杆与岩土体相接触的点。 (2)使被锚固地层产生压应力,或对被通过的地层起加筋作用(非顶应力锚杆)。

(3)加固并增加地层强度,也相应地改善了地层的其他力学性能。 (4)当锚杆通过被锚固结构时.能使结构本身产生预应力。 (5)通过锚杆,使结构与岩石连锁在一起,形成一种共同工作的复合结构,使岩石能更有效地承受拉力和剪力。 锚杆的这些功能是互相补允的。对某一特定的工程而台,也并非每一个功能都发挥作用。 若采用非预应力锚杆,则在岩土体中主要起简单的加筋作用,而且只有当岩土体表层松动变位时,才会发挥其作用。这种锚固方式的效果远不及预应力锚杆。效果最好与应用最广的锚固技术是通过锚固力能使结构与岩层连锁在一起的方法。根据静力分析,可以容易地选择锚固力的大小、方向及其荷载中心。由这些力组成的整个力系作用在结构上,从而能最经济有效地保持结构的稳定。采用这种应用方式的锚固使结构能抵抗转动倾倒、沿底脚的切向位移、沿下卧层临界面上的剪切破坏及由上举力所产生的竖向位移。 岩土的锚杆类型: (1)预应力与非预应力锚杆 对无初始变形的锚杆,要使其发挥全部承载能力则要求锚杆头有较大的位移。为了减少这种位移直至到达结构物所能容许的程度,一般是通过将早期张拉的锚杆固定在结构物、地面厚板或其他构件上,以对锚杆施加预应力,同时也在结构物和地层中产生应力,这就是预应力锚杆。 预应力锚杆除能控制结构物的位移外,还有其它有点: 1安装后能及时提供支护抗力,使岩体处于三轴应力状态。 2控制地层与结构物变形的能力强。 3按一定密度布臵锚杆,施加预应力后能在地层内形成压缩区,有利于地层稳定。 4预加应力后,能明显提高潜在滑移面或岩石软弱结构面的抗剪强度。 5张拉工序能检验锚杆的承载力,质量易保证。 6施工工艺比较复杂。 (2)拉力型与压力型锚杆 显而易见,锚杆受荷后,杆体总是处于受拉状态的。拉力型与压力型锚杆的主要区别是在锚杆受荷后其固定段内的灌浆体分别处于受拉或受压状态。拉力型锚杆的荷载是依赖其固定段杆体与灌浆体接触的界面上的剪应力(粕结应力)由顶端(固定段与自由段交界处)向底端传递的。锚杆工作时,固定段的灌浆体易出现张拉裂缝.防腐件能差。

岩石力学研究进展报告

岩石力学研究新进展报告 姓名:XXX 学号:XXXXXXXX 专业:岩土工程

岩石力学研究新进展报告 1 引言 时光如白驹过隙,一学期的《XXXXX》课程在不知不觉间结课了。这一学期的学习,使我在岩石力学方面有了很大的启发,特别是分形理论在岩石力学中的应用令我神往。下面我对岩石力学研究的新进展做简要报告。 岩石力学可以作为固体力学的一个新分支,用以研究岩石材料的力学性能和岩石工程的特殊设计方法。岩石力学经过近50年的发展,在土木工程、水利工程、采矿工程、石油工程、国防工程等领域都得到了广泛的应用,随着科学技术的进步,岩石力学涉及的领域会进一步扩大。岩石力学是一门内涵深,工程实践性强的发展中学科。岩石力学面对的是“数据有限”的问题,输入给模型的基本参数很难确定,而且没有多少对过程(特别是非线性工程)的演化提供信息的测试手段。另一方面,对岩体的破坏机体还不能准确的解释。岩石力学所涉及的力学问题是多场(应力场、温度场、渗流场、甚至还存在电磁场等)、多相(固、液、气)影响下的地质构造和工程构造相互作用的耦合问题。这就表明,工程岩体的变形破坏特征是极为复杂的,其大多数是高度非线性的。目前,岩石力学的许多数学模型是不准确和不完整的,可以广泛接受和适用的概化模型并不多。基于此,近年来,多种数值方法、细观力学、断裂与损伤力学、系统科学、分形理论、块体理论等在岩石力学中的应用以及各种人工智能、神经网络、遗传算法、进化算法、非确定性数学等域岩石力学的交叉学科的兴起,为我们提供了全新和有效的思维方式和研究方法,更能激发研究者的创新精神,这也为突破岩石力学的确定性研究方法提供了强有力的理论基础[1]。 本报告主要对分形岩石力学、块体岩石力学、断裂与损伤岩石力学和岩石细观力学四部分的研究新进展做简要报告。由于时间和精力有限(最近导师安排的任务非常多,而且要准备英语和政治期末考试),每部分内容除第一大段的研究新进展综述外,只对近几年的三篇比较好的文献做分析说明,包括两篇中文学术论文和一篇外文学术论文,这12篇学术论文我都比较仔细的看了。以后若有机会和时间,我会在导师和各位老师同学的不吝赐教下,努力做岩石力学的创新性研究,届时会在文献综述部分查阅和介绍更多最新以及更优秀的文献。 2 分形岩石力学 从古至今,岩石已成为人们熟知的工程材料,它是由矿物晶粒、胶结物质和大量各种不同阶次、不规则分布的裂隙、薄弱夹层等缺陷构成,是一种成分和结构高度复杂的孔隙体。岩石力学经过近50年的发展,人们尝试用各种数学力学方法研究和描述岩石复杂的自然结构性状和物理力学性质,提出了多种岩石力学分析和计算方法,为解决实际工程中的岩石力学问题创造了条件。19世纪70年代Mandelbrot创立分形几何学,提出了一种定量研究和描述自然界中极不规则且看似无序的复杂结构、现象或行为的新方法,从此分形几何学广泛地应用于自然科学研究的各个领域,并且在经济学等社会科学也有很巧妙的应用。19世纪80年代,分形几何学开始应用于岩石力学研究,开始形成分形岩石力学这一门新兴交叉学科。人们逐渐发现岩石力学领域中的分形现象相当普遍,不仅岩石的自然结构性状、缺陷几何形态、分布以及地质结构产状、断层几何形态、分布都观察到分形特征或分形结构,而且岩石体强度、变形、破断力学行为以及能量耗

岩石力学试验报告-2010

长沙理工大学 岩石力学试验报告 年级班号姓名同组姓名实验日期月日理论课教师:指导教师签字:批阅教师签字: 实验一 实验二 实验三 实验四 实验五 实验六 实验七

试验一、岩石单向抗压强度的测定 一、试验的目的: 测定岩石的单轴抗压强度Rc。当无侧限试样在纵向压力作用下出现压缩破坏时,单位面积上所承受的载荷称为岩石的单轴抗压强度,即试样破坏时的最大载荷与垂直于加载方向的截面积之比。 本次试验主要测定天然状态下试样的单轴抗压强度。 二、试样制备: 1、试料可用钻孔岩心或坑槽探中采取的岩块。在取料和试样制备过程中,不允许人为裂隙出现。 2、本次试验采用圆柱体作为标准试样,直径为5cm,允许变化范围为4.8~5.4cm,高度为10cm,允许变化范围为9.5~10.5cm。 3、对于非均质的粗粒结构岩石,或取样尺寸小于标准尺寸者,允许采用非标准试样,但高径之比宜为2.0~2.5。 4、制备试样时采用的冷却液,必须是洁净水,不许使用油液。 5、对于遇水崩解、溶解和干缩湿胀的岩石,应采用干法制样。 6、试样数量:每组须制备3个。 7、试样制备的精度。 (1)在试样整个高度上,直径误差不得超过0.3mm。 (2)两端面的不平行度,最大不超过0.05mm。 (3)端面应垂直于试样轴线,最大偏差不超过0.25。 三、试样描述: 试验前的描述,应包括如下内容: 1、岩石名称、颜色、结构、矿物成分、颗粒大小,风化程度,胶结物性质等特征。 2、节理裂隙的发育程度及其分布,并记述受载方向与层理、片理及节理裂隙之间的关系。 3、量测试样尺寸,检查试样加工精度,并记录试样加工过程中的缺陷。 试件压坏后,应描述其破坏方式。若发现异常现象,应对其进行描述和解释。 四、主要仪器设备:

完整版重庆大学岩石力学总结

重庆大学岩石力学总结第一章 1岩石中存在一些如矿物解理,微裂隙,粒间空隙,晶格缺陷,晶格边界等内部缺陷,统称微结构面。2岩石的基本构成是由组成岩石的物质成分和结构两大方面来决定。3岩石的结构是指岩石中矿物颗粒相互之间的关系,包括颗粒的大小,形状,排列,结构连接特点及岩石中的微结构面。其中以结构连接和岩石中的微结构面对岩石工程性质影响最大。4岩石中结构连接的类型主要有两种:结晶连接,胶结连接。5岩石中的微结构面是指存在于矿物颗粒内部或矿物颗粒及矿物集合体之间微小的弱面及空隙。它包括矿物的解理,晶格缺陷,晶粒边界,粒间空隙,微裂隙等。6矿物的解理面指矿物晶体或晶粒受力后沿一定结晶方向分裂成的光滑平面。7岩石的物理性质是指由岩石固有的物质组成和结构特征所决定的比重,容重,孔隙率,岩石的密度等基本属性。8岩石的孔隙率是指岩石孔隙的体积与岩石总体积的

比值。9岩石的水理性:岩石与水相互作用时所表现的性质称为岩石的水理性。包括岩石的吸水性,透水性,软化性和抗冻性。 10 岩石的天然含水率w m w m w表示岩石中水的质量,岩石的烘干质量m rd m rd 11 岩石在一定条件下吸收水分的性能称为岩石的吸水性。它取决于岩石孔隙的数量,大小,开闭程度和分布情况。表征岩石吸水性的指标有吸水率,饱和吸水 率和饱水系数。岩石吸水率w a m o m dr. m dr为岩石烘干质量,m o为岩石浸 m dr 水48 小时后的总质量。 12岩石的饱水率是岩石在强制状态下(高压,真空或煮沸)岩石吸入水的质量与岩石烘干质量的比值。13岩石的透水性:岩石能被水透过

的性能。可用渗透系数衡量。主要取决于岩 石孔隙的大小,方向及相互连通情况。q x k dh A K 为岩石的渗透系数,h 为 dx 水头的高度,A为垂直于X方向的截面面积,qx 为沿X方向水的流量。透 水性物理意义:是介质对某种特定流体的渗透能力,渗透系数的大小取决于岩石的物理特性和结构特征。 14岩石在反复冻融后强度降低的主要原因:1构成岩石的各种矿物的膨胀系数不同,当温度变化时,由于矿物的胀缩不均而导致岩石结构的破坏。2当温度降到0℃以下时,岩石孔隙的水结冰,体积增大约%9,会产生很大的膨胀压力,使岩石的结构发生改变甚至破坏。15进行岩石强度实验选用的试件必须是完整岩块,而不应包含节理裂隙。16岩石强度指标值受下列因素影响:①试件尺寸②试件形状③试件三维尺寸比例④加载速率(加载速率越多,所测岩石强度指标值越高⑤湿度

岩体力学 s

深部开采岩体力学研究的现状 摘要:在深部开采工程中产生的岩石力学问题是目前国内外采矿及岩石力学界研究的焦点,“三高一扰动”的复杂环境,是深部开采面临的挑战性、高难度课题。虽然目前对于深部开采工程的研究已经取得了部分成果,但对深层次、注重个案、侧重技术的基础研究重视仍然不够。今后主要研究方向应集中在深部岩石力学基本特性、深部开采工程稳定性控制、深部开采地表环境损伤控制以及深部厚煤层综放开采基础理论研究等方面。 关键词:深部开采;岩石力学;三高一扰动 深部开采岩石力学,主要是指在进行深部资源开采过程中引发的与巷道工程及采场工程有关的岩石力学问题。目前,对能源的需求逐步增加,开采强度也不断加大,这些都造成了浅部资源的日益减少,因而国内外的矿山都相继进入深部资源开采状态。而开采深度的不断增加,工程灾害也随之增多,这对深部资源安全高效的开采造成了巨大威胁。 1 深部开采岩体的力学特点 1.1 开采环境 深部开采和浅部开采最明显的区别在于深部岩石所处的特殊环境,也就是“三高一扰动”的复杂力学环境。“三高”主要是指高地温、高地应力和高岩溶水压。“一扰动”主要是指强烈的开采扰动。当进入深部开采后,岩体呈现塑性状态,即由各向不等压的原岩应力引起的压、剪应力超过岩石的强度,并且对岩石造成破坏。 1.2 力学行为特性 深部岩石的“三高一扰动”复杂环境,对深部岩体的组织结构、基本行为特征和工程响应产生根本性的影响。主要表现在深部岩体动力响应的突变性,深部岩体应力场的复杂性,深部岩体的大变形和强流变性,深部岩体的脆性一延性转化,深部岩体开挖岩溶突水的瞬时性等五个方面。 2 深部开采工程中的岩石力学问题 目前对于深部开采工程的研究已经取得了一系列成果,但是对于侧重技术、注重个案的深层次基础研究始终没有得到足够的重视。深部开采“三高一扰动”的复杂力学环境,使深部岩石力学行为及其深部灾害的特征与浅部开采明显不同,因而在浅部开采基础上建立的传统理论不能适应现在的研究环境。 2.1 强度确定 深部开采时地应力水平比较高,因而工程开挖后的工程岩体在高围压作用下,一个或两个方向上应力状态的改变所表现出的强度变化并不是简单的表现在受拉或受压,而是复杂的拉压复合状态,即径向产生卸载,同时切向产生加载。所以深部开采时工程岩体的强度不能单纯用岩块强度来确定,必须建立符合深部开采特点的工程岩体拉压复合强度确定理论。 2.2 设计理论 深部开采时,由于工程围岩所表现出的非线性力学特性,在稳定性控制设计时不能采用简单的一次线性设计,因而必须建立采用二次以至多次非线性大变形力学稳定性控制设计理论。 2.3 稳定性控制理论 在深部开采环境下,工程开挖后工程围岩就会有不同程度的破坏,必须采用二次支护甚至多次支护才能够实现工程稳定性。因此,原有的稳定性控制理论不能适合新的环境,必须建立适合深部开采工程的二次(支护)稳定性控制理论。 3 今后研究重点

岩石力学数值试验实验报告

岩石力学数值试验实验报告 姓名:郑周立学号: 1108010103 班级:采矿111班指导教师:左宇军 同组人:郑周立、周义现、胡斌、朱红伟、高言、 王坤 实验名称:圆孔对岩石力学性质影响的数值加载 试验 2014年5月16日

圆孔对岩石力学性质影响的数值加载试验 一、实验目的: 1.通过对RFPA2D学习,知道RFPA2D基本使用方法。 2.了解RFPA2D模拟试验的条件和RFPA2D的基本功能。 3.通过操作端部效应对岩石力学性质影响的数值实验,了解每一步操作以及岩石破裂过程,最终完成实验得到结果。 二、实验原理: RFPA-2D是一种基于有限元应力分析和统计损伤理论的材料破裂过程分析数值计算方法,是一个能够模拟材料渐进破裂直至失稳全过程的数值试验工具。 三、 1、试样尺寸: 100mm*51mm 2、基元数: 100*51 3、应力分析模式: 平面应变 4、圆孔:半径10mm 5、加载方式:单轴压缩 6、加载条件:竖向位移加载 7、均质度m=2 8、加载量:每步0.002mm

9、实验内容: (1)、应力-应变曲线; (2)、强度; (3)、破坏模式 四、实验内容: (一)、操作步骤: 第一步启动RFPA,新建模型建立存放的根目录 第二步划分网格,单击在弹出的窗口中设置模型的大小,单击确定第三步选择施加荷载模式... (二)实验结果 弹性模量图 第1步

第4步(开始破坏) 第7步(开始横向破坏) 第32步(彻底破坏) 第200步

最大剪应力图第1步

第4步(开始破坏) 第33步(彻底破坏) 第200步 最大主应力图

(完整版)重庆大学-博士、硕士岩石力学考题2

重庆大学二零零五年博士生(秋季)入学考试试题一、论述岩石的流变特性以及蠕变变形曲线特征。 (20分) 二、论述摩尔判据的基本内容,并简要评述摩尔判据的优缺 点。(20分) 三、什么是初始地应力?试论述初始地应力的成因及其分布 规律。(20分) 四、评述岩石在复杂应力条件下的的变形特性。 (20分) 五、论述在单轴压缩载荷作用时岩石试件的端部约束效应。 (20分) 重庆大学博士生入学考试试题答案

一、论述岩石的流变特性以及蠕变变形曲线特征(20分) 所谓岩石的流变性质就是指岩石的应力-应变关系与时间因素有关的性质,包括蠕变、松弛与弹性后效三个方面。所谓蠕变是指当载荷不变时,变形随着时间而增长的现象;所谓松弛是指当应变保持不变时,应力 随着时间增长而减小的现象;所谓弹性后效是指当加载或卸载时,弹性应变滞后于应力的现象。 岩石的蠕变变形特性曲线可以通过单轴或三轴压缩、扭转或弯曲等蠕变实验来进行研究。实验表明,在恒定载荷作用下,只要有充分长的时间,应力低于或高于弹性极限均能产生蠕变现象。但在不同的恒 定载荷下,变形随时间增长的蠕变曲线却有差异。岩石的蠕变曲线不仅与应力大小、性质及岩石种类有 关、而且还与其所在的物理环境如温度、围压、湿度等因素有关,上图为岩石的一典型蠕变曲线。当在 岩石试件上施加一恒定载荷,岩石立即产生一瞬时弹性应变ε e (OA段)。这种变形往往按声速完成,可 以近似认为在t=0完成,其应变为ε e =σ/E。若载荷保 持恒定且持续作用,应变则随时间缓慢地增长,进入到 蠕变变形阶段,将蠕变变形一般可分成三个阶段:(1)第 一蠕变阶段(AB段),也称过渡蠕变阶*段,在这个阶段内, 蠕变为向下弯曲的形状,也就是说曲线的斜率逐渐变小, 若在这一阶段之中(曲线上某一点E)进行卸载,则应变沿 着曲线EFG下降,最后应变为零、其中EF曲线为瞬时弹 性应变之恢复曲线,而FG曲线表示应变随时间逐渐恢复 为零;(2)第二蠕变阶段(BC段), 也称稳定蠕变阶段,蠕 变变形曲线近似一倾斜直线,即蠕变应变率保持常量, 一直持续到C点。若在这一阶殷中进行卸载,则应变沿 曲线HIJ逐渐恢复趋近于一渐近线,最后保留一定永久应变;(3)第三蠕变阶段(CD段),也称加速蠕变阶段,应变率由C点开始迅速增加,达到D点,岩石即发生破坏,这一阶段完成时间较短,严格地说,这 一阶段可分为两个区间:即发育着延性变形但尚未引起破坏的阶段(CP段)和微裂隙剧烈发展导致变形剧 增和引起破坏的阶段(PD段),它相当于褶皱形成后的断裂形成阶段。 同一种岩石,其载荷值越大,在第二阶段持续的时间也就越短,第三阶段破坏出现也就越快。在载 荷很大的情况下,几乎加载之后立即产生破坏。一般中等载荷,所有的三个蠕变变形阶段表现得十分明 显。任何一个蠕变变形阶段的持续时间,都取决子岩石类型、载荷值及温度等因素。 二、论述摩尔判据的基本内容,并简要评述摩尔判据的优缺点(20分)。 摩尔假定是摩尔于1900年提出的一种剪切破坏理论,该理论认为岩石受压后产生的破坏主要是由 于岩石中出现的最大有效剪应力所引起,并提出当剪切破坏在一平面上发生时,该破坏平面上的法向应 力σ和剪应力τ由材料的函数特征关系式联系: |τ|=f(σ) 按摩尔假定可以看出:①岩石的破坏强度是随其受力条件而变化的,周向应力越高破坏强度越大; ②岩石在三向受压时的破坏强度仅与最大和最小主应力有关,而与中间主应力无关;③三向等压条件下,摩尔应力圆是法向应力σ轴上的一个点圆,不可能与摩尔包络线相切,因而岩石也不可能破坏;④岩石 的破裂面并不与岩石中的最大剪应力面相重合,而是取决于其极限摩尔应力圆与摩尔包络线相切处切点 的位置,这也说明岩石的破裂不仅与破裂面上的剪应力有关,也与破裂面上出现的法向正应力和表征岩 性的内聚力和内摩擦角有关。 摩尔判据的优点是:①在判断复杂应力状态下岩石是否发生破坏以及破坏面的方向时,很简单,也 很方便;②能比较真实地反映岩石的抗剪特性;③可以解释为什么在三向等拉时会发生破坏,而在三向 等压时不会发生破坏。但其缺点是:①只考虑了最大主应力和最小主应力对岩石破坏强度的影响,而忽 略了中间主应力的作用,实验表明中间主应力对岩石破坏强度是有一定程度影响的;②摩尔判据不适用 于含有结构面的岩石试件,尽管岩石中的结构面会严重地影响岩石试件的破坏强度;③摩尔判据只适用 于剪切,对受拉区研究不够充分,不适于膨胀或蠕变破坏。 三、什么是初始地应力?试论述初始地应力的成因及其分布规律(20分)。 回答要点: 初始地应力 初始地应力是指未受到任何工程扰动的岩体在天然状态下所具有的内应力,主要由岩体自重及地质 构造作用所引起,地形、地质构造、地震力、水压力、热应力等也会在一定的时间和空间范围内一定程 度上影响到岩体中的初始地应力。

高等岩石力学试题答案(2012)

1..简述岩石的强度特性和强度理论,并就岩石的强度理 论进行简要评述。 答:岩石作为一种天然工程材料的时候,它具有不均匀性、各向异性、不连续等特点,并且受水力学作用显著。在地表部分,岩石的破坏为脆性破坏,随着赋存深度的增加,其破坏向延性发展。 岩石强度理论是判断岩石试样或岩石工程在什么应力、应变条件下破坏。当然岩石的破坏与诸多因素有关,如温度、应变率、湿度、应变梯度等。但目前岩石强度理论大多只考虑应力的影响,其他因素影响研究并不深入,故未予考虑。 (1). 剪切强度准则 a.Coulomb-Navier准则 Coulomb-Navier准则认为岩石的破坏属于在正应力作用下的剪切破坏,它不仅与该剪切面上剪应力有关,而且与该面上的正应力有关。岩石并不沿着最大剪切应力作用面产生破坏,而是沿其剪切应力和正应力最不利组合的某一面产生破裂。即:? τtan σ =C +

式中?为岩石材料的内摩擦角,σ为正应力,C为岩石粘聚力。 b. Mohr破坏准则 根据实验证明:在低围压下最大主应力和最小主应力关系接近于线性关系。但随着围压的增大,与关系明显呈现非线性。为了体现这一特点,莫尔准则在压剪和三轴破坏实验的基础上确定破坏准则方程,即:()σ τf = 此方程可以具体简化为斜直线、双曲线、抛物线、摆线以及双斜直线等各种曲线形式,具体视实验结果而定。 虽然从形式上看,库仑准则和莫尔准则区别只是在于后者把直线推广到曲线,但莫尔准则把包络线扩大或延伸至拉应力区。 c. 双剪的强度准则 Mohr强度准则是典型的单剪强度准则,没有考虑第二主应力的作用。我国学者俞茂宏从正交八面体的三个主应力出发,提出了双剪强度理论和适用于岩土介质的广义双剪强度理论,并得到了双剪统一强度理论:

岩石力学试验报告

岩石力学实验指导书及实验报告 班级 姓名 山东科技大学土建学院实验中心编

目录 一、岩石比重的测定 二、岩石含水率的测定 三、岩石单轴抗压强度的测定 四、岩石单轴抗拉强度的测定 五、岩石凝聚力及内摩擦角的测定(抗剪强度 试验) 六、岩石变形参数的测定 七、煤的坚固性系数的测定

实验一、岩石比重的测定 岩石比重是指单位体积的岩石(不包括孔隙)在105~110o C 下烘至恒重的重量与同体积4o C 纯水重量的比值。 一、仪器设备 岩石粉碎机、瓷体或玛瑙体、孔径0.2或0.3毫米分样筛、天平(量0.001克)、烘箱、干燥器、沙浴、比重瓶。 二、试验步骤 1、岩样制备:取有代表性的岩样300克左右,用机械粉碎,并全部通过孔径0.2(或0.3)毫米分样筛后待用。 2、将蒸馏水煮沸并冷却至室温取瓶颈与瓶塞相符的100毫升比重瓶,用蒸馏水洗净,注入三分之一的蒸馏水,擦干瓶的外表面。 3、取15g 岩样(称准到0.001克)得g 借助漏斗小心倒入盛有三分之一蒸馏水的比重瓶中,注意勿使岩样抛撒或粘在瓶颈上。 4、将盛有蒸馏水和岩样的比重瓶放在沙浴上煮沸后再继续煮1~1.5小时。 5、将煮沸后的比重瓶自然冷却至室温,然后注入蒸馏水,使液面与瓶塞刚好接触,注意不得留有气泡,擦干瓶的外表面,在天平上称重得g 1。 6、将岩样倒出,比重瓶洗净,最后用蒸馏水刷一遍,向比重瓶内注满蒸馏水,同样使液面与瓶塞刚好接触,不得留有气泡,擦干瓶的外表面,在天平上称重得g 2。 三、结果:按下式计算: s d g g g g d 1 2-+= 式中:d ——岩石比重; g ——岩样重、克; g 1——比重瓶、岩样和蒸馏水合重、克; g 2——比重瓶和满瓶蒸馏水合重、克; d s ——室温下蒸馏水的比重、d s ≈1

岩石力学总结

第一章 岩块:是指不含显著结构面的岩石块体,是构成岩体的最小岩石单元体 结构面:是指地质历史发展过程中,在岩体内部形成的具有一定的延伸方向和长度,厚度相对较小的地质界面或带。(结构面根据地质成因不同分为原生,构造和次生结构面)(结构面对工程岩体的完整性、渗透性、物理力学性质及盈利传递等都有显著地影响) 岩体:是指在地质历史过程中形成的,由岩石单元体(或称岩块)和结构面网络组成的,具有一定的结构并赋存予一定的天然应力状态和地下水等地质环境中的地质体。 第三章 渗透系数的物理意义是介质对某种特定流体的渗透能力,岩石的参透系数表征的就是岩石对水的渗透能力,其取决于岩石的物理性质和结构特征例如岩石中孔隙和裂隙的大小 岩石遇水后体积增大的特性成为岩石的膨胀性 岩石的膨胀性大小主要通过膨胀力和膨胀率两个指标来体现,测定方法由平衡加压法,压力恢复法和加压膨胀法 第四章 弹性指物体在外力作用下发生变形,而当撤除外力后能够恢复原状的性质(线性,非线性) 塑性是指物体在外力的作用下发生不可逆变形的性质 脆性是指物体在力的作用下变形很小时即发生破坏的性质 延性是指物体在力的作用下破坏前能够发生大量的应变的性质,其中主要是塑性变形 黏性指的是在力的作用下物体能够抑制瞬间变形,使变形因时间效应而滞后的性质 岩石单轴压缩试验的目的:通过测定岩石试件在单轴压缩应力条件下的应变值,绘制应力-应变曲线,分析岩石的变形特性,并计算岩石的变形指标 岩石的应变可分为三种:轴向应变εa(试样沿压力方向长度的相对变化)、横向应变εc(试样在垂直于压力的方向上长度的相对变化)和体应变εv(试样体积的相对变化) 岩石典型的全应力-应力曲线:1.微裂隙闭合阶段(OA段)2.弹性变形至微破裂稳定发展阶段(ABC 段)3.裂隙非稳定发展和破坏阶段(CD段)4.破坏后阶段(D点以后) 岩石典型的全应力-应力曲线决定于岩石的矿物质成分和结构特征 岩石记忆:逐级一次循环加载条件下,其盈利-应变曲线的外包线与连续加载条件下的曲线基本一致,说明加、卸过程并未改变岩石变形的习性,这种现象成为~ 回滞环:每次加荷、卸荷曲线都不重合,且围成一环形面积,成为~ 疲劳强度:岩石的破坏产生在反复加、卸荷曲线与应力-应变全过程交点处。这时的循环加、荷试验所给定的应力,成为疲劳强度。 岩石流变力学特性主要包括以下几个方面:(1)蠕变现象:当应力保持恒变时,应变随时间逐渐增长的过程(2)应力松弛:当应变保持恒定时,应力随时间逐渐减小的过程(3)流动特征:时间一定时,应变速率与应力大小的关系(4)长期强度:在长期何在持续作用下岩体的强度 蠕变是指岩石在恒定的荷载作用下,变形随时间逐渐增大的性质 蠕变分为稳定蠕变和非稳定蠕变稳定蠕变型是岩石在较小的恒定应力作用下,变形随时间增加到一定程度后就趋于稳定,最后变形保持一个常数,不在随时间增大。非稳定蠕变型是岩石承受的恒定荷载比较大,当超过某一临界值时,变形随时间的增加不仅不会保持常数,反而变形速率逐渐增加,最终导致岩体的整体失稳破坏了 一个典型的非稳定型蠕变曲线分为瞬间弹性变形阶段、一次蠕变阶段、二次~、三次~ 岩石的强度是指岩石对荷载的抗力,或者成为岩石抵抗破坏的能力 岩石的强度有:抗压强度、抗拉强度和抗剪强度。抗剪强度又有抗剪断强度,抗切强度和弱面的剪切强度三种。 岩石的破坏形式:脆性、延性、弱面剪切破坏 岩石的抗压强度是指岩石试件在单轴压力作用下,抵抗破坏的极限能力,他在数值上等于破坏时的最大压应力

岩石力学名词解释

一.岩石的物理力学性质 1.岩体:位于一定地质环境中,在各种宏观地质界面(断层、节理、破碎带等)分割下形成的有一定结构的地质体。 由结构面与结构体组成的地质体。 2.岩石:是经过地质作用而天然形成的一种或多种矿物的集合体。具有一定结构构造的矿物(含结晶和非结晶的)集 合体。 3.岩(体)石力学:是力学的一个分支学科,是研究岩(体)石在各种力场作用下变形与破坏规律的理论及其实际应 用的一门基础学科。 4.结构面:指在地质历史发展过程中,岩体内形成的具有一定的延伸方向和长度,厚度相对较小的宏观地质界面或带。 5.岩石质量指标(RQD):指大于10cm的岩芯累计长度与钻孔进尺长度之比的百分数。 6.空隙指数:指在压力条件下,干燥岩石吸入水的重量与岩石干重量的比值。 7.软化性:软化性是指岩石浸水饱和后强度降低的性质。 8.软化系数:指岩石试件的饱和抗压强度与干燥状态下的抗压强度的比值。 9.膨胀性:是指岩石浸水后体积增大的性质。 10.单轴抗压强度:是指岩石试件在单轴压力下达到破坏的极限值。, ! 11.抗拉强度:是指岩石试件在单向拉伸条件下试件达到破坏的极限值。 12.抗剪强度:是指岩石抵抗剪切破坏的能力。 13.形状效应:在岩石试验中,由于岩石试件形状的不同,得到的岩石强度指标也就有所差异。这种由于形状的不同而 影响其强度的现象称为“形状效应”。 14.尺寸效应:岩石试件的尺寸愈大,则强度愈低,反之愈高,这一现象称为“尺寸效应”。 15.延性度:指岩石在达到破坏前的全应变或永久应变。 16.流变性:指在外界条件不变时,岩石应变或应力随时间而变化的性质。 17.蠕变:指在应力不变的情况下,岩石的变形随时间不断增长的现象。 18.应力松弛:是指当应变不变时,岩石的应力随时间增加而不断减小的现象。 19.弹性后效:是指在加荷或卸荷条件下,弹性应变滞后于应力的现象。 20.峰值强度:若岩石应力—应变曲线上出现峰值,峰值最高点的应力称为峰值强度。 21.长期强度:指长期荷载(应变速率小于10-6/s)作用下岩石的强度。 $ 22.扩容:在岩石的单轴压缩试验中,当压力达到一定程度以后,岩石中的破裂或微裂纹继续发生和扩展,岩石的体积 应变增量由压缩转为膨胀的力学过程,称之为扩容。 23.应变硬化:在屈服点以后(在塑性变形区),岩石(材料)的应力—应变曲线呈上升曲线,如要使之继续变形,需 要相应地增加应力,这种现象称之为应变硬化。 24.疲劳破坏:在循环荷载作用下,岩石会在比峰值应力低的应力水平下破坏的现象。 25.疲劳强度:是使岩石(材料)发生疲劳破坏时循环荷载的应力水平的大小(非定值)。 26.速率效应:是指在岩石试验中由于加载速率的不同而引起的岩石强度的变化现象。 27.延性流动:是指当应力增大到一定程度后,应力增大很小或保持不变时,应变持续不断增长而不出现破裂,也即是 有屈服而无破裂的延性流动。 28.脆性破坏:是指岩石在破坏前变形很小,出现急剧而迅速的破坏,且破坏后应力降很大。 29.延性破坏:是指岩石在破坏前发生了较大的永久塑性变形,并且破坏后应力降很小。 30.强度准则:表征岩石破坏时的应力状态和岩石强度参数之间的关系,一般可以表示为极限应力状态下的主应力间的 关系方程:σ1=f(σ2,σ3)或τ=f(σ)。 31.塑性变形:在外力撤去后不能够恢复的变形。2.岩体的力学性质及分类 ; 二.岩体的力学性质及分类 l.结构面:①指在地质历史发展过程中岩体内形成的具有一定的延伸方向和长度,厚度相对较小的宏观地质界面或带。 ②又称弱面或地质界面,是指存在于岩体内部的各种地质界面,包括物质分异面和不连续面,如假整合、不整合、 褶皱、断层、层面、节理和片理等。

相关主题
文本预览
相关文档 最新文档