当前位置:文档之家› 离散数学复习提纲(完整版)

离散数学复习提纲(完整版)

离散数学复习提纲(完整版)
离散数学复习提纲(完整版)

《离散数学》期末复习大纲(完整版)(含例题和考试说明)

一、命题逻辑

[复习知识点]

1、命题与联结词(否定¬、析取∨、合取∧、蕴涵→、等价?),复合命题

2、命题公式与赋值(成真、成假),真值表,公式类型(重言、矛盾、可满足),公式的基本等值式

3、范式:析取范式、合取范式,极大(小)项,主析取范式、主合取范式

4、公式类型的判别方法(真值表法、等值演算法、主析取/合取范式法)

5、命题逻辑的推理理论

本章重点内容:命题与联结词、公式与解释、(主)析取范式与(主)合取范式、公式类型的判定、命题逻辑的推理

[复习要求]

1、理解命题的概念;了解命题联结词的概念;理解用联结词产生复合命题的方法。

2、理解公式与赋值的概念;掌握求给定公式真值表的方法,用基本等值式化简其它公式,公式在解释下的真值。

3、了解析取(合取)范式的概念;理解极大(小)项的概念和主析取(合取)范式的概念;掌握用基本等值式或真值表将公式化为主析取(合取)范式的方法。

4、掌握利用真值表、等值演算法和主析取/合取范式的唯一性判别公式类型和公式等价方法。

5、掌握命题逻辑的推理理论。

[疑难解析]

1、公式类型的判定

判定公式的类型,包括判定公式是重言的、矛盾的或是可满足的。具体方法有两种,一是真值表法,二是等值演算法。

2、范式

求范式,包括求析取范式、合取范式、主析取范式和主合取范式。关键有两点:一是准确理解掌握定义;另一是巧妙使用基本等值式中的分配律、同一律和互补律(排中律、矛盾律),结果的前一步适当使用幂等律,使相同的短语(或子句)只保留一个。

3、逻辑推理

掌握逻辑推理时,要理解并掌握12个(除第10,11)推理规则和3种证明法(直接证明法、附加前提证明法和归谬法)。

例1.试求下列公式的主析取范式:

(1)))()((P Q Q P P ?∨??∧→→;(2))))((R Q Q P P →?∨→?∨

())()(())()((:)1P Q Q P Q P P P Q Q P P ∧∧∨∧∧?∨?=∧∧∨?∨?=原式解 Q P P P Q P P Q P ∨?=∨?∧∨?=∧∨?=)()()(

))(())((Q P P Q Q P ∧∨?∨∨?∧?=

)()()(Q P Q P Q P ∧∨∧?∨?∧?=

)))((()))(((:)2R Q Q P P R Q Q P P ∨∨∨∨=→?∨→?∨解

)()()()(R Q P R Q P R Q P R Q P R Q P ∧?∧∨∧∧?∨?∧∧?∨∧?∧?=∨∨=

)()()(R Q P R Q P R Q P ∧∧∨?∧∧∨?∧?∧∨)

2.用真值表判断下列公式是恒真?恒假?可满足?

(1)(P ∧?P )?Q

(2)?(P →Q )∧Q

(3)((P →Q )∧(Q →R ))→(P →R )

解:

(1) 真值表

因此公式(1)为可满足。

(2) 真值表

因此公式(2)为恒假。

(3) 真值表

因此公式(3)为恒真。

3.┐Q ∧(P →Q )蕴涵 ┐P 法1:真值表法2:若┐Q ∧(P →Q )为真,则 ┐Q ,P →Q 为真,

所以Q 为假,P 为假,所以┐P 为真。

法3:若┐P 为假,则P 为真,再分二种情况:

①若Q 为真,则┐Qù(P →Q )为假

②若Q 为假,则P →Q 为假,则┐Q ∧(P →Q )为假

根据① ②,所以 ┐Q ∧(P →Q )蕴涵 ┐P 。)

4.利用基本等价式证明下列命题公式为恒真公式。

((P →Q )∧(Q →R ))→(P →R )

((P ∨Q )∧?(?P ∧(?Q ∨?R )))∨(?P ∧?Q )∨(?P ∧?R )

(1、证明:

((P →Q )∧(Q →R ))→(P →R )

=((?P ∨Q )∧(?Q ∨R ))→(?P ∨R )

=?((?P ∨Q )∧(?Q ∨R ))∨(?P ∨R )

=(P ∧?Q )∨(Q ∧?R )∨?P ∨R

=((P ∧?Q )∨?P )∨((Q ∧?R )∨R )

=(1∧(?Q ∨?P ))∨((Q ∨R )∧1)

= ?Q ∨?P ∨Q ∨R

=(?Q ∨Q ) ∨?P ∨R

= 1 ∨?P ∨R

= 1

((P ∨Q )∧?(?P ∧(?Q ∨?R )))∨(?P ∧?Q )∨(?P ∧?R )

=((P ∨Q )∧(P ∨(Q ∧R )))∨(?P ∧(?Q ∨?R ))

=(P ∨(Q ∧ Q ∧R ))∨(?P ∧(?Q ∨?R ))

=(P ∨(Q ∧R ))∨?(P ∨(Q ∧R ))

=1)

5.用形式演绎法证明:{S R R Q Q P →∨

?∨?,,}蕴涵S P → 证明:

(1)Q P ∨? 规则P

(2)Q P → 规则Q (1)

(3)R Q ∨

? 规则P (4)R Q → 规则Q (3)

(5)R P → 规则Q (2)(4)

(6)R →S 规则P

(7)P →S 规则Q (5)(6) )

6.用形式演绎法证明:(E F D D C B A →∨∧→∨)(),()蕴涵A E →

证明:(改()()(),()F D F D B A B A ∨∧∨∧为为)

(1)A 规则D

(2)A ∨B 规则Q (1)

(3))()(D C B A ∧→∨

规则P (4)D C ∧ 规则Q (2)(3)

(5)D 规则Q (4) (6)F D ∨

规则Q (5) (7)E F D →∨)( 规则P

(8)E

规则Q (6)(7) (9)E A → 规则Q (1)(8))

7.┐(P ∧┐Q ),┐Q ∨R ,┐R 蕴涵 ┐P

(1)┐Q ∨R

(2)┐R

(3)┐Q

(4)┐(P ∧┐Q )

(5)┐P ∨Q (6)┐P )

8.某案涉及甲、乙、丙、丁四个,根据已有线索,已知:

(1)

若甲、乙均未作案,则丙、丁也均未作案; (2)

若丙、丁均未作案,则甲、乙也均未作案; (3)

若甲与乙同时作案,则丙与丁有一人且只有一人作案; (4) 若乙与丙同时作案,则甲与丁同时作案或同未作案。 办案人员由此得出结论:甲是作案者。这个结论是否正确?为什么?

解:对问题中的四个简单命题用P1,P2,P3,P4分别表示甲,乙,丙,丁作案,则办案人员的推理如下: 前提:

1) ?P1∧?P2→?P3∧?P4

2) ?P3∧?P4→?P1∧?P2

3) P1∧P2→(?P3∧P4)∨(P3∧?P4)

4) P3∧P4→(?P1∧?P2)∨(P1∧P2)

结论:P1。

(?P1∧?P2→?P3∧?P4)

∧ (?P3∧?P4→?P1∧?P2) ∧ ( P1∧P2→(?P3∧P4)∨(P3∧?P4)) ∧ ( P3∧P4→(?P1∧?P2)∨(P1∧P2)) → P1

不是永真式,比如:

P1取假,P2取真,P3取假,P4取真时,上式为假

所以P1不是前提的有效结论,

所以甲是作案者的结论是错误的)

二、谓词逻辑

[复习知识点]

1、谓词、量词、个体词(一阶逻辑3要素)、个体域、变元(约束出现与自由出现)

2、谓词公式与解释,谓词公式的类型(永真、永假、可满足)

3、谓词公式的等值式(代换实例、消去量词、量词否定和量词辖域收与扩)和置换规则(置换规则、换名规则和代替规则)

本章重点内容:谓词与量词、公式与解释

[复习要求]

1、理解谓词、量词、个体词、个体域、变元的概念;理解用谓词、量词、逻辑联结词描述一个简单命题;了解命题符号化。

2、理解公式与解释的概念;掌握在有限个体域下消去公式量词,求公式在给定解释下真值的方法;了解谓词公式的类型。

[疑难解析]

1、谓词与量词

理解谓词与量词引入的意义,概念的含义及在谓词与量词作用下变量的自由性、约束性与改名规则(即换名规则和代替规则)。

2、公式与解释

能将一阶逻辑公式表达式中的量词消除,写成与之等价的公式,然后将解释中的数值代入公式,求出真值。

三、集合

[复习知识点]

1、集合、元素、集合的表示方法、子集、空集、全集、集合的包含、相等、幂集

2、集合的交、并、差、补以及对称差等运算及其运算律(交换律、结合律、分配律、吸收律、德摩根律等),文氏(Venn)图

本章重点内容:集合的概念、集合的运算性质、集合恒等式的证明。

[复习要求]

1、理解集合、元素、子集、空集、全集、集合的包含、相等、幂集等基本概念。

2、掌握集合的表示法和集合的交、并、差、补、对称差等基本运算。

3、掌握集合运算基本规律,证明集合等式的方法。

[疑难解析]

1、集合的概念

重点对幂集加以掌握,一是掌握幂集的构成,一是掌握幂集元数为2n。

2、集合恒等式的证明

对集合恒等式证明的练习,加深对集合性质的理解与掌握。

四、二元关系

[复习知识点]

1、序偶、迪卡尔积,迪卡尔积的运算。

2、关系表达式、关系矩阵与关系图

3、复合关系(右复合)与逆关系

3、关系的性质(自反性、反自反性、对称性、反对称性、传递性)

4、关系的闭包(自反闭包、对称闭包、传递闭包)

5、等价关系与等价类

6、偏序关系与哈斯图、极大/小元、最大/小元

7、函数及其性质(单射、满射、双射)

8、复合函数与反函数

本章重点内容:二元关系的概念、关系的性质、关系的闭包、等价关系、偏序关系和映射的概念

[复习要求]

1、了解序偶与迪卡尔积的概念,掌握迪卡尔积的运算。

2、理解关系的概念:二元关系、空关系、全域关系、恒等关系;掌握关系的集合表示、关系矩阵和关系图、关系的运算。

3、掌握求复合关系与逆关系的方法。

4、理解关系的性质(自反性、反自反性、对称性、反对称性、传递性),掌握其判别方法(定义、图)。

4、掌握求关系的闭包(自反闭包、对称闭包、传递闭包)的方法。

5、理解等价关系和偏序关系的概念,掌握等价类的求法和偏序关系做哈斯图的方法,极大/小元、最大/小元的求法。

6、理解函数概念:函数、函数相等、A到B的函数、复合函数和反函数。

7、理解单射、满射、双射等概念,掌握其判别方法。

[疑难解析]

1、关系的概念

熟练掌握二元关系的概念及关系矩阵、关系图表示。

2、关系的性质及其判定

关系的性质既是对关系概念的加深理解与掌握,又是关系的闭包、等价关系、偏序关系的基础。对于五种性质的判定,可以依据教材上总结的规律。这其中对传递性的判定,难度稍大一点,这里要提及两点:一是不破坏传递性定义,可认为具有传递性。如空关系具有传递性,同时空关系具有对称性与反对称性,但是不具有自反性。

3、关系的闭包

在理解掌握关系闭包概念的基础上,主要掌握闭包的求法。关键是熟记定理7.10和7.11

4、偏序关系及偏序集中特殊元素的确定

理解与掌握偏序关系与偏序集概念的关键是哈斯图。哈斯图画法掌握了,对于确定任一子集的最大(小)元,极大(小)元也就容易了。这里要注意,最大(小)元与极大(小)元只能在子集内确定。

5、映射的概念与映射种类的判定

映射的种类主要指单射、满射、双射与非单非满射。判定的方法除定义外,可借助于关系图,而实数集的子集上的映射也可以利用直角坐标系表示进行,尤其是对各种初等函数。

五、图论

[复习知识点]

1、图的基本概念:无向图与有向图、顶点与边的关联关系、顶点(边)与顶点(边)之间邻接关系、简单图与多重图、顶点度数(度)与握手定理、图的同构、完全图、子(补)图;

2、通路与回路、简单通(回)路与初级通(回)路;连通图与非连通图、连通分支、强连通图、单向连通图与弱连通图、二部图;点割集、边割集、点(边)连通度;

3、图的矩阵表示:邻接矩阵、关联矩阵、可达矩阵;

4、欧拉通(回)路、(半)欧拉图;哈密尔顿通(回)路、(半)哈密尔顿图;

5、无向树、生成树、带权树、最小生成树,基本回路、基本回路系统、基本割集、基本割集系统、避圈法(Kruskal算法);

6、有向树、树根、有序树、二叉树、前缀码、最佳前缀码、霍夫曼(Huffman)算法、带权图的最优二分树、二叉树的周游;

本章重点内容:握手定理、点(边)割集、特殊图(欧拉图与哈密顿图、无(有)向树)

[复习要求]

1、理解图的有关概念:图、完全图、子图、母图、生成子图、图的同构等。

2、深刻理解握手定理及其推论的内容,并能熟练地应用它们。

3、理解图的矩阵表示(关联矩阵、相邻矩阵)和性质以及熟练掌握用有向图的邻接矩阵及各次幂求图中通路与回路数的方法。

4、深刻理解欧拉图、哈密顿图的定义及判别定理,对于给定的图,应用各定理准确判断;会用破坏哈密顿图应满足的某些必要条件的方法判断某些图不是哈密顿图;会用满足哈密顿的充分条件的方法判断某些图是哈密顿图。

5、深刻理解无向树的定义,熟练掌握无向树的主要性质,并能灵活应用它们。

6、深刻理解生成树的有关概念与性质;理解基本回路、基本回路系统、基本割集、基本割集系统;用Kruskal 算法求权图中最小生成树的方法。

7、深刻理解有向树、根树、二叉树和前缀码的有关概念;掌握用霍夫曼(Huffman)算法求带权图的最优二分树,掌握求最佳前缀码方法,二叉树的中序和前序行遍法。

考试说明

考核方式

1、期末笔试为120分钟的闭卷考试,占总评成绩的70%。

2、平时成绩根据作业完成情况、半期考成绩、出勤情况和课堂表现确定,占总评成绩30%。

各章比例

数理逻辑30分集合30 分图论40 分

考题类型

单项选择题16 分填空题18 分证明题12 分计算分析(包括综合分析)题54 分

大题详细分析

1. 命题逻辑自然推理证明,综合分析题或证明题;

2. 用等值演算法求解主析取范式或主合取范式,并用真值表法验证,计算分析题;

3. 集合恒等式的证明或化简,证明题或计算分析题;

4. 集合中有穷集的计数;

5. 偏序关系与哈斯图及极大、极小元、最大、最小元;计算分析题;

6. 基本回路系统、基本割集系统或邻接矩阵及各次幂的运算;计算分析题;

7. 利用握手定理和树的性质求解图或树的顶点数;

8. 最优二叉树产生的最佳前缀码(根树的应用);综合分析题。

华南农业大学 离散数学 期末考试2013试卷及答案

华南农业大学期末考试试卷(A 卷) 2013-2014学年第 一 学期 考试科目: 离散结构 考试类型:(闭卷)考试 考试时间: 120 分钟 学号 姓名 年级专业 ①本试题分为试卷与答卷2部分。试卷有四大题,共6页。 ②所有解答必须写在答卷上,写在试卷上不得分。 一、选择题(本大题共 25 小题,每小题 2 分,共 50 分) 1、下面语句是简单命题的为_____。 A 、3不是偶数 B 、李平既聪明又用功 C 、李平学过英语或日语 D 、李平和张三是同学 2、设 p:他主修计算机科学, q:他是新生,r:他可以在宿舍使用电脑,下列命题“除非他不是新生,否则只有他主修计算机科学才可以在宿舍使用电脑。”可以符号化为______。 A 、r q p →?∧? B 、r q p ?→∧? C 、r q p →?∧ D 、r q p ∧→ 3、下列谓词公式不是命题公式P →Q 的代换实例的是______。 A 、)()(y G x F → B 、),(),(y x yG y x xF ?→? C 、))()((x G x F x →? D 、)()(x G x xF →? 4、设个体域为整数集,下列公式中其值为 1的是_____。 A 、)0(=+??y x y x B 、)0(=+??y x x y C 、)0(=+??y x y x D 、)0(=+???y x y x

2 5、下列哪个表达式错误_____。 A 、 B x xA B x A x ∧??∧?)())(( B 、B x xA B x A x ∨??∨?)())(( C 、B x xA B x A x →??→?)())(( D 、)())((x xA B x A B x ?→?→? 6、下述结论错误的是____。 A 、存在这样的关系,它可以既满足对称性,又满足反对称性 B 、存在这样的关系,它可以既不满足对称性,又不满足反对称性 C 、存在这样的关系,它可以既满足自反性,又满足反自反性 D 、存在这样的关系,它可以既不满足自反性,又不满足反自反性 7、集合A 上的关系R 为一个等价关系,当且仅当R 具有_____。 A 、自反性、对称性和传递性 B 、自反性、反对称性和传递性 C 、反自反性、对称性和传递性 D 、反自反性、反对称性和传递性 8、下列说法不正确的是:______。 A 、R 是自反的,则2R 一定是自反的 B 、R 是反自反的,则2R 一定是反自反的 C 、R 是对称的,则2R 一定是对称的 D 、R 是传递的,则2R 一定是传递 9、设R 和S 定义在P 上,P 是所有人的集合,=R {x P y x y x ∧∈><,|,是y 的父亲},=S {x P y x y x ∧∈><,|,是y 的母亲},则关系{y P y x y x ∧∈><,|,是的x 外祖父}的表达式是:______。 A 、11--R R B 、11--S R C 、11--S S D 、11--R S 10、右图描述的偏序集中,子集},,{f e b 的上界为_____。 A 、c b , B 、b a , C 、b D 、c b a ,, 11、以下整数序列,能成为一个简单图的顶点度数序列的是_____。 A 、1,2,2,3,4,5

离散数学必备知识点总结

离散数学必备知识点总 结 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

总结离散数学知识点 第二章命题逻辑 1.→,前键为真,后键为假才为假;<—>,相同为真,不同为假; 2.主析取范式:极小项(m)之和;主合取范式:极大项(M)之积; 3.求极小项时,命题变元的肯定为1,否定为0,求极大项时相反; 4.求极大极小项时,每个变元或变元的否定只能出现一次,求极小项时变元不够合取真,求极大项时变元不够析取假; 5.求范式时,为保证编码不错,命题变元最好按P,Q,R的顺序依次写; 6.真值表中值为1的项为极小项,值为0的项为极大项; 7.n个变元共有n2个极小项或极大项,这n2为(0~n2-1)刚好为化简完后的主析取加主合取; 8.永真式没有主合取范式,永假式没有主析取范式; 9.推证蕴含式的方法(=>):真值表法;分析法(假定前键为真推出后键为真,假定前键为假推出后键也为假) 10.命题逻辑的推理演算方法:P规则,T规则 ①真值表法;②直接证法;③归谬法;④附加前提法; 第三章谓词逻辑 1.一元谓词:谓词只有一个个体,一元谓词描述命题的性质; 多元谓词:谓词有n个个体,多元谓词描述个体之间的关系;

2.全称量词用蕴含→,存在量词用合取^; 3.既有存在又有全称量词时,先消存在量词,再消全称量词; 第四章集合 1.N,表示自然数集,1,2,3……,不包括0; 2.基:集合A中不同元素的个数,|A|; 3.幂集:给定集合A,以集合A的所有子集为元素组成的集合,P(A); 4.若集合A有n个元素,幂集P(A)有n2个元素,|P(A)|=||2A=n2; 5.集合的分划:(等价关系) ①每一个分划都是由集合A的几个子集构成的集合; ②这几个子集相交为空,相并为全(A); 6.集合的分划与覆盖的比较: 分划:每个元素均应出现且仅出现一次在子集中; 覆盖:只要求每个元素都出现,没有要求只出现一次; 第五章关系 1.若集合A有m个元素,集合B有n个元素,则笛卡尔A×B的基 2种不同的关系; 数为mn,A到B上可以定义mn 2.若集合A有n个元素,则|A×A|=2n,A上有22n个不同的关系;

离散数学复习要点

离散数学复习要点第一章命题逻辑 一、典型考查点 1、命题的判断方法:陈述句真值唯一,特殊:反问句也是命题。其它疑问句、祈使句、感叹句、悖论等皆不是。详见教材P1 2、联结词运算定律┐∧∨→记住特殊的:1∧1?1,0∨0?0,1→0?0,11?1,00?1详见P5 3、命题符号化步骤:A划分原子命题,找准联结词。特殊自然语言:不但而且,虽然但是用∧,只有P才Q,应为Q→P;除非P否则Q,应为┐P→Q。B设出原子命题写出符号化公式。详见P5 4、公式的分类判定(重言式、矛盾式、可满足式)方法:其一根据所有真值赋值情况,其二根据等价演算来判断。详见P9 5、真值表的构造步骤:①命题变元按字典序排列,共有2n个真值赋值。②对每个指派,以二进制数从小到大或从大到小顺序列出。③若公式较复杂,可先列出各子公式的真值(若有括号,则应从里层向外层展开),最后列出所求公式的真值。详见P8。 6、基本概念:置换规则,P规则,T规则,详见P24;合取范式,析取范式,详见P15;小项详见P16;大项详见P18,最小联结词组详见P15 7、等价式详见P22表1.6.2 证明方法:①真值表完全相同②用等价演算③利用A?B的充要条件是A?B且B?A。主要等价式:(1)双否定:??A?A。(2)交换律:A∧B?B∧A,A∨B?B∨A,A?B?B?A。3)结合律:(A∧B)∧C?A ∧(B∧C),(A∨B)∨C?A∨(B∨C),(A?B)?C?A?(B?C)。(4) 分配律:A∧(B∨C)?(A∧B)∨(A∧C),A∨(B∧C)?(A∨B)∧(A∨C)。(5) 德·摩根律:?(A∧B)??A∨?B,?(A∨B)??A∧?B。(6) 等幂律:A∧A?A,A∨A?A。(7) 同一律:A∧T?A,A∨F?A。(8) 零律:A∧F?F,A∨T?T。(9) 吸收律:A∧(A∨B)?A,A∨(A∧B)?A。(10) 互补律:A∧?A?F,(矛盾律),A∨?A?T。(排中律)(11) 条件式转化律:A→B??A∨B,A→B??B→?A。(12) 双条件式转化律:A?B?(A→B)∧(B→A)?(A∧B)∨(?A∧?B) 8、蕴含式详见P23表1.6.3 证明方法:①前件真导后件真方法②后件假导前件假方法③真值表中,前件为真的行,后件也为真或者后件为假的行,前件也为假。④用定义,证A?B,即证A→B是永真式。 9、范式求法步骤:①使用命题定律,消去公式中除∧、∨和?以外公式中出现的所有联结词;②使用?(?P)?P和德·摩根律,将公式中出现的联结词?都移到命题变元之前;③利用结合律、分配律等将公式化成析取范式或合取范式。10、主范式的求法重点步骤:(a)把给定公式化成析取(合取)范式;(b)删除析取范式中所有为永假的简单合取(析取)式;(c)用等幂律化简简单合取(析取)式中同一命题变元的重复出现为一次出现,如P∧P?P。(d)用同一律补进简单合取(析取)式中未出现的所有命题变元,如Q,则P?P∧(?Q∨Q)或P?P∨(?Q∧Q),并用分配律展开之,将相同的简单合取式的多次出现化为一次出现,这样得到了给定公式的主析取(合取)范式。 注意:主析取范式与主合取范式之间的联系。例如:(P→Q)∧Q?m1∨m3?M0∧M2,即剩下的编码就是另一个主范式的编码,因此,求主范式,哪一个简单易求,就先求哪个,然后对应出所求结果。详见P16 11、推理证明:重点方法:演算、演绎法(常用的格式)、反证法、CP规则即附加前提等。 重点规则(主要蕴含式):(1) P∧Q?P化简(2) P∧Q?Q化简(3) P?P∨Q附加(4) ?P?P→Q变形附加(5)Q?P→Q变形附加(6) ?(P→Q)?P变形化简(7) ?(P→Q)??Q变形化简(8) P,(P→Q)?Q假言推理(9) ?Q,(P→Q)??P拒取式(10) ?P,(P∨Q)?Q析取三段论(11) (P→Q),(Q→R)?P→R条件三段论(12) (P?Q),(Q?R)?P?R 双条件三段论 文字证明推理三步:一命题符号化,二写出前提和结论,三进行证明。详见P21 二、强化练习 1.命题的是( )A.走,看电影去B.x+y>0C.空集是任意集合的真子集D.你明天能来吗? 2.下列式子为重言式的是( ) A.P→P∨Q B.(┐P∧Q)∧(P∨┐Q) C.┐ (P Q) D.(P∨Q) (P→Q) 3.下列为两个命题变元P,Q的小项是() A.P∧Q∧? P B.? P∨Q C.? P∧Q D.? P∨P∨Q 4.下列语句中是真命题的是() A.我正在说谎B.严禁吸烟C.如果1+2=3,那么雪是黑的D.如果1+2=5,那雪是黑的 5.设P:我们划船,Q:我们跑步。命题“我们不能既划船又跑步”符号化为() A.? P∧? Q B.? P∨? Q C.?(P?Q) D.?(? P∨? Q) 6.命题公式(P∧(P→Q))→Q是()A.矛盾式B.蕴含式C.重言式D.等价式 7.命题公式?(P∧Q)→R的成真指派是() A.000,001,110,B.001,011,101,110,111 C.全体指派D.无 8.设P:他聪明,Q:他用功,命题“他虽聪明但不用功”的符号化正确的是()

中国石油大学大学《离散数学》期末复习题及答案

《离散数学》期末复习题 一、填空题(每空2分,共20分) 1、集合A上的偏序关系的三个性质是、 和。 2、一个集合的幂集是指。 3、集合A={b,c},B={a,b,c,d,e},则A?B= 。 4、集合A={1,2,3,4},B={1,3,5,7,9},则A?B= 。 5、若A是2元集合, 则2A有个元素。 6、集合A={1,2,3},A上的二元运算定义为:a* b = a和b两者的最大值,则 2*3= 。 7、设A={a, b,c,d }, 则∣A∣= 。 8、对实数的普通加法和乘法,是加法的幂等元, 是乘法的幂等元。 9、设a,b,c是阿贝尔群的元素,则-(a+b+c)= 。 10、一个图的哈密尔顿路是。 11、不能再分解的命题称为,至少包含一个联结词的命题称 为。 12、命题是。 13、如果p表示王强是一名大学生,则┐p表示。 14、与一个个体相关联的谓词叫做。 15、量词分两种:和。 16、设A、B为集合,如果集合A的元素都是集合B的元素,则称A是B 的。 17、集合上的三种特殊元是、 及。 18、设A={a, b},则ρ(A) 的四个元素分别 是:,,,。

19、代数系统是指由及其上的或 组成的系统。 20、设是代数系统,其中是*1,*2二元运算符,如果*1,*2都满 足、,并且*1和*2满足,则称是格。 21、集合A={a,b,c,d},B={b },则A \ B= 。 22、设A={1, 2}, 则∣A∣= 。 23、在有向图中,结点v的出度deg+(v)表示,入度deg-(v)表示 以。 24、一个图的欧拉回路是。 25、不含回路的连通图是。 26、不与任何结点相邻接的结点称为。 27、推理理论中的四个推理规则 是、、、。 二、判断题(每题2分,共20分) 1、空集是唯一的。 2、对任意的集合A,A包含A。 3、恒等关系不是对称的,也不是反对称的。 4、集合{1,2,3,3}和{1,2,2,3}是同一集合。 5、图G中,与顶点v关联的边数称为点v的度数,记作deg(v)。 6、在实数集上,普通加法和普通乘法不是可结合运算。 7、对于任何一命题公式,都存在与其等价的析取范式和合取范式。 8、设(A,*)是代数系统,a∈A,如果a*a=a,则称a为(A,*)的等幂元。 9、设f:A→B,g:B→C。若f,g都是双射,则gf不是双射。 10、无向图的邻接矩阵是对称阵。 11、一个集合不可以是另一个集合的元素。 12、映射也可以称为函数,是一种特殊的二元关系。 13、群中每个元素的逆元都不是惟一的。

离散数学重点笔记

第一章,0命题逻辑 素数 = 质数,合数有因子 和或假必真同为真 (p→q)∧(q←→r),(p∧q)∧┐r,p∧(q∧┐r)等都是合式公式,而pq→r,(p→(r→q)等不是合式公式。若公式A是单个的命题变项,则称A为0层合式 (┐p∧q)→r,(┐(p→┐q))∧((r∨s)┐p)分别为3层和4层公式 【例】求下列公式的真值表,并求成真赋值和成假赋值。 (┐p∧q)→┐r 公式(1)的成假赋值为011,其余7个赋值都是成真赋值 第二章,命题逻辑等值演算 (1)双重否定律??A?A (2)等幂律 A∧A?A ; A∨A?A (3)交换律 A∧B?B∧A ; A∨B?B∨A (4)结合律(A∧B)∧C?A∧(B∧C);(A∨B)∨C?A∨(B∨C) (5)分配律(A∧B)∨C?(A∨C)∧(B∨C);(A∨B)∧C?(A∧C)∨(B∧C) (6)德·摩根律?(A∨B)??A∧?B ;?(A∧B)??A∨?B (7)吸收律 A∨(A∧B)?A;A∧(A∨B)?A (8)零一律 A∨1?1 ; A∧0?0 (9)同一律 A∨0?A ; A∧1?A (10)排中律 A∨?A?1 (11)矛盾律 A∧?A?0 (12)蕴涵等值式 A→B??A∨B (13)假言易位 A→B??B→?A (14)等价等值式 A?B?(A→B)∧(B→A) (15)等价否定等值式 A?B??A??B??B??A (16)归缪式(A→B)∧(A→?B)??A

A i(i=1,2,…,s)为简单合取式,则A=A1∨A2∨…∨A s为析取范式 (p∧┐q)∨(┐q∧┐r)∨p A=A1∧A2∧…∧A s为合取范式 (p∨q∨r)∧(┐p∨┐q)∧r 一个析取范式是矛盾式当且仅当它的每个简单合取式都是矛盾式 一个合取范式是重言式当且仅当它的每个简单析取式都是重言式 主范式【∧小真,∨大假】 ∧成真小写 【例】(p→q)→(┐q→┐p) = ┐(┐p∨q)∨(q∨┐p) (消去→) = (p∧┐q)∨┐p∨q (┐内移) (已为析取范式) = (p∧┐q)∨(┐p∧┐q)∨(┐p∧q)∨(┐p∧q)∨(p∧q) (*) = m2∨m0∨m1∨m1∨m3 = m0∨m1∨m2∨m3 (幂等律、排序) (*)由┐p及q派生的极小项的过程如下: ┐p = ┐p∧(┐q∨q) = (┐p∧┐q)∨(┐p∧q) q = (┐p∨p)∧q = (┐p∧q)∨(p∧q) 熟练之后,以上过程可不写在演算过程中。 该公式中含n=2个命题变项,它的主析取范式中含了22=4个极小项,故它为重言式, 00,01,10,11全为成真赋值。 【例】(p→q)∧┐p = (┐p∨q)∧┐p (消去→) = ┐p∨(┐p∧q) (分配律、幂等律) 已为析取范式

大学离散数学期末重点知识点总结(考试专用)

1.常用公式 p ∧(P →Q)=>Q 假言推论 ┐Q ∧(P →Q)=>┐P 拒取式 ┐p ∧(P ∨Q)=>Q 析取三段式 (P →Q) ∧(Q →R)=>P →R 条件三段式 (PQ) ∧(QR)=>PR 双条件三段式 (P →Q)∧(R →S)∧(P ∧R)=>Q →S 合取构造二难 (P →Q)∧(R →S)∧(P ∨R)=>Q ∨S 析取构造二难 (?x)((Ax)∨(Bx)) <=>( ?x)(Ax)∨(?x)(Bx) (?x)((Ax)∧(Bx)) <=>(?x)(Ax)∧(?x)(Bx) —┐(?x)(Ax) <=>(?x)┐(Ax) —┐(?x)(Ax) <=>(?x)┐(Ax) (?x)(A ∨(Bx)) <=>A ∨(?x)(Bx) (?x)(A ∧(Bx)) <=>A ∧(?x)(Bx) (?x)((Ax)→(Bx)) <=>(?x)(Ax)→(?x)(Bx) (?x)(Ax) →B <=>(?x) ((Ax)→B) (?x)(Ax) →B <=>(?x) ((Ax)→B) A →(?x)(Bx) <=>(?x) (A →(Bx)) A →(?x)(Bx) <=>(?x) (A →(Bx)) (?x)(Ax)∨(?x)(Bx) =>(?x)((Ax)∨(Bx)) (?x)((Ax)∧(Bx)) =>(?x)(Ax)∧(?x)(Bx) (?x)(Ax)→(?x)(Bx) =>(?x)((Ax)→(Bx)) 2.命题逻辑 1.→,前键为真,后键为假才为假;<—>,相同为真,不同为假; 2.主析取范式:极小项(m)之和;主合取范式:极大项(M)之积; 3.求极小项时,命题变元的肯定为1,否定为0,求极大项时相反; 4.求极大极小项时,每个变元或变元的否定只能出现一次,求极小项时变元不够合取真,求极大项时变元不够析取假; 5.求范式时,为保证编码不错,命题变元最好按P ,Q,R 的顺序依次写; 6.真值表中值为1的项为极小项,值为0的项为极大项; 7.n 个变元共有n 2个极小项或极大项,这n 2为(0~n 2-1)刚好为化简完后的主析取加主合取; 8.永真式没有主合取范式,永假式没有主析取范式; 9.推证蕴含式的方法(=>):真值表法;分析法(假定前键为真推出后键为真,假定前键为假推出后键也为假) 10.命题逻辑的推理演算方法:P 规则,T 规则 ①真值表法;②直接证法;③归谬法;④附加前提法; 3.谓词逻辑 1.一元谓词:谓词只有一个个体,一元谓词描述命题的性质; 多元谓词:谓词有n 个个体,多元谓词描述个体之间的关系; 2.全称量词用蕴含→,存在量词用合取^; 3.既有存在又有全称量词时,先消存在量词,再消全称量词; 4.集合 1.N ,表示自然数集,1,2,3……,不包括0; 2.基:集合A 中不同元素的个数,|A|; 3.幂集:给定集合A ,以集合A 的所有子集为元素组成的集合,P(A); 4.若集合A 有n 个元素,幂集P(A)有n 2个元素,|P(A)|=||2A =n 2; 5.集合的分划:(等价关系) ①每一个分划都是由集合A 的几个子集构成的集合; ②这几个子集相交为空,相并为全(A); 6.集合的分划与覆盖的比较: 分划:每个元素均应出现且仅出现一次在子集中; 覆盖:只要求每个元素都出现,没有要求只出现一次; 5.关系 1.若集合A 有m 个元素,集合B 有n 个元素,则笛卡尔A ×B 的基数为mn ,A 到B 上可以定义mn 2种不同的关系; 2.若集合A 有n 个元素,则|A ×A|=2n ,A 上有22n 个不同的关系; 3.全关系的性质:自反性,对称性,传递性; 空关系的性质:反自反性,反对称性,传递性; 全封闭环的性质:自反性,对称性,反对称性,传递性; 4.前域(domR):所有元素x 组成的集合; 后域(ranR):所有元素y 组成的集合; 5.自反闭包:r(R)=RU Ix ; 对称闭包:s(R)=RU 1-R ; 传递闭包:t(R)=RU 2R U 3R U …… 6.等价关系:集合A 上的二元关系R 满足自反性,对称性和传递性,则R 称为等价关系; 7.偏序关系:集合A 上的关系R 满足自反性,反对称性和传递性,则称R 是A 上的一个偏序关系; 8.covA={|x,y 属于A ,y 盖住x}; 9.极小元:集合A 中没有比它更小的元素(若存在可能不唯一); 极大元:集合A 中没有比它更大的元素(若存在可能不唯一); 最小元:比集合A 中任何其他元素都小(若存在就一定唯一); 最大元:比集合A 中任何其他元素都大(若存在就一定唯一); 10.前提:B 是A 的子集 上界:A 中的某个元素比B 中任意元素都大,称这个元素是B 的上界(若存在,可能不唯一); 下界:A 中的某个元素比B 中任意元素都小,称这个元素是B 的下界(若存在,可能不唯一); 上确界:最小的上界(若存在就一定唯一); 下确界:最大的下界(若存在就一定唯一); 6.函数 1.若|X|=m,|Y|=n,则从X 到Y 有mn 2种不同的关系,有m n 种不同的函数; 2.在一个有n 个元素的集合上,可以有2n2种不同的关系,有nn 种不同的函数,有n!种不同的双射; 3.若|X|=m,|Y|=n ,且m<=n ,则从X 到Y 有A m n 种不同的单射; 4.单射:f:X-Y ,对任意1x ,2x 属于X,且1x ≠2x ,若f(1x )≠f(2x ); 满射:f:X-Y ,对值域中任意一个元素y 在前域中都有一个或多个元素对应; 双射:f:X-Y ,若f 既是单射又是满射,则f 是双射; 5.复合函数:f og=g(f(x)); 5.设函数f:A-B ,g:B-C ,那么 ①如果f,g 都是单射,则f og 也是单射; ②如果f,g 都是满射,则f og 也是满射; ③如果f,g 都是双射,则f og 也是双射; ④如果f og 是双射,则f 是单射,g 是满射; 7.代数系统 1.二元运算:集合A 上的二元运算就是2A 到A 的映射; 2. 集合A 上可定义的二元运算个数就是从A ×A 到A 上的映射的个数,即从从A ×A 到A 上函数的个数,若|A|=2,则集合A 上的二元运算的个数为2*22=42=16种; 3. 判断二元运算的性质方法: ①封闭性:运算表内只有所给元素; ②交换律:主对角线两边元素对称相等; ③幂等律:主对角线上每个元素与所在行列表头元素相同; ④有幺元:元素所对应的行和列的元素依次与运算表的行和列相同; ⑤有零元:元素所对应的行和列的元素都与该元素相同; 4.同态映射:,,满足f(a*b)=f(a)^f(b),则f 为由的同态映射;若f 是双射,则称为同构; 8.群 广群的性质:封闭性; 半群的性质:封闭性,结合律; 含幺半群(独异点):封闭性,结合律,有幺元; 群的性质:封闭性,结合律,有幺元,有逆元; 2.群没有零元; 3.阿贝尔群(交换群):封闭性,结合律,有幺元,有逆元,交换律; 4.循环群中幺元不能是生成元; 5.任何一个循环群必定是阿贝尔群; 10.格与布尔代数 1.格:偏序集合A 中任意两个元素都有上、下确界; 2.格的基本性质: 1) 自反性a ≤a 对偶: a ≥a 2) 反对称性a ≤b ^ b ≥a => a=b 对偶:a ≥b ^ b ≤a => a=b 3) 传递性a ≤b ^ b ≤c => a ≤c 对偶:a ≥b ^ b ≥c => a ≥c 4) 最大下界描述之一a^b ≤a 对偶 avb ≥a A^b ≤b 对偶 avb ≥b 5)最大下界描述之二c ≤a,c ≤b => c ≤a^b 对偶c ≥a,c ≥b => c ≥avb 6) 结合律a^(b^c)=(a^b)^c 对偶 av(bvc)=(avb)vc 7) 等幂律a^a=a 对偶 ava=a 8) 吸收律a^(avb)=a 对偶 av(a^b)=a 9) a ≤b <=> a^b=a avb=b 10) a ≤c,b ≤d => a^b ≤c^d avb ≤cvd 11) 保序性b ≤c => a^b ≤a^c avb ≤avc 12) 分配不等式av(b^c)≤(avb)^(avc) 对偶 a^(bvc)≥(a^b)v(a^c) 13)模不等式a ≤c <=> av(b^c)≤(avb)^c 3.分配格:满足a^(bvc)=(a^b)v(a^c)和av(b^c)=(avb)^(avc); 4.分配格的充要条件:该格没有任何子格与钻石格或五环格同构; 5.链格一定是分配格,分配格必定是模格; 6.全上界:集合A 中的某个元素a 大于等于该集合中的任何元素,则称a 为格的全上界,记为1;(若存在则唯一) 全下界:集合A 中的某个元素b 小于等于该集合中的任何元素,则称b 为格的全下界,记为0;(若存在则唯一) 7.有界格:有全上界和全下界的格称为有界格,即有0和1的格; 8.补元:在有界格内,如果a^b=0,avb=1,则a 和b 互为补元; 9.有补格:在有界格内,每个元素都至少有一个补元; 10.有补分配格(布尔格):既是有补格,又是分配格; 布尔代数:一个有补分配格称为布尔代数; 11.图论 1.邻接:两点之间有边连接,则点与点邻接; 2.关联:两点之间有边连接,则这两点与边关联; 3.平凡图:只有一个孤立点构成的图; 4.简单图:不含平行边和环的图; 5.无向完全图:n 个节点任意两个节点之间都有边相连的简单无向图; 有向完全图:n 个节点任意两个节点之间都有边相连的简单有向图; 6.无向完全图有n(n-1)/2条边,有向完全图有n(n-1)条边; 7.r-正则图:每个节点度数均为r 的图; 8.握手定理:节点度数的总和等于边的两倍; 9.任何图中,度数为奇数的节点个数必定是偶数个; 10.任何有向图中,所有节点入度之和等于所有节点的出度之和; 11.每个节点的度数至少为2的图必定包含一条回路; 12.可达:对于图中的两个节点i v ,j v ,若存在连接i v 到j v 的路,则称i v 与j v 相互可达,也称i v 与j v 是连通的;在有向图中,若存在i v 到j v 的路,则称i v 到j v 可达; 13.强连通:有向图章任意两节点相互可达; 单向连通:图中两节点至少有一个方向可达; 弱连通:无向图的连通;(弱连通必定是单向连通) 14.点割集:删去图中的某些点后所得的子图不连通了,如果删去其他几个点后子图之间仍是连通的,则这些点组成的集合称为点割集; 割点:如果一个点构成点割集,即删去图中的一个点后所得子图是不连通的,则该点称为割点; 15.关联矩阵:M(G),mij 是vi 与ej 关联的次数,节点为行,边为列; 无向图:点与边无关系关联数为0,有关系为1,有环为2; 有向图:点与边无关系关联数为0,有关系起点为1终点为-1, 关联矩阵的特点: 无向图: ①行:每个节点关联的边,即节点的度; ②列:每条边关联的节点; 有向图: ③所有的入度(1)=所有的出度(0); 16.邻接矩阵:A(G),aij 是vi 邻接到vj 的边的数目,点为行,点为列; 17.可达矩阵:P(G),至少存在一条回路的矩阵,点为行,点为列; P(G)=A(G)+2A (G)+3A (G)+4A (G) 可达矩阵的特点:表明图中任意两节点之间是否至少存在一条路,以及在任何节点上是否存在回路; A(G)中所有数的和:表示图中路径长度为1的通路条数; 2A (G)中所有数的和:表示图中路径长度为2的通路条数; 3A (G)中所有数的和:表示图中路径长度为3的通路条数; 4A (G)中所有数的和:表示图中路径长度为4的通路条数; P(G)中主对角线所有数的和:表示图中的回路条数; 18.布尔矩阵:B(G),i v 到j v 有路为1,无路则为0,点为行,点为列; 19.代价矩阵:邻接矩阵元素为1的用权值表示,为0的用无穷大表示,节点自身到自身的权值为0; 20.生成树:只访问每个节点一次,经过的节点和边构成的子图; 21.构造生成树的两种方法:深度优先;广度优先; 深度优先: ①选定起始点0v ; ②选择一个与0v 邻接且未被访问过的节点1v ; ③从1v 出发按邻接方向继续访问,当遇到一个节点所有邻接点均已被访问时,回到该节点的前一个点,再寻求未被访问过的邻接点,直到所有节点都被访问过一次; 广度优先: ①选定起始点0v ; ②访问与0v 邻接的所有节点v1,v2,……,vk,这些作为第一层节点; ③在第一层节点中选定一个节点v1为起点; ④重复②③,直到所有节点都被访问过一次; 22.最小生成树:具有最小权值(T)的生成树; 23.构造最小生成树的三种方法: 克鲁斯卡尔方法;管梅谷算法;普利姆算法; (1)克鲁斯卡尔方法 ①将所有权值按从小到大排列; ②先画权值最小的边,然后去掉其边值;重新按小到大排序; ③再画权值最小的边,若最小的边有几条相同的,选择时要满足不能出现回路,然后去掉其边值;重新按小到大排序; ④重复③,直到所有节点都被访问过一次; (2)管梅谷算法(破圈法) ①在图中取一回路,去掉回路中最大权值的边得一子图; ②在子图中再取一回路,去掉回路中最大权值的边再得一子图; ③重复②,直到所有节点都被访问过一次; (3)普利姆算法 ①在图中任取一点为起点1v ,连接边值最小的邻接点v2; ②以邻接点v2为起点,找到v2邻接的最小边值,如果最小边值比v1邻接的所有边值都小(除已连接的边值),直接连接,否则退回1v ,连接1v 现在的最小边值(除已连接的边值); ③重复操作,直到所有节点都被访问过一次; 24.关键路径 例2 求PERT 图中各顶点的最早完成时间, 最晚完成时间, 缓冲时间及关键路径. 解:最早完成时间 TE(v1)=0 TE(v2)=max{0+1}=1 TE(v3)=max{0+2,1+0}=2 TE(v4)=max{0+3,2+2}=4 TE(v5)=max{1+3,4+4}=8 TE(v6)=max{2+4,8+1}=9 TE(v7)=max{1+4,2+4}=6 TE(v8)=max{9+1,6+6}=12 最晚完成时间 TL(v8)=12 TL(v7)=min{12-6}=6 TL(v6)=min{12-1}=11 TL(v5)=min{11-1}=10 TL(v4)=min{10-4}=6 TL(v3)=min{6-2,11-4,6-4}=2 TL(v2)=min{2-0,10-3,6-4}=2 TL(v1)=min{2-1,2-2,6-3}=0 缓冲时间 TS(v1)=0-0=0 TS(v2)=2-1=1 TS(v3)=2-2=0 TS(v4)=6-4=2 TS(v5=10-8=2 TS(v6)=11-9=2 TS(v7)=6-6=0 TS(v8)=12-12=0 关键路径: v1-v3-v7-v8 25.欧拉路:经过图中每条边一次且仅一次的通路; 欧拉回路:经过图中每条边一次且仅一次的回路; 欧拉图:具有欧拉回路的图; 单向欧拉路:经过有向图中每条边一次且仅一次的单向路; 欧拉单向回路:经过有向图中每条边一次且仅一次的单向回路; 26.(1)无向图中存在欧拉路的充要条件: ①连通图;②有0个或2个奇数度节点; (2)无向图中存在欧拉回路的充要条件: ①连通图;②所有节点度数均为偶数; (3)连通有向图含有单向欧拉路的充要条件: ①除两个节点外,每个节点入度=出度; ②这两个节点中,一个节点的入度比出度多1,另一个节点的入;度比出度少1; (4)连通有向图含有单向欧拉回路的充要条件: 图中每个节点的出度=入度; 27.哈密顿路:经过图中每个节点一次且仅一次的通路; 哈密顿回路:经过图中每个节点一次且仅一次的回路; 哈密顿图:具有哈密顿回路的图; 28.判定哈密顿图(没有充要条件) 必要条件: 任意去掉图中n 个节点及关联的边后,得到的分图数目小于等于n ; 充分条件: 图中每一对节点的度数之和都大于等于图中的总节点数; 29.哈密顿图的应用:安排圆桌会议; 方法:将每一个人看做一个节点,将每个人与和他能交流的人连接,找到一条经过每个节点一次且仅一次的回路(哈密顿图),即可; 30.平面图:将图形的交叉边进行改造后,不会出现边的交叉,则是平面图; 31.面次:面的边界回路长度称为该面的次; 32.一个有限平面图,面的次数之和等于其边数的两倍; 33.欧拉定理:假设一个连通平面图有v 个节点,e 条边,r 个面,则 v-e+r=2; 34.判断是平面图的必要条件:(若不满足,就一定不是平面图) 设图G 是v 个节点,e 条边的简单连通平面图,若v>=3,则e<=3v-6; 35.同胚:对于两个图G1,G2,如果它们是同构的,或者通过反复插入和除去2度节点可以变成同构的图,则称G1,G2是同胚的; 36.判断G 是平面图的充要条件: 图G 不含同胚于K3.3或K5的子图; 37.二部图:①无向图的节点集合可以划分为两个子集V1,V2; ②图中每条边的一个端点在V1,另一个则在V2中; 完全二部图:二部图中V1的每个节点都与V2的每个节点邻接; 判定无向图G 为二部图的充要条件: 图中每条回路经过边的条数均为偶数; 38.树:具有n 个顶点n-1条边的无回路连通无向图; 39.节点的层数:从树根到该节点经过的边的条数; 40.树高:层数最大的顶点的层数; 41.二叉树: ①二叉树额基本结构状态有5种; ②二叉树内节点的度数只考虑出度,不考虑入度; ③二叉树内树叶的节点度数为0,而树内树叶节点度数为1; ④二叉树内节点的度数=边的总数(只算出度);握手定理“节点数=边的两倍”是在同时计算入度和出度的时成立; ⑤二叉树内节点的总数=边的总数+1; ⑥位于二叉树第k 层上的节点,最多有12-k 个(k>=1); ⑦深度为k 的二叉树的节点总数最多为k 2-1个,最少k 个(k>=1); ⑧如果有0n 个叶子,n2个2度节点,则0n =n2+1; 42.二叉树的节点遍历方法: 先根顺序(DLR ); 中根顺序(LDR ); 后根顺序(LRD ); 43.哈夫曼树:用哈夫曼算法构造的最优二叉树; 44.最优二叉树的构造方法: ①将给定的权值按从小到大排序; ②取两个最小值分支点的左右子树(左小右大),去掉已选的这两个权值,并将这两个最小值加起来作为下一轮排序的权值; ③重复②,直达所有权值构造完毕; 45.哈夫曼编码:在最优二叉树上,按照左0右1的规则,用0和1代替所有边的权值; 每个节点的编码:从根到该节点经过的0和1组成的一排编码;

离散数学知识点整理

离散数学 一、逻辑和证明 1.1命题逻辑 命题:是一个可以判断真假的陈述句。 联接词:∧、∨、→、?、?。记住“p仅当q”意思是“如果p,则q”,即p→。记住“q除非p”意思是“?p→q”。会考察条件语句翻译成汉语。 系统规范说明的一致性是指系统没有可能会导致矛盾的需求,即若pq无论取何值都无法让复合语句为真,则该系统规范说明是不一致的。 1.3命题等价式 逻辑等价:在所有可能情况下都有相同的真值的两个复合命题,可以用真值表或者构造新的逻辑等价式。

谓词+量词变成一个更详细的命题,量词要说明论域,否则没有意义,如果有约束条件就直接放在量词后面,如?x>0P(x)。 当论域中的元素可以一一列举,那么?xP(x)就等价于P(x1)∧P(x2)...∧P(xn)。同理,?xP(x)就等价于P(x1)∨P(x2)...∨P(xn)。 两个语句是逻辑等价的,如果不论他们谓词是什么,也不论他们的论域是什么,他们总有相同的真值,如?x(P(x)∧Q(x))和(?xP(x))∧(?xQ(x))。 量词表达式的否定:??xP(x) ??x?P(x),??xP(x) ??x?P(x)。 1.5量词嵌套 我们采用循环的思考方法。量词顺序的不同会影响结果。语句到嵌套量词语句的翻译,注意论域。嵌套量词的否定就是连续使用德摩根定律,将否定词移入所有量词里。 1.6推理规则 一个论证是有效的,如果它的所有前提为真且蕴含着结论为真。但有效论证

二、集合、函数、序列、与矩阵 2.1集合 ∈说的是元素与集合的关系,?说的是集合与集合的关系。常见数集有N={0,1,2,3...},Z整数集,Z+正整数集,Q有理数集,R实数集,R+正实数集,C复数集。 A和B相等当仅当?x(x∈A?x∈B);A是B的子集当仅当?x(x∈A→x∈B);A是B的真子集当仅当?x(x∈A→x∈B)∧?x(x?A∧x∈B)。 幂集:集合元素的所有可能组合,肯定有?何它自身。如?的幂集就是{?},而{?}的幂集是{?,{?}}。 考虑A→B的函数关系,定义域、陪域(实值函数、整数值函数)、值域、像集(定义域的一个子集在值域的元素集合)。 一对一或者单射:B可能有多余的元素,但不重复指向。 映上或者满射:B中没有多余的元素,但可能重复指向。 一一对应或者双射:符合上述两种情况的函数关系。 反函数:如果是一一对应的就有反函数,否则没有。 合成函数:fοg(a)=f(g(a)),一般来说交换律不成立。 2.4序列 无限集分为:一组是和自然数集合有相同基数,另一组是没有相同基数。前者是可数的,后者不可数。想要证明一个无限集是可数的只要证明它与自然数之间有一一对应的关系。 如果A和B是可数的,则A∪B也是可数的。

离散数学自学考试复习题

离散数学 复习题 1.设A 和B 都是命题,则A →B 的真值为假当且仅当 。 A. A 为假,B 为真 B. A 为假,B 为假 C. A 为真,B 为真 D. A 为真,B 为假 2.下列公式中为重言式的是 。 A. P →(P ∨Q ∨R) B. ┐(Q →P)∧P C. (P →Q)→(Q →┐P) D. (P ∧┐P)←→Q 3.设A ={a ,{a}},P(A)表示A 的幂集,下面各式中错误的是 。 A. {a}∈P(A) B. {a}?P(A) C. {{a}}∈P(A) D. {{a}}?P(A) 4.设A ={1,2,3,4,5,6}上的关系为R ={|x>y},则R -1具有 。 A. 对称性 B. 自反性 C. 反自反性、反对称性、传递性 D. 以上都不对 5.设R 是非空集合A 上的二元关系,则R 的对称闭包S(R)= 。 A. R ∪I A B. R ∪R C C. R-I A D. R ∩R C 6.映射的复合运算满足 。 A. 交换律 B. 结合律 C. 幂等律 D. 分配律 7.设R 、I 分别是实数集合和整数集合,-、×、/ 分别是普通的减法、乘法 和除法运算,则 是半群。 A. B. C. D. 8.在一个格中,对任意的a ,b ,c ∈A ,都有 。 A. a ∨(b ∧c)≤(a ∨b)∧(a ∨c) B. a ∧(b ∨c)≤(a ∧b)∨(a ∧c) C. a ∨(b ∧c)=(a ∨b)∧(a ∨c) D. A 、B 、C 都正确 9.无向简单图G 中结点间的连通关系是 。 A. 偏序关系 B. 等价关系 C. 既是偏序关系又是等价关系 D. A 、B 、C 都错误 10.设G 是一个有v 个结点e 条边的连通简单平面图,若v ≥3,则 。 A. v ≤3e-6 B. e ≤3v-6 C. v ≤3e+6 D. e ≤3v+6 11.设P 和Q 是命题,P ,?P ∨Q ?Q 。 ( ) 12.设A 和B 是集合,A-B =A 当且仅当B =Φ。 ( ) 13.一个不是自反的关系,一定是反自反的。 ( ) 14.若A 和B 是任意两个集合,则A ×B =B ×A 。 ( ) 15.关系f ={|m,n ∈N,m+n <10}是函数,其中N 是自然数集合。 ( ) 16.集合B 是集合A 的真子集,则K[B]<K[A]。 ( ) 17.整环一定是域。 ( ) 18.任何两个具有2n 个元素的有限布尔代数都是同构的。 ( ) 19.已知无向连通图G 中有n 个结点,m 条边,G 中无回路,则m =n-1。( ) 20.如果两个图的结点数相同、边数相等、度数相同的结点数目也相等,那么这两个图是同构的。 ( ) 21.设命题P 表示“我今天将去公园”,命题Q 表示“天下雨”,则命题“我今天去公园,除非下雨”可以符号化为 (1) 。

离散数学笔记(特级教师精心整理)

离散数学笔记(特级教师精心整理) 第一章命题逻辑 内容: 命题及命题联结词、命题公式的基本概念,真值表、基本等价式及永真蕴涵式,命题演算的推理理论中常用的直接证明、条件证明、反证法证明等方法教学目的: 1.熟练掌握命题、联结词、复合命题、命题公式及其解释的概念。 2.熟练掌握常用的基本等价式及其应用。 3.熟练掌握(主)析/合取范式的求法及其应用。 4.熟练掌握常用的永真蕴涵式及其在逻辑推理中的应用。 5.熟练掌握形式演绎的方法。 教学重点: 1.命题的概念及判断 2.联结词,命题的翻译 3.主析(合)取范式的求法 4.逻辑推理 教学难点: 1.主析(合)取范式的求法 2.逻辑推理 1.1命题及其表示法 1.1.1 命题的概念 数理逻辑将能够判断真假的陈述句称作命题。 1.1.2 命题的表示 命题通常使用大写字母A,B,…,Z或带下标的大写字母或数字表示,如A i,[10],R等,例如A1:我是一名大学生。A1:我是一名大学生.[10]:我是一名大学生。R:我是一名大学生。 1.2命题联结词

(1) P↑P?﹁(P∧P)?﹁P; (2)(P↑Q)↑(P↑Q)?﹁(P↑Q)? P∧Q;(3)(P↑P)↑(Q↑Q)?﹁P↑﹁Q? P∨Q。 (1)P↓P?﹁(P∨Q)?﹁P;

(2)(P↓Q)↓(P↓Q)?﹁(P↓Q)?P∨Q; (3)(P↓P)↓(Q↓Q)?﹁P↓﹁Q?﹁(﹁P∨﹁Q)?P∧Q。 1.3 命题公式、翻译与解释 1.3.1 命题公式 定义命题公式,简称公式,定义为:(1)单个命题变元是公式;(2)如果P 是公式,则﹁P是公式;(3)如果P、Q是公式,则P∧Q、P∨Q、P→Q、 P?Q 都是公式;(4)当且仅当能够有限次的应用(1) 、(2)、(3) 所得到的包括命题变元、联结词和括号的符号串是公式。 例如,下面的符号串都是公式: ((((﹁P)∧Q)→R)∨S) ((P→﹁Q)?(﹁R∧S))(﹁P∨Q)∧R 以下符号串都不是公式: ((P∨Q)?(∧Q))(∧Q) 1.3.2 命题的翻译 可以把自然语言中的有些语句,转变成数理逻辑中的符号形式,称为命题的翻译。 命题翻译时应注意下列事项: (1)确定所给句子是否为命题。 (2)句子中联结词是否为命题联结词。 (3)要正确的选择原子命题和合适的命题联结词。 例:假如上午不下雨,我去看电影,否则就在家里读书或看报。 解:设P:上午下雨;Q:我去看电影;R:我在家里读书;S:我在家里看报。 本例可表示为:(?P→Q)∧(P→(R∨S))。 1.3.3 命题公式的解释定义 设P1,P2,…,P n是出现在命题公式G中的全部命题变元,指定P1,P2,…,P n的一组真值,称这组真值为G的一个解释或赋值,记作I,公式G在I下的真值记作T I(G)。 例如, 是G的一个解释,在这个解释下G的真值为1,即T I(G)=1。 1.4 真值表与等价公式 1.4.1 真值表 定义将公式G在其所有解释下所取得的真值列成一个表,称为G的真值表。 构造真值表的方法如下: (1)找出公式G中的全部命题变元,并按一定的顺序排列成P1,P2,…,P n。

相关主题
文本预览
相关文档 最新文档