当前位置:文档之家› 水源热泵制冷和采暖方案分析

水源热泵制冷和采暖方案分析

水源热泵制冷和采暖方案分析
水源热泵制冷和采暖方案分析

水源热泵

采暖/制冷的方案

[content]

一、前言 (3)

二、方案和投资 (4)

三、采暖/制冷运行费用分析 (8)

四、结论 (9)

以往,办公用房及大型建筑多为双系统解决采暖和制冷,即冬季燃煤锅炉供暖或集中供热,夏季制冷由水冷式冷水中央空调机组或用风冷民用家用小型空调。

水源热泵是一种利用地下浅层地热资源,既可供热又可制冷的高效节能空调系统。该系统通过输入少量高品位的电能,实现低温位热能向高温位转移。地表水的热能是基本恒定的,在冬季作为热泵供暖的热源和夏季作为空调的冷源,即在冬季,把地能中的热量"取"出来提高温度后,供给室内采暖;夏季把室内的热量取出来,通过地表水(或介质)释放到地下。通常水源热泵消耗lkW的能量,用户可以得到4kW以上的热量或冷量。

与电锅炉和燃料锅炉供热系统相比,只能将90%以上的电能或70~90%的燃料内能转化为热量,供用户使用。因此,水源热泵要比电锅炉节省三分之二以上的电能,比燃料锅炉节省二分之一以上的能量。由于水源热泵的热源温度全年较为稳定,一般为10~25℃,其制冷、制热系数可达4.4~5.4,与传统的空气源热泵相比,效率要高出40%左右,制冷时其运行费用为普通中央空调的50~60%,与风冷民用家用小型空调

相比,制冷时节约运行费用60~70%。水源热泵作为一种被国家计委、国家科委、建设部列入“十一五”规划的新技术,它有如下特点:

A.属于可再生能源。

B.高效节能及低价位的运行费用。

C.环境效益显著。

D.一机多用,即可以采暖,又可以制冷,还可以全天提供生活用热水,省去了采暖设施及生活热水系统的投资。

在诸多的热泵机组品牌中意大利克莱门特机组,由于拥有独特的蒸发器专利技术,其效率比世界任何厂家生产的同类型最好的机组高出11%以上,降低了运行费用。

意大利克莱门特水源热泵,由于具有独特的系统控制技术及压缩机生产技术,是目前唯一拥有能够一次性将3℃以上可利用温度,由机组蒸发器全部提取,减少了机组对井水流量的需求,大幅度减少打井的一次性投资。

如果采用集中供热作为冬季采暖的热源,其热源及热管网费为每建筑平米120元~130元(天津市人民政府规定)。夏季采用水冷式冷水中空

调机组(单冷机组)进行制冷,其投资与水源热泵机组的投资相当。如果采用水源泵机组,既可以采暖又可以制冷,又可以提供生活用水,工程总造价中每平方米减少了100元以上的投资。

我们完成的水源热泵项目(包括水源系统、机房、末端、管网和控制系统调试)有:天津农场局办公楼采暖/制冷工程(8,500㎡)、天津技术监督局产品质量监督检验所工程(15,000㎡)、天津联盟里小区(26,000㎡)、唐山公安局指挥中心(20,000㎡)、天津三达大酒楼(9,000㎡)、天津明都物资交易中心(10,000㎡)、天津全盈制衣有限公司办公楼(厂房)、天津峰通金属加工有限公司办公楼(厂房)等。

二、方案和投资

方案:大厦总建筑面积11000 m2,。设计总冷负荷为990KW,,总热负荷为880KW。单位建筑面积冷负荷为90W/ m2,热负荷为80 W/ m2。

1、水源系统和热泵系统(辅助设备)选型依据“一机、一井、一泵;机组制冷/制热量,依据制冷优先的原则进行选择。为了减少一次性投资和经常性运行费用,建议新风系统采用全热交换器与风机盘管组合,可以减少冷/热负荷20%;考虑到局部大厅高度对采暖不利,建议安装形式为落地式风机盘管或考虑高静压风机盘管。

2、冷负荷990KW,选择克莱门特螺杆水源热泵机组PSRHH2002机组2台,单机机组制冷量792.9KW/台,输入功率139.4KW。冷凝器释放热量温差16℃,单机制冷时冷却水流量44.7 m3/h;洗浴机组PSRHH1201机组夏季由系统提取热量,可为系统制冷贡献冷量489KW,总制冷量达到

1281KW,因此,制冷量已经超过设计要求。

洗浴1201机组

(制冷量489KW)

系统回水

冷凝器

储热箱 1号井 2号井

制冷工况机组水系统流程图

1.制热工况

根据计算该建筑总热负荷为880KW,按照蒸发器提取热量温差为水源热泵是一种利用地下浅层地热资源,既可供热又可制冷的高效节能空调系统。该系统通过输入少量高品位的电能,实现低温位热能向高温位转移。地表水的热能是基本恒定的,在冬季作为热泵供暖的热源和夏季作为空调的冷源,即在冬季,把地能中的热量"取"出来提高温度后,供给室内采暖;夏季把室内的热量取出来,通过地表水(或介质)释放到地下。通常水源热泵消耗lkW的能量,用户可以得到4kW以上的热量或冷量。

为849.9KW/台,输入功率为187.9KW,单台机组满负荷需要的热源水流量为50.6 m3/h。

2、洗浴负荷

根据项目规模计算,制热工况满负荷热源水流量37.2 m3/h。因此,需要配备PSRHH1201机组1台,制冷量489KW,制热量518.2KW。

2002机组

(制热量1011KW)

洗浴1201机组

冷凝器

3号井

冷凝器蒸发器

1号井

储热箱

4号井

制热工况机组水系统流程图

3、水源条件

根据北京市顺义区水资源局提供水文资料表明, 北京顺义天竺地区含水层以中、细砂为主,地下水资源丰富,200米以下含水层共4个,实探井(北京天竺宏远仓储有限公司院内)静水位43.1米,动水位51米,涌水量为50 m3/h,水温17℃。该地区地下水流动性差,具有较好的储能性,如果根据含水层的渗透系数计算合理井距,即可以冬季把提取热量后的冷水回灌到含水层中,供夏季作为冷却水使用;而夏季把建筑体内的提取热量的水回灌到含水层

中,两井互为采灌,大大提高了机组效率。同时,还可以减少提水量和回灌量,降低运行费用。根据机组对井水的需求量和回灌量,本工程需要打井4眼,其中包括还水井2眼,井深200米。

地下含水层地质构成见下表:

4、控制系统:

A.潜水泵为温差变频;

B.系统循环泵为温差变频;

C.补水系统采用恒压变频;

D.控制为机组键盘优先或计算机远程通讯方式;

5、投资:

①机组投资:合计133万元。

本方案依据“一机,一井,一泵、制冷优先、对井互灌/采的原则”,选用克莱门特水源热泵PSRHH2002螺杆机组1台。造价:71万元/台。运费、安装费、调试费、保修费15万元

洗浴热水系统采用PSRHH1201螺杆机组1台,造价39万元/台,运费、安装费、调试费、保修费8万元。

②末端设备投资:合计74万元。

A、风机盘管:FP8-300台,合计43万元(包括安装费)

B、进出风口5万元。

C、全热交换器选用日本松下01KZDY2NA,新风量为780~1000 m3/h/台,系统共需要8台,全热交换器投资18万元

D、风管及风口(包括安装费)8万元

③冷热源用水井合计64万元。

满足系统冷热负荷,需打2对4眼水井,造价为800元/米。

④井管网及末端管网(材料及安装费):合计13万元

⑤机房其它辅助设备合计64.55万元

A 末端辅助设备:18KW低噪音循环泵2台,3KW恒压补水泵2台,3KW

恒压补水泵变频柜1台;共计4.6万元。

B 热水管网、管网保温、管件及阀门:5.5万元

C 水源辅助设备:井40KW潜水泵4台,40KW温差变频柜2台;1~3um

×60 m3/h精密井水过滤器2台;共计16万元。

D.管件及阀门:4万元。E 主机辅助设备:水路切换装置,集(分)水器,蒸发器及冷凝器

入口过滤器,压力、流量、温度传感器和变送器(包括安装调试);共计5万元。

F 洗浴设备:17.5万元。

G 8M3保温储热水箱3台:6万元

H 3KW补水泵2台;3KW热池循环泵2台;3KW洗浴喷头循环泵4台(包括客房2台);1201机组5KW 循环泵2台;3.6万元

J 3KW变频器3台;5KW变频器1台:2.4万元

总投资合计: 348.55万元

投资结构:

井:18.36%

制冷/采暖机组:38.16%

新风系统:8.9%

热水洗浴系统:20.41%

末端管网、电控设备及辅助设备:14.17%

三、采暖/制冷运行费用分析

11000平方米采暖运行费用及经济技术指标(电价0.6元/KW/H):

①机组:0.6元/KW/h×187.9KW×20小时×120天×0.5(运行系数)= 135288元

②辅助设备电费:135288元×0.25 = 33822元

③合计采暖费用: 135288元+33822元= 169110元

④全年每平方米采暖费用: 169110元÷11000㎡=15.37元/㎡

11000平方米制冷运行费用及经济技术指标(电价0.6元/KW/H):

①机组:0.6元/KW/h×139.4KW×20小时×120天×0.5 = 100368元

②辅助设备电费:100368元×0.25 = 25092元

③合计制冷费用: 100368元+25092元= 125460元

④全年每平方米制冷费用: 125460元÷11000㎡= 11.40元/㎡

⑤全年采暖/制冷运行费用合计:135288元+100386元= 235674元

洗浴热水机组运行费用:

①机组:0.6元/KW/h×111.3KW×24小时×1天×0.5 = 801.36元/天

②辅助设备电费:801.36元×0.25 = 200.34元

③合计:1001.7元/天

注:夏季制冷期120天,洗浴热水机组为空调系统制冷,热水为无费用副产品,将不发生热水费用。

四、结论

通过以上分析,使用意大利克菜门特水源热泵采暖/制冷,比使用燃煤锅炉加水冷式冷水机组,节约运行费用约30%;大幅度减少了机组及辅助设备的投资和能耗。

水源热泵控制系统,将水源系统、热泵系统及末端系统完全置于计算机控制和监视之下,包括对井水的提取量、回灌量、井水位、井水的进出口温度、潜水泵电压和电流、末端系统进出口温度、压力、循环水流量、电费的监视、统计和查询(年/月/日)。

系统为末端优先的实时闭环控制,可以最大限度的减少井水的提取量、机组及辅助设备的功耗,节约运行费用。系统通过RS485或RS232接口进行远程无人值守的操作方式(GSM)。

对管井的使用寿命和回灌能力,我们向用户提供20年的保用期。在项目方案确定前,可以由甲方委托或组织暖通、制冷、水利、地质的专家进行理论性验证,内容包括投资预算、井水回灌、机组运行及运行费用等内容,以保证用户投资的安全性和使用的可靠性。

五、售后服务和技术保障

意大利克莱门特设备在中国具有完善的售后服务体系及相关的管理保

障措施,整个售后服务过程将严格按照ISO9001质量标准执行。

(A)技术资料:按要求提供。

(B)验收条件:供方调机完毕,设备正常运转达到设计要求后,双方代表应对设备进行质量性能确认合格且在验收报告上签字后开始计算保修期。

(C)保修业务:供方将提供用户货到24个月或开机12个月的全责免费保修,保修期内任何机组本身故障和元件损坏,均由供方负责和更换,费用由供方负担。

(D)保修服务:供方的维修中心将对用户提供终身维修业务,所需要更换的部件均按成本价提供,维修中心将建立该设备的维修保养档案,定期向用户提供咨询服务。

(E)响应时间:售后维修服务点备有充足的备品备件,接到用户保修电话,供方维修工程师将在3小时内赶到现场,并于2日完成保修或零件更换工作。

(F)例行维护:供方免费提供一年两次例行巡视,以协助用户日常维护工作。

(H)操作培训:通过对用户自有操作人员的培训,使其达到熟练操作及处理一般的报警,根据实际需要调整运行参数,对机组进行日常保养及维护。作到把隐患和故障消灭在萌芽状态。免费为贵方培训3~5名技术人员。

(I)远程监控:根据用户需要,设备实行联网远程集中监控,这样可

以将机组之间置于用户及CLIMAVENTA控制之下,如果有故障发生,可以在最短的时间内判断故障的原因,提出和确定解决的方案。

空气源热泵项目设计方案

空气源热泵项目设计方案公司是集科研、生产、销售、服务于一体的专业制作中央空调、净化空调的高科技技术企业。先后与全国著名高等学府、通用机械研究院等单位进行技术合作,科研攻关,通过把高科技成果产品化,坚持技术创新,发展具有自主知识产权的专利技术,生产研发出了高效能的中央空调系列产品。 公司定位于节能减排的可再生能源和新能源产业领域。公司主导产品地源热泵、污水源热泵、工业废热余热型热泵、海水源热泵、水冷冷水机组、水冷离心机组、空气源热泵机组等热泵系列产品及中央空调、净化空调末端系列产品,是利用浅层地热能、污水热能、工业废热余热、海洋热能、空气能等低品位的可再生能源和新能源的重要技术装备产品。公司生产制造的热泵系列产品已为超过4000万平方米的建筑提供可再生能源供热热源和供冷冷源,年运行节能量超过40万吨标准煤。 十二五期间,公司将为社会提供10000台热泵机组,以年节约100万吨标准煤为目标,有效降低温室气体和有害气体的排放,为祖国节能减排事业贡献力量! 我们珍惜每一个客户的选择和认可,敬重每一个客户的批评和建议,感关心和支持世纪昌龙的每一个朋友和合作伙伴。我们将继续以优良的售后服务,巩固并拓展销售市场,真诚地希望与您携手共创辉煌。 2、产品简介 公司专业生产经营热泵型中央空调系列,目前公司产品已发展到第四代、拥

有十大系列一百五十多个型号。 公司产品主要分为中央空调主机和空调末端设备两大单元; 中央空调主机单元主要包括:水源热泵、地源热泵和空气源热泵三大板块; 空调末端设备单元主要包括:风机盘管、射流风机、组合式空调器、新风换气机和组合式净化空调等。 (1)中央空调主机单元 从热源利用上:既可利用地下水,又可利用河水、湖水等地表水、工业废水、城市污水、洗浴污水以及油田回注水等;从压缩机选型上:既有半封闭螺杆式机组、全封闭涡旋式机组,又有离心式机组;从换热器选型上:既有钎焊板式换热器、干式、满液式换热器,又有套管换热器。从形式上:既有风冷式,也有水冷式。 (2)空调末端单元 公司空调末端设备单元共分为四大系列,两百多个产品规格,从形式上可分为:风机盘管、射流风机、组合式空调器、新风换气机和组合式净化空调器等;从送风方式上分为:独立送风设备和集中送风设备;从送风质量上分为:室自然风循环设备和净化加湿设备;从静音方式上可分为:普通型和高静音型;

水源热泵供暖制冷系统运维管理合同

***********新能源开发有限责任公司 ******人民医院水源热泵供热供冷系统 投资运维管理合同 协议编号: 签署日期: 签署地点:

甲方: 乙方:**********新能源开发有限责任公司 依据《中华人民共和国合同法》和其他有关法规,经甲、乙双方协商,就有关事项达成如下合同,双方同意严格执行本合同规定的所有条款。 一、建设经营范围 1、乙方投资范围 (1)热泵机房:热泵机房内水源热泵机组、循环水泵组等主要设备及辅助设施的购置及安装;热泵机房内管道及附件等的购置及安装;设备配电及自控系统的安装; (2)室外水源井换热系统:水源井钻凿施工以及水源井至机房联络管线的敷设施工; (3)室外冷却塔系统:冷却塔设备及其附属管线的购置及安装。 2、甲方负责建设内容 (1)热泵机房土建,热泵机房内的设备基础,冷却塔设备基础,及机房内通风、给排水、消防、照明等配套设施建设; (2)出机房后1米的供回水管线、建筑内的空调末端系统的建设和运营管理; (3)电力电源引入建设; (4)其它协调工作。 二、维护运营时间 经营时间为20年,即由乙方对本项目进行投资、设计、建设、

运营、收费,并对项目拥有所有权。运营即收费年限为20年(不含建设期)。 三、合同价款及付款方式 1、方案一 免收冬、夏季配套费。 由36元/m2让利至30元/m2(采暖季每天0.25元/m2,比县定标准0.26元/m2降低1分;制冷收费标准由45元/m2让利至40元/m2。(按照每个供暖、制冷季为120天)。 供暖收费参考标准标准:****市收费标准为:36元/m2(采暖季每天每平方米0.30元);汝阳县收费标准为31.2元(每天每平方米0.26元)。 2、方案二 免夏季配套费,冬季接口费标准由50元/m2让利至40元/m2,则共计507万元。 供暖收费标准由由36元/m2让利至27.6元/m2(采暖季每天0.23元/m2,比县定标准0.26元/m2降低3分;制冷收费标准由45元/m2让利至35元/m2。(按照每个供暖、制冷季为120天)。 3、付款时间 付款以人民币通过银行给付,统一汇至中标人的基本银行账户。具体付款幅度如下: 每个供暖/供冷季前十日内支付供暖费。

水源热泵设计方案

水源热泵热水机组 设 计 方 案 方案目录 方案概述................................ 第一章水源热泵中央空调介绍........................ 第二章水源热泵中央空调相关政策依据................ 第三章方案设计.................................... 第四章工程概算.................................... 第五章水源热泵系统技术特点........................ 第六章公司简介.................................... 第七章工程清单目录................................

方案概述 本方案采用水源热泵中央空调新技术,水源热泵中央空调是二十世纪七十年代以来欧美发达国家大力推广的空调新技术。它是利用地下浅层水中低品位能源制冷和制热,空调运行成本比传统电制冷空调节约50%以上。 第一章水源热泵中央空调介绍 一、水源热泵现状及政策依据 水源热泵最早源于1912年瑞士的一项发明专利,二十世纪七十年代能源危机以后,这一节能、环保的空调技术受到西方国家的重视。水源热泵技术在美国、加拿大和北欧国家和地区已得到广泛地应用。瑞士的普及率达到50%以上,美国推广速度以每年20%的速度递增。 1995年中美签署了《中华人民共和国国家科学委员会和美利坚合众国能源部效率和再生能源技术的发展与利用领域合作协议书》,并与1997年又签署了该合作协议书的附件六——《中华人民共和国国家科学技术委员会与美利坚合众国能源部地能开发利用的合作协议》。其中,两国政府将地源热泵空调技术列为能源效率和再生能源的合作项目。建设部2000年第76号令也将地热、可再生能源以及空调节能技术列入建设部推广项目。2004年9月14日国家发改委高技术处颁发了《关于组织实施“节能和新能源关键技术”的通知》,将地热、热泵列为重点开发内容。2005年2月28日第十届全国人民代表大会常务委员会第十届会议通过了《中华人民共和国可再生能源法》鼓励大力推广应用太阳能、地热能、水能等可再生能源。 与此同时,适合推广水源热泵的北京市、山东、河南、辽宁、河北等地政府对推广水源热泵空调制定了优惠政策。这一举措极大的促进了我国地源热泵技术的发展。 北京市第一个地温空调工程——蓟门饭店(两会代表驻地)已运行七年。运行成本低于原燃煤锅炉和单冷机组,比改造前每年可节约数十万运行费用。 二、水源热泵工作原理 水源热泵技术利用地球表面浅层水源(如地下水、河流和湖泊)中低品位热能资源,通过逆卡诺循环实现低品位热能向高品位热能转移的一种技术。它以水为工作介质将地下土壤中的低品位热能提取出来,经高效的热泵机组,利用少量的高品位电能,将水中的低品位能量输送到空调场所,完成热交换的地下水又重新回灌到地下去。井水是在金属管路中闭路循环的,水不与大气接触,不消耗水,也不污染水,只提取水中的热能。地温空调

地源热泵方案书

地源热泵 一、地源热泵介绍 实施可持续发展能源战略已成为新时期我国能源发展的基本方针,可再生能源在建筑中的应用是建筑节能工作的重要组成部分。2004年国家发展和改革委员会发布了中国第一个《节能中长期专项规划》:加快太阳能、地热等可再生能源在建筑物的利用。2006年1月1日《可再生能源法》正式实施,地源热泵系统作为可再生能源应用的主要途径之一,同时也是最利于与太阳能供热系统相结合的系统形式,近年来在国内得到了日益广泛的应用。 地源热泵技术是利用地能或地表浅层地热资源的温度一年四季相对稳定,冬季比环境空气温度高,夏季比环境空气温度低这一特点进行能量转换的空调系统。地源热泵通过输入少量的高品位能源(电能),即可实现能量从低温热源向高温热源的转移。在冬季,把土壤中的热量“取”出来,提高温度后供给室内用于采暖;在夏季,把室内的热量“取”出来释放到土壤中去,并且常年能保证地下温度的均衡。 地源热泵在结构上的特点是有一个由地下埋管组成的地热换热器,它通过循环液(水或以水为主要成分的防冻液)在封闭地下埋管中的流动,实现系统与大地之间的能量转换。 因为地源热泵只使用电力,没有燃烧过程,对周围环境无污染排放;不需使用冷却塔,没有外挂机,不向周围环境排热,没有热岛效应,没有噪音;不抽取地下水,不破坏地下水资源,所以在最新颁布的《中国应对气候变化国家方案》中提出:积极扶持风能、太阳能、地热能、海洋能等的开发和利用。积极推进地热能的开发利用,推广满足环境和水资源保护要求的地热供暖、供热水和地源热泵技术。

二、地源热泵系统构成与原理 地源热泵(也称地热泵)是利用地下常温土壤和地下水相对稳定的特性,通过深埋于建筑物周围的管路系统或地下水,采用热泵原理,通过少量的高位电能输入,实现低位热能向高位热能转移与建筑物完成热交换的一种技术。 地球是一个巨大的蓄热体,一年四季其地表5m以下的土壤温度十分稳定,是一种取之不尽、用之不竭的可再生能源。地源热泵机组工作原理就是在夏季从土壤或地下水中提取冷量,由热泵原理通过空气或水作为载热剂降低温度后送到建筑物中,而冬季,则从土壤或地下水中提取热量,由热泵原理通过空气或水作为载冷剂提升温度后送到建筑物中,从而实现的热交换过程。需要特别指出的是:地热泵中的冷热源不是指地下的热汽或热水,而是指一般的常温土壤、地表水、地下水。 地埋管热泵系统以导热好、抗腐蚀、强度高且可绕曲的材料制成

水源热泵机组在供暖系统中的应用

水源热泵机组在供暖系统中的应用 [摘要] 针对目前地热供暖应用的现状,介绍了一种全新的地热+高温水源热泵的供暖方案。在比较了各种常规的供暖模式的经济及环保效益的同时,为低温地热水、地热尾水中低品位余热水资源提供了一种高效、合理的利用途径。 [关键词] 水源热泵地热供暖地热尾水节能环保 一、概述 1、项目简介 某干休所共有建筑面积6万平方米,为满足冬季供热及生活热水的需求,建设方拟采用地热井水+水源热泵技术联合供暖方式为住宅小区冬季采暖提供热源,根据当地的地质结构及有关技术资料,现计划打地热井1口(井深3800米),单井出水量55T/h,温度90℃。综合考虑初投资及运行费用,并本着最大限度利用地热水资源的原则,拟定采暖方式为:用地热水给小区一次供暖,供热后的尾水由水源热泵进行能量提升为采暖系统再次供热,从而降低尾水排放温度适合生活用热水要求,最大限度的利用水资源。从长期运行的角度出发,对该方案的节能效益进行以下技术经济分析。 2、热泵技术原理 热泵是一种能从自然界的空气、水或者土壤中获取低品位热量,经过电力做功,输出可用的高品位热能的设备。热泵可以把消耗的高品位电能转换为3倍甚至3倍以上的热能,是一种高效供能技术。本文所要叙述的热泵系统是利用水源热泵机组从中低温水中吸收热量供采暖用热,可以实现能源的二次利用,大大提高能源利用率,节约地热水的用量,是一条变废为宝的节能途径。 由于热泵是取之自然界中的能量,效率高,没有任何污染物排放,是当今最清洁、经济的能源方式。在资源越来越匮乏的今天,作为人类利用低温热能的最先进方式,热泵技术已在全世界范围内受到广泛关注和重视。在我国热泵技术是国家重点推广的能源技术之一,目前在国内已经获得了广泛的应用。 二、技术方案 小区建筑冬季采暖热负荷为3000KW,生活热水负荷为1200KW。采暖末端使用地幅热,因此要求供水温度为55℃,回水温度为45℃。采用水源热泵供暖系统的原理示意图如图1所示。 本系统中,地热井出来的90℃、55T/h的地热水由除砂器处理后,经过供暖一级板式换热器和生活热水换热器换热后的水温降为46℃;再经过采暖二级板式换热器换热后出水温度降为20℃排出。活塞式水源热泵机组水源侧进水温度

水源设计

一、水源供应系统概述 水源热泵系统是从各种水源或土壤埋管水环路中提取能量,根据目前常用的工艺措施,水源热泵系统的能量来源包括地表水源、废热水源、井水水源、土壤埋管。地表水源包括江、河、湖、海水源,废热水源包括工业废水、生活污水及中水、矿井坑道水源等,井水水源是指深度一般在400米以上的浅表层井水,土壤埋管是指水平埋管或深度一般在200米以上的垂直埋管式交换器。 水源供应系统是水源热泵中央空调的能量来源,与传统中央空调系统对比,它取代了锅炉供热系统和冷却塔,因此在水源热泵中央空调工程中是重中之重,对整个空调系统的使用效果、运行可靠程度、空调系统耗能量影响很大。地表水源和废热水源需要在进主机前采取相应的过滤、水处理和防腐措施,土壤埋管已有《地埋管地源热泵技术》等相关技术规范资料,而井水水源的供应系统目前尚没有专门的文字资料进行总结和归纳,因此本章将根据大量的【科莱智星】水源热泵项目工程实践经验,从水井系统的前期规划、取水方案和工程布局、井水量计算、潜水泵的选型与控制、水处理措施、回灌措施诸方面加以分析说明。 二、水井供应系统的前期规划 一个土建项目是否可以上水源热泵中央空调,取决于该项目所在地是否具有水源。如果有温度适宜、水量恒定的工业尾水、污水中水、地表水、海水等各种形式的水源,则可以直接从上述水源中提取冷热能。如果没有再考虑地下水方式是否可行。有的地区严重缺乏地下水,有的地区当地政府严禁开采地下水,有的项目在建筑物周边空地根本不具有水井施工的客观条件,所以地下水方式会受到各种因素的限制。 地下水方式的优势是一年四季400米以上的浅表层水温相对恒定,但全国各地的地下水状况各不相同,每一个地区的每一个项目在进行水源热泵项目论证时必须提前咨询当地地质勘探部门的专业人员,以确认项目所在地是否有水量稳定的地下水。有的项目紧靠大江大河,设计人员想当然地认为水量肯定没问题,但施工时却发现地下根本没有稳定的水源或水量很小。有的项目丰水期考察时水量充足,上马后却发现枯水期地下水严重不足。为了解决上述问题,在项目前期规划设计阶段,须作如下工作: 1、查看建筑物的总平面图,了解建筑物周边是否有空余场地可以用来打井。 2、了解当地政府是否允许开凿水源热泵水井,有哪些规定和办理程序。 3、通过水利部门和地质勘探部门了解地下水状况、水井工艺要求、打井成本、水质、水量、水温等详细资料。

热泵测试验收方案及标准

热泵测试验收方案及标准-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

热泵测试验收方案及标准 1、验收参考规范: GB50300-2001《建筑工程施工质量验收统一标准》 GB50242-2002《建筑给水排水及采暖工程施工质量验收规范》 GB50235-《工业金属、管道工程施工及验收规范》 GBJ126-89《工业设备及管道绝热工程施工及验收规范》 JBJ29-96《压缩机、风机、泵安装工程施工及验收规范》 GB50150-91《电气装置安装工程电气设备交接试验标准》 2、测试项目: (1)、室内热水设备安装是否合符规范,安装是否水平、垂直,是否存在渗水、漏水,运行是否正常。 (2)、管道安装、保温安装是否合符规范,是否水平;管道是否存在热桥效应,是否存在渗水、漏水;保温是否严密,有无出现遗漏未保温管段。 (3)、控制系统、监视系统安装是否符合规范,是否达标书安装要求。 3、测试工具: 试压泵,压力表,温度表,垂线坠,皮尺,水平尺,钳形表,欧姆表,计时表等4、测试方法: 观察,尺量,计时测温,计时测压,水压试验,测电流电压,运行观察。 5、验收手段、验收方法、验收标准 (1)、水压试验:在管道安装完工即保温之前,将水管充满水后密封,采用增压设备,往系统管道加压至,10min内压力降不不超过;然后降至工作压力进行检查,压力不降,不渗、不漏;观察检查,不得有残余变形.受压元件金属壁和焊缝上不不得有水珠和水雾;视为合格。 (2)、启动所有的系统,检测系统设计是否合理,并能保证每个系统能达到招标文件或投标文件的要求; (3)、设备调试后,启动热泵,开机运行24小时,检测: A、设备运行是否正常,有无故障; B、记录当时的气温、冷水温度t1、加热水量M、耗电量K、停机时热水温度 t2,然后根据下列公式计算热泵在对应的环境温度下的COP值,检测实际的COP值是否与投标数据一致:

地热联合水源热泵供暖工程设计方案

地热联合水源热泵供暖工程设计方案 二0一九年十二月

目录 前言 (3) 第一章工程基本情况 (4) 一、工程概况 (4) 二、方案设计理念 (4) 三、热泵的优良特性 (5) 第二章地源热泵工程配置设计 (9) 一、方案设计依据 (9) 二、负荷计算 (9) 三、机房设备配置 (9) 四、系统自动化控制 (10) 第三章系统投资预算及运行成本分析 (12) 一、机房系统整体投资概算 (12) 三、系统运行成本分析 (13) 第四章工程设计施工与售后服务保障 (14) 一、产品质量保障 (14) 二、技术服务保障................................................... 错误!未定义书签。

前言 本工程是地热水联合水源热泵采暖工程,工程位于********。 本方案按本工程特点,采用地热水和地下水式地源热泵实现整体供暖的设计方案。通过总体技术方案论证与分析,主要经济技术指标如下:

第一章工程基本情况 一、工程概况 1、项目简介 本工程为位于******,总建筑面积为130000㎡,末端采用地板辐射采暖。根据甲方提供的信息,现有65℃的地热井水80m3/h可供使用,为小区供暖。 2、气候条件 清苑区年平均气温12℃,年降水量550毫米,属于温带季风性气候。四季分明,冬季寒冷有雪,夏季炎热干燥,春季多风沙,秋季凉爽舒适。冬冷夏热,雨热同期,来此旅游一般以夏秋季为宜。 3、工程要求 设计冬季室温18℃-20℃。 二、方案设计理念 本工程为居住建筑,设计与施工必须符合我国现行建筑节能措施的节能型建筑规范。按地质条件,本工程具备采用热泵新能源绿色环保空调采暖供热的热源条件,在保证室内环境舒适度的条件下,保障小区清洁与低碳人文环境。因此,本工程设计方针是环保、节能、高效、稳定、耐用。设计原则是充分、合理、安全利用岩土层自然资源。设计宗旨是实现国家可再生能源综合应用绿色建筑要求,达到最佳投资性价比。 依据地理位置、气象条件、建筑类型、建筑规模、岩土层、舒适度条件等要求:第一,按照负荷指标法计算冷热负荷;第二,按地下水源热泵系统特有的比压、比焓、比熵参量计算热泵机组理论循环焓值与理论动力配置,计算热泵机组理论能效比。系统方案将全程贯穿科学有据、节能节省、实效优化的设计理念,达到用户满意的最佳设计与施工效果。

上海世博轴江水源地源热泵系统设计

上海世博轴江水源地源热泵系统设计

一、世博园区简介

世博园区规划 F 区 文化博览中心 演艺中心世博中心 世博轴 中国馆 主题馆 VIP 生活中心Shangri-La hotel 非洲馆 欧洲馆 美洲馆 澳洲馆 亚洲馆 企业馆 最佳城市试验区

二、建筑概况 2 1 4 1 1 2 2 1 1 3 2 2 4 3 下 下 7. 3.7. 3.5 5.0 14.0 5.03.515.04. 4.3. 3.516.2 8. 3.5 216 90 1020 50100 0道路红线 228 3.5 16.5 35 4.5 55 25.0 121 38 121 671.0 道路红线 地下室边界 道路红线 道路红线 道路红线 道路红线道路红线地下室边界 800 磁悬浮控制线 上 南 路 上 南 路 路 明浦 路 明 浦 路 环 北 路 环 南 路 野 雪 历 城 路 路 浦 华路 野雪 路 环 南路 环 北 江 黄 浦 云 台 路 路 山 洪 浦明110KV 变电站 演艺中心 公共活动中心 餐饮娱乐广场 世博会期间高架步廊 主题展馆 停车场 广场 磁悬浮车站 中国馆 国家自建馆 国家自建馆 停车场 周家渡通信机房 8.0 围栏区 阳光谷D 阳光谷E 阳光谷A 阳光谷B 玻璃屋顶 滨江庆典广场会后开发高层 56 56 166 261 252 11.1 800 阳光谷C 道路红线 地下通道 接演艺中心地下 接公共活动中心地下 接中国馆 接磁浮车站 通道 地下通道接接轨道交通 通道 华 浦 路 +4.298+4.400 +4.000 +4.000+4.000 +4.500 +4.500 +4.000 下 下 82.1 61.5 85.1 591 75.9 623 83.4 59.5 .5.6 下沉式广场 (2#地块) (1#地块) 120 55地下通道一层通廊主入口(会中) 一层商业主入口(会后)地下一层入口 一层通廊主入口(会中) 一层商业主入口(会后)地下一层入口 一层安检入口(会中) 一层安检入口(会中) 一层商业主入口(会后)下沉式广场入口 下沉式广场入口 一、二层主入口 一层商业主入口(会后) 地下一层入口 地下一层入口 一层通廊主入口(会 中)一层商业主入口(会后) 一层通廊主入口(会中)一层商业主入口(会后)地下一层入口 地下一层入口10.00m 高架平台入口 995 接地铁车站地下通道一层通廊主入口(会 中) 一层商业主入口(会后)餐饮娱乐广场 地下车库出入口地下车库出入口+4.552 +4.600 地铁风口 地铁风口 接地铁广场 接地铁广场 660 9-10 660 X =-6065.3555Y =2039.6836 X =-6045.0653Y =2147.7960 X =-5041.6016Y =1948.5339 X =-5059.9552Y =1850.7413 702.3 22.470 70 150 146 50 150 16.8 800 40 155 10.00m 高架平台入口 南段用地 北段 800 阳光谷A 9.A C H J 1-1 3-31 下+4.200 +4.200 +4.200 +4.200+4.200-1.000+1.800+1.800 -1.000-1.000 下下下下下下 下 下 下 下 下 下 下 下 下 下 -1.000 -1.000-1.000-1.000-1.000-1.000+4.200-1.000-1.000 -1.000 -1.000 168 地下车道接 地块车库地下通道 接联合展馆 地下通道 北段 660 110 225 A C H J 70 70 995 995 X =-5728.1938Y =1976.1541 X =-5682.0769Y =2068.7362 X =-5203.0070Y =1978.8260 X =-5248.7401Y =1886.1718 20.0134 227 用地红线 用地红线 8.9 649.0674.0 22.4 1-1 3-2920.0 2.7 134 244 总平面图

水源热泵系统设计

水源热泵系统设计 一、水源热泵设备选型 ⒈一般情况下按空调冷负荷确定机组型号,对于热负荷高的地区要校核采暖负荷。 传统的系统——用较大的热负荷或冷负荷选择系统。以出水温度35℃的制冷量或以出水温度18℃的 制热量作为选择水源热泵机组的依据。 ⒉无锅炉系统——用冷负荷选择水源热泵机组,房间的热损耗需用足够能量的电加热型加热器加以抵 消。 ⒊水系统进水温度选定原则:一般制冷为15~35℃,制热为10~32℃,国标规定制造商参数标定按制冷进出水温度30/35℃,热泵制热进出水温度20℃。 ⒋水量及风量确定原则:一般每KW的水流量为0.19m3/h,风量为140~250m3/h。 ⒌实际制冷量及制热量会因室内设计干、湿球温度的不同而有所变化,应根据室内设计干、湿球温度进 行修正。 二、循环水系统设计 水环系统通常有冷却塔、换热器、蓄热箱、辅助加热器、泵及相应管路组成。水环水温控制范围一般为15~35℃,在此温度范围内,一般不需要开冷却塔或辅助加热器。 三、系统水流量设计 水源热泵系统夏季需冷量的计算方法与其它系统相同。根据需冷量和所需的冷却水温差,各台水源热泵装置的循环水量即可求出,在考虑到装置的同时使用系数,即可得到整个系统所要求的夏季总冷却循环水量。 一般来说,单一性质的建筑同时使用系数较高,综合性建筑则低一些。另水源热泵装置的数量越多,同时使用系数越小,反之则越大。同时使用系数可按以下原则来确定: ⒈循环水量小于36 m3/h时,同时使用系数取0.85~0.9 ⒉循环水量为36~54 m3/h时,同时使用系数取0.85~0.85 ⒊循环水量大于54 m3/h时,同时使用系数取0.75~0.8 以上原则中所提到的循环水量是指各装置所需水量的累计值,把此值乘以同时使用系数即可得到系统实际所需的总循环水量,并以此作为循环水泵、冷却塔的选型参数以及循环水总管径确定的依据。 四、系统形式 水源热泵水路系统通常采用一次泵系统,运行简单、管理也比较方便。考虑到整个系统的运行可靠,系统中必须设置备用泵。 水系统的循环泵建议多台并联。 为保证每一台水源热泵机组都得到所需水流量,其水系统一般建议采用同程式;每一个分支

地源热泵供暖实施方案

地源热泵供暖方案

————————————————————————————————作者:————————————————————————————————日期:

静海时运花园地源热泵供暖方案 某中学地源热泵技术 供暖方案

第一部分地源热泵项目设计

一、项目概况及设计依据 该总建筑面积约22916平方米,节能建筑,其中教学楼分别为2872㎡和2761㎡各一栋,综合教学楼3916㎡,专业教室2545㎡,学生公寓两栋计8722㎡,餐厅2100㎡,其中学生餐厅暂不考虑供暖,机组选用KLSH-160D两台,按照供热需求调剂使用以便节能;地源侧循环泵和用户端循环泵分别按照机组配置;水泵的启用模式与机组启用模式相同,可降低运行费用。地源热泵水源水系统来自室外地下埋管系统,其水系统在闭式PE管路中循环,无须自地下提取地下水。 设计依据 1、甲方提出的设计任务及相关专业提供的条件图; 2、《采暖通风与空气调节设计规范》(GB50019-2003) 3、《地源热泵系统工程技术规范》(GB50366-2005) 4、《民用建筑电气设计规范》JGJ16-2008 5、《民用建筑电气设计手册》 6、《智能建筑设计规范》GB/T50314-2000 7、《智能建筑弱电工程设计施工图集》GBBT-471 8、《建筑电气工程施工质量及验收规范》GB50303-2002 9、《建筑电气通用图集》92DQ1 10、暖通专业要求及暖通专业条件图 二、方案考虑原则 1、在条件允许的情况下,满足建筑物冬季采暖要求; 2、在保证安全可靠的情况下,尽量节省投资费用;

污水源热泵工作原理及效益分析

污水源热本调研报告 所谓污水源热泵,主要是以城市污水做为提取和储存能量的冷热源,借助热泵机组系统内部制冷剂的物态循环变化,消耗少量的电能,从而达到制冷制暖效果的一种创新技术。 城市污水源热泵空调技术能实现冬季供暖、夏季空调、全年生活热水供应(很廉价的热水供应方案)、夏季部分免费生活热水供应。城市污水热泵空调是一项高新技术,具有节能、环保及经济效益,符合经济与社会的可持续性发展战略。城市污水源热泵机组以污水为冷热源,冬季采集来自污水的低品位热能,借助热泵系统,通过消耗部分电能(1份),将所取得的能量(大于4份)供给室内取暖;在夏季把室内的热量取出,释放到水中,以达到夏季空调的目的。 1、污水源热泵的工作原理 污水源热泵的主要工作原理是借助污水源热泵压缩机系统,消耗少量电能,在冬季把存于水中的低位热能“提取”出来,为用户供热,夏季则把室内的热量“提取”出来,释放到水中,从而降低室温,达到制冷的效果。其能量流动是利用热泵机组所消耗能量(电能)吸取的全部热能(即电能+吸收的热能)一起排输至高温热源,而起所消耗能量作用的是使介质压缩至高温高压状态,从而达到吸收低温热源中热能的作用。 污水源热泵系统由通过水源水管路和冷热水管路的水源系统、热泵系统、末端系统等部分相连接组成。根据原生污水是否直接进热泵机组蒸发器或者冷凝器可以将该系统分为直接利用和间接利用两种

方式。直接利用方式是指将污水中的热量通过热泵回收后输送到采暖空调建筑物;间接利用方式是指污水先通过热交换器进行热交换后,再把污水中的热量通过热泵进行回收输送到采暖空调建筑物。 2、污水源热泵系统的特点: (1)环保效益显著 城市污水源热泵是利用了污水作为冷热源,进行能量转换的供暖空调系统。供热时省去了燃煤、燃气、然油等锅炉房系统,没有燃烧过程,避免了排烟污染;供冷时省去了冷却水塔,避免了冷却塔的噪音及霉菌污染。不产生任何废渣、废水、废气和烟尘,环境效益显著。 (2)高效节能 冬季,污水温度比环境空气温度高,所以热泵循环的蒸发温度提高,能效比也提高。而夏季污水温度比环境空气温度低,所以制冷的冷凝温度降低,使得冷却效果好于风冷式和冷却塔式,机组效率提高。 (3)运行稳定可靠 污水的温度一年四季相对稳定,其波动的范围远远小于空气的变动。是很好的热泵热源和空调冷源,水体温度较恒定的特性,使得热泵机组运行更可靠、稳定,也保证了系统的高效性和经济性。不存在空气源热泵的冬季除霜等难点问题。 (4)一机多用,应用范围广 此热泵系统可供暖、空调,生活热水供应(夏季免费)等。一机多用,一套系统可以替换原来的锅炉加空调的两套装置或系统。 (5)投资运行费用低

浅谈湖水源热泵系统方案

浅谈湖水源热泵系统分析建议 地表水源热泵就是利用江、河、湖、海的地表水作为热泵机组的热源。当建筑物的周围有大量的地表水域可以利用时,可通过水泵和输配管路将水体的热量传递给热泵机组或将热泵 机组的热量释放到地表蓄水体中。根据热泵机组与地表水连接方式的不同,可将地表水源热泵分为两类:即开式地表水源热泵系统和闭式地表水源热泵系统。 开式地表水源热泵系统和开式地下水源热泵系统近似,但由于地表水的传热特性与地下水的传热特性相差甚远,因此地表水源热泵系统的设计与地下水源热泵系统的设计不同。 闭式地表水源热泵系统与土壤源热泵系统类似,即通过放置在湖中或河流中的换热器与热泵机组连接,吸热或放热均通过湖水换热器内的循环介质进行。当热泵机组处于寒冷地区时,在冬季制热工况时,湖水热交换器内应采用防冻液作为循环介质。在开式系统中,从蓄水体底部将水通过管道输送到热泵机组中,进行热量交换后,再通过排水管道又将其输送回湖水表面,但水泵的吸入口与排放口的位置应相隔一定的距离。在开式地表水源热泵系统中,地表水的作用与冷却塔近似,而且不需要消耗风机的电能及运行维护费用,因此初投资比较低。 开式系统的主要优点如下: 由于减少了湖水换热器,增加了地表水与制冷剂之间的传热温差,因此比闭式地表水源热泵机组的换热量增大,即在相同条

件下,增加了机组的制冷量或制热量。如果湖水较深,湖水底部的温度比较低,夏季可以利用湖水底部的低温水来预冷新风或空调房间的回风,充分节约能量。来自热泵机组的温水排放到湖水上部温度较高的区域,这样保证湖水温度分布不发生改变,对湖水温度的影响小 开式系统存在的最大缺点是热泵机组的结垢问题。可采用可拆卸的板式换热器,并定期对其进行清洗或对机组进行定期的反冲洗等。另外,用于冬季制热,当湖水温度较低时,会有冻结机组换热器的危险,因此开式系统只能用于温暖气候的地区或热负荷很小的寒冷地区。在实际工程中,开式系统多应用于容量小的系统。 开式地表水源热泵系统的设计 开式地表水源热泵系统中,由于没有湖水换热器,系统设计相对简单,最关键的是选取合适的水流量。在夏季制冷时,由于地表水的温度总是低于空气温度,机组运行效率比较高。冷却水侧流量应根据放热负荷的大小。在冬季制热时,必须保证机组换热器出口水温在2以上,因此水侧进出口温差一般保持在3以内,每千瓦热负荷的最佳流量为0.2m3/H 。在气候寒冷地区,若冬季地表水温度在7以下时,则不适宜用开式热泵系统。 与土壤源热泵系统相比,闭式地表水源热泵系统的投资、泵的输送耗电量、湖水换热器的投资及运行费用方面均比较低。与开式地表水源热泵系统比较,它的优点如下:

最新全套游泳池供热(热泵方案)

恒温游泳池热水热泵设备选型方案 项目名称 室内标准恒温游泳池热源设备 项目要求 1、室内恒温游泳池贮水约320M3,表面积220M2。 2、采暖和除湿热负荷99.7kw 3、泳池恒温加热200kw,补水加热功率70kw 4、选用热源设备对泳池加热及恒温(室内恒温游泳池池水温度宜在 25~30 ℃左右,这里取28℃即可)。 3、环境温度低于15℃时开始预热,常州地区冬天冷水温度按10℃计算。 设备选型方案 选用4台RMRB25SR空气源热泵热水机组(并联)对泳池加热恒温和空调采暖。 备注:RMRB25SR热泵的泳池工况如下:输入/输出功率:22KW/86KW,冷凝温度:28℃,蒸发温度10℃。 泳池加热设备选型计算 1.给水系统 选择循环过滤给水系统 将已弄脏了的游泳池水,经过净化、消毒等过程达到符合游泳水质要求后,再送如游泳池重复使用的给水系统。

初次预热 预热时间根据供水条件和使用要求确定。一般按24-48小时来计算。 补充水 补充水量:由泳池水面蒸发的水量、过滤设备冲洗水量、游泳池排污水量、溢流水量、游泳者身体带走的水量等部分组成;参考《设计手册》:室内公共池每天的补水量泳池容积的百分数5%~15%,这里取15%; 初次充水、补水方式:水源为城市自来水时,应设置补给水箱或利用平衡水池间接进行,以防止回流污染水源或设备;游泳池专用水源时,可以直接补水。 补给水箱或平衡水池的容积:公共游泳池按50L/平方米计算(这里需要25吨水)。 2、水的循环 循环周期以及循环流量 公共池的循环周期一般取8个小时,则循环流量为: 循环水流量=1.1×游泳池的水容积÷循环周期 = 1.1×320 m3÷8H = 45m3/h 水泵的扬程按循环管道、净化设备、加热设备阻力和水泵与水位高差计算确定。过滤器阻力按设备确定。 3、水的加热与恒温(保持在28℃左右) 游泳池的初次预热(24-48个小时) 320M3的泳池水在24-48小时内从10℃加热到28℃。 泳池的补充水量:320M3×15%÷8小时=6M3/小时 泳池加热恒温

水源热泵分析

水源热泵供暖系统供水温度的确定 因为水源热泵供暖系统能够将通常情况下不能被直接利用的低位热能从水源中取出,提升后并加以利用,具有良好的节能环保特性。现针对利用水源热泵系统进行供暖时,其供水温度的选择问题进行分析。 1、供水温度对水源热泵机组运行的影响 在冬季供暖工况下,如果水源热泵低温热源侧的进出口水温不变,则水源热泵的供水温度越高,其制热性能系数(cop值)就越低,提供相同的热量所需的运行费用就越高。COP=38.126△t-0.633,△t=(th.i+th.o)/2-(tc.i+tc.o)/2 2、合理的供水温度选择 通过上面的计算可知,利用水源热泵机组进行冬季供暖时,供水温度越低,机组的cop值就越大,经济性越好,但供水温度也不能太低,否则将导致末端散热设备过大或无法满足散热设备对供水温度的内在要求。显然合理的供水温度应该是既能满足用户的用热需求,同时又有最佳的经济性。 3、如果水源热泵机组供水温度过高,水流量不变的情况下,蒸发压力即吸气压力会增加,同样的对应的制热量也会增加,消耗功率也会增加。,主要原因是因为对机组而言,过高的蒸发器水体温度,会导致蒸发压力过高,而对特定的冷煤系统在应用过程中,冷凝压力是一个定值,这个时候压差比就比较小,压差比小就意味着压缩机而言回油会受到很大的影响,无法保证热泵系统的正常工作,温度过高也会烧坏压缩机。

解决设想方案 日本在1980年代开展了超级热泵计划,开发出4类热泵,其中有利用45度余热水,制热出水温度85的中高温热泵,以及利用80度余热水,产出150度蒸汽的高温热泵。 欧洲有采用改进离心压缩机性能技术路线的高温热泵,采用R134a制冷剂,三级离心压缩模式,制热出水温度可以达到85度。 一般需要解决以下几个关键技术问题。 1.压缩机的选择:热泵设备常用的压缩机类型主要是螺杆压缩机、全封闭涡旋压缩机与半封闭活塞压缩机等,经过对不同类型压缩机工作特性进行比较研究,高温热泵设备一般选用全封闭涡旋压缩机。 2.工质的选择:为保证高温热泵设备在稳定的可允许的工作压力下运用,采用特殊的制冷剂为工质,换热效率高并对环境无污染,对臭氧层无破坏作用。 3.氟路系统控制的优化:保证整体机组的长时间高温稳定运行和使用寿命,并根据环境温度和蒸发温度,自动调节高温空气热泵设备运行工作状态和调件。

水源热泵设计方案

水源热泵设计方案 Document number:BGCG-0857-BTDO-0089-2022

水源热泵热水机组 设 计 方 案 方案目录

方案概述 本方案采用水源热泵中央空调新技术,水源热泵中央空调是二十世纪七十年代以来欧美发达国家大力推广的空调新技术。它是利用地下浅层水中低品位能源制冷和制热,空调运行成本比传统电制冷空调节约50%以上。 第一章水源热泵中央空调介绍 一、水源热泵现状及政策依据 水源热泵最早源于1912年瑞士的一项发明专利,二十世纪七十年代能源危机以后,这一节能、环保的空调技术受到西方国家的重视。水源热泵技术在美国、加拿大和北欧国家和地区已得到广泛地应用。瑞士的普及率达到50%以上,美国推广速度以每年20%的速度递增。 1995年中美签署了《中华人民共和国国家科学委员会和美利坚合众国能源部效率和再生能源技术的发展与利用领域合作协议书》,并与1997年又签署了该合作协议书的附件六——《中华人民共和国国家科学技术委员会与美利坚合众国能源部地能开发利用的合作协议》。其中,两国政府将地源热泵空调技术列为能源效率和再生能源的合作项目。建设部2000年第76号令也将地热、可再生能源以及空调节能技术列入建设部推广项目。2004年9月14日国家发改委高技术处颁发了《关于组织实施“节能和新能源关键技术”的通知》,将地热、热泵列为重点开发内容。2005年2月28日第十届全国人民代表大会常务委员会第十届会议

通过了《中华人民共和国可再生能源法》鼓励大力推广应用太阳能、地热能、水能等可再生能源。 与此同时,适合推广水源热泵的北京市、山东、河南、辽宁、河北等地政府对推广水源热泵空调制定了优惠政策。这一举措极大的促进了我国地源热泵技术的发展。 北京市第一个地温空调工程——蓟门饭店(两会代表驻地)已运行七年。运行成本低于原燃煤锅炉和单冷机组,比改造前每年可节约数十万运行费用。 二、水源热泵工作原理 水源热泵技术利用地球表面浅层水源(如地下水、河流和湖泊)中低品位热能资源,通过逆卡诺循环实现低品位热能向高品位热能转移的一种技术。它以水为工作介质将地下土壤中的低品位热能提取出来,经高效的热泵机组,利用少量的高品位电能,将水中的低品位能量输送到空调场所,完成热交换的地下水又重新回灌到地下去。井水是在金属管路中闭路循环的,水不与大气接触,不消耗水,也不污染水,只提取水中的热能。地温空调省去了锅炉和冷却塔,夏天用地下水作冷却水,同时将冷量搬运到地下,冷却效果优于冷却塔;冬天,不受环境温度影响,制热效果优于其它空调。制热的同时,将室内的冷量交换并搬运到地下。这样,地下成了一个储能库,夏储冬用,冬储夏用,如此往复,环保节能。

水源热泵制冷和采暖方案分析

水源热泵 采暖/制冷的方案

[content] 一、前言 (3) 二、方案和投资 (4) 三、采暖/制冷运行费用分析 (8) 四、结论 (9)

以往,办公用房及大型建筑多为双系统解决采暖和制冷,即冬季燃煤锅炉供暖或集中供热,夏季制冷由水冷式冷水中央空调机组或用风冷民用家用小型空调。 水源热泵是一种利用地下浅层地热资源,既可供热又可制冷的高效节能空调系统。该系统通过输入少量高品位的电能,实现低温位热能向高温位转移。地表水的热能是基本恒定的,在冬季作为热泵供暖的热源和夏季作为空调的冷源,即在冬季,把地能中的热量"取"出来提高温度后,供给室内采暖;夏季把室内的热量取出来,通过地表水(或介质)释放到地下。通常水源热泵消耗lkW的能量,用户可以得到4kW以上的热量或冷量。 与电锅炉和燃料锅炉供热系统相比,只能将90%以上的电能或70~90%的燃料内能转化为热量,供用户使用。因此,水源热泵要比电锅炉节省三分之二以上的电能,比燃料锅炉节省二分之一以上的能量。由于水源热泵的热源温度全年较为稳定,一般为10~25℃,其制冷、制热系数可达4.4~5.4,与传统的空气源热泵相比,效率要高出40%左右,制冷时其运行费用为普通中央空调的50~60%,与风冷民用家用小型空调 相比,制冷时节约运行费用60~70%。水源热泵作为一种被国家计委、国家科委、建设部列入“十一五”规划的新技术,它有如下特点: A.属于可再生能源。 B.高效节能及低价位的运行费用。 C.环境效益显著。 D.一机多用,即可以采暖,又可以制冷,还可以全天提供生活用热水,省去了采暖设施及生活热水系统的投资。 在诸多的热泵机组品牌中意大利克莱门特机组,由于拥有独特的蒸发器专利技术,其效率比世界任何厂家生产的同类型最好的机组高出11%以上,降低了运行费用。 意大利克莱门特水源热泵,由于具有独特的系统控制技术及压缩机生产技术,是目前唯一拥有能够一次性将3℃以上可利用温度,由机组蒸发器全部提取,减少了机组对井水流量的需求,大幅度减少打井的一次性投资。

水源热泵方案设计说明[1].

水源热泵设计方案 单位:空调有限公司 日期: 2011年06月 目录 一、水源热泵工程设计方案说明 二、水源热泵报价一览表 三、水源热泵机组简介及配置清单 四、水源热泵机组部分销售业绩一览表 五、售后服务承诺 六、公司资质 水源热泵方案设计说明 一、工程概况

本工程为北京市通州宋庄镇北寺生态园,建筑面积约5100平米,其中生态园建筑面积3100平方米,办公和住宿2000平方米。 二、设计范围 水源热泵机房、水井和末端系统。 三、设计依据 1. 《采暖通风与空气调节设计规范》(GB50019-2003) 2. 《实用供热空调设计手册》 3. 《建筑设计防火规范》GBJ16-87 4. 《通风与空调工程施工质量验收规范》GB50243-2002 5. 《建设工程设计常用技术措施·暖通》 四、室外设计气象参数

名称单位夏季冬季 空调 室外 计算 干球 温度 ℃ 33.8-12 空调 室外 平均 不保 证50h 的湿球温度℃26.5 - 空气调节 日平均温度℃29 - 空调 室外 计算 相对 湿度 %7741 通风 室外 计算 干球 温度 ℃ 30-5 通风室外计算%62 -

相对湿度 室外 风速 m/s 1.9 3 大气 压力 mmHg 751 767 最大冻土深度 cm - 85 五、 空调冷热负荷计算 建筑 用途 建筑面积 冷负荷指 标 热负荷指 标 冷量计算 热量计 算 M2 W/M2 W/M2 KW KW 生态园 3100 260 180 806 558 办公/ 住宿 2000 220 180 440 360 合计 5100 1246 918

相关主题
文本预览
相关文档 最新文档