当前位置:文档之家› 水源热泵技术简介及各供暖方式运行费用分析对比

水源热泵技术简介及各供暖方式运行费用分析对比

水源热泵技术简介及各供暖方式运行费用分析对比
水源热泵技术简介及各供暖方式运行费用分析对比

中央空调系统形式介绍

1.1传统中央空调形式

传统的中央空调有空气源热泵(风冷机组)+辅助电加热和水冷冷水机组+锅炉或热力管网两种形式。空气源热泵(风冷机组)和水冷冷水机组在制冷时都是把房间的热量向室外空气排放,受室外气温因素影响太大,其制冷量随室外空气温度升高而降低,尤其在高温高湿地区,机组制冷性能极不稳定,效率低下,有时甚至不能工作。在制热时,空气源热泵当室外温度降到零度以下时需加辅助电加热装置,耗电量大,效率很低;而水冷冷水机组+锅炉这种空调形式,在供热时需用电锅炉或燃煤、燃油锅炉,污染严重,运行费用昂贵。

1.2 水源热泵中央空调

水源热泵中央空调分为地下水源热泵和地表水热泵两种形式。

1.2.1 水源热泵

水源热泵的概念

水源热泵技术是一种利用地球表面或浅层水源(如地下水、河流和湖泊),或者是人工再生水源(工业废水、地热尾水等)的低温低位热能资源,采用热泵原理,通过少量的高位电能输入,实现低位热能向高位热能转移,既可供热又可制冷的高效、环保、节能的空调系统。

水源热泵原理

地球表面浅层水源(一般在 1000 米以内),像地下水、地表的河流、湖泊和海洋中,吸收了太阳进入地球的相当的辐射能量,并且水源的温度一般都十分稳定。水源热泵技术的工作原理就是:在夏季将建筑物中的热量“取”出来,释放到水体中去,由于水源温度低,所以可以高效地带走热量,以达到夏季给建筑物室内制冷的目的;而冬季,则是通过水源热泵机组,从水源中“提取”热能,送到建筑物中采暖。

通常水源热泵消耗 1kW 的能量,用户可以得到 4kW 以上的热量或冷量。

水源热泵的分类

当利用的对象都是水体和地层(含水地层)的蓄能,而且都是以水作为热泵机组的冷热源,都可以将之归类为水源热泵系统。水源热泵可以分为地下水源热泵以及地表水源热泵。

1

地下水热泵系统,也就是通常所说的深井回灌式水源热泵系统。通过建造抽水井群将地下水抽出,通过二次换热或直接送至水源热泵机组,经提取热量或释放热量后,由回灌井群灌回地下。

地表水热泵系统。通过直接抽取或者间接换热的方式,利用包括江水、河水、湖水、水库水以及海水作为热泵的冷热源。

1.2.2 地源热泵发展概况

地源热泵的概念最早出现在1912年瑞士的一份专利文现中。20世纪50年代,欧洲和美国开始了研究地源热泵的第一次高潮。但在当时能源价格低,这种系统并不经济,因而未得到推广。直到上世纪70年代,石油危机和日益恶化的环境把人们的注意力集中到节能、高效益用能和环境保护上时,使地源热泵的研究进入了又一次高潮,最近20年在欧美等工业发达国家取得了迅速的发展,已成为一项成熟的应用技术。在美国地源热泵空调系统占整个空调系统的40%,是

2

美国政府极力推广的节能、环保技术。为了表示支持这种技术,美国总统布什在他的得克萨斯州的别墅中也安装了这种地源热泵空调系统(见2001年5月28日参考消息)。到目前为止美国已安装了600,000台,而且计划每年安装40万台的目标,能降低温室气体排放一百万吨,相当于减少50万辆汽车的污染排放或种植树一百万英亩,年节约能源费用4、2亿美元。瑞典、瑞士、奥地利、德国等国家主要利用地源热泵,用于供暖及提供生活热水。据1999年的统计,为家用的供热装置中,地源热泵所占比例:瑞士为96%,奥地利为38%,丹麦为27%。

在我国由于能源价格的特殊性以及人们节能、环保的认识程度等原因以及其它一些因素的影响,地源热泵空调技术应用和发展比较缓慢,人们对之尚不十分了解,推广较困难,然而随着人们生活水平的提高,人均能耗的增长,一次性矿物能源的日益衰竭以及环境的日趋恶化,地源热泵技术已越来越引起人们的重视。在目前节能和环保的潮流下,该技术以其特有的节能性和稳定性受到行业的瞩目,国内许多院校、科研所作了大量的应用研究。国家建设部在《夏热冬冷地区居住建筑节能设计标准》中专门作了推荐。据统计,仅在北京2004年施工并投入运行的地源热泵系统的空调工程占全年空调工程总量的2/3以上。可以预见,随着经济的发展,人们节能、环保意识的日益提高,地(水)源热泵作为一种节能、环保的绿色空调设备适应能源可持续发展战略要求,在中国必将有广阔的应用和发展前景。

1.2.3 地源空调系统的特点

地(水)源热泵与常规空调技术相比有着无可比拟的优势。

(1) 利用可再生能源:属可再生能源利用技术

地源热泵从常温土壤或地表水(地下水)中吸热或向其排热,利用的是可再生的清洁能源,可持续使用。

(2) 高效节能,运行费用低:属经济有效的节能技术

地源热泵的冷热源温度一年四季相对稳定,冬季比环境空气温度高,夏季比环境空气温度低,这种温度特性使得地源热泵比传统空调系统运行效率要高40%,因此要节能和节省运行费用40%左右。另外,地能温度较恒定的特性,使得热泵机组运行更可靠、稳定,也保证了系统的高效性和经济性。在制热制冷时,输入1KW的电量可以得到5KW以上的制冷制热量。运行费用每年每平方米仅为15——18元,比常规中央空调系统低40%左右。

3

(3) 节水省地:1)以土壤(水)为冷热源,向其放出热量或吸收热量,不消耗水资源,不会对其造成污染。2)省去了锅炉房及附属煤场、储油房、冷却塔等设施,机房面积大大小于常规空调系统,节省建筑空间,也有利于建筑的美观

(4) 环境效益显著

该装置的运行没有任何污染,可以建造在居民区内,在供热时,没有燃烧,没有排烟,也没有废弃物,不需要堆放燃料废物的场地,不会产生城市热岛效应,对环境非常友好,是理想的绿色环保产品。

(5) 运行安全稳定,可靠性高:地源热泵系统在运行中无燃烧设备,因此不可能产生二氧化碳、一氧化碳之类的废气,也不存在丙烷气体,因而也不会有发生爆炸的危险,使用安全。燃油、燃气锅炉供暖,其燃烧产物对居住环境污染极重,影响人们的生命健康。由于土壤深处温度非常恒定,主机吸热或放热不受外界气候影响,运行工况非常稳定,优于其它空调设备。不存在空气源热泵供热不足,甚至不能制热的问题。整个系统的维护费用也较锅炉-制冷机系统大大减少,保证了系统的高效性和经济性。维修量极少,折旧费和维修费也都大大地低于传统空调。

(6) 一机两用,应用范围广

地源热泵系统可供暖、制冷,一套系统可以代替原来的锅炉加制冷机的两套装置或系统。

可应用于宾馆、商场、办公楼、学校等建筑,更适合于住宅的采暖、供冷。

(7) 自动运行

地源热泵机组由于工况稳定,所以可以设计简单系统,部件较少,机组运行简单可靠,维护费用低;自动控制程度高,可无人值守;此外,机组使用寿命长,均在20年以上。

1.2.4 地源空调系统的社会效益

在我国的一些发达城市,夏季制冷、冬季采暖与供热所消耗的能量已占建筑物总能耗的40-50%。特别是冬季采暖用的燃煤锅炉、燃油锅炉的大量使用,给大气环境造成了极大的污染,对人们的健康形成了威胁。因此,建筑物污染控制和节能已是国民经济发展的一个重大问题。传统的采暖空调模式因其产生的环境污染正面临着严峻的挑战。对于夏季制冷的建筑来说,随着空气热泵空调的普及,空调的实际使用效果正在逐年下降,这是因为空调装机容量的增加,空调局部热

4

岛效应交叉干扰的结果。天气越炎热,室外的温度越高,空调负荷也越大,而此时空调机向室外散热时,传热温差越小,空调机的运转效率就越低,设备也越费电。也就是说,除了燃煤供暖给环境造成污染之外,空调机同样会造成大气污染。

另一方面,我国大部分地区冬冷夏热,夏天大量地使用风冷空调,造成某些大城市供电紧张,形成电荒,为了确保不会造成断电等问题出现,有些城市夏天限制用电量。另外,因为部分地区没有暖气供应,冬天使用电炉取暖,造成电力供应紧张。

地源热泵机组制冷、供暖所需能量3/4左右来自地能,另外1/4左右来自电力输入,从而减少一次性的矿物能源消耗;不向室外排冷、热风,减少城市热岛效应。对环境非常友好。

地源热泵空调是一种使用可再生能源的高效节能、环保型的工程系统。冬季向建筑物供热,夏季又可供冷。可广泛应用于各类建筑中,如商业楼宇、公共建筑、住宅公寓、学校、医院等。随着21现在,我国对建筑节能的要求越来越高。减少我国冬季采暖和夏季供冷所造成的大气污染,降低供暖空调系统的能耗、节约能源是每个公民应尽的义务。特别是近几年来,大中城市为改善大气环境,大力推广使用包括可再生能源的清洁能源。随着人们生活水平的提高,建筑物不仅要满足冬季采暖的要求,而且需要夏季空调降温,地源热泵技术提供了这一问题的有效解决方案。

地源热泵系统可实现对建筑物的供热和制冷,还可供生活热水,一机多用。一套系统可以代替原来的锅炉加制冷机的两套装置或系统。系统紧凑,省去了锅炉房和冷却塔,节省建筑空间,也有利于建筑的美观。地源热泵系统的一个显著的特点是大大提高了一次能源的利用率,因此具有高效节能的优点。地源热泵比传统空调系统运行效率要高约40~60%,节能50%左右。另外,地源温度恒定的特性,使得热泵机组运行更可靠、稳定,整个系统的维护费用也较锅炉-制冷机系统大大减少,保证了系统的高效性和经济性。

水源热泵技术国家相关政策

2002年12月,国土资源部《关于进一步加强地热矿泉水资源管理的通知》(国土资发[2002]414号)指出,“地热资源是宝贵的矿产资源,是重要的清洁能源之一”;“要加大地热资源的勘查评价力度,加强地热资源开发和保护”;“开展地热开发示范项目和地热水回灌等新技术的研究推广工作,实现

5

地热资源的可持续利用”。

?2005年2月28日,国家主席胡锦涛颁布33号令:2006年1月1日《中华

人民共和国可再生能源法》开始正式实施。地热能的开发与利用被明确列入新能源所鼓励发展范围。

?2005年11月29日,国家发展和改革委员会制订并颁布了《中华人民共和国

可再生能源产业发展指导目录》,“地热发电、地热供暖、地源热泵供暖和/或空调、地下热能储存系统”列入重点发展项目;“地热井专用钻探设备、地热井泵、水源热泵机组、地热能系统设计、优化和测评软件、水的热源利用”被列为地热利用领域重点推荐选用设备。

?2006年1月1日起,由国家发展和改革委员会制订的《可再生能源发电价格

和费用分摊管理试行办法》开始执行。其中第九条太阳能发电、海洋能发电和地热能发电项目上网电价实行政府定价,其电价标准由国务院价格主管部门按照合理成本加合理利润的原则制定。

?2006年4月,《国土资源“十一五”规划纲要》出台,提出十一五期间要加

大能源矿产勘查力度,“开展地热、干热岩资源潜力评价,圈定远景开发区。”

?2006年6月16日,由发展改革委、国土资源部、建设部、海洋局、各省、

自治区、直辖市、计划单列市财政厅(局)联合颁布《可再生能源发展专项资金管理暂行办法》。中央财政设立了可再生能源发展专项资金,为了规范可再生能源发展专项资金的管理,。

?2006年8月,国家财政部发布《可再生能源发展专项资金管理暂行办法》中

明确提出“加强对可再生能源发展专项资金的管理,重点扶持燃料乙醇、生物柴油、太阳能、风能、地热能等的开发利用。”其中第二章有关“扶持重点”第七条中提出“建筑物供热、采暖和制冷可再生能源开发利用,重点支持太阳能、地热能等在建筑物种的推广应用。”

?2006年12月,《北京市“十一五”时期地质勘查发展规划》提出“地热能、

浅层地(温)能等可再生资源将加大开发利用力度,到2010年新能源和再生能源占能源消费总量的比重争取到4%”。“要加强平原区已知热田外围地质勘查、增加地热资源储量、开展地热资源空白区的勘查评价”。完成规划新城和新农村建设的综合地质勘查、地热资源勘查……。

?2007年1月,建设部发布《建设事业“十一五”重点推广技术领域》,确定

6

了“十一五”期间九大重点推广技术领域,其中“建筑节能与新能源开发利用技术领域”中重点推广太阳能、浅层地温能、生物能及其他能源利用技术;

其中建筑节能改造技术重点推广:供热采暖制冷系统节能改造技术。

?2007年6月,国务院发布《国务院关于印发节能减排综合性工作方案的通知》

(国发[2007]15号),明确提出要“大力发展可再生能源,抓紧制订出台可再生能源中长期规划,推进风能、太阳能、地热能、水电、沼气、生物质能利用以及可再生能源与建筑一体化的科研、开发和建设,加强资源调查评价。

?2009年7月6日,财政部、住房和城乡建设部发布《可再生能源建筑应用城

市示范实施方案》(财建[2009]305号),制定了中央财政支持地热等新兴能源项目的扶持政策和奖励标准。

?2009年7月6日,财政部、住房和城乡建设部发布《加快推进农村地区可再

生能源建筑应用的实施方案》(财建[2009]306号),制定了地方发展地热等新兴替代化石能源项目的扶持政策和补贴标准。

一、热泵的定义、种类、特点及用途

通过消耗少量(25~30%)高品位能量(电能),将土壤里、地下水或空气中

的大量不可直接利用的低品位热能变成可直接利用的高品位热量的装置叫做热泵。即热泵从环境中提取热量用于供热。

根据热力学第二定律,热量不会自行从低温物体传向高温物体,实现这一过

程必须消耗机械功,但热泵的供热量远大于消耗的机械功。例如,如果驱动热泵

消耗的机械功为1kw,则供热量为3~4 kw,而用电加热,仅能产生1kw的热量。热泵的供热量来自两部分:一部分是从低温热源(如地下水等)传到高温热源的

热量,一般占总供热量的70~75%;另一部分热量则由机械功转变而来,一般占

总供热量的25~30%。

水源热泵根据对水源的利用方式的不同,可以分为闭式系统和开式系统两种。闭式系统是指在水侧为一组闭式循环的换热套管,该组套管一般水平或垂直埋于江河湖海水中,通过与水换热来实现能量转移。开式系统是指从地下抽水或地表抽水后经过换热器直接排放的系统。

热泵具有如下特点:

7

1.合理利用高品位能量,综合效益好。

2.供暖区无污染,环保效益好。

3.夏季可以供冷,冬季可以供暖,一机两用,设备利用率高。

4.使用灵活,调节方便。

水源热泵由于不受室外温度限制,因而可广泛应用于北方地区的集中供热、中央空调、热水供应、游泳池水加热、室内种植、养殖恒温等。

二、水源热泵工作原理

热泵机组是利用“卡诺”循环原理,将空气中的低品位热能转为高品位热能。但在寒冷的冬季,当气温低于零下7℃时,机组效率极低,无法经济运行,而水源热泵却不受气温的限制,即使在零下20多度的严冬照样能高效运行。这是因为它将普通热泵机组从空气中吸收的热量改为吸收地下水的热量。只要在地下钻大于20米深度的水井,随时都可以提取零上12℃~14℃的水,这些水连续不断的按规定流量送到水源热泵机组再由机组内的压缩机工作,迫使工质(R22制冷剂)压缩、冷凝、降压、蒸发,吸收这些12℃地下水中的热量,使其温度降至7℃,再回灌到地下(取水井和回水井之间应有20米以上的距离,以避免取水和回水出现热短路),在渗流过程中吸收地下土壤热量,温度又升至12℃,然后再被抽上使用,如此不断循环。机组吸收的热量再通过工质的冷凝而被释放出来,用以加热采暖系统水。最高供水温度可达63℃,正常供回水温度为50℃/40℃,而用于冬季空调供暖和地板采暖则是最佳温度。夏季制冷时,机组作逆“卡诺”循环,利用地下水作为机组冷却水,而常规制冷机则是利用冷却塔循环冷却,其水温一般都在25℃~35℃,而夏季的地下水一般在14℃~18℃,比循环冷却水温度低,大大提高了机组的工作效率,从而达到节能的效果。

8

三、水源热泵的性能特点

1、高效、节能:系统能量输入与能量输出之比供热状态为3.5~4.4,即输入1kw电能可产生4kw的热量。

2、运行费用低:在大功率水源热泵机组中,其地下水和电即相当于锅炉燃烧的煤或油,而且地下水占热量的70~75%,也就是说,机组在制热过程中,有70~75%的燃料是不用花钱的,所以,其供暖运行费用仅为电热锅炉的四分之一,同时也相当于燃煤供热锅炉的四分之三,燃油锅炉的十分之三。由于不设冷却塔还省去了传统中央空调冷却塔的耗水费用。运行费用低于国家规定的取暖收费标准(18元/米2),并可减少电力增容1-3倍。

3、属可再生能源利用技术:水源热泵是利用了地球水体所储藏的太阳能资源作为冷热源,进行能量转换的供暖空调系统。地表土壤和水体不仅是一个巨大的太阳能集热器,而且是一个巨大的动态能量平衡系统,地表的土壤和水体自然地保持能量接受和发散的相对的均衡。这使得利用储存于其中的近乎无限的太阳能或地能成为可能。所以说,水源热泵利用的是清洁的可再生能源的一种技术。

4、无任何污染:由于该机组在制热过程中,无任何燃烧化学反应,不排放任何废弃物,无需设烟囱,同时避免了冷却塔噪音及霉菌污染。

5、占地面积小:可以建造在居民区内。仅为锅炉用地的1/10~1/15。以一个10万平方米小区为例,机房面积仅100平方米就足够用,而建锅炉房则需占地至少1000平方米,对3.5万平方米以上的小区,可省出一栋楼的位置,可建2000~5000平方米住宅。其剩余价值足够上水源热泵供暖系统。省去了锅炉、锅炉房、堆煤堆渣的场地。

6、一机多用,应用范围广:水源热泵系统可供暖、空调,还可供生活热水,一机多用,一套系统可以替换原来的锅炉加空调的两套装置或系统。特别是对于同时有供热和供冷要求的建筑物,水源热泵有着明显的优点。不仅节省了大量能源,而且用一套设备可以同时满足供热和供冷的要求,减少了设备的初投资。水源热泵可应用于宾馆、医院、商场、住宅楼、办公楼、学校、影院等建筑,小型的水源热泵更适合于别墅住宅的采暖、空调。

7、投资成本低:水源热泵较传统的中央空调系统经济。无集中的制冷机房、锅炉房、空调箱房,减少了设备间的面积。温度自控装置也装在系统中,无需另设控制中心或控制室。

9

8、运行维护十分简便:全部为自动化控制,用户可任意调节房间温度,物业根据用户的实际使用情况收取费用,易于管理。每班只需用1人(而且10万平方米以上小区燃煤锅炉房每班则需4个人)值班即可。

9、维修成本低:由于系统设备简单,安装方便,启动、调整容易,运行维护费用很低,所以在一次性投资之后不需要太多的投资就可以对系统进行维护和管理了。它的投资一般可在三五年之后就可以得到回报。

10、安全性:水源热泵在运行中没有燃烧部分。因此不可能产生二氧化碳、一氧化碳之类的废气集结在家中或商业建筑内,也不存在丙烷气体,因而也不会发生爆炸的危险。

四、用户使用的条件

1、由于水源热泵的70~75%的热量采自水,水就相当于锅炉用煤或油,因此在想安装水源热泵的地方,必须有地下水,或天然湖泊等充足水源,因该水为循环使用,只要所钻的井在1小时内能抽上所需水量,就可视为够用。

2、可与当地环保部门联系,有希望得到资助(特别是在一个城市内首家采用)。国家环保局已决定在全国推广该项技术。

3、可与当地供电部门联系,凡采用该机组供暖,可享受免交电增容费的待遇和电采暖的谷低电价的优惠。

4、地下水源在距本系统1公里内均属于可利用的经济水源,天然水源(如湖泊、河流)3公里以内可作为经济水源充分利用。

五、经济技术比较

(详见下表)

10

11

水源热泵系统与其它冷热源系统比较

注:以上数据基于以下条件:

1、 夏季按90天供冷,冬季按120天供暖;

2、 电费:0.8元/度,轻柴油:7.8元/公升,重油:8.5元/公升,

燃气:3.3元/m 3

项目

冷水机组+燃油(气)锅炉 直燃机(油、气) 风冷热泵 水源热泵系统 占用机房面积

(百分比是占

用面积与建筑

面积之比) 需冷冻站及锅炉房,占用建筑面积(2%)冷却塔占用屋面面积(1.2%-1.6%)油罐占

需冷冻站,占用建筑面积(1.2%)冷却塔占用屋面面积(1.5%-2%)油罐占地 无需冷冻站,占用屋顶面积3% 需冷冻站,占用建筑面积(0.6%-1.2%)不占屋顶面积,水井占地(可设在绿地或道路下) 主机寿命 冷水机组15年

燃油锅炉10年

10年 15年 25年 水资源消耗 冷却水循环水量的

2%

冷却水循环水量的2-5% 无 无 驱动能源 冬天:燃油(气)

夏天:电能

燃油或燃气 电能COP :2.5-3.2 电能COP :3.6-5.2 环境保护 有燃烧污染(冬)

有一定噪音(夏) 有燃烧污染,有一定噪音(冷却

塔)

无燃烧污染,有一定噪音,冬季供热效果不好 无矿物能源燃烧污染 单位建筑面积

造价(元/m 2)

240-280 260-300 280-320 220-300 单位建筑面积

全年运行费用

(元/年m 2) 30-55 40-75 15-35 18-30

方式 区别

经济数据比较

以东北某地区一栋1万平方米住宅楼为例,对采用不同供热空调方式的经济技术比较如下:

不同冷热源方式的投资与运行费用对比表

序号

项目

供暖空调方式

初投资

(万元)

每平方米造价

(元/m2)

每平方米运行费用

(元/m2)

备注

1 燃煤锅炉供暖79 79 17.9 城市限用

2 燃油锅炉供暖53.6 53.6 40.08

3 城市热源供暖62 62 21.0 初投资为挂

网费

4 电热膜取暖130 130 42.2

5 壁挂式燃气炉分户采暖87.5 87.5 39.6

6 水源热泵供暖82.9 82.9 13.4

7 传统中央空调(供暖/空调) 267.9 267.9

28.3 含室内风机

盘管系统冬:18.0 夏:10.3

8 水源热泵(供暖/空调) 200.1 200.1

18.4 含室内风机

盘管系统冬:13.4 夏:5.0

从上表可看出:

1.水源热泵供暖系统的初投资略高于燃煤锅炉、燃油锅炉、城市热源供暖,低于壁挂式燃气炉分户采暖,比电热膜取暖的初投资低1/3以上。

2.水源热泵(供暖/空调)系统的初投资比传统中央空调(供暖/空调)系

统初投资低33%。

3.水源热泵供暖的每平方米运行费用仅为燃煤锅炉供热的70%,燃油、燃

气、电热膜的1/3。

4.水源热泵系统的运行费用仅为传统中央空调的2/3。

5.水源热泵比燃油、燃气、城市热源供暖增加的初投资,由于运行成本的

节约,可在2至3年内收回初投资。

12

六、结束语:

水源热泵系统的技术领先性和产业化价值,正在于巧妙地利用了空调制冷机的原理,源源不断地将地下土壤中蓄积的低温热量吸收起来,变成可利用的高温热量,无需燃烧任何燃料即可对建筑物供热、供冷,真正实现节能、环保,它将有效地保护地球上有限的天然资源,保护人类赖以生存的空间环境。可以说,大功率水源热泵机组是建筑物供暖方式上的一次革命,该产品必然会以其无以伦比的优势取代传统的供热方式,很快在全国推行。

13

相变蓄热电采暖经济性分析

相变蓄热电采暖经济性分析 摘要: 直供式电采暖系统与相变蓄热式电采暖系统是两种截然不同的电采暖方案, 本文利用静态分析法从初投资、年运行费用及简单回收期等方面预测其经济性。 经济性预测结果表明,相变蓄热式电采暖年运行费用低,简单回收期较短,在节 省电能方便更具优势。 关键词:直供式电采暖系统;相变蓄热式电采暖系统;经济性预测 前言 从全球形势来看,能源革命发展趋势以清洁能源为主流,旨在逐步优化能源 结构。近年来,为了解决北方地区燃煤取暖产生的环境污染问题,国家出台了“煤改电”等一系列保护政策,因此清洁能源电采暖被广泛关注及应用,清洁供暖已成为国家能源战略的重要组成部分。 目前,直供式电采暖以其安装控制方便、升温速度快、绿色环保等优势被企 业和个人用户所使用,但除去电采暖电价优惠政策补贴外,电费仍然较高。在这 种情况下,笔者提出一种相变蓄热式电采暖供热方式,将相变蓄热的原理与电采 暖相结合,预期通过间歇式供暖,利用蓄热式电采暖峰谷电价,谷时加热蓄热, 峰时停止加热,利用所蓄的热量进行供热,既避开了用电高峰,又节省了电费, 从而实现电能“移峰填谷”的目标。 以吉林省长春市某40m2房间为例,本文对比分析了常规电采暖系统(方案一)与带有蓄热功能的电采暖系统(方案二)的经济性,该分析过程涉及初投资、年运行费用及简单回收期三个方面。 1.初投资 两种方案的初投资主要是指研究并计算两种采暖形式的前期造价成本。首先 介绍两种方案的前期造价详细费用情况。 1.1方案一:直供式电采暖系统 该系统以发热电缆为发热体。购买电缆的费用是方案一系统的主要投入费用:以50W/m2作为供热指标,单价为1.5元/W,由于供热所要达到的总负荷为 50×40=2000W,所以40m2房间的热源造价为1.5×2000=3000元。本文选取水泥 砂浆作为热源下方结构层填充物,其造价为20元/m2,根据房间需求水泥砂浆成 本为40×20=800元。 1.2方案二:相变蓄热电采暖系统 热源造价与方案一相同,为3000元。据所给40m2建筑的面积可知,实际的 采暖安装面积是:2000/460=4.35m2,式中,460W/m2是发热源的发热量, 2000W是房间采暖的总负荷。本文选取石蜡微胶囊和泡沫金属铜的复合材料作为 相变蓄热式电采暖装置中的相变蓄热结构层。其造价计算为:泡沫金属铜成本计 算公式为4.35m2×1000元/m2=4350元;石蜡微胶囊单价为20元/kg,为实现预设谷时蓄热8h的想法,按照实际采暖安装面积,经理论计算共需34.8kg石蜡微胶囊,因此总计材料石蜡微胶囊的投入费用是20×34.8=696元。 上述计算得到直供式电采暖系统及相变蓄热式电采暖系统的初投资结果,如 表1所示。 表1二种方案初投资

地源热泵与传统空调运行费用比较

XXX电子厂空调运行比较分析1.冷、热源及空调方式选择比较

2.运行费用分析比较: 制冷机选用二大一小三台机组,300冷吨两台,150冷吨一台,(共2637KW计算),以适应不同负荷时制冷机能处于高效状态下运行。采暖总热量约1.2MW(1200KW)。 选用地源热泵机组LTLHM-370,制冷量1300KW,功率245. 4KW;制热量1400KW,功率324.6KW。 循环泵功率(估算):37KW(一用一备) 补水泵功率(估算):4KW(一用一备) 地埋管循环泵功率(估算):30KW(一用一备) 冬季使用一台机组。 A、地源热泵系统,冬夏两用 ·夏季各设备的配电功率 · a.地源热泵机组:夏季245.4kW/台*2台。 · b.空调侧循环泵:37kW/台。 · c.地埋管侧循环泵:30kW/台。 · d.空调水电子水处理仪:0.2 kW/台。

· e.埋管侧电子除垢仪:0.2 kW/台。 · f.补水泵:4kW/台。 ·地埋管热泵工程运行费用如下: ·1、电价按0.80元/KWH。 ·2、夏季制冷90天,每天间歇运行8小时。 ·3、空调同时使用率取0.8。 ·4、机组运行率取65%。 夏季运行费用: 90×8×0.8×(0.2×2+4+30+245.4×2+37)×65%×0.8=16.8万元。·冬季各设备的配电功率 · a.地源热泵机组:夏季324.6kW/台*2台。 · b.空调侧循环泵:37kW/台。 · c.地埋管侧循环泵:30kW/台。 · d.空调水电子水处理仪:0.2 kW/台。 · e.井水电子除垢仪:0.2 kW/台。 · f.补水泵:4kW/台。 ·地埋管热泵工程运行费用如下: ·1、电价按0.80元/KWH。 ·2、冬季制热120天,每天间歇运行8小时。 ·3、空调同时使用率取0.8。 ·4、机组运行率取65%。 冬季运行费用:

集中供热换热站优化配置及运行分析

集中供热换热站优化配置及运行分析 作为连接用户和热源极为重要的一环,换热站设计的合理性将会对供热质量产生直接影响。通过对某热网调研数据发现,在换热站中存在能耗普遍较高的情况。造成能耗高最主要的原因就在于换热站规模不合适、设备选型不合理、连接方式不恰当、运行管理不科学等。文章就某换热站中现存管理问题以及设备型号进行了大致分析,并就此提出了相应的改进对策。 标签:集中供热;换热站;优化配置 1 换热站规模 1.1 大规模换电站优缺点 对于供热能力在二十五万平方米的换热站而言,由于其集中度高,进而使设备数量得以减少,也使得设备运行中的局部损失得以减少。 1.2 小规模换热站优缺点 就面积在一万平方米以下的换热站而言,其二次网的建筑物比较少,容易调节。但就其一次网而言,由于换热站的数量太多,使得换热站热力和水力的平衡很难实现,致使热网的稳定性差。并且小规模的换热站其设备投资费高,回收年限长,同时管理也很困难。 大规模的换热站其二次网辐射半径比较大,并且管线也比较长,致使二次网管网的损失也就比较大,同时水力失调的情况也比较严重。 1.3 换热站规模 由于不同规模的换热站其耗水和耗电都很高,在对运行过程中的年经济费相结合的状况下,对城市规划和规模加以考虑,通常情况下需将换热站规模控制在二十万平方米一个站较合理。 2 循环水泵 2.1 确定水泵扬程和流量 水泵输送能力在很大程度上是由水泵的扬程和流量来决定的,对扬程和流量加以恰当的选择能使水泵高效率运行,进而减低能耗。 通过对热负荷加以设计来确定循环水泵流量,通常情况下,循环水泵扬程不能比设计流量中各部分的阻力之和小。在设计中一定要注意,热水循环系统是闭式系统,当对扬程加以确定之时,只需对管网损失加以考虑,而无需对建筑物高

延庆区学校电锅炉系统安装施工方案资料

电锅炉系统安装工程施工组织设计

审批:审核:编制:

目录 2 编制原则及依据 (3) 3 施工方案 (4) 3.1 施工准备 (4) 3.2 施工流程 (4) 3.3 施工工艺 (4) 3.3.1 本体安装 (4) 3.3.2 水泵安装 (5) 3.3.3 管道安装 (5) 3.3.6 管道焊接 (6) 3.3.7 仪表安装 (7) 3.3.8 阀门安装 (8) 3.3.9 管道冲洗 (8) 3.3.10 水压试验 (8) 3.3.11 锅炉调试 (9) 3.3.12 管道的防腐保温 (9) 4 工程施工进度计划及工期保证措施 (9) 5 施工现场的组织管理机构 (10) 6 工程投入的人员、施工机具及检测仪器 (12) 7 质量目标及质量保证措施 (13) 8 安全文明生产及环境保护措施 (14) 一、工程概况

1.工程名称:北京市延庆区旧县幼儿园锅炉房改造 建设单位:延庆区教育委员会 设计单位:北京妫谷博维建筑设计有限公司 施工单位:北京新钢精诚科技有限公司 合同工期:合同签订后20日内投入使用 合同质量目标:严格按照国家现行质量检验标准执行 1.1 工程简介 各学校锅炉房改造,所在地基本都在各乡镇村里。无天然供给,且不能使用煤燃料,采用电热锅炉作为采暖热源,采暖热媒温度为85/60℃。电热锅炉,采用上供上回双管异程系统。 1.2 施工范围 主要包括电热锅炉本体及附属设备的安装与调试。 2 编制原则及依据 2.1 编制原则 在学习、研究、理解招标文件和设计图纸的基础上,以设计文件及有关规范为依据,紧密结合现场实际情况,编制指导性强、技术先进、经济合理、质量目标明确的施工组织设计;同时做到安全、进度、环保、文明施工等诸多方面措施得力。 2.2 编制依据 设计图纸 《锅炉房设计规范》GB50041-92 《工业锅炉安装工程施工及验收规范》GB50273-98 《工业设备及管道绝热工程施工及验收规范(GBJ126-89)》 《工业金属管道工程施工及验收规范》GB50235-97 《压缩机、风机、泵安装工程施工及验收规范(GB50275-98)》

09、供暖系统运行管理制度

供暖系统运行管理制度 1.目的 规范工程部员工运行、检查、维护保养操作行为,加强对热力系统管理,保障人员和设备安全,保证热力系统正常运行。 2.范围 适用于项目部热力系统运行和管理。 3.职责 3.1工程部负责人负责审批热力系统管理制度,监督、检查水工操作行 为,并组织安排相关工作。 3.2工程部专业负责人负责制定热力系统管理制度,负责对水工进行安 全、技术培训,并负责组织实施,监督、检查水工操作的规范性。 3.3工程部水工遵守执行相关工作制度和内容。 4.管理制度 4.1 值班制度 4.1.1 值班人员按照公司规定着工装,持证上岗。 4.1.2 当值人员服从管理,按班次上岗,不得擅自离岗,严格执行 交接班制度。只有在专业负责人批准后,有人接班的情况 下,方可离岗。 4.1.3 值班人员应熟悉配供热设备设施性能、原理和运行方式, 掌握操作规程和应急方案。对本站设备负有监视、维护、 操作及事故处理的责任。

4.1.4 按规定严格执行设备操作规程,正确操作设备,使设备安 全经济运行。 4.1.5 值班人员应按时、按规定线路巡视热交换器、水泵、水 箱、软化水装置设备,检查设备运行参数值是否在规定范 围内,声音、温度、气味是否正常,发现异常现象迅速查 明原因,正确处理,并向上级汇报。 4.1.6 监督软化水化验结果,保证供热系统水质,保证供热系统 正常补水和水量。 4.1.7 按规定运行方式和温度供热。需改变运行方式或停止供热 时,应提前向部门领导提出申请,经同意后方可实施。 4.1.8 值班人员应根据天气情况调整供热运行温度,达到节能降 耗的效果。 4.1.9 配合入室测量室内温度工作。当市政供热管网发生问题 时,应主动联系供热公司,保证供热温度。 4.1.10 值班人员均需掌握发生灾害事故和设备运行故障处理方 法,应正确判断事故原因并及时处理,防止事故扩大,主 动上报上级,在未找出原因和排除故障之前,不得重新启 动供热设备。 4.1.11 及时发现和处理事故隐患,无法处理的及时报告上级。 4.1.12 当发生威胁设备或人身安全紧急情况下,有权利立即停止 设备运行,事后向上级汇报。 4.1.13 熟练使用消防报警器材和灭火器材,注意防止小动物进入机

电锅炉的采暖费用分析

电锅炉的采暖费用分析 取暖看似小事,然而,随着社会经济的持续发展,居民对供暖的要求变得分外突出,已成为关系环保国策、改革发展和社会安定的大事。 我国大气污染主要是煤烟型污染,近年来全国煤炭消费量居高不下,以北京地区为例,全年用煤量2700万吨,仅冬季取暖就要烧掉600万 吨煤炭。这对北京大气造成的污染显而易见。北京市对此高度重视,从改变能源结构、实行集中供暖、改造燃煤锅炉等方面入手,全力治理煤烟型污染。在2000年度就完成了城八区1500多台1吨以上供暖锅炉的改造。仅此一项,全市燃煤可减少120万吨,二氧化硫排放量减少9000余吨。 随着人民群众物质生活水平的提高,大家对冬季供暖的舒适性及安全性有了新的要求。在集中供暖条件下,不同楼层、不同朝向等因素会造成相当大的室内温差、室温低的住户自然牢骚满腹。在采用燃气为能源的小区和住宅中,其采暖质量毋庸置疑。但燃气经燃烧后产生的二氧化硫、总悬浮颗粒物、可吸入颗粒物等对区域空气质量还是有一定影响的。此外,燃气装置的防火防爆问题也不容忽视。由于国内一些生产此类锅炉的企业起步较晚、技术工艺不够成熟及稳定,使燃气锅炉的安全性得不到足够的保证,再加上某些人为的安装、使用、维修不当,使燃气锅炉爆炸、伤人的事件时有发生。

以北京为例,在综合考察各种采暖方式的利弊之后,北京市大力推行具有节省用地、有利环保、安全可靠、收费简易的电采暖。电采暖的污染率为零,实现电采暖所需设备不多,十分安全,而且室温高低全由住户自行调节。在收费方面,住户先买IC卡,后用电,可以彻底根除 有意欠费。这种采暖方式的综合费用低于集中燃煤锅炉和城市集中供暖,北京地区规定供暖总耗热能为61.8kwh/平方米/采暖季,按IC卡电价0.44元/kwh计,用电采暖的费用为27.19元/平方米/采暖季(按峰谷用电价格计算,可降低30%—50%),与燃煤锅炉18元/平方米/采暖季,城市集中供暖为20~24元/平方米/采暖季相比,在节能、节约维修费用 和管理开支方面,有着明显的优势。在我国电力已相对缓和及电采暖具有众多明显优势的前提下,电采暖已成为今后城市供暖发展的一个重要方向。 怎样才能节省电锅炉采暖费呢? 合理选择电锅炉的功率 电锅炉功率的选择一定要按照采暖房间的电锅炉热负荷来计算。不同的房屋结构、房间高度、采光面积、房间位置,其热负荷是不同的。我们建议,节能建筑电锅炉可以取 13 - 15m2 /KW ; 普通楼房电锅炉 可以取 10 - 11 m2 /KW ;别墅、平房电锅炉可以取 8 - 9 m2 /KW ;密封条件不好、房间高度大于 2.7 米或经常有人出入的房屋要适当减小 电锅炉每千瓦的取暖面积。

地源热泵造价与运行费用对比

目录 一、公司简介。。。。。。。。。。。.。。。。。。。。。。2 二、标志性工程案例。。。。。。。。。。。。。。。。。。。3 三、地源热泵技术原理介绍。。。。。。。。。。。。。。。。6 四、冷暖方式的分析。。。。。。。。。。。。。。。。。。。15 五、设计方案说明。。。。。。。。。。。。。。。。。。。。17 六、系统设计方案。。。。。。。。。。。。。。。。。。。。20 七、投资概算及运行费用对比。。。。。。。。。。。。。。。25 八、补充说明。。。。。。。。。。。。。。。。。。。。。。29 九、附件(图纸、企业资质及相关政策文件)。。。。。。。。30

一、公司简介 浙江亿能建筑节能科技有限公司其前身是台州亿能建筑节能科技有限公司,于2010年4月由浙江省工商行政管理局批准正式更名,是台州首家集科技、设计、培训、咨询、新能源投资、建筑节能、环境保护于一体的科技型企业,公司成立至今一直从事于节能、环保工作。随着人们生活水平的不断改善与提高,环境保护意识的日益增强,国家政府大力提倡减排,公司于2010年5月在山东滨州先后成立了“浙江亿能建筑节能科技有限公司滨城分公司”、“滨州市艾斯达节能材料有限公司”,致力于建筑节能新技术与新产品的开发与利用、节能环保型中央空调系统配件与设备的研发与推广,形成产品系列化。 目前,公司已经建立了包括生产、营销、采购、供应、质量控制、设计、决策等在内的科学、高效的管理体系,为公司的迅速发展提供了组织机构和管理制度保障,使公司呈现良好的发展态势。现与中国建筑科学研究院建筑环境与节能研究院等多家科研机构建立了战略合作同盟体,可以为客户提供各种建筑节能方案和先进的节能设备。 公司08年度被浙江省科学技术协会、浙江省科技报社评为“浙江省优秀创新型企业”,被中国质量诚信企业协会、中国品牌价值评估中心评为“浙江省重质量守承诺创品牌”单位,暨“首批三满意单位”。2008年12月份公司参与了国家4个标准的制定:①地源热泵系统经济运行标准;②溴化锂吸收式冷水机组能效限定值节能标准;③地源热泵机组能效限定值及能源效率等级标准;④商业或工业用及类似用途低温空气源热泵机组标准,其中地源热泵系统经济运行标准由我司参与主编。2009年6月,我司与台州职业技术学院于市政府签订了“台州市校企校地合作协议书”。 公司始终坚守“高效、节能、环保”为重的经营理念及“诚信、团结、创新”的企业精神,以推广建筑节能事业为目标,以缓解能源紧张,降低能源消耗为己任,大力促进可再生能源应用和节能环保项目的推广,为加快建设“十一五”规划提出的能源节约型社会做出自己的贡献。亿能人以精湛的合作团队,凭借先进的技术真诚希望与国内外的客商携手共创节能型社会!

西安某小区供热系统间歇运行供暖房间热环境分析

!""#年#!月第#$卷第%期 西北建筑工程学院学报&自然科学版’ ()*+,-./01)*+2345)6/7)&,81938:;4<=/4=’ >=4)?!""# @*:)#$,* A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A )%西安某小区供热系统间歇运行供暖 房间热环境分析 官燕玲?田安民?刘宁 &长安大学环境工程学院?陕西西安B#""C#’ D摘要E对西安市某小区集中供热系统间歇调节运行的室内热环境进行了动态实测分析?得出供 水温度的变化规律及供暖房间热舒适的现况)指出只要适当调整供热时间就能明显地改善热舒 适条件) D关键词E集中供热F间歇供暖F热环境F热舒适 D中图分类号E G H$I!D文献标识码E2D文章编号E#""#J B K C L&!""#’"%J"#B"J"K M N O P Q R S R T U S N V T T W X Y Z W[O P Z N\S W T N[Z N X X TO W Z R S V Z N X S O P ]^O W X Z W Y Z O X S N_R Q R X Z[T U S N X Z W[S X X Z N X Y Z O X S N_S N‘S a O N b c M d e O N f P S N_?g h M d M N f[S N?i h c d S N_ &j*::=7=*+6/k<3*/l=/18:6/7

供暖系统运行出现的问题及解决方法(通用版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 供暖系统运行出现的问题及解决 方法(通用版)

供暖系统运行出现的问题及解决方法(通用 版) 导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 摘要:对实际供暖系统运行中出现的问题分析产生原因,提出了解决方法。 关键词:供暖系统;运行;问题;解决方法 ProblemsoccurredduringOperationofHeatingSystemandSolutions GAOFeng-chun,LIChang-rong,LIJing-bo,ZHONGMin Abstract:Thereasonsforproblemsduringactualoperationofheatingsystemare analyzed,andthesolutionsayeputforward. Keywords:heatingsystem;operation;problem;solution 冬季供热关系到千家万户,供热质量直接影响供热单位的社会形象,甚至影响到社会的稳定。在实际供热工作中会遇到各种各样影响供热质量的问题,为处理好这些问题,我们对多年来在实际供热运行

电锅炉运行费用

整个采暖期一平方米的电锅炉采暖运行费用公式计算: 单位面积热负荷×热负荷系数×每天电锅炉工作时间×采暖期天数×电费单价=整个采暖期单位面积的电锅炉采暖费用。 电锅炉采暖运行状态可分为以下几种: 1、用户长时间在家,电锅炉采暖炉24小时不间断运行,为节省运行费用将夜晚的电锅炉取暖温度适当调低。 电锅炉采暖费用为:0.06kw/平米× 0.6 × 10小时× 140天× 0.48元/度= 24.2元/平米 2、上班族,电锅炉用户只有中午、夜晚在家,电锅炉采暖炉分3时段间歇运行。 电锅炉采暖费用为:0.06kw/平米× 0.6 × 6小时× 140天× 0.48元/度= 14.5元/平米 3、办公室,5日工作制,电锅炉只在周一至周五取暖,电锅炉采暖炉白天运行,其余时间电锅炉运行在防冻状态。 电锅炉采暖费用为:0.07kw/平米× 0.6 × 6小时×(140天× 5/7)× 0.48元/度= 12.1元/平米 4、学校,电锅炉除了每周5日工作制外还有35天的假期,电锅炉采暖时间比较短。 电锅炉采暖费用为:0.07kw/平米× 0.6 × 6小时× [(140天 - 35天)× 5/7] ×0.48元/度 = 9.1元/平米 用以上计算值×房间的实际采暖面积(实用面积)就可以大约算出整个采暖期的电锅炉运行费用,若电锅炉用户合理调整电锅炉或关闭不需电锅炉采暖房间(如闲置的客房、洗手间或厨房)的电锅炉采暖器,电锅炉实际采暖面积就相应减小,电锅炉采暖费用就会相应降低。 注:0.07kw/平米是标准节能建筑要求电锅炉冬季采暖热负荷为55-70w/平米0.48元/度是2000年北京的居民用电锅炉电单价,若实行峰谷电价可按平均0.35元/度计算电锅炉运行费用,电锅炉用户长时间在家的电锅炉采暖费用为17.6元 热负荷系数0.6是指在取暖期的初期和末期室内需求的热负荷较小,在取暖期最冷的时期室内需求的热负荷较大,平均取0.6

供热系统工况分析

供热系统工况分析 1.供热系统工况分析 1.1何为热力工况、水力工况? 研究供热系统供热量、温度等参数的分布状况称为热力工况。在热力工况的研究中,热用户室内温度的分布状况的分析尤为重要,室内实际温度是否达到设计温度直接关系到供热效果的好坏;当供热成为商品时,室温是否达标,将变为衡量供热这个商品质量优劣的唯一标尺。因此,无论供热系统的设计,还是供热系统的运行,分析供热系统的热力情况都是头等重要的任务。 研究供热系统压力、流量等参数的分布状况称为水力状况。供热系统的供热量是通过热媒(亦称介质,为热水、蒸汽、空气等)输送的。因此,热媒的输送状况,直接影响供热量的分布状况,进而影响室内温度的分布状况。而热媒的输送状况,通常是通过其压力、流量等来描述的。由于水力状况是用来分析热媒传送状况的,因此,水力状况是热力工况的源头,研究热力工况,必须着手研究水力状况。 1.2热力工况与水力工况的关系 在供热行业里,通常困扰我们的最大难题就是冷热不均,处于热源近端的室温过热,被迫开窗户;靠近热源末端的室温过冷。表1.1告诉我们:凡是室外温低的,都是进入散热器的循环流量远小于设计流量造成的。进一步分析,还可得出以下结论:凡室温低于4.5℃的,其循环流量只是设计流量的20%;凡室温在10℃左右的,流量约为设计值的30%左右;凡室温在16以上时,流量均在设计流量的70%以上;

凡实际流量超过设计流量1-2倍以上的,室温都将超过20℃以上。 1.3热力工况与水力工况的稳定性 实现热力工况稳定,供热系统在整个运行期间,并不是始终维持设计流量(最大循环流量)进行定流量运行,而是随着室外温度的升高逐渐减少系统循环流量。在表1.2的实例中,当室外温度tw为设计外温tw=-18℃时,保持热力工况稳定的循环流量为设计运行流量,此时,各热用户皆为室温18℃。当外温升至-4.1℃(当地供暖季的平均外温)时,维持热力工况稳定的循环流量是设计流量的89%(即失调度Xs=0.89),而不是设计流量。而且随着室外温度的不断升高,维持热力工况稳定的循环流量也将不断减少。这就说明:供热系统,只有实施变流量调节,才能使热力工况得到稳定。因此,通常习惯采用的质调节即定流量调节,是无法维持热力工况稳定的。这种调节的好处是简单方便,因而,多年来,国内长期一直延用这种调节方式。随着信息技术和变频调速技术的普遍应用,变流量调节已经变得十分方便,不但可以保证热力工况的稳定,而且有显著的节电效果,此时,再坚持质调节即定流量调节,就显得太过落后了。 推广供热计量技术以来,行业内仍有一些技术人员主张继续维持定流量运行。他们的理由是:推广供热计量技术以后,由于恒温阀的调节作用,系统的流量肯定是变动的,但这种变动只是系统总流量的10%左右,因此,为了维持热力工况的稳定,建议系统仍然按定流量运行。这种理念的基础,是认定定流量调节才能保证热力工况稳定。根据上述分析,这显然是错误的,根源是对室内供暖系统的工况缺乏

电锅炉经济性分析案例讲课讲稿

电锅炉推广经济性分析案例 1经济分析方法 拟定集中式电锅炉不同技术方案,编制典型案例,考虑初投资和年运行成本,以年费用为综合指标,与天燃气锅炉进行经济性比较,年费用低者经济性更优。 年费用计算式为: AC=I×i×(1+i)N/〔(1+i)N-1〕+C 其中,AC——年费用; I——初投资; i——折现率; C——年运行成本。 年供热运行成本计算式如下: C=D×H/(V×η)×P 其中:C——年供热运行成本; D——运行天数; H——日均供热量; V——燃料热值; η——锅炉效率; P——燃料价格。 鉴于人力成本和维修成本具有较强的地域性,故在案例计算中,不考虑人力成本和维修成本;电力增容及配网改造和燃气管道敷设产生费用与具体工程建设条件密切相关,因

此在典型案例计算中不考虑。 2典型分析范例 常见清洁能源锅炉系统包括电锅炉直供系统、电锅炉蓄热供热系统和燃气锅炉供热系统。鉴于这三种系统可适用于不同的供热规模,故宜建立典型供热范例,针对不同技术类型分别拟定技术方案,与燃气锅炉系统进行经济性比较。为确保典型案例分析的覆盖性,选择天然气价格较高的上海和较低的新疆分别进行计算。 典型范例主要边界条件如下: ●设计热负荷:1400kW ●项目性质为办公楼,正常供热时间设定为08:00~ 18:00,共10小时 ●采暖期的最大单日供热需求量:9100kWh ●采暖期平均单日供热需求量:5915kWh 在满足上述供热需求的情况下,拟定热产品为热水和蒸汽两类共5种类型锅炉系统的技术方案如下: (1)电锅炉蓄热供热系统 最大单日供热需求量在谷电8小时内全部蓄热完毕。国内组装常压电热水锅炉的热效率取98%,则小时装机功率为1160kW,故配置2台储热功率为520kW的电热水锅炉,并配置有效蓄热容积为174m3(供回水温差取45℃)的常压蓄热水箱。系统寿命周期为25年。 (2)电锅炉直供热水系统

几种电采暖运行费用对比

几种户式电采暖运行费用的分析 中科合康(北京)电气有限公司 随着北京地区煤改电的深入进行,农村地区的居民采暖也纳入煤改电行列,由于居住分散,单户建筑面积小,不适合大规模集中供暖,比较适合单户电采暖的方式有:直热式电暖器、蓄热式电暖器和空气源热泵等三种,现对以上供暖方式的运行费用进行对比。 数据分析依据: 以北京地区农村每户3间房,每间建筑面积30㎡,且已进行过节能改造的房屋为例,则每㎡供暖热负荷指标为70W/m2,平均负荷率为0.7,日平均供暖时间为18小时,则每间房的采暖负荷计算如下: 最大小时最大热负荷为:30㎡*70W/m2=2100W; 全天最大平均总热负荷为:2100W/h*0.7*18h=26460W 全年总热负荷为:2100W/h*0.7*18h*120=3176KW 一:设备选型: 1、直热式电暖器:功率为30㎡*70W/m2=2100W/h;选型2100W共三台 2、蓄热式电暖器:功率为26460W/9h=2940W/h;选型3200W三台 3、空气源热泵:按冬季最小能效比2.0计算, 空气源热泵输入电功率为:2100W*3/2/0.95=3316W; 选型为输入功率为3.9KW(4匹)一台 注:空气源热泵系统末端需为地采暖或风机盘管。 二、采暖季耗电量及运行费用计算: 按每天晚上23:00-早上5:00基本不供暖,其余时间供暖考虑,则其中3小时使用低谷电,15小时使用平电,采暖低谷电价为0.1元/KWh,其余时间电价为0.488元/h,北京地区低谷电时间为晚上21:00-早上 6:00,则每户全年耗电量和运行费用为:

1、直热式电暖器: 年耗电量: 2.1KW*18*0.7*120天*3台=9526Kwh 年运行费用:2.1KW*(3h*0.1元/KWh+15h*0.488元/KWh)*0.7*120天*3台=4032元 每平米年运行费用为:4032元/90㎡=44.8元/㎡ 2、蓄热式电暖器: 年耗电量: 3.2KW*9h*0.7*120天*3台=7258Kwh 年运行费用:3.2KW*9h*0.1元/Kwh*120天*3台=725.76元 每平米年运行费用为:725.76元/90㎡=8.06元/㎡ 3、空气源热泵:因空气源热泵机组为水系统,晚上不能停止,需要低温运 行,低温运行按30%负荷率考虑,则计算如下: 年耗电量:3.9KW*18h*0.7*120+4.87*6h*0.3*120=6879KWh 正常运行费用:3.9KW*(3h*0.1元/KWh+15h*0.488元/KWh)*0.7*120天 =2497元 低温运行费用:3.9KW*6h*0.1元/KWh*0.3*120天=84元 每平米运行费用为:(2497+84)元/90㎡=28.67元/㎡ 根据以上分析,直热式电暖器运行费用最高,蓄热式电暖器运行费用最低,且放置位置灵活,不需要进行维护,空气源热泵运行费用也较低,但还需要进行末端采暖管道的安装,系统比较复杂,且需要专业人员进行日常维护。

(整理)地源热泵与传统空调运行费用比较.

江西某电子厂空调运行比较分析1.冷、热源及空调方式选择比较

2.运行费用分析比较: 制冷机选用二大一小三台机组,300冷吨两台,150冷吨一台,(共2637KW计算),以适应不同负荷时制冷机能处于高效状态下运行。采暖总热量约1.2MW(1200KW)。 选用地源热泵机组LTLHM-370,制冷量1300KW,功率245.4KW;制热量1400KW,功率324.6KW。 循环泵功率(估算):37KW(一用一备) 补水泵功率(估算):4KW(一用一备) 地埋管循环泵功率(估算):30KW(一用一备) 冬季使用一台机组。 A、地源热泵系统,冬夏两用 ·夏季各设备的配电功率 · a.地源热泵机组:夏季245.4kW/台*2台。 · b.空调侧循环泵:37kW/台。 · c.地埋管侧循环泵:30kW/台。 · d.空调水电子水处理仪:0.2 kW/台。 · e.埋管侧电子除垢仪:0.2 kW/台。 · f.补水泵:4kW/台。 ·地埋管热泵工程运行费用如下: · 1、电价按0.80元/KWH。 · 2、夏季制冷90天,每天间歇运行8小时。 · 3、空调同时使用率取0.8。 · 4、机组运行率取65%。 夏季运行费用: 90×8×0.8×(0.2×2+4+30+245.4×2+37)×65%×0.8=16.8万元。 ·冬季各设备的配电功率

· a.地源热泵机组:夏季324.6kW/台*2台。 · b.空调侧循环泵:37kW/台。 · c.地埋管侧循环泵:30kW/台。 · d.空调水电子水处理仪:0.2 kW/台。 · e.井水电子除垢仪:0.2 kW/台。 · f.补水泵:4kW/台。 ·地埋管热泵工程运行费用如下: · 1、电价按0.80元/KWH。 · 2、冬季制热120天,每天间歇运行8小时。 · 3、空调同时使用率取0.8。 · 4、机组运行率取65%。 冬季运行费用: 120×8×0.8×(0.2×2+4+30+324.6+37)×65%×0.8=15.8万元。 B、水冷冷水机组和燃油锅炉 选用水冷冷水机组LTLS-280两台,制冷量1021KW,功率243KW。另选用水冷冷水机组LTLS-160一台,制冷量550KW,功率130KW。 循环泵功率(估算):37KW(一用一备) 补水泵功率(估算):4KW(一用一备) 冷却塔循环泵功率(估算):30KW(一用一备) ·夏季各设备的配电功率 · a.水冷冷水机组:夏季243kW/台*2台,130kW/台*1台 · b.空调侧循环泵:37kW/台。 · c.冷却塔循环泵:30kW/台。 · d.空调水电子水处理仪:0.2 kW/台。 · e.冷却水电子除垢仪:0.2 kW/台。 · f.补水泵:4kW/台。 ·冷水水冷工程运行费用如下:

低谷电蓄热设备供暖运行分析

低谷电蓄热设备供暖运 行分析 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

低谷电蓄热设备在集中供暖领域运行分析 低谷电蓄热设备是采用电热丝利用低谷电时段廉价的电力,将电能转化为热能,以800度以上高温存储在固体蓄热材料中,通过风水交换器输出85度以下热水,作为供热热源,是集中供热热源的一种新型模式。 现就该设备的典型应用,采用具体案例进行初投入及运行分析。 A:在写字楼,学校等办公类间歇供热场所的应用 概况:某办公楼供暖面积1万平米,每天白天运行时间10小时。原采用集中供暖每个取暖季费用35万。供暖指标18度,每个取暖季120天,每个取暖季每平米实际耗能量约吉焦(平均热负荷40-50瓦,供热系数)。现采用低谷电蓄热设备进行替换。 设备选型:每天理论最大耗能10000㎡×45w/㎡×10h=4500kwh 4500kwh÷8h=562kw 可以选择500kw低谷电蓄热设备(实践中选择大于562×=设备即可,这样可以有效降低设备初投资,此种情况下在极端天气时,如果储能不足,可以在8小时低谷电时段外再利用平价电进行少量补充)。本方案以选取500kw设备,采用白天供热,夜间循环对管道保温防冻方式进行计算分析。 初投资:500kw×1200元/kw=60万元。 政府补贴:按《电力需求侧管理城市综合试点工作 中央财政奖励资金管理暂行办法》的通知(见附件1),可以申请500kw×440元/kw=22万元

运行费用:10000㎡×45w/㎡×10h×元/kwh×120天×=119880元。折合每个取暖季每平米12元左右。考虑到周末节假日期间只是循环保温防冻(每个取暖季节假日约30---40天),实际费用还有可控部分约1/4。 结论:1低谷电蓄热设备非常适合办公类间歇分布式供热场所,如学校办公楼,工厂办公楼,单位集体宿舍,社区基本医疗点,金融营业网点,中小型酒店,写字间,营业网点,商场等场所。 2设备运行两个取暖季,则节省的运行费用可以全部回收设备初投入。且低谷电蓄热设备完全采取无人值守,PLC智能控制运行模式,无污染无噪音,无天然气等能源供应紧张的制约。 3非集中供暖季或者需用热水的情况下,非常适合采用,如宾馆洗浴及集体宿舍等。 B在居民住宅楼,连续供热等领域的应用 概况:某住宅(或者办公楼)供暖面积10万平米,全天24小时运行。原采用天然气集中供暖每个取暖季费用220万,另政府补贴供暖企业150万。供暖指标18度,每个取暖季120天,每个取暖季每平米实际耗能量吉焦(平均热负荷40-50瓦,供热系数)。现采用低谷电蓄热设备进行替换。 设备选型:每天理论最大耗100000㎡×45w/㎡ ×24h=108000kwh 10800kwh÷8h=13500kw,最低可以选择 13500×=8100kw设备。建议本方案选择12000kw设备。(针对节

五星级宾馆采暖蓄热电锅炉选型方案

项目名称: 五星级宾馆采暖用电锅炉 选型方案 电锅炉低谷电蓄热) xxx 设备有限公司 2011 年 5 月 5 日

电加热锅炉及蓄热水箱选型方案 、项目概况: 1宾馆地上四层,采暖总面积 25000m2。室内采暖为地暖盘管系统。 现在拟采用全自动常压电热水锅炉采暖,变压器容量须满足采暖电负荷使用的需要。 2、供热采暖温度:按国家有关规定要求,设计采暖室温 20 C 。 3、供热采暖时间: 主供暖时间为 6:00-22 : 00,计 16 小时, 22: 00 以后建筑物内值班低负荷保温供暖。 5、采暖供热锅炉:采用全自动常压电热水锅炉蓄热采暖技术,充分利用低谷电,配合蓄热水箱蓄 热。 6、系统组成: 本工程锅炉房系统分为二部分,一是蓄热部分,二是向系统供热部分。 蓄热部分由蓄热水箱+蓄热循环水泵+电锅炉组成,水箱最高水温为 85C ,最低水温为40C ; 供热部分由蓄热水箱+供热循环水泵+热交换系统+地热盘管组成,系统最高供水水温为 50C, 最低供水温度为 35 C 。 、系统供暖原则: 采暖供热集中在 6:00-22:00, 计 16 小时,其他时段 8小时相对供热要求低一点 ,因此,在供热时 应实行多供 6:00-22:00 ,其他时段相对少供的原则。 电锅炉蓄热式采暖工程是一个集暖通、电气、土建、自控、技经等专业的综合系统工程,采暖 方案设计就是要做到在保证供暖质量的前提下,使其初投资和运行费达到一个最佳的组合,以达到 最佳的技术经济比。 本方案运行方式: 采用全低谷电 8 小时 ,在每个采暖日采取了合理使用低谷电, 避开或慎用平峰电、 高峰电并配 合使用蓄热罐的供热方式。下面就这种情况计算锅炉的功率及蓄热水箱的容积。 四、采暖热指标 : 1、 在 6:00-22:00 时段 , 建筑采暖 正常补充热指标为: 80w/m 2 .h 2、 在22:00-6:00时段,建筑采暖保温补充热指标为: 48w/ m 2 . h (满负荷的60%) 五、蓄热式电锅炉及蓄热水箱的选型 1、 运行方式: 采暖采用全谷电8小时加热方式。即晚上23:00-7 : 00低谷电时段8小时锅炉边用蓄热水箱 蓄热边向宾 峰谷电时段表 23: 00--- -- 7 : 00 谷电 8 小时 电价: 0.36元/度 (估 值) 7: 00--- -- 8 : 00 平电 1小时 电价: 0.72 元/度( 估值) 8: 00--- ---11: 00 峰电 3 小时 电价: 1.04 元/度 (估值) 11: 00--- ---18 : 00 平电 7 小时 18: 00--- ---23 : 00 峰电 5 小时 值班低负荷保温期间为 22: 00—早上 6: 00,共计 8 小时。 4、

供暖系统中常见问题

供暖系统运行中的常见问题分析 摘要:我国集中供热事业发展,特别是近年来城市集中供热发展较快,但在实际运行中也存在很多的问题,根据调研及近二十年的设计和运行管理经验,就我国目前供暖系统普遍存在的共性问题,如水力失调、系统积气、系统失水以及系统压力不稳定等做了简要分析,提出了解决方案,并列举了供暖系统改造的工程实例。 关键词:供暖系统水力失调压力波动 1、问题的提出 供热工程是利用热媒(如水、蒸汽或其它介质)将热能从热源输送到各热用户的工程技术。通常的供暖系统由热源、热网、热用户的三部分组成,其能否正常运行主要取决于系统设计、施工、运行管理水平等三个方面,并且这三个方面相互影响、相互制约,其中的任何一个环节出现问题都会影响到整个系统的正常运行,使供暖的质量无法满足用户的要求。根据调研,我国目前的供暖系统在设计、施工、运行管理等方面均不同程度的存在着问题,主要表现为系统冷热不均、失调严重、运行中的水、煤、电

等的能耗严重,运行故障时有发生,严重的威胁着热网的正常运行,供热质量难以保证。 一个供暖系统若按规范进行设计施工,其正常运行是 有保障的。但是,我国的采暖系统大部分都不是很合理,集中表现为热负荷选取过大,造成设备选型过大,输送设备大,备用率高,经济效益差。在实际工程中还常常出现这样的情况,供热系统若按规范和节能标准设计,由于施工和运行管理中的种种问题,使得系统往往满足不了热用户的需求,造成设计者不能按常规的设计理论进行设计,出现了节能建筑不节能的尴尬局面,即建筑的墙体是节能 墙体,而供暖系统未能按节能标准设计。尤其在改扩建工程中表现得尤为突出,设计者必须按原有的老建筑的供暖设计负荷进行设计,否则将造成系统的不平衡;在对原有系统的运行状况缺乏了解,或根本无从了解时,设计者只能利用大负荷进行弥补。久而久之,不合理反而变得合理,为人们所接受。就我国的供暖现状而言,采取何种措施,在保证供暖质量的同时,尽可能的减少浪费,提高现有供热系统的效率是工程设计和运行管理人员所面临的一个重大课题。 2、存在的问题及对策 2.1水力失调

电采暖运行费用计算方式及原理

电采暖运行费用计算方 式及原理 Hessen was revised in January 2021

电采暖运行费用计算方式及原理 随着社会对环保意识的增强,政府和居民也在环境治理方面给予高度关注,各项环保政策及法规也已相继出台,特别是在加入WTO及北京申奥的成功,改变能源结构,推广清洁能源已刻不容缓。北京二环以内25万平米居民将改为。更多城市已经在逐步实施控制使用高污染染料,限期使用清洁能源,可以说“绿色供暖”的机遇再一次为电热供暖带来了希望,故此本产品有着极大的社会推广价值及效益。电采暖已经在采暖市场广泛应用,该如何计算电采暖运行的费用呢?小编整理了电采暖运行费用计算方法的相关资料,一起来关注下吧! 整个采暖期一平方米的电采暖运行费用可按以下公式计算:单位面积热负荷×热负荷系数×每天工作时间×采暖期天数×电费单价=整个采暖期单位面积的采暖费用电采暖运行状态可分为以下几种: (1)、用户长时间在家,电采暖炉24小时不间断运行,为节省运行费用将夜晚的取暖温度适当调低。采暖费用为:0.06kw/m2×0.6×10小时×140天×0.48元/度=24.2元/m2 (2)、上班族,用户只有中午、夜晚在家,电采暖炉分3时段间歇运行。采暖费用为:0.06kw/m2×0.6×6小时×140天×0.48元/度=14.5元/m2 (3)、办公室,5日工作制,只在周一至周五取暖,电采暖炉白天运行,其余时间运行在防冻状态。采暖费用为:0.07kw/m2×0.6×6小时×(140天×5/7)×0.48元/度=12.1元/m2(4)、学校,除了每周5日工作制外还有35天的假期,采暖时间比较短。 采暖费用为:0.07kw/m2×0.6×6小时×[(140天-35天)×5/7]×0.48元/度=9.1元/m2用以上计算值×房间的实际采暖面积(实用面积)就可以大约算出整个采暖期的运行费用,若用户合理调整或关闭不需采暖房间(如闲置的客房、洗手间或厨房)的采暖器,实际采暖面积就相应减小,采暖费用就会相应降低。注:0.07kw/m2是标准节能建筑要求冬季采暖热负荷为55-70w/m20.48元/度是目前北京的居民用电单价,若实行峰谷电价可按平均0.35元/度计算,用户长时间在家的采暖费用为17.6元热负荷系数0.6是指在取暖期的初期和末期室内需求的热负荷较小,在取暖期最冷的时期室内需求的热负荷较大,平均取0.6实际采暖面积:建筑面积乘以0.78,再减去不需采暖房间的实用面积

相关主题
文本预览
相关文档 最新文档