当前位置:文档之家› 高中物理3-3热学知识点归纳(全面)

高中物理3-3热学知识点归纳(全面)

选修3-3热学知识点归纳

一、分子运动论

1. 物质是由大量分子组成的 〔1〕分子体积

分子体积很小,它的直径数量级是

〔2〕分子质量

分子质量很小,一般分子质量的数量级是 〔3〕阿伏伽德罗常数〔宏观世界与微观世界的桥梁〕 1摩尔的任何物质含有的微粒数相同,这个数的测量值:

设微观量为:分子体积V 0、分子直径d 、分子质量m ;

宏观量为:物质体积V 、摩尔体积V 1、物质质量M 、摩尔质量μ、物质密度ρ. 分子质量:

分子体积: 〔对气体,V 0应为气体分子平均占据的空间大小〕

分子直径:

球体模型: V d N =3A )2

(3

4π 3

3

A

6=6=π

πV N V

d 〔固体、液体一般用此模型〕

立方体模型:30=V d 〔气体一般用此模型〕〔对气体,d 理解为相邻分子间的平均距离〕 分子的数量.A 1

A 1A A N V V

N V M N V N M

n ===

=

ρμρμ

2. 分子永不停息地做无规那么热运动

〔1〕分子永不停息做无规那么热运动的实验事实:扩散现象和布郎运动。 〔2〕布朗运动

布朗运动是悬浮在液体〔或气体〕中的固体微粒的无规那么运动。布朗运动不是分子本身的 运动,但它间接地反映了液体〔气体〕分子的无规那么运动。 〔3〕实验中画出的布朗运动路线的折线,不是微粒运动的真实轨迹。

因为图中的每一段折线,是每隔30s 时间观察到的微粒位置的连线,就是在这短短的30s 内,小颗粒的运动也是极不规那么的。 〔4〕布朗运动产生的原因

大量液体分子〔或气体〕永不停息地做无规那么运动时,对悬浮在其中的微粒撞击作用的不平衡性是产生布朗运动的原因。简言之:液体〔或气体〕分子永不停息的无规那么运动是产生布朗运动的原因。

〔5〕影响布朗运动剧烈程度的因素

固体微粒越小,温度越高,固体微粒周围的液体分子运动越不规那么,对微粒碰撞的不平衡性越强,布朗运动越剧烈。

〔6〕能在液体〔或气体〕中做布朗运动的微粒都是很小的,一般数量级在,这种

微粒肉眼是看不到的,必须借助于显微镜。

3.分子间存在着相互作用力

〔1〕分子间的引力和斥力同时存在,实际表现出来的分子力是分子引力和斥力的合力。 分子间的引力和斥力只与分子间距离(相对位置)有关,与分子的运动状态无关。 〔2〕分子间的引力和斥力都随分子间的距离r 的增大而减小,随分子间的距离r 的减小而增大,但斥力的变化比引力的变化快。 〔3〕分子力F 和距离r 的关系如下列图

〔注:上图中01r r =:数量级m 10

10-〕

4.物体的内能

(1)做热运动的分子具有的动能叫分子动能。温度是物体分子热运动的平均动能的标志。

(2)由分子间相对位置决定的势能叫分子势能。分子力做正功时分子势能减小;分子力作负功时分子势能增大。当r=r 0即分子处于平衡位置时分子势能最小。不管r 从r 0增大还是减小,分子势能都将增大。如果以分子间距离为无穷远时分子势能为零,那么分子势能随分子间距离而变的图象如上图。

(3)物体中所有分子做热运动的动能和分子势能的总和叫做物体的内能。物体的内能跟物体的温度和体积及物质的量都有关系,定质量的理想气体的内能只跟温度有关。

(4)内能与机械能:运动形式不同,内能对应分子的热运动,机械能对于物体的机械运动。物体的内能和机械能在一定条件下可以相互转化。

二、固体

1.晶体和非晶体

〔1〕在外形上,晶体具有确定的几何形状,而非晶体那么没有。

〔2〕在物理性质上,晶体具有各向异性,而非晶体那么是各向同性的。 〔3〕晶体具有确定的熔点,而非晶体没有确定的熔点。

〔4〕晶体和非晶体并不是绝对的,它们在一定条件下可以相互转化。例如把晶体硫加热熔化〔温度不超过300℃〕后再倒进冷水中,会变成柔软的非晶体硫,再过一段时间又会转化为晶体硫。

2.多晶体和单晶体

单个的晶体颗粒是单晶体,由单晶体杂乱无章地组合在一起是多晶体。

多晶体具有各向同性。

3.晶体的各向异性及其微观解释

在物理性质上,晶体具有各向异性,而非晶体那么是各向同性的。通常所说的物理性质包括弹性、硬度、导热性能、导电性能、光的折射性能等。晶体的各向异性是指晶体在不同方向上物理性质不同,也就是沿不同方向去测试晶体的物理性能时测量结果不同。需要注意的是,晶体具有各向异性,并不是说每一种晶体都能在各物理性质上都表现出各向异性。晶体内部结构的有规那么性,在不同方向上物质微粒的排列情况不同导致晶体具有各向异性。

4.晶体与非晶体、单晶体与单晶体的比拟

三、液体

1.液体的微观结构及物理特性

〔1〕从宏观看

因为液体介于气体和固体之间,所以液体既像固体具有一定的体积,不易压缩,又像气体没有形状,具有流动性。

〔2〕从微观看有如下特点

①液体分子密集在一起,具有体积不易压缩;

②分子间距接近固体分子,相互作用力很大;

③液体分子在很小的区域内有规那么排列,此区域是暂时形成的,边界和大小随时改变,

并且杂乱无章排列,因而液体表现出各向同性;

④液体分子的热运动虽然与固体分子类似,但无长期固定的平衡位置,可在液体中移动,因而显示出流动性,且扩散比固体快。

2.液体的外表张力

如果在液体外表任意画一条线,线两侧的液体之间的作用力是引力,它的作用是使液体面绷紧,所以叫液体的外表张力。

特别提醒:

①外表张力使液体自动收缩,由于有外表张力的作用,液体外表有收缩到最小的趋势,外表张力的方向跟液面相切。

②外表张力的形成原因是外表层〔液体跟空气接触的一个薄层〕中分子间距离大,分子间的相互作用表现为引力。

③外表张力的大小除了跟边界线长度有关外,还跟液体的种类、温度有关。

四、液晶

1.液晶的物理性质

液晶具有液体的流动性,又具有晶体的光学各向异性。

2.液晶分子的排列特点

液晶分子的位置无序使它像液体,但排列是有序使它像晶体。

3.液晶的光学性质对外界条件的变化反响敏捷

液晶分子的排列是不稳定的,外界条件和微小变动都会引起液晶分子排列的变化,因而改变液晶的某些性质,例如温度、压力、摩擦、电磁作用、容器外表的差异等,都可以改变液晶的光学性质。

如计算器的显示屏,外加电压液晶由透明状态变为混浊状态。

五、气体

1.气体的状态参量

〔1〕温度:温度在宏观上表示物体的冷热程度;在微观上是分子平均动能的标志。

热力学温度是国际单位制中的根本量之一,符号T,单位K〔开尔文〕;摄氏温度是导出单位,符号t,单位℃〔摄氏度〕。关系是t=T-T0,其中T0=273.15K

两种温度间的关系可以表示为:T = t+273.15K和ΔT =Δt,要注意两种单位制下每一度的间隔是相同的。

0K是低温的极限,它表示所有分子都停止了热运动。可以无限接近,但永远不能到达。

气体分子速率分布曲线

图像表示:拥有不同速率的气体分子在总分子数中所占的百分比。图像下面积可表示为

分子总数。

特点:同一温度下,分子总呈“中间多两头少〞的分布特点,即速率处中等的分子所占比例最大,速率特大特小的分子所占比例均比拟小;温度越高,速率大的分子增多;曲线极大值处所对应的速率值向速率增大的方向移动,曲线将拉宽,高度降低,变得平坦。〔2〕体积:气体总是充满它所在的容器,所以气体的体积总是等于盛装气体的容器的容积。〔3〕压强:气体的压强是由于大量气体分子频繁碰撞器壁而产生的。

〔4〕气体压强的微观意义:大量做无规那么热运动的气体分子对器壁频繁、持续地碰撞产生了气体的压强。单个分子碰撞器壁的冲力是短暂的,但是大量分子频繁地碰撞器壁,就对器壁产生持续、均匀的压力。所以从分子动理论的观点来看,气体的压强就是大量气体分子作用在器壁单位面积上的平均作用力。

〔5〕决定气体压强大小的因素:

①微观因素:气体压强由气体分子的密集程度和平均动能决定:

A、气体分子的密集程度〔即单位体积内气体分子的数目〕越大,在单位时间内,与单位面积器壁碰撞的分子数就越多;

B、气体的温度升高,气体分子的平均动能变大,每个气体分子与器壁的碰撞〔可视为弹性碰撞〕给器壁的冲力就大;从另一方面讲,气体分子的平均速率大,在单位时间里撞击器壁的次数就多,累计冲力就大。

②宏观因素:气体的体积增大,分子的密集程度变小。在此情况下,如温度不变,气体压强减小;如温度降低,气体压强进一步减小;如温度升高,那么气体压强可能不变,可能变化,由气体的体积变化和温度变化两个因素哪一个起主导地位来定。

2.气体实验定律

〔1〕等温变化-玻意耳定律

内容:一定质量的某种气体,在温度不变的情况下,压强p与体积V成反比。

公式:或或〔常量〕

〔2〕等容变化-查理定律

内容:一定质量的某种气体,在体积不变的情况下,压强p与热力学温度T成正比。

公式:或或〔常量〕

〔3〕等压变化-盖·吕萨克定律

内容:一定质量的某种气体,在压强不变的情况下,体积V与热力学温度T成正比。

公式:或或〔常量〕

3.对气体实验定律的微观解释

〔1〕玻意耳定律的微观解释

一定质量的理想气体,分子的总数是一定的,在温度保持不变时,分子的平均动能保持不变,气体的体积减小到原来的几分之一,气体的密集程度就增大到原来的几倍,因此压强就

增大到原来的几倍,反之亦然,所以气体的压强与体积成反比。 〔2〕查理定律的微观解释

一定质量的理想气体,说明气体总分子数N 不变;气体体积V 不变,那么单位体积内的分子数不变;当气体温度升高时,说明分子的平均动能增大,那么单位时间内跟器壁单位面积上碰撞的分子数增多,且每次碰撞器壁产生的平均冲力增大,因此气体压强p 将增大。 〔3〕盖·吕萨克定律的微观解释

一定质量的理想气体,当温度升高时,气体分子的平均动能增大;要保持压强不变,必须减小单位体积内的分子个数,即增大气体的体积。

4. 理想气体状态方程:一定质量的理想气体状态方程:公式:

T

PV

=恒量 或 2

2

2111T V P T V P = 〔含密度式:222111T P T P ρρ=〕 注意:计算时公式两边T 必须统一为热力学温度单位,其它两边单位相同即可。 5.*克拉珀龙方程:RT M

nRT PV μ

== (R 为普适气体恒量,n 为摩尔数〕

六、热力学定律

1.热力学第零定律〔热平衡定律〕:如果两个系统分别与第三个系统到达热平衡,那么这两个系统彼此之间也必定处于热平衡

2.热力学第一定律:ΔE =W+Q ⇔能的转化守恒定律⇔第一类永动机〔违反能量守恒定律〕不可能制成.

(1)做功和热传递都能改变物体的内能。也就是说,做功和热传递对改变物体的内能是等效的。但从能量转化和守恒的观点看又是有区别的:做功是其他能和内能之间的转化,功是内能转化的量度;而热传递是内能间的转移,热量是内能转移的量度。

(2)符号法那么: 体积增大,气体对外做功,W 为“一〞;体积减小,外界对气体做功,W 为“+〞。

气体从外界吸热,Q 为“+〞;气体对外界放热,Q 为“一〞。

温度升高,内能增量∆E 是取“+〞;温度降低,内能减少,∆E 取“一〞。 (3)三种特殊情况:

● 等温变化∆E=0,即 W+Q=0 ● 绝热膨胀或压缩:Q=0即 W=∆E ● 等容变化:W=0 ,Q=∆E (4)由图线讨论理想气体的功、热量和内能

等温线〔双曲线〕:一定质量的理想气体, a →b ,等温降压膨胀,内能不变,吸热等于对外做功。

b →

c ,等容升温升压,不做功,吸热等于内能增加。 c →a ,等压降温收缩,外界做功和放热等于内能减少。 图像下面积表示做功:体积增大气体对外做功,体积

P V

T 1 T 2 a

c

b

O

减小外界对气体做功

等容线〔过0K 点直线或通过t 轴上一273.15℃的直线〕:

一定质量的理想气体,

a →

b ,等温降压膨胀,内能不变,吸热等于对外做功。 b →

c ,等容升温升压,不做功,吸热等于内能增加。 c →a ,等压降温收缩,外界做功和放热等于内能减少。

等压线〔过0K 点直线或通过t 轴上一273.15℃的直线〕: 一定质量的理想气体,

a →

b ,等温升压收缩,内能不变,外界做功等于放热。

b →

c ,等压升温膨胀,吸热和对外做功等于内能增加。

c →a ,等容降温降压,不做功,内能减少等于放热。

3.热学第二定律⇔〔1〕第二类永动机不可能制成 〔满足能量守恒定律,但违反热力学第二定律〕

实质:涉及热现象(自然界中)的宏观过程都具有方向性,是不可逆的

〔2〕热传递方向表述(克劳修斯表述):

不可能使热量由低温物体传递到高温物体,而不引起其它变化。(热传导有方向性)

〔3〕机械能与内能转化表述(开尔文表述):

不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化。(机械能与内能转化具有方向性)。

4.热力学第三定律:热力学零度不可到达。

T=t+273.15K , T t ∆=∆

5.

熵增加原理:在任何自然过程中,一个孤立系统的总熵是不会减少的。 ——孤立系统熵增加过程是系统热力学概率增大的过程〔即无序度增大的过程〕,是系统从非平衡态趋于平衡态的过程,是一个不可逆过程。熵的增加表示宇宙物质的日益混乱和无序。

T

P a

c

b

V 2

V 1 V

T P a c b P 2

P 1

高中物理热学知识点归纳全面很好

选修3-3热学知识点归纳 一、分子运动论 1. 物质是由大量分子组成的 (1)分子体积 分子体积很小,它的直径数量级是 (2)分子质量 分子质量很小,一般分子质量的数量级是 (3)阿伏伽德罗常数(宏观世界与微观世界的桥梁) 1摩尔的任何物质含有的微粒数相同,这个数的测量值: 设微观量为:分子体积V 0、分子直径d 、分子质量m ; 宏观量为:物质体积V 、摩尔体积V 1、物质质量M 、摩尔质量μ、物质密度ρ. 分子质量: 分子体积: (对气体,V 0应为气体分子平均占据的空间大小) 分子直径: 球体模型: V d N =3A )2(34π 303 A 6=6=ππV N V d (固体、液体一般用此模型) 立方体模型:30=V d (气体一般用此模型)(对气体,d 理解为相邻分子间的平均距离) 分子的数量.A 1 A 1A A N V V N V M N V N M n ====ρμρμ 2. 分子永不停息地做无规则热运动 (1)分子永不停息做无规则热运动的实验事实:扩散现象和布郎运动。 (2)布朗运动 布朗运动是悬浮在液体(或气体)中的固体微粒的无规则运动。布朗运动不是分子本身的 运动,但它间接地反映了液体(气体)分子的无规则运动。 (3)实验中画出的布朗运动路线的折线,不是微粒运动的真实轨迹。 因为图中的每一段折线,是每隔30s 时间观察到的微粒位置的连线,就是在这短短的30s 内,小颗粒的运动也是极不规则的。 (4)布朗运动产生的原因 大量液体分子(或气体)永不停息地做无规则运动时,对悬浮在其中的微粒撞击作用的不平衡性是产生布朗运动的原因。简言之:液体(或气体)分子永不停息的无规则运动是产生布朗运动的原因。 (5)影响布朗运动激烈程度的因素

【K12学习】高中物理3-3热学知识点归纳

高中物理3-3热学知识点归纳 南溪中学高三物理备课组 选修3-3知识点归纳 一、分子运动论 1. 物质是大量分子组成的 分子体积分子体积很小,它的直径数量级是错误!未找到引用源。 分子质量分子质量很小,一般分子质量的数量级是错误!未找到引用源。阿伏伽德罗常数 1摩尔的任何物质含有的微粒数相同,这个数的测量值。错误!未找到引用源。 2. 分子永不停息地做无规则热运动分子永不停息做无规则热运动的实验事实:扩散现象和布郎运动。布朗运动 布朗运动是悬浮在液体中的固体微粒的无规则运动。布朗运动不是分子本身的运动,但它间接地反映了液体分子的无规则运动。 实验中画出的布朗运动路线的折线,不是微粒运动的真实轨迹。因为图中的每一段折线,是每隔30s时间观察到的微粒位置的连线,就是在这短短的30s内,小颗粒的运动也是极不规则的。布朗运动产生的原因 大量液体分子永不停息地做无规则运动时,对悬浮在其

中的微粒撞击作用的不平衡性是产生布朗运动的原因。简言之:液体分子永不停息的无规则运动是产生布朗运动的原因。 影响布朗运动激烈程度的因素 固体微粒越小,温度越高,固体微粒周围的液体分子运动越不规则,对微粒碰撞的不平衡性越强,布朗运动越激烈。 能在液体中做布朗运动的微粒都是很小的,一般数量级在错误!未找到引用源。,这种微粒肉眼是看不到的,必须借助于显微镜。 3.分子间存在着相互作用力 分子间的引力和斥力同时存在,实际表现出来的分子力是分子引力和斥力的合力。分子间的引力和斥力只与分子间距离(相对位置)有关,与分子的运动状态无关。 分子间的引力和斥力都随分子间的距离r的增大而减小,随分子间的距离r的减小而增大,但斥力的变化比引力的变化快。分子力F和距离r的关系如下图 4.物体的内能 (1)做热运动的分子具有的动能叫分子动能。温度是物体分子热运动的平均动能的标志。 (2)分子间相对位置决定的势能叫分子势能。分子力做正功时分子势能减小;分子力作负功时分子势能增大。当r=r0即分子处于平衡位置时分子势能最小。不论r从r0增大还是减小,分子势能都将增大。如果以分子间距离为无穷

高中物理热学知识点归纳全面很好

选修3-3热学知识点归纳 一、分子运动论 1. 物质是由大量分子组成的 (1)分子体积 分子体积很小,它的直径数量级是 (2)分子质量 分子质量很小,一般分子质量的数量级是 (3)阿伏伽德罗常数(宏观世界与微观世界的桥梁) 1摩尔的任何物质含有的微粒数相同,这个数的测量值: 设微观量为:分子体积V 0、分子直径d 、分子质量m ; 宏观量为:物质体积V 、摩尔体积V 1、物质质量M 、摩尔质量μ、物质密度ρ. 分子质量: 分子体积: (对气体,V 0应为气体分子平均占据的空间大小) 分子直径: { 球体模型: V d N =3A )2 (3 4π 3 3 A 6=6=π πV N V d (固体、液体一般用此模型) 立方体模型:30=V d (气体一般用此模型)(对气体,d 理解为相邻分子间的平均距离) 分子的数量.A 1 A 1A A N V V N V M N V N M n === =ρμρμ 2. 分子永不停息地做无规则热运动 (1)分子永不停息做无规则热运动的实验事实:扩散现象和布郎运动。 (2)布朗运动 布朗运动是悬浮在液体(或气体)中的固体微粒的无规则运动。布朗运动不是分子本身的 运动,但它间接地反映了液体(气体)分子的无规则运动。 (3)实验中画出的布朗运动路线的折线,不是微粒运动的真实轨迹。 因为图中的每一段折线,是每隔30s 时间观察到的微粒位置的连线,就是在这短短的30s 内,小颗粒的运动也是极不规则的。 (4)布朗运动产生的原因 大量液体分子(或气体)永不停息地做无规则运动时,对悬浮在其中的微粒撞击作用的不平衡性是产生布朗运动的原因。简言之:液体(或气体)分子永不停息的无规则运动是产生布朗运动的原因。 (5)影响布朗运动激烈程度的因素 固体微粒越小,温度越高,固体微粒周围的液体分子运动越不规则,对微粒碰撞的不平衡性越强,布朗运动越激烈。 (6)能在液体(或气体)中做布朗运动的微粒都是很小的,一般数量级在,这种 微粒肉眼是看不到的,必须借助于显微镜。

高中物理选修3-3知识点总结

高中物理选修3-3知识点总结 物理选修3-3知识点汇总 一、宏观量与微观量及相互关系 微观量包括分子体积V0、分子直径d和分子质量等,而 宏观量则包括物体的体积V、摩尔体积Vm、物体的质量m、 摩尔质量M和物体的密度ρ。分子直径通常在10^-10m数量级,可以通过油膜法测量,公式为d=V/S。此外,分子数N 可以通过公式N=nNA/mA计算,其中NA为阿伏伽德罗常数。分子质量和分子体积的估算方法分别为m=M/N和V=VmρN,其中ρ是液体或固体的密度。分子直径的估算方法则是将固体和液体分子看成球形或立方体,公式为d=6V^(1/3)/π或d=V。 二、分子的热运动 分子的热运动表现为无规则运动,包括扩散现象和布朗运动。扩散现象是不同物质相互接触时彼此进入对方的现象,温度越高,扩散越快。布朗运动则是悬浮在液体中的小颗粒所做

的无规则运动,其特点为永不停息、无规则运动、颗粒越小运动越剧烈、温度越高运动越剧烈、运动轨迹不确定,但肉眼无法看到。XXX运动的产生是由各个方向的液体分子对微粒碰撞的不平衡引起的。需要注意的是,布朗运动只能发生在气体和液体中,而扩散现象则在气体、液体和固体之间均可发生。 能量不会被创造或消失,只能从一种形式转化为另一种形式 2.热力学第一定律:能量守恒定律的应用,表明热量和功可以相互转化,但总能量 不变 3.热力学第二定律:不可能从单一热源中吸收热量,使之完全转化为功而不产生任 何其他效应 4.热力学第三定律:绝对零度是无法达到的,因为物质的内能不可能完全降至零 能量既不能创造也不能消失,只能在不同形式和物体之间进行转化或转移。在这个过程中,总能量量保持不变。 热力学第一定律表明,在物体与外界同时发生做功和热传递的情况下,外界对物体所做的功加上物体吸收的热量等于物

高中物理热学知识点归纳

高中物理热学知识点归 纳 This model paper was revised by LINDA on December 15, 2012.

选修3-3热学知识点归纳 一、分子运动论 1.物质是由大量分子组成的 (1)分子体积 分子体积很小,它的直径数量级是10?10m (2)分子质量 分子质量很小,一般分子质量的数量级是10?26kg (3)阿伏伽德罗常数(宏观世界与微观世界的桥梁) 1摩尔的任何物质含有的微粒数相同,这个数的测量值:N A =6.02×1023mol ?1 设微观量为:分子体积V0、分子直径d 、分子质量m ; 宏观量为:物质体积V 、摩尔体积V1、物质质量M 、摩尔质量μ、物质密度ρ. 分子质量: A A N V N m 1 μρ== 分子体积: V 0 = V VV V =V 1V V (对气体V0应为气体分子平均占 据的空间大小) 分子直径: 球体模型: V d N =3A )2(34π 303 A 6= 6=π πV N V d (固体、液体一般用此模型) 立方体模型:30 =V d (气体一般用此模型)(对气体,d 理解为相邻分子间的平均距 离)

分子的数量. A 1 A 1 A A N V V N V M N V N M n= = = = ρ μ ρ μ2.分子永不停息地做无规则热运动 (1)分子永不停息做无规则热运动的实验事实:扩散现象和布郎运动。 (2)扩散现象:不同物质能够彼此进入对方的现象。本质:由物质分子的无规则运动产生的。 (3)(3)布朗运动 (4)布朗运动是悬浮在液体(或气体)中的固体微粒的无 规则运动。布朗运动不是分子本身的运动,但它间接地反映了液体(气体)分子的无规则运动。 (5)①实验中画出的布朗运动路线的折线,不是微粒运动的真实轨迹。 (6)因为图中的每一段折线,是每隔30s时间观察到的微粒位置的连线,就是在这短短的30s内,小颗粒的运动也是极不规则的。 (7)②布朗运动产生的原因 (8)大量液体分子(或气体)永不停息地做无规则运动时,对悬浮在其中的微粒撞击作用的不平衡性是产生布朗运动的原因。简言之:液体(或气体)分子永不停息的无规则运动是产生布朗运动的原因。 (9)③影响布朗运动激烈程度的因素固体微粒越小,温度越高,固体微粒周围的液体分子运动越不规则,对微粒碰撞的不平衡性越强,布朗运动越激烈。

最新最全,高中物理选修,3---3《热学》,高考必考知识点,的整体分析

高中物理选修3…3《热学》 整体分析 高中物理选修3---3《热学》与选修3---4《光学》在高考 中占15分之多,选修3---3相较于选修3---4而言,知识点少,内容条理性强。目前,相关资料对选修3----3考点的归纳与总结只是单纯地自各个考点本身着手,并没有一个自教材整体的高度来加以综合概括分析。本文力图将《热学》自四个方面加以整体分析描述,使教材中的各个知识点连成线,便于高三学生在短时间内熟练的掌握各个知识点,从而达到顺利解决高考中热学选考题的目的。 §§第一部分:分子动理论 一、 物体是由大量分子组成的。 1、分子模型: ①固体与液体分子可以看为球体或正方体模型,分子的体积分别为 303 0a v d 6 v =π= 与,其中d(分子直径)与a(正方体边长)均可以看为两个相邻分子之间的距离。 ②气体分子只能看为正方体模型,该正方体的体积30a v =,只能说成是气体分子所占据有的空间体积,其中a(正方体的边长)可以看为相

邻两气体分子之间的平均距离。 2、油膜法测液体分子的直径: Ⅰ.实验操作的关键点: ①一种模型:将油酸分子看为球体模型; ②一种思路:使水面上形成单分子油膜层。 Ⅱ.实验步骤与相应操作的目的: ①配制一定浓度的油酸酒精溶液,如向amL 纯油酸中加入酒精,直至溶液总量达到bmL ,则油酸浓度00100b a A ?=,(目的:酒精起稀释作用,便于在液面上形成单分子油膜层,避免油酸分子在液面上重叠,导致分子直径的测量值偏大); ②将油酸酒精溶液一滴一滴滴入量筒中,记下n 滴溶液的总体积V ,(目的:测大不测小,减小读数产生的偶然误差); ③在水面上均匀地撒上痱子粉或石膏粉,(目的:利于看清油膜层边缘的轮廓); ④将一滴油酸酒精溶液(令其体积为v 1)滴入水中,则这一滴溶液中的纯油酸体积为b a n v b a v v 10?=?=,(减少纯油酸的量,便于形成单分子油膜); ⑤在坐标纸上描出油膜层轮廓的形状,〔目的:求单分子油膜层的面积S ,数格子,多余半格算一格(偏大),少于半格舍去(偏小),整体面积偏差可以忽略不计〕; ⑥令油酸分子的直径为d ,则nbs va s v d 0== 。 二、分子在永不停息地做无规则的热运动。

高中物理选修3-3知识点归纳

选修3-3学问点归纳2017-11-15 一、分子动理论 1、物体是由大量分子组成:阿伏伽德罗第一个相识到物体是由分子组成的。 ①分子大小数量级10-10m ②A N M m 摩分子=(对固体液体气体)A N V V 摩分子=(对固体和液体)摩摩物物V M V m ==ρ 2、油膜法估测分子的大小: ①S V d 纯油酸=,V 为纯油酸体积,而不能是油酸溶液体积。 ②试验的三个假设(或近似):分子呈球形;一个一个整齐地紧密排列;形成单分子层油膜。 3、分子热运动: ①物体内部大量分子的无规则运动称为热运动,在电子显微镜才能视察得到。 ②扩散现象和布朗运动证明分子永不停息作无规则运动,扩散现象还说明白分子间存在间隙。 ③布朗运动是固体小颗粒在液体或气体中的运动,反映了液体分子或气体分子无规则运动。颗粒越小、温度越高,现象越明显。从阳光中看到教室中尘埃的运动不是布朗运动。 4、分子力: ①分子间同时存在引力和斥力,都随距离的增大而减小,随距离的减小而增大,斥力总比引力变更得快。 ②当r=r 0=10-10m 时,引力=斥力,分子力为零;当r>r 0,表现为引力;当r

高中物理热学知识点

选修3-3《热学》 一、知识网络 分子直径数量级 物质是由大量分子组成的 阿伏加德罗常数 油膜法测分子直径 分子动理论 分子永不停息地做无规则运动 扩散现象 布朗运动 分子间存在相互作用力,分子力的F -r 曲线 分子的动能;与物体动能的区别 物体的内能 分子的势能;分子力做功与分子势能变化的关系;E P -r 曲线 物体的内能;影响因素;与机械能的区别 单晶体——各向异性(热、光、电等) 晶体 多晶体——各向同性(热、光、电等) 有固定的熔、沸点 非晶体——各向同性(热、光、电等)没有固定的熔、沸点 浸润与不浸润现象——毛细现象——举例 饱和汽与饱和汽压 液晶 体积V 气体体积与气体分子体积的关系 温度T (或t ) 热力学温标 分子平均动能的标志 压强的微观解释 压强P 影响压强的因素 求气体压强的方法 改变内能的物理过程 做功 ——内能与其他形式能的相互转化 热传递——物体间(物体各部分间)内能的转移 热力学第一定律 能量转化与守恒 能量守恒定律 热力学第二定律(两种表述)——熵——熵增加原理 能源与环境 常规能源.煤、石油、天然气 新能源.风能、水能、太阳能、核能、地热能、海洋能等 二、考点解析 考点64 物体是由大量分子组成的 阿伏罗德罗常数 要求:Ⅰ 阿伏加德罗常数(N A =6.02×1023mol -1)是联系微观量与宏观量的桥梁。 设分子体积V 0、分子直径d 、分子质量m ;宏观量为.物质体积V 、摩尔体积V 1、物质质量M 、摩尔质量μ、物质密度ρ。 (1)分子质量:A A ==N V N m ρμ (2)分子体积:A A 10PN N V V μ== 分 子 动 理 论 热力 学 固体 热力学定律 液体 气 体

高中物理选修3-3 知识点梳理和总结

选修3-3 热学 一、分子动理论 1.物体是由大量分子组成的 (1)分子的大小 ①分子直径:数量级是10-10 m ; ②分子质量:数量级是10-26 kg ; ③测量方法:油膜法. (2)阿伏加德罗常数:1 mol 任何物质所含有的粒子数,N A =6.02×1023 mol - 1. (3)微观量:分子体积V 0、分子直径d 、分子质量m 0. (4)宏观量:物体的体积V 、摩尔体积V m 、物体的质量m 、摩尔质量M 、物体的密度ρ. (5)关系: ①分子的质量:m 0=M N A =ρV m N A ②分子的体积:V 0=V m N A =M ρN A ③物体所含的分子数:N =V V m ·N A =m ρV m ·N A 或N =m M ·N A =ρV M ·N A (6)两种模型: ①球体模型直径为:d = 36V 0 π ②立方体模型边长为:d =3 V 0 2.分子热运动:一切物质的分子都在永不停息地做无规则运动. (1)扩散现象:相互接触的不同物质彼此进入对方的现象.温度越高,扩散越快,可在固体、液体、气体中进行. (2)布朗运动: ①定义:悬浮在液体(或气体)中的小颗粒的永不停息地无规则运动. ②实质:布朗运动反映了液体分子的无规则运动. ③决定因素:颗粒越小,运动越明显;温度越高,运动越剧烈. (3)气体分子运动速率的统计分布:

①同一温度下,大多数分子具有中等的速率;随温度升高,占总数比例最大的那些分子速率增大. ②气体分子运动速率的“三个特点” 某个分子的运动是无规则的,但大量分子的运动速率呈现统计规律,如图所示:横轴表示分子速率,纵轴表示各速率的分子数占总分子数的百分比,图像有三个特点: (1)“中间多,两头少”:同一温度下,特大或特小速率的分子数比例都较小,大多数分子具有中等的速率. (2)“图像向右偏移”:速率小的分子数减少,速率大的分子数增加,分 子的平均速率将增大,但速率分布规律不变. (3)“面积不变”:图线与横轴所围面积都等于1,不随温度改变. 二、内能 1.分子动能 (1)分子动能:分子热运动所具有的动能; (2)分子平均动能:所有分子动能的平均值.温度是分子平均动能的标志. 2.分子势能:由分子间相对位置决定的能,在宏观上分子势能与物体体积有关,在微观上与分子间的距离有关.3.物体的内能 (1)内能:物体中所有分子的热运动动能与分子势能的总和. (2)决定因素:温度、体积和物质的量. 4.分子力 (1)分子间同时存在引力和斥力,且都随分子间距离的增大而减小,随分子间距离的减小而增大,但总是斥力变化得较快. (2)分子力、分子势能与分子间距离的关系 分子力曲线与分子势能曲线:分子力F、分子势能E p与分子间距离r的关系图线如图所示(取无穷远处分子势能E p=0): (3)分子力、分子势能与分子间距离的关系 ①当r>r0时,分子力为引力,当r增大时, 分子力做负功,分子势能增加. ②)当r

物理3-3知识点总结

物理3-3知识点总结 物理是高中生非常重要的一门课,关于3-3的知识点有哪些呢?接下来店铺为你整理了物理3-3知识点的总结,一起来看看吧。 物理3-3知识点:热力学第二定律 1、热力学第二定律 (1)常见的两种表述 ①克劳修斯表述(按热传递的方向性来表述):热量不能自发地从低温物体传到高温物体。 ②开尔文表述(按机械能与内能转化过程的方向性来表述):不可能从单一热源吸收热量,使之完全变成功,而不产生其他影响。 a.“自发地”指明了热传递等热力学宏观现象的方向性,不需要借助外界提供能量的帮助。 b.“不产生其他影响”的涵义是发生的热力学宏观过程只在本系统内完成,对周围环境不产生热力学方面的影响.如吸热、放热、做功等。 (2)热力学第二定律的实质 热力学第二定律的每一种表述,都揭示了大量分子参与宏观过程的方向性,进而使人们认识到自然界中进行的涉及热现象的宏观过程都具有方向性。 2、能量守恒定律 能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到另一物体,在转化和转移的过程中其总量不变。 第一类永动机不可制成是因为其违背了热力学第一定律; 第二类永动机:违背宏观热现象方向性的机器被称为第二类永动机.这类永动机不违背能量守恒定律,不可制成是因为其违背了热力学第二定律(一切自然过程总是沿着分子热运动的无序性增大的方向进行)。 熵是分子热运动无序程度的定量量度,在绝热过程或孤立系统中,熵是增加的。 3、能量耗散:系统的内能流散到周围的环境中,没有办法把这些

内能收集起来加以利用。 物理3-3知识点:分子动理论 2、分子永不停息的做无规则的热运动(布朗运动扩散现象) (1)扩散现象:不同物质能够彼此进入对方的现象,说明了物质分子在不停地运动,同时还说明分子间有空隙,温度越高扩散越快。可以发生在固体、液体、气体任何两种物质之间。 (2)布朗运动:它是悬浮在液体(或气体)中的固体微粒的无规则运动,是在显微镜下观察到的。 ①布朗运动的三个主要特点:永不停息地无规则运动;颗粒越小,布朗运动越明显;温度越高,布朗运动越明显。 ②产生布朗运动的原因:它是由于液体分子无规则运动对固体微小颗粒各个方向撞击的不均匀性造成的。 ③布朗运动间接地反映了液体分子的无规则运动,布朗运动、扩散现象都有力地说明物体内大量的分子都在永不停息地做无规则运动。 (3)热运动:分子的无规则运动与温度有关,简称热运动,温度越高,运动越剧烈。 3、分子间的相互作用力 (1)分子间同时存在引力和斥力,两种力的合力又叫做分子力。 (2)分子之间的引力和斥力都随分子间距离增大而减小,随分子间距离的减小而增大。但总是斥力变化得较快。 物理3-3知识点:气体 1、分子热运动速率的统计分布规律 (1)气体分子间距较大,分子力可以忽略,因此分子间除碰撞外不受其他力的作用,故气体能充满它能达到的整个空间。 (2)分子做无规则的运动,速率有大有小,且时而变化,大量分子的速率按“中间多,两头少”的规律分布。 (3)温度升高时,速率小的分子数减少,速率大的分子数增加,分子的平均速率将增大(并不是每个分子的速率都增大),但速率分布规律不变。

高中物理选修3-3知识点与题型复习

热学知识点复习 → 制作人:湄江高级中学:吕天鸿 一、固、液、气共有性质 1、组成物质的分子永不停息、无规则运动。温度T 越高,运动越激烈,分子平均动能 。 注意:对于理想气体,温度T 还决定其内能的变化。 扩散现象:相互渗透的 反应 2、分子运动的表现 布朗运动:看不见的固体小颗粒被分子不平衡碰撞,颗粒越大,运动越 3、分子间同时存在引力与斥力,且都随着分子间距r 的增加而 。 (1)分子力的合力F 表现:是为F 引 还是F 斥?看间距与分界点r 0关系,看下图 当r=r 0时,F 引=F 斥,分子力为0; 当r>r 0时,F 引>F 斥,分子力表现为 当r0 (2)等容过程:W=0。若体积V ↑,则气体对外界做功,W 取“—”负号计算。反之亦然 (3)绝热过程:Q=0。 3、再次强调:温度T 决定分子平均动能的变化。也决定理想气体的内能变化 四、气体实验定律→ 理想气体→P 、V 、T=t 0c+273 三个物理量关系 1、三条特殊线 (等温线:P 1V 1=p 2V 2 ) 等容线: 11T P =2 2T P 等压线2211T V T V = C T PV 常量=

最新高中物理3-3热学知识点归纳55481教学教材

高中物理3-3热学知识点归纳55481 20XX年XX月摘要 Ideal is the beacon. Without ideal , there is no secure direction ; without direction , there is no life

选修3-3知识点归纳 一、分子运动论 1. 物质是由大量分子组成的 (1)分子体积ﻫ 分子体积很小,它的直径数量级是 (2)分子质量 分子质量很小,一般分子质量的数量级是 (3)阿伏伽德罗常数 1摩的任何物质含有的微粒数相同,这个数的测量值。ﻫ设微观量为:分子体积V 0、分子直径d 、分子质量m;宏观量为:物质体积V、摩尔体积V 1、物质质量M 、摩尔质量μ、物质密度ρ. 分子质量: 分子体积: (对气体,V 0应为气体分子占据的空间大小) 分子直径: 球体模型:V d N =3A )2(34π303 A 6=6=ππV N V d (固体、液体一般用此模型) 立方体模型:30=V d (气体一般用此模型)(对气体,d 理解为相邻分子间的平均距离) 分子的数量.A 1 A 1A A ====N V V N V M N V N M n ρμρμ 2. 分子永不停息地做无规则热运动 (1)分子永不停息做无规则热运动的实验事实:扩散现象和布郎运动。(2) 布朗运动 布朗运动是悬浮在液体(或气体)中的固体微粒的无规则运动。布朗运动 不是分子本身的运动,但它间接地反映了液体(气体)分子的无规则运动。ﻫ(3)实验中画出的布朗运动路线的折线,不是微粒运动的真实轨迹。 因为图中的每一段折线,是每隔30s 时间观察到的微粒位置的连线,就是在这短短的30s 内,小颗粒的运动也是极不规则的。ﻫ(4)布朗运动产生的原因 大量液体分子(或气体)永不停息地做无规则运动时,对悬浮在其中的微粒撞击作用的不平衡性是产生布朗运动的原因。简言之:液体(或气体)分子永不停息的无规则运动是产生布朗运动的原因。 (5)影响布朗运动激烈程度的因素 固体微粒越小,温度越高,固体微粒周围的液体分子运动越不规则,对微粒碰撞的不平衡性越强,布朗运动越激烈。 (6)能在液体(或气体)中做布朗运动的微粒都是很小的,一般数量级在,这种微粒肉眼是看不到的,必须借助于显微镜。3.分子间存在着相互作用力 (1)分子间的引力和斥力同时存在,实际表现出来的分子力是分子引力和斥力的合力。

高中物理选修-3热学知识点归纳

高中物理选修3-3热学知识点归纳 一、分子运动论 1. 物质是由大量分子组成的 (1)分子体积 分子体积很小,它的直径数量级是 (2)分子质量 分子质量很小,一般分子质量的数量级是 (3)阿伏伽德罗常数(宏观世界与微观世界的桥梁) 1摩尔的任何物质含有的微粒数相同,这个数的测量值: 设微观量为:分子体积V 0、分子直径d 、分子质量m ; 宏观量为:物质体积V 、摩尔体积V 1、物质质量M 、摩尔质量μ、 物质密度ρ. 分子质量: 分子体积: (对气体,V 0应为气体分子平均占据的空间大小) 分子直径: 球体模型: V d N =3A )2(34π 303A 6=6=π πV N V d (固体、液体一般用此模型) 立方体模型:30=V d (气体一般用此模型)(对气体,d 理解为相 邻分子间的平均距离)

分子的数量.A 1 A 1A A N V V N V M N V N M n ====ρμρμ 2. 分子永不停息地做无规则热运动 (1)分子永不停息做无规则热运动的实验事实:扩散现象和布郎运动。 (2)布朗运动 布朗运动是悬浮在液体(或气体)中的固体微粒的无规则运动。布朗运动不是分子本身的 运动,但它间接地反映了液体(气体)分子的无规则运动。 (3)实验中画出的布朗运动路线的折线,不是微粒运动的真实轨迹。 因为图中的每一段折线,是每隔30s 时间观察到的微粒位置的连线,就是在这短短的30s 内,小颗粒的运动也是极不规则的。 (4)布朗运动产生的原因 大量液体分子(或气体)永不停息地做无规则运动时,对悬浮在其中的微粒撞击作用的不平衡性是产生布朗运动的原因。简言之:液体(或气体)分子永不停息的无规则运动是产生布朗运动的原因。 (5)影响布朗运动激烈程度的因素 固体微粒越小,温度越高,固体微粒周围的液体分子运动越不规则,对微粒碰撞的不平衡性越强,布朗运动越激烈。 (6)能在液体(或气体)中做布朗运动的微粒都是很小的,一般数量级在 ,这种微粒肉眼是看不到的,必须借助于显微镜。

2022年高考物理总复习高中物理3-3热学必背知识点汇编(精华版)

2022年高考物理总复习高中物理3-3热学必背知识点汇编 (精华版) 一、分子动理论 1、物体是由大量分子组成的 分子体积: 分子体积很小,它的直径数量级是错误!未找到引用源。 分子质量: 分子质量很小,一般分子质量的数量级是10-26kg 错误!未找到引用源。 微观量:分子体积V 0、分子直径d 、分子质量m 0 宏观量:物质体积V 、摩尔体积V A 、物体质量m 、摩尔质量M 、物质密度ρ。 联系桥梁:阿伏加德罗常数(N A =6.02×1023 mol -1 ) A V M V m ==ρ (1)分子质量:A A 0N V N M N m m A ρ=== (2)分子体积:A A 0N M N V N V V A ρ=== (对气体,V 0应为气体分子占据的空间大小) (3)分子大小:(数量级10-10m) ○ 1球体模型.30)2 (34d N M N V V A A A πρ=== 直径3 06πV d =(固、液体一般用此模型) 油膜法估测分子大小:S V d = S —单分子油膜的面积,V —滴到水中的纯油酸的体积 ○2立方体模型.3 0=V d (气体一般用此模型;对气体,d 应理解为相邻分子间 的平均距离) 注意:固体、液体分子可估算分子质量、大小(认为分子一个挨一个紧密排列); 气体分子间距很大,大小可忽略,不可估算大小,只能估算气体分子所占空间、分子质量。 (4)分子的数量:A A N M V N M m nN N A ρ== = 或者 A A N M V N V V nN N A A ρ== = 2、分子永不停息地做无规则运动 (1)扩散现象:不同物质彼此进入对方的现象。温度越高,扩散越快。直接说明 了组成物体的分子总 是不停地做无规则运动,温度越高分子运动越剧烈。 (2)布朗运动:悬浮在液体中的固体微粒的无规则运动。 发生原因是固体微粒受到包围微粒的液体分子无规则运动地撞击的不平衡性造成的.因而间接.. 说明 了液体分子在永不停息地做无规则运动. ① 布朗运动是固体微粒的运动而不是固体微粒中分子的无规则运动. ②布朗运动反映液体分子的无规则运动但不是液体分子的运动. ③课本中所示的布朗运动路线,不是固体微粒运动的轨迹. ④微粒越小,布朗运动越明显;温度越高,布朗运动越明显. ⑤能在液体(或气体)中做布朗运动的微粒都是很小的,一般数量级在错误!未 找到引用源。,这种微粒肉眼是看不 到的,必须借助于显微镜。 3、分子间存在相互作用的引力和斥力 ①分子间引力和斥力一定同时存在,且都随分子间距离的增大而减小,随分子间

高中物理热学知识点归纳全面很好

高中物理热学知识点归纳全面很好 (总7页) -本页仅作为预览文档封面,使用时请删除本页-

选修3-3热学知识点归纳 一、分子运动论 1. 物质是由大量分子组成的 (1)分子体积 分子体积很小,它的直径数量级是 (2)分子质量 分子质量很小,一般分子质量的数量级是 (3)阿伏伽德罗常数(宏观世界与微观世界的桥梁) 1摩尔的任何物质含有的微粒数相同,这个数的测量值: 设微观量为:分子体积V 0、分子直径d 、分子质量m ; 宏观量为:物质体积V 、摩尔体积V 1、物质质量M 、摩尔质量μ、物质密度ρ. 分子质量: 分子体积: (对气体,V 0应为气体分子平均占据的空间大小) 分子直径: 球体模型: V d N =3A )2(34π 303A 6=6=ππV N V d (固体、液体一般用此模型) 立方体模型:30=V d (气体一般用此模型)(对气体,d 理解为相邻分子间的平均距离) 分子的数量.A 1 A 1A A N V V N V M N V N M n ==== ρμρμ 2. 分子永不停息地做无规则热运动 (1)分子永不停息做无规则热运动的实验事实:扩散现象和布 郎运动。 (2)布朗运动 布朗运动是悬浮在液体(或气体)中的固体微粒的无规则运动。布朗运动不是分子本身的 运动,但它间接地反映了液体(气体)分子的无规则运动。

(3)实验中画出的布朗运动路线的折线,不是微粒运动的真实轨迹。 因为图中的每一段折线,是每隔30s时间观察到的微粒位置的连线,就是在这短短的30s内,小颗粒的运动也是极不规则的。 (4)布朗运动产生的原因 大量液体分子(或气体)永不停息地做无规则运动时,对悬浮在其中的微粒撞击作用的不平衡性是产生布朗运动的原因。简言之:液体(或气体)分子永不停息的无规则运动是产生布朗运动的原因。 (5)影响布朗运动激烈程度的因素 固体微粒越小,温度越高,固体微粒周围的液体分子运动越不规则,对微粒碰撞的不平衡性越强,布朗运动越激烈。 (6)能在液体(或气体)中做布朗运动的微粒都是很小的,一般数量级在,这种微粒肉眼是看不到的,必须借助于显微镜。 3.分子间存在着相互作用力 (1)分子间的引力和斥力同时存在,实际表现出来的分子力是分子引力和斥力的合力。 分子间的引力和斥力只与分子间距离(相对位置)有关,与分子的运动状态无关。 (2)分子间的引力和斥力都随分子间的距离r的增大而减小,随分子间的距离r的减小而增大,但斥力的变化比引力的变化快。 (3)分子力F和距离r的关系如下图

相关主题
文本预览
相关文档 最新文档