当前位置:文档之家› 不锈钢的铣削加工参数

不锈钢的铣削加工参数

.

.

不锈钢的铣削加工

铣削不锈钢的特点是:不锈钢的粘附性及熔着性强,切屑容易粘附在铣刀刀

齿上,使切削条件恶化;逆铣时,刀齿先在已经硬化的表面上滑行,增加了加工

硬化的趋势;铣削时冲击、振动较大,使铣刀刀齿易崩刃和磨损。

铣削不锈钢除端铣刀和部分立铣刀可用硬质合金作铣刀刀齿材料外,其余各类铣刀均采用高速钢,特别是钨—钼系和高钒高速钢具有良好的效果,其刀具耐用度可比W18Cr4V提高1~2倍。适宜制作不锈钢铣刀的硬质合金牌号有YG8、YW2、813、798、YS2T、YS30、YS25等。

铣削不锈钢时,切削刃既要锋利又要能承受冲击,容屑槽要大。可采用大螺旋角铣刀(圆柱铣刀、立铣刀),螺旋角b从20°增加到45°(g

n

=5°),刀具耐用度可

提高2倍以上,因为此时铣刀的工作前角g

0e

由11°增加到27°以上,铣削轻快。但b值不宜再大,特别是立铣刀以b≤35°为宜,以免削弱刀齿。

采用波形刃立铣刀加工不锈钢管材或薄壁件,切削轻快,振动小,切屑易碎,工件不变形。用硬质合金立铣刀高速铣削、可转位端铣刀铣削不锈钢都能取得良好的效果。

用银白屑(SWC)端铣刀铣削1Cr18Ni9Ti,其几何参数

采用波形刃立铣刀加工不锈钢管材或薄壁件,切削轻快,振动小,切屑易碎,工件不变形。用硬质合金立铣刀高速铣削、可转位端铣刀铣削不锈钢都能取得良好的效果。

用银白屑(SWC)端铣刀铣削1Cr18Ni9Ti,其几何参数为g

f =5°、g

p

=15°、a

f

=15°、

a p =5°、k

r

=55°、k′

r

=35°、g

01

=-30°、b

g

=0.4mm、r

e

=6mm,当V

c

=50~90 m/min、

V f =630~750mm/min、a′

p

=2~6mm并且每齿进给量达0.4~0.8mm时,铣削力减小

10%~15%,铣削功率下降44%,效率也大大提高。其原理是在主切削刃上磨出负倒棱,铣削时人为地产生积屑瘤,使其代替切削刃进行切削,积屑瘤的前角g

b 可达20~~302,由于主偏角的作用,积屑瘤受到一个前刀面上产生的平行于切削刃的推力作用而成为副屑流出,从而带走了切削热,降低了切削温度。

铣削不锈钢时,应尽可能采用顺铣法加工。不对称顺铣法能保证切削刃平稳地从金属中切离,切屑粘结接触面积较小,在高速离心力的作用下易被甩掉,以免刀齿重新切入工件时,切屑冲击前刀面产生剥落和崩刃现象,提高刀具的耐用度。

高速钢刀具加工参数:

直径:主轴转速(r/min)进给量mm/min

3~4 1100~750 10~15

5~6 750~ 550 15~20

8~10 600~350 20~30

12~14 350~270 30~37

16~18 270~230 37~47,5

20~22 250~200 47~55

硬制合金刀具:1500~2000 F120~150

不锈钢材料加工难点分析

不锈钢材料加工难点分析 不锈钢材料加工难点主要有以下几个方面: 1. 切削力大,切削温度高 该类型材料强度大,切削时切向应力大、塑性变形大,因而切削力大。此外材料导热性极差,造成切削温度升高,且高温往往集中在刀具刃口附近的狭长区域内,从而加快了刀具的磨损。 2. 加工硬化严重 奥氏体不锈钢以及一些高温合金不锈钢均为奥氏体组织,切削时加工硬化倾向大,通常是普通碳素钢的数倍,刀具在加工硬化区域内切削,使刀具寿命缩短。 3. 容易粘刀 无论是奥氏体不锈钢还是马氏体不锈钢均存在加工时切屑强韧、切削温度很高的特点。当强韧的切屑流经前刀面时,将产生粘结、熔焊等粘刀现象,影响加工零件表面粗糙度。 4. 刀具磨损加快 上述材料一般含高熔点元素、塑性大,切削温度高,使刀具磨损加快,磨刀、换刀频繁,从而影响了生产效率,提高了刀具使用成本。 主要是降低切削线速度,进给。采用专门加工不锈钢或者高温合金的刀具,钻孔攻丝最好内冷。 不锈钢零件加工工艺

通过上述加工难点分析,不锈钢的加工工艺及相关刀具参数设计与普通结构钢材料应具有较大的不同,其具体加工工艺如下: 1.钻孔加工 在钻孔加工时,由于不锈钢材料导热性能差,弹性模量小,孔加工起来也比较困难。解决此类材料的孔加工难题,主要是选用合适的刀具材料,确定合理的刀具的几何参数以及刀具的切削用量。钻削上述材料时,钻头一般应选用W6Mo5Cr4V2Al、W2Mo9Cr4Co8等材质的钻头,这些材质钻头缺点是价格比较昂贵,而且难以采购。而采用常用的W18Cr4V普通标准高速钢钻头钻孔时,由于存在顶角较小、切屑太宽而不能及时排出孔外、切削液不能及时冷却钻头等缺点,再加上不锈钢材料导热性差,造成集中在刀刃上的切削温度升高,容易导致两个后刀面和主刃烧伤及崩刃,使钻头的使用寿命降低。 1)刀具几何参数设计在采用W18Cr4V普通高速钢钻头钻孔时,切削力及切削温度均集中在钻尖上,为提高钻头切削部位的耐用度,可以适当增大顶角角度,顶角一般选135°~140°,顶角增大也将使外缘前角减小,钻屑变窄,以利于排屑。但是加大顶角后,钻头的横刃变宽,造成切削阻力增大,因而必须对钻头横刃进行修磨,修磨后横刃的斜角为47°~55°,横刃前角为3°~5°,修磨横刃时,应将切削刃与圆柱面转角处修磨成圆角,以增加横刃强度。由于不锈钢材料弹性模量较小,切屑层下的金属弹性恢复大,加之加工过程中加工硬化严重,后角太小会加快钻头后刀面的磨损,而且增加了切削温度,降低钻头的寿命。因此须适当加大后角,但后角太大,将使钻头的主刃变得单薄,减小了

不锈钢加工刀具选择

不锈钢加工刀具选择 1.引言 随着航空、航天、石油、化工、冶金和食品等工业的蓬勃发展,不锈钢材料已得到广泛应用,而不锈钢材料由于韧性大、热强度高、导热系数低、切削时塑性变形大、加工硬化严重、切削热多、散热困难等原因,造成刀尖处切削温度高、切屑粘附刃口严重、容易产生积屑瘤,既加剧了刀具的磨损,又影响加工表面粗糙度。此外,由于切屑不易卷曲和折断,也会损伤已加工表面,影响工件的质量。为提高加工效率和工件质量,正确选择刀具材料、车刀几何参数和切削用量至关重要。 2 .刀具材料的选择 正确选用刀具材料是保证高效率加工不锈钢的决定因素。根据不锈钢的切削特点,刀具材料应具备足够的强度、韧性、高硬度和高耐磨性且与不锈钢的粘附性要小。常用的刀具材料有硬质合金和高速钢两大类,形状复杂的刀具主要采用高速钢材料。由于高速钢切削不锈钢时的切削速度不能太高,因此影响生产效率的提高。对于较简单的车刀类刀具,刀具材料应选用强度高、导热性好的硬质合金,因其硬度、耐磨性等性能优于高速钢。常用的硬质合金材料有:钨钻类(YG3 YG6 YG8 YG3X YG6X,钨钻钛类(YT30 YT15 YT14 YT5), 通用类(YW1 YW2。YG类硬质合金的韧性和导热性较好,不易与切屑粘结,因此适用于不锈钢粗车加工;而YW类硬质合金的硬度、耐磨性、耐热性和抗氧化性能以及韧性都较好,适合于不锈钢的精车加工。加工1Cr18Ni9Ti 奥氏体不锈钢时,不宜选用YT类硬质合金,由于不锈钢中的Ti和YT类硬质合金中的Ti 产生亲合作用,切屑容易把合金中的Ti 带走,促使刀具磨损加剧。 〕 3.刀具几何角度的选择 刀具切削部分的几何角度,对于不锈钢切削加工的生产率、刀具耐用度、被加工表面粗糙度、切削力以及加工硬化等方面都有很大的影响,合理选择和改进刀具几何参数是保证加工质量、提高效率、降低成本的有效途径。 (1)车刀前角Y0的选择 前角的大小决定刀刃的锋利与强度。增大前角可以减小切屑的变形,从而减小切削力和切削功率,降低切削温度,提高刀具耐用度。但是增大前角会使楔角减小,降低刀刃强度,造成崩刃,使刀具耐用度下降。车削不锈钢时,在不降低刀具强度的条件下,应把前角适当取大一些。在刀具前角大时其塑性变形小,切削力和切削热降低,减轻加工硬化趋势,提高刀具耐用度,一般刀具前角宜取12°?20°。 (2)车刀后角a0的选择 在切削过程中,后角可以减小后刀面与切削表面的摩擦。若后角过

1-切削参数优化模型的建立

切削参数优化模型的建立 1.1 优化变量确定 在数控切削加工中,切削速度c v 、进给量f 和切削深度sp a 称为切削用量三 要素[11]。这三要素是主要的优化变量,但由于切削深度对刀具耐磨度的影响较切削速度和进给量要小,而且在车削加工时,切削深度可根据工件余量和具体的加工要求来确定,本文视为已知量,不进行优化。因此,优化变量主要为切削速度v c 和进给量f 。 1.2 优化目标函数 本文主要从高效(加工时间短)、低碳(碳排放少)两大方面对加工过程进行优化,优化目标为时间和碳排放。 1.2.1 切削加工过程时间函数 一个工序加工过程的加工工时包括切削时间、换刀时间、工序辅助时间。最短加工工时的切削用量可实现最高的生产效率(高效)。加工过程时间函数的数学模型可表示为[13] ot t T m t ct t m t P T +?+= (1) sp V sp V m fa d L nfa L c 01000v t π?=?= (2) 泰勒广义刀具的耐用度计算公式为[14] z sp T a C T y c x f v = (3) 式中,m t 是工序切削时间,ct t 是换刀一次所用时间,ot t 是除换刀外其他辅助时间,T 是刀具寿命,W L 是加工长度,Δ是加工余量,n 是主轴转速,0d 是工件直径,c v 是切削速度,f 是进给量,sp a 是切削深度,T C 是与切削条件有关的常数,x,y,z 是刀具寿命系数,则加工过程时间函数为 ot T z sp y x c w ct sp c w P t C a f v L d t fa v L T +?+?=---10001000d 11100ππ (4) 1.2.2 切削加工过程碳排放函数 切削加工过程的碳排放主要包括加工过程消耗原材料引起的碳排放m C 、消耗电能引起的碳排放e C 、加工过程中所用辅助物料(如刀具使用产生的碳排放t C 和切削液使用产生的碳排放C C )以及由加工过程产生切屑的后期处理引起的碳排放S C ,如图1所示,

不锈钢的切削加工

1 什么是不锈钢? 通常,人们把含铬量大于12%或含镍量大于8%的合金钢叫不锈钢。这种钢在大气中或在腐蚀性介质中具有一定的耐蚀能力,并在较高温度(>450℃)下具有较高的强度。含铬量达16%~18%的钢称为耐酸钢或耐酸不锈钢,习惯上通称为不锈钢。 钢中含铬量达12%以上时,在与氧化性介质接触中,由于电化学作用,表面很快形成一层富铬的钝化膜,保护金属内部不受腐蚀;但在非氧化性腐蚀介质中,仍不易形成坚固的钝化膜。为了提高钢的耐蚀能力,通常增大铬的比例或添加可以促进钝化的合金元素,加Ni、Mo、Mn、Cu、Nb、Ti、W、Co等,这些元素不仅提高了钢的抗腐蚀能力,同时改变了钢的内部组织以及物理力学性能。这些合金元素在钢中的含量不同,对不锈钢的性能产生不同的影响,有的有磁性,有的无磁性,有的能够进行热处理,有的则不能热处理。 由于不锈钢所具有的上述特性,越来越广泛地应用于航空、航天、化工、石油、建筑和食品等工业部门及日常生活中。所含的合金元素对切削加工性影响很大,有的甚至很难切削。 2 不锈钢可分为哪几类? 不锈钢按其成分,可分为以铬为主的铬不锈钢和以铬、镍为主的铬镍不锈钢两大类。 工业上常用的不锈钢一般按金相组织分类,可分为以下五大类: 1.马氏体不锈钢:含铬量12%~18%,含碳量0.1%~0.5%(有时达1%),常见的有1Cr13、2 Cr13、3Cr13、4Cr13、1Cr17Ni2、9Cr18、9Cr18MoV、30Cr13Mo等。 2.铁素体不锈钢:含铬量12%~30%,常见的有0Cr13、0Cr17Ti、0Cr13Si4NbRE、1Cr17、1 Cr17Ti、1Cr17M02Ti、1Cr25Ti、1Cr28等。 3.奥氏体不锈钢:含络量12%~25%,含镍量7%~20%(或20%以上),最典型的代表是1Cr1 8Ni9Ti,常见的还有00Cr18Ni10、00Cr18Ni14Mo2Cu2、0Cr18Ni12Mo2Ti、0Cr18Ni18Mo2 Cu2Ti、0Cr23Ni28M03Cu3Ti、1Cr14Mn14Ni、2Cr13Mn9Ni4、1Cr18Mn8Ni5N等。 4.奥氏体+铁素体不锈钢:与奥氏体不锈钢相似,仅在组织中含有一定量的铁素体,常见的 有0Cr21Ni5Ti、1Cr21Ni5Ti、1Cr18Mn10Ni5M03N、0Cr17Mn13Mo2N、1Cr17Mn9Ni3M03Cu2 N、Cr2bNi17M03CuSiN、1Cr18Ni11Si4AlTi等。 5.沉淀硬化不锈钢:含有较高的铬、镍和很低的碳,常见的有0Cr17Ni4Cu4Nb、0Cr17Ni7A l、0Cr15Ni7M02Al等。 前两类为铬不锈钢,后三类为铬镍不锈钢。 3 不锈钢有哪些物理、力学性能? 1.马氏体不锈钢:能进行淬火,淬火后具有较高的硬度、强度和耐磨性及良好的抗氧化性, 有的有磁性,但内应力大且脆。经低温回火后可消除其应力,提高塑性,切削加工较困 难,有切屑擦伤或粘结的明显趋向,刀具易磨损。 当钢中含碳量低于0.3%时,组织不均匀,粘附性强,切削时容易产生积屑瘤,且断屑困难,工件已加工表面质量低。含碳量达0.4%~0.5%时,切削加工性较好。

基于铣削均匀性的切削参数优化

* 国家自然科学基金资助项目(项目编号:50575126) 全国优秀博士学位论文作者专项资金(项目编号:200231)收稿日期:2007年7月 基于铣削均匀性的切削参数优化* 潘永智 艾 兴 赵 军 宋清华 山东大学 摘 要:分析了高速铣削加工切屑形成过程中刀具 工件的接触行为,提出了考虑轴向切削深度和径向切削深度的铣削均匀性模型。在此基础上,以恒定的金属去除率为约束条件、铣削均匀性系数为优化目标,建立了切削参数的优化模型。通过对航空铝合金进行高速铣削试验,验证了铣削均匀性理论及优化模型的合理性。结果表明,对于航空铝合金的高速铣削加工,采用大径向切深 小轴向切深有利于提高铣削均匀性,减小切削力。 关键词:高速铣削, 铣削力, 铣削均匀性, 螺旋角 Optimization of Machining Parameters Based on Milling Uniformity Pan Yongzhi Ai Xing Zhao Jun et al Abstract:The engagement behavior between tool workpiece during chip formation in high speed milling process was ana lyzed.A milling uniformity model was presented by terms of axial depth of cut and radial depth of cut.Based on the milling uni formity model,the opti mal model of machining parameters was built,where the constraint was the constant metal removal rate,and the opti mized target was the milling uniformity coefficient.The milling uniformity and opti mal model was validated by means of high speed milling experi ments.For high speed milling of aeronau tical aluminu m alloy 7050-T7451,i t is advantageous to i mprove milling uni formity and decrease cutti ng force by using bigger axial depth of cut and smaller radial depth of cu t. Keywords:high speed milling , milling force, milling uni formity, helix angle 1 引言 航空铝合金以其较高的强度、断裂韧性和抗应力 腐蚀断裂等特点,被广泛应用于飞机结构件的制造中[1] 。高速铣削航空铝合金的切削速度可达2000m/min 以上,切屑形成过程中刀具承受很高的机械循环载荷和热交变载荷,容易产生粘结 扩散磨损和疲劳破损,造成刀具失效。近年来,国内外学者从切削力、刀具寿命和工件表面粗糙度等方面对切削过程做了大量研究。研究者往往采用多元回归方法建立切削力、刀具寿命或工件表面粗糙度与切削参数的指数模型;采用响应曲面法,以恒定金属去除率为约束条件,以切削参数为横纵坐标轴,在对数域内建立切削力、刀具寿命或表面粗糙度和金属去除率的响应曲线,从而找出最优的切削参数组合[2~4]。上述经验模型简单地把切削过程作为 黑箱 处理,缺乏对切削形成过程的物理解释。实质上,铣削加工中切屑形成过程是刀具的切削刃与工件的 啮合 过程,啮合程度取决于轴向和径向切削深度[5]。因此,如何通过刀具与工件的啮合程度来评价铣削力的变化规律,进而优化切削用量是高速铣削切削力研究中值得关注的问题。 2 铣削均匀性建模 2.1 刀具 工件接触分析 铣削均匀性建模的基本思想是通过改善切屑形成过程中刀具 工件的啮合程度,来减小切削刃切入/切出工件时的振动与冲击,获得平稳的切削过程。如图1所示,在刀具 工件接触的不同时刻,切削刃与工件的接触线沿A 向移动至不同位置,铣削力的分布也随之改变。在BC D 区域内,随着刀齿逐渐切入,切削面积逐渐增大,切削力也随之增大。在C DEF 区域内,对于特定切削刃,切削面积和切削力保持恒定。在EFG 区域内,刀齿逐渐切出,切削面积逐渐变小,切削力随之减小[6]。切削力只作用在刀具 工件接触面积内,而接触面积的长度和宽度分别由轴向和径向切削深度决定。高速铣削加工过程中,刀具的旋转速度远大于进给速度,因此可假定在某一进给位置,刀具轴线固定不动,刀具做旋转运动[7],如图2、3所示。刀具 工件接触面积S 可按下式近似计算 S =C La (1)C L =D /2 (2) =arccos (1-2a e /D ) (3) 其中,C L 是刀具 工件接触表面进给方向上的长度, 圆弧BMC 在展开是刀具接触角,D 是刀具直径,a e 、a p 分别是轴向和径向切削深度。图3a 和 38 工具技术

不锈钢加工参数

不锈钢切削加工 不锈钢切削加工摘要:螺纹类零件10的数控车床加工编程NUM公司力推新一代Axium Power 数控系统数控铣削的编程与工艺分析基于细胞神经网络刀具磨损图像处理的研究中国最大乙烯装置的裂解气压缩机试车成功发动机盲孔除切屑机的研制与应用在不断变化时代的工具钢加工什么是智能变送器?机械故障的形成及其特性分析数控车间(机床)集成管理技术及产品浅谈CAD的特征造型技术轴承钢的表面强化方法如何进行电话销售?拉刀齿距及同时工作齿数的确定大型水轮机叶片的多轴联动数控加工编程技术张晓静:计算机在冲压领域的应用 PLC位控单元在精密磨削控制中的应用硬质材料铣削技术 CAD技术发展趋势数控机床软件界面人的因素分析 [标签:tag] 1 什么是不锈钢?通常,人们把含铬量大于12%或含镍量大于8%的合金钢叫不锈钢。这种钢在大气中或在腐蚀性介质中具有一定的耐蚀能力,并在较高温度(450℃)下具有较高的强度。含铬量达16%~18%的钢称为耐酸钢或耐酸不锈钢,习惯上通称为不锈钢。钢中含铬量达12%以上时,. 1?什么是不锈钢? 通常,人们把含铬量大于12%或含镍量大于8%的合金钢叫不锈钢。这种钢在大气中或在腐蚀性介质中具有一定的耐蚀能力,并在较高温度(>450℃)下具有较高的强度。含铬量达16%~18%的钢称为耐酸钢或耐酸不锈钢,习惯上通称为不锈钢。 钢中含铬量达12%以上时,在与氧化性介质接触中,由于电化学作用,表面很快形成一层富铬的钝化膜,保护金属内部不受腐蚀;但在非氧化性腐蚀介质中,仍不易形成坚固的钝化膜。为了提高钢的耐蚀能力,通常增大铬的比例或添加可以促进钝化的合金元素,加Ni、Mo、Mn、Cu、Nb、Ti、W、Co等,这些元素不仅提高了钢的抗腐蚀能力,同时改变了钢的内部组织以及物理力学性能。这些合金元素在钢中的含量不同,对不锈钢的性能产生不同的影响,有的有磁性,有的无磁性,有的能够进行热处理,有的则不能热处理。 由于不锈钢所具有的上述特性,越来越广泛地应用于航空、航天、化工、石油、建筑和食品等工业部门及日常生活中。所含的合金元素对切削加工性影响很大,有的甚至很难切削。2?不锈钢可分为哪几类? 不锈钢按其成分,可分为以铬为主的铬不锈钢和以铬、镍为主的铬镍不锈钢两大类。 工业上常用的不锈钢一般按金相组织分类,可分为以下五大类: 马氏体不锈钢:含铬量12%~18%,含碳量0.1%~0.5%(有时达1%),常见的有1Cr13、2Cr13、3Cr13、4Cr13、1Cr17Ni2、9Cr18、9Cr18MoV、30Cr13Mo等。?铁素体不锈钢:含铬量12%~30%,常见的有0Cr13、0Cr17Ti、0Cr13Si4NbRE、1Cr17、1Cr17Ti、1Cr17M02Ti、1Cr25Ti、1Cr28等。?奥氏体不锈钢:含络量12%~25%,含镍量7%~20%(或20%以上),最典型的代表是1Cr18Ni9Ti,常见的还有00Cr18Ni10、00Cr18Ni14Mo2Cu2、0Cr18Ni12Mo2Ti、0Cr18Ni18Mo2Cu2Ti、0Cr23Ni28M03Cu3Ti、1Cr14Mn14Ni、2Cr13Mn9Ni4、1Cr18Mn8Ni5N等。?奥氏体铁素体不锈钢:与奥氏体不锈钢相似,仅在组织中含有一定量的铁素体,常见的有0Cr21Ni5Ti、1Cr21Ni5Ti、1Cr18Mn10Ni5M03N、0Cr17Mn13Mo2N、1Cr17Mn9Ni3M03Cu2N、Cr2bNi17M03CuSiN、1Cr18Ni11Si4AlTi等。?沉淀硬化不锈钢:含有较高的铬、镍和很低的碳,常见的有0Cr17Ni4Cu4Nb、0Cr17Ni7Al、0Cr15Ni7M02Al等。 前两类为铬不锈钢,后三类为铬镍不锈钢。 3?不锈钢有哪些物理、力学性能? 马氏体不锈钢:能进行淬火,淬火后具有较高的硬度、强度和耐磨性及良好的抗氧化性,有的有磁性,但内应力大且脆。经低温回火后可消除其应力,提高塑性,切削加工较困难,有切屑擦伤或粘结的明显趋向,刀具易磨损。 当钢中含碳量低于0.3%时,组织不均匀,粘附性强,切削时容易产生积屑瘤,且断屑困难,

不锈钢的铣削加工参数

不锈钢的铣削加工 铣削不锈钢的特点是:不锈钢的粘附性及熔着性强,切屑容易粘附在铣刀刀 齿上,使切削条件恶化;逆铣时,刀齿先在已经硬化的表面上滑行,增加了加工硬化的趋势;铣削时冲击、振动较大,使铣刀刀齿易崩刃和磨损。 铣削不锈钢除端铣刀和部分立铣刀可用硬质合金作铣刀刀齿材料外,其余各类铣刀均采用高速钢,特别是钨—钼系和高钒高速钢具有良好的效果,其刀具耐用度可比W18Cr4V提高1~2倍。适宜制作不锈钢铣刀的硬质合金牌号有YG8、YW2、813、798、YS2T、YS30、YS25等。 铣削不锈钢时,切削刃既要锋利又要能承受冲击,容屑槽要大。可采用大螺旋角铣刀(圆柱铣刀、立铣刀),螺旋角b从20°增加到45°(g n =5°),刀具耐用 度可提高2倍以上,因为此时铣刀的工作前角g 0e 由11°增加到27°以上,铣削轻快。但b值不宜再大,特别是立铣刀以b≤35°为宜,以免削弱刀齿。 采用波形刃立铣刀加工不锈钢管材或薄壁件,切削轻快,振动小,切屑易碎,工件不变形。用硬质合金立铣刀高速铣削、可转位端铣刀铣削不锈钢都能取得良好的效果。 用银白屑(SWC)端铣刀铣削1Cr18Ni9Ti,其几何参数 采用波形刃立铣刀加工不锈钢管材或薄壁件,切削轻快,振动小,切屑易碎,工件不变形。用硬质合金立铣刀高速铣削、可转位端铣刀铣削不锈钢都能取得良好的效果。 用银白屑(SWC)端铣刀铣削1Cr18Ni9Ti,其几何参数为g f =5°、g p =15°、 a f =15°、a p =5°、k r =55°、k′ r =35°、g 01 =-30°、b g =、r e =6mm,当V c =50~90 m/min、 V f =630~750mm/min、a′ p =2~6mm并且每齿进给量达~时,铣削力减小10%~15%, 铣削功率下降44%,效率也大大提高。其原理是在主切削刃上磨出负倒棱,铣削时人为地产生积屑瘤,使其代替切削刃进行切削,积屑瘤的前角g b 可达20~~302,由于主偏角的作用,积屑瘤受到一个前刀面上产生的平行于切削刃的推力作用而成为副屑流出,从而带走了切削热,降低了切削温度。 铣削不锈钢时,应尽可能采用顺铣法加工。不对称顺铣法能保证切削刃平稳地从金属中切离,切屑粘结接触面积较小,在高速离心力的作用下易被甩掉,以免刀齿重新切入工件时,切屑冲击前刀面产生剥落和崩刃现象,提高刀具的耐用度。 高速钢刀具加工参数: 直径:主轴转速(r/min)进给量mm/min 3~4 1100~750 10~15 5~6 750~ 550 15~20 8~10 600~350 20~30 12~14 350~270 30~37 16~18 270~230 37~47,5 20~22 250~200 47~55

数控铣削加工工艺参数优化方法综述

数控铳削加工工艺参数优化方法综述 □杨扬I□蔡旺2 1.华中农业大学工学院农业部长江中下游农业装备重点、实验室武汉430070 2.华中科技大学机械科学与工程学院武汉430074 摘要:介绍了铳削力、铳削用量等数控铳削加工工艺参数,分析了材料去除率、表面粗糙度、能耗、铳刀颤振等工艺指标,并给出了数控號削加工工艺参数的优化目标、优化方法、现有试验研究,以及近似模型。所做研究可以为数控铳削加工工艺参数的选择和优化提供理论参考。 关键词:铳削工艺参数优化综述 中图分类号:TH162文献标志码:A文章编号:1000-4998(2019)01-0057-08 Abstract:The process parameters for CNC milling such as milling force and milling amount were introduced.The technical indexes such as material removal rate,surface roughness,energy consumption and mill flutter were analyzed.The optimization targets&optimization methods of process parameters for CNC milling,existing experimental studies,and approximate models were given.The research can provide a theoretical reference for the selection and optimizatio Key Words:Milling Processing Parameter 1概论 2015年5月,我国政府将先进制造技术列为我国制造业未来十年的重点发展方向之一⑴。数控加工作为一种重要的先进制造技术手段,对我国制造企业提高产品生产质量、缩短生产周期、降低生产成本至关重要。我国数控机床保有量与西方制造强国的差距已经大大缩小,但利用效率却不高,往往导致数控机床无法充分发挥自身性能,难以达到理想的加工精度和效率,造成加工资源的浪费和成本的增加。要使我国由制造大国迈向制造强国,不断提升数控机床的利用效率是重中之重。 工艺参数优化是提升数控机床利用效率的一个重要方面,工艺参数的选取直接影响机床的加工能耗、刀具寿命、加工质量、加工成本和加工效率等性能指标。若选取不当,甚至会损坏机床、刀具和工件,造成不必要的资源浪费,同时也会大幅增加制造成本。生产实践表明,采用合理科学的加工工艺参数组合,能够充分发挥加工设备和加工刀具的性能。特别是对于数控机床而言,高度自动化的加工设备可使加工时间大大缩短,因而在有效的加工时间内充分利用合理或优化的加工工艺参数,对提高整个加工系统的经济效益尤为重要。此外,通过对数控加工系统中的加工信息进行预测与*国家自然科学基金资助项目(编号:51705182) 收稿日期:2018年6月 曲馬机械制造总第653期of processing parameters for CNC milling. Optimization Overview 优化,为实际数控加工过程的智能化创造了有利条件,也是研究和把握数控加工过程的重要手段。因此,对数控加工工艺参数进行优化,具有很重要的现实意义。数控加工的不断变革和创新,在提高制造水平的同时,也提高了国民经济的效益。 数控铳削加工是数控加工中的一种重要方式。铳削加工作为先进制造的重要基础技术,具有高精度、高效率、低成本等诸多优势,广泛应用于汽车、轮船、航空航天及模具等行业。数控铳床是在普通铳床的基础上发展起来的,两者的加工工艺基本相同。工艺分析是对零件进行数控加工的前期准备,如果工艺分析不周全、工艺处理不合理,会导致在数控加工时出现错误,严重的会出现废品。因此,保证和提高零件加工质量和生产效率的关键是正确、合理地对零件加工进行工艺分析。 此外,认真仔细分析零件图,确定工件在机床上的装夹方式,正确选择数控铳削机床,确定数控加工刀具的材料和类型,正确选择工艺参数等,是工艺分析的重要内容。在加工过程中合理选择铳削用量,对于提高数控铳床的生产效率也具有重要意义。 笔者主要介绍常用的数控铳削加工工艺参数、工艺指标,以及国内外数控铳削加工的主要工艺参数优化方法和过程。优化方法包括人工神经网络、响应面法、田口法、灰色关联分析法、方差分析、遗传算法等O 工艺参数的优化是数控铳削加工工艺研究的主要方向之一,通过对工艺参数优化方法进行研究,可以了解各 2019,57(1)回

不锈钢加工对刀具材质和参数的要求

不锈钢加工对刀具材质和参数的要求 1 不锈钢加工对刀具的基本要求 对刀具几何参数的要求加工不锈钢时,刀具切削部分的几何形状,一般应从前角、后角方面的选择来考虑。在选择前角时,要考虑卷屑槽型、有无倒棱和刃倾角的正负角度大小等因素。不论何种刀具,加工不锈钢时都必须采用较大的前角。增大刀具的前角可减小切屑切离和清出过程中所遇到的阻力。对后角选择要求不十分严格,但不宜过小,后角过小容易和工件表面产生严重摩擦,使加工表面粗糙度恶化,加速刀具磨损。并且由于强烈摩擦,增强了不锈钢表面加工硬化的效应;刀具后角也不宜过大,后角过大,使刀具的楔角减小,降低了切削刃的强度,加速了刀具的磨损。通常,后角应比加工普通碳钢时适当大些。 对刀具切削部分表面粗糙度的要求提高刀具切削部分的表面光洁度可减少切屑形成卷曲时的阻力,提高刀具的耐用度。与加工普通碳钢相比较,加工不锈钢时应适当降低切削用量以减缓刀具磨损;同时还要选择适当的冷却润滑液,以便降低切削过程中的切削热和切削力,延长刀具的使用寿命。 对刀杆材料的要求加工不锈钢时,由于切削力较大,故刀杆必须具备足够的强度和刚性,以免在切削过程中发生颤振和变形。这就要求选用适当大的刀杆截面积,同时还应采用强度较高的材料来制造刀杆,如采用调质处理的45号钢或50号钢。 对刀具切削部分材料的要求加工不锈钢时,要求刀具切削部分的材料具有较高的耐磨

性,并能在较高的温度下保持其切削性能。目前常用的材料有:高速钢和硬质合金。由于高速钢只能在600°C以下保持其切削性能,因此不宜用于高速切削,而只适用于在低速情况下加工不锈钢。由于硬质合金比高速钢具有更好的耐热性和耐磨性,因此用硬质合金材料制成的刀具更适合不锈钢的切削加工。 硬质合金分钨钴合金(YG)和钨钴钛合金(YT)两大类。钨钴类合金具有良好的韧性,制成的刀具可以采用较大的前角与刃磨出较为锋利的刃口,在切削过程中切屑易变形,切削轻快,切屑不容易粘刀,所以在一般情况下,用钨钴合金加工不锈钢比较合适。特别是在振动较大的粗加工和断续切削加工情况下更应采用钨钴合金刀片,它不象钨钴钛合金那样硬脆,不易刃磨,易崩刃。钨钴钛合金的红硬性较好,在高温条件下比钨钴合金耐磨,但它的脆性较大,不耐冲击、振动,一般作不锈钢精车用刀具。 2 刀具材料牌号的选择 刀具材料的切削性能关系着刀具的耐用度和生产率,刀具材料的工艺性影响着刀具本身的制造与刃磨质量。宜选择硬度高、抗粘结性和韧性好的刀具材料,如YG类硬质合金,最好不要选用YT类硬质合金,尤其是在加工1Gr18Ni9Ti奥氏体不锈钢应绝对避免选用YT类硬质合金,因为不锈钢中的钛(Ti)和YT类硬质合金中的Ti产生亲合作用,切屑容易把合金中的Ti带走,促使刀具磨损加剧。生产实践表明,选用YG532、YG813及YW2三种牌号材料加工不锈钢具有较好的加工效果(见附表)。 三种硬质合金牌号的性能比较

不锈钢的铣削

不锈钢的铣削 一.不锈钢铣削的特点 铣削的主要特点是断续切削,切削过程中冲击和振动比较利害,不如车削时那样平稳.由于不锈钢材料韧性大,切屑不易切离,加工硬化趋势强等特点,更增加了铣削过程中的不利因素.综合起来不锈钢铣削的特点主要表现在以下几个方面: 1.材料韧性大,高温强度、硬度高,切削变形困难,切屑过程的切削力大, 2.不锈钢的粘附性、熔着性强,切屑易粘附在铣刀刀刃上,恶化切削条件。 3.由于断续切削,冲击、振动较大,再加上不锈钢材料的特性,铣刀刀齿很容易崩刃 和磨损。 4.不锈钢加工硬化趋势强,断续切削会增加硬化的趋势,使切削条件变坏。 5.由于上述因素的综合影响,使不锈钢不容易进行高速切削。 因此,不锈钢铣削的铣削应从以下几个方面采取措施: ①选用功率较大、振动较小的铣床。 ②采用抗冲击韧性较好且又耐磨的刀具材料。 ③采用合适的刀具结构和几何形状。 ④选用合适的切削用量。 ⑤选用合适的冷却润滑液。 ⑥正确进行操作。 二.不锈钢铣削的铣刀 1.铣刀切削部分的材料 铣削不锈钢时由于是断续切削,冲击载荷较大,切削条件比较恶劣。因此要求刀具 切削部分的材料坚韧性比较好,能承受较大的冲击载荷。铣削不锈钢时铣刀切削部 分的材料主要有高速钢和硬质合金两大类。一般低速切削时大多采用高速钢刀具,其中特别是成型铣刀和小直径的杆铣刀,由于制造上的困难更是采用高速钢比较合 适。对于不锈钢来说,高速钢的耐磨性能仍然是不够理想的。因此,在条件许可的 情况下,最好采用含钴、含铝等超硬型高速钢来制造刀具,一提高刀具的耐用度。 中速、高速铣削时,特别是端面铣削时以采用YW2或YG8较为合适,有时也可以 采用YT15。用YW2制造铣刀比YG8具有较高的耐磨性能。 2.铣刀有关的几何参数对不锈钢铣削的影响: 1)前角γ 前角的大小,对不锈钢铣削过程影响很大:增加前角,切削过程中切屑变形容易切削阻力较小,切屑比较切离,如果铣刀前角等于零,铣削时产生的合 力R有把铣刀推离工件的趋向,这样刀齿就更加不易切入工件。加工不锈钢时 一般不采用这种刀具。 前角为正值的铣刀,铣削时产生的合力只有把铣刀拉如工件的趋向,这样就使铣刀比较容易切入工件。因此铣削不锈钢时铣刀的前角一般都采用10°~ 20°,其中采用15°的较多。用硬质合金刀头加工不锈钢时,可根据不同的情况 采用不同的前角。负前角的铣刀一般不太适合于不锈钢的铣削.利用组装式高速 刀盘时,可以同车工一样磨出刃口部分代圆卷屑槽的25°~30°的大前角.为了 提高刀具的耐用度,刀具刃口上应留有0.05-0.2的刃带,完全快口的刀具在铣削 不锈钢时很快就会卷口. 由于铣刀的切削部分的形状比较复杂,铣刀垂直截面上的前角γ和螺旋角ω几横向前角γ1(端面刃前角)之间的关系可按下式计算:

不锈钢法兰加工方法

不锈钢法兰加工方法 对刀具几何参数的要求: 加工不锈钢时,刀具切削部分的几何形状,一般应从前角、后角方面的选择来考虑。在选择前角时,要考虑卷屑槽、有无倒棱和刃倾角的正负角度大小等因素。不论何种刀具,加工不锈钢时都必须采用较大的前角。增大刀具的前角可减小切屑切离和清出过程中所遇到的阻力。对后角选择要求不十分严格,但不宜过小,后角过小容易和工件表面产生严重摩擦,使加工表面粗糙度恶化,加速刀具磨损。并且由于强烈摩擦,增强了不锈钢表面加工硬化的效应;刀具后角也不宜过大,后角过大,使刀具的楔角减小,降低了切削刃的强度,加速了刀具的磨损。通常,后角应比加工普通碳钢时适当大些。对刀具切削部分表面粗糙度的要求: 提高刀具切削部分的表面光洁度可减少切屑形成卷曲时的阻力,提高刀具的耐用度。与加工普通碳钢相比较,加工不锈钢时应适当降低切削用量以减缓刀具磨损;同时还要选择适当的冷却润滑液,以便降低切削过程中的切削热和切削力,延长刀具的使用寿命。对刀杆材料的要求 加工不锈钢时,由于切削力较大,故刀杆必须具备足够的强度和刚性,以免在切削过程中发生颤振和变形。这就要求选用适当大的刀杆截面积,同时还应采用强度较高的材料来制造刀杆,如采用调质处理的45号钢或50号钢。对刀具切削部分材料的要求:加工不锈钢时,要求刀具切削部分的材料具有较高的耐磨性,并能在较高的温度下保持其切削性能。目前常用的材料有:高速钢和硬质合金。由于高速钢只能在600°C以下保持其切削性能,因此不宜用于高速切削,而只适用于在低速情况下加工不锈钢。由于硬质合金比高速钢具有更好的耐热性和耐磨性,因此用硬质合金材料制成的刀具更适合不锈钢的切削加工。硬质合金分钨钴合金(YG)和钨钴钛合金(YT)两大类。钨钴类合金具有良好的韧性,制成的刀具可以采用较大的前角与刃磨出较为锋利的刃口,在切削过程中切屑易变形,切削轻快,切屑不容易粘刀,所以在一般情况下,用钨钴合金加工不锈钢比较合适。特别是在振动较大的粗加工和断续切削加工情况下更应采用钨钴合金刀片,它不象钨钴钛合金那样硬脆,不易刃磨,易崩刃。钨钴钛合金的红硬性较好,在高温条件下比钨钴合金耐磨,但它的脆性较大,不耐冲击、振动,一般作不锈钢精车用刀具。 2刀具材料牌号的选择刀具材料的切削性能关系着刀具的耐用度和生产率,刀具材料的工艺性影响着刀具本身的制造与刃磨质量。宜选择硬度高、抗粘结性和韧性好的刀具材料,如YG类硬质合金,最好不要选用YT类硬质合金,尤其是在加工1Gr18Ni9Ti奥氏体不锈钢应绝对避免选用YT类硬质合金,因为不锈钢中的钛(Ti)和YT类硬质合金中的Ti产生亲合作用,切屑容易把合金中的Ti带走,促使刀具磨损加剧。生产实践表明,选用YG532、YG813及YW2三种牌号材料加工不锈钢具有较好的加工效果,,三种硬质合金牌号的性能比较牌号密度g/cm3抗弯强度Mpa硬度HRA性能即用途相当于ISO YG532 14≥1760≥91.5红硬性高,韧性好,抗粘能力强,适用于奥氏体、马氏体不锈钢、无磁钢、高温合金钢等大型工件的粗、精加工;合金耐用度高,高温性好,被加工工件表面质量高。K10~K20M20 YG813 14.05~14.1≥1570≥91耐磨性好,有较高的抗弯强度和抗粘结能力,适于高温合金钢;对容易产生加工冷作硬化现象的奥氏体不锈钢、高锰钢等,加工效果优于YW2。K10~K20M20 YW2 12.4~13.5≥1320≥90.5使用强度高,红硬性较好,能承受较大的冲击载荷。适用于耐热钢、高锰钢、不锈钢等材料的粗、精加工。3刀具几何参数的选择前角的选择:从切

不锈钢的车削加工方法

不锈钢的车削加工 关键词:刀具材料、刀具参数、切削用量、涂层刀具 目前应用的不锈钢,按其组织状态主要分为马氏体不锈钢、铁素体不锈钢和奥氏体不锈钢,常把含鉻量超过11.7%或含镍量大于8%的合金钢,叫不锈钢,在合金钢种加入较多的金属元素(Cr和Ni),而改变了合金的物理性质和化学性质。增强了抗腐蚀能力,无论在空气中还是在酸盐的溶液中,均不易氧化生锈并在较高温度(>450℃)下仍具有较高的强度,因此被广泛应用于航空,航天、化工、石油、建筑和食品等工业部门及日常生活中。 1不锈钢的主要切削特点 (1)切削力大 其中奥氏体不锈钢尤为突出,这种材料虽然硬度不高,以牌号1Cr18Ni9Ti 为例,其硬度≤187HBW,但塑性很好(断后伸长率δ=40%,断面收缩率Ψ=60%),因此在切削过程中塑性变形大,使切削力增加。在切削用量相同时,切奥氏体不锈钢耗能比低碳钢约高50%。 (2)加工硬化严重 在不锈钢中,以奥氏体和奥氏体铁素体不锈钢的加工硬化现象最为突出。他们塑性大,塑性变形时晶格产生强烈歪扭;同时奥氏体稳定性差,在切削力的作用下,部分奥氏体会转变为马氏体;再加上化合物杂质在切削热的作用下,易于分解呈弥散分布,使切削加工时产生硬化层。这一切均使加工硬化现象更为明显。(3)刀具易产生粘附磨损 不锈钢材料在切削过程中产生高温下,与刀具材料的亲和性较大,使刀具与切削间产生粘结、扩散,易形成“刀瘤”,而造成刀具粘附磨损,降低刀具的使用寿命。 (4)切削区局部温度高 这类材料所需切削力大,分离切削消耗的功率也大,产生的切削热也就多,传入刀具的热量可达20%,而加工碳素钢时仅占9%,同时由于不锈钢的导热性不好(不锈钢的导热系数约为碳钢的1/3左右),大量切削热都集中在切削区和刀-屑接触的界面上,从而是切削区局部温度很高。 2.刀具材料的选择 根据前述不锈钢的切削特点,要求刀具材料应具有耐热性好、耐磨性高、与不锈钢的亲和作用小等特点。目前常用的刀具材料有硬质合金、高速钢和涂层刀具。 (1)硬质合金 通常情况下,多数难加工材料都宜选用YG类硬质合金加工。最好不选用YT 类硬质合金,尤其是在加工1Cr18Ni9Ti奥氏体不锈钢时,应绝对避免选用YT

不锈钢的切削加工总结

不锈钢的切削加工 在不锈钢的切削加工中,首先要对被加工件的被切削性能有所了解,不锈钢在切削过程中有如下几方面特点: 1. 加工硬化严重:在不锈钢中,以奥氏体和奥氏体+铁素体不锈钢的加工硬化现象最为突出。因为不锈钢的塑性大,塑性变形时晶格歪扭,强化系数很大;且奥氏体不够稳定,在切削应力的作用下,部分奥氏体会转变为马氏体;再加上化合物杂质在切削热的作用下,易于分解呈弥散分布,使切削加工时产生硬化层。 2. 切削力大:不锈钢在切削过程中塑性变形大,尤其是奥氏体不锈钢(其伸长率超过45号钢的1.5倍以上),使切削力增加。同时,不锈钢的加工硬化严重,热强度高,进一步增大了切削抗力,切屑的卷曲折断也比较困难。 3. 切削温度高:切削时塑性变形及与刀具间的摩擦都很大,产生的切削热多;大量切削热都集中在切削区和刀削接触的界面上,散热条件差。在相同的条件下切削温度比45号钢高200℃左右。 4. 切削不易折断、易粘结:不锈钢的塑性、韧性都很大,在高温、高压下,不锈钢与其他金属的亲和性强,易产生粘附现象,并形成积削瘤,既加剧刀具磨损,又会出现撕扯现象而使已加工表面恶化。含碳量较低的马氏体不锈钢的这一特点更为明显。 5. 刀具易磨损:切削不锈钢过程中的亲和作用,使刀削间产生粘结、扩散,从而使刀具产生粘结磨损、扩散磨损,致使刀具前刀面产生月牙洼,切削刃还会形成微小的剥落和缺口;加上不锈钢中的碳化物(如TiC)微粒硬度很高,

切削时直接与刀具接触、摩擦,擦伤刀具,还有加工硬化现象,均会使刀具磨损加剧。 切削不锈钢时应怎样选择刀具的材料: 合理选择刀具材料是保证高效率切削加工不锈钢的重要条件。根据不锈钢的切削特点,要求刀具材料应具有耐热性好、耐磨性高、与不锈钢的亲和作用小等特点,YG类硬质合金的韧性较好,可采用较大的前角,刀刃也可以磨得锋利些,使切削轻快,且切屑与刀具不易产生粘结,较适于加工不锈钢。另外,YG类合金的导热性较好,其导热系数比高速钢高将近两倍,比YT类合金高一倍。 切削不锈钢时怎样选择刀具几何参数? 前角:不锈钢的硬度、强度并不高,但其塑性、韧性都较好,热强性高,切削时切屑不易被切离。在保证刀具有足够强度的前提下,应选用较大的前角,这样不仅能够减小被切削金属的塑性变形,而且可以降低切削力和切削温度,同时使硬化层深度减小。 后角:加大后角能减小后刀面与加工表面的摩擦,但会使切削刃的强度和散热能力降低。后角的合理值取决于切削厚度,切削厚度小时,宜选较大后角,我们三轨由于切削量大,所以选用20°的后角。 选择合适的涂层对于金属切削来说能起到非常重要的作用,TiAICRN(碳氮化铝钛)涂层在不锈钢切削加工中起着非常重要的作用涂层材料作为化学屏障和热屏障,减小了月牙洼磨损,耐磨性良好。与未涂层刀具相比,涂层刀具加工精度提高0.5~1级,刀具消耗费用降低20%~50%,耐磨性提高2~10倍,切削速度提高25%~70%,使用寿命延长3~5倍。

不锈钢的车削加工

一切削难加工材料的综合分析 1.1不锈钢简介 通常,人们把含铬量大于12%或含镍量大于8%的合金钢叫不锈钢。这种钢在大气中或在腐蚀性介质中具有一定的耐蚀能力,并在较高温度(>450℃)下具有较高的强度。含铬量达16%~18%的钢称为耐酸钢或耐酸不锈钢,习惯上通称为不锈钢。 钢中含铬量达12%以上时,在与氧化性介质接触中,由于电化学作用,表面很快形成一层富铬的钝化膜,保护金属内部不受腐蚀;但在非氧化性腐蚀介质中,仍不易形成坚固的钝化膜。为了提高钢的耐蚀能力,通常增大铬的比例或添加可以促进钝化的合金元素,加Ni、Mo、Mn、Cu、Nb、Ti、W、Co等,这些元素不仅提高了钢的抗腐蚀能力,同时改变了钢的内部组织以及物理力学性能。这些合金元素在钢中的含量不同,对不锈钢的性能产生不同的影响,有的有磁性,有的无磁性,有的能够进行热处理,有的则不能热处理。 由于不锈钢所具有的上述特性,越来越广泛地应用于航空、航天、化工、石油、建筑和食品等工业部门及日常生活中。所含的合金元素对切削加工性影响很大,1.2不锈钢的分类 不锈钢按其成分,可分为以铬为主的铬不锈钢和以铬、镍为主的铬镍不锈钢两大类。工业上常用的不锈钢一般按金相组织分类,可分为以下五大类: 1)马氏体不锈钢:含铬量12%~18%,含碳量0.1%~0.5%(有时达1%),常见的有1Cr13、2Cr13、3Cr13、4Cr13、1Cr17Ni2、9Cr18、9Cr18MoV、30Cr13Mo 等。 2)铁素体不锈钢:含铬量12%~30%,常见的有0Cr13、0Cr17Ti、0Cr13Si4NbRE、1Cr17、1Cr17Ti、1Cr17M02Ti、1Cr25Ti、1Cr28等。

相关主题
文本预览
相关文档 最新文档