当前位置:文档之家› 关于光放大器的最新发展及应用

关于光放大器的最新发展及应用

关于光放大器的最新发展及应用
关于光放大器的最新发展及应用

2004年6月

第19卷第2期

山东师范大学学报(自然科学版)

Journal of Shandong Normal Universi ty(Natural Science)

Jun.2004

Vol.19No.2关于光放大器的最新发展及应用

辛化梅1)薛林2)

(1)山东师范大学物理与电子科学学院,250014,济南;2)海军工程大学信息与电气学院,433033,湖北武汉M第一作者32岁,女,讲师)

摘要介绍了国际上光放大器的最新发展及应用,主要包括掺铒光纤放大器、Er3+:Yb3+共掺玻璃波导放大器、掺铥光纤放大器、光纤拉曼放大器及半导体光放大器,并指出相关光放大器的发展趋势.

在光纤通信系统中,随着传输速率的增加,传统的O P E P O中继方式的成本迅速增加,于是,人们寻找用光放大的方法来代替传统的中继方式,并延长传输距离.光放大器能直接放大光信号,对信号的格式和速率具有高度的透明性,使得整个系统更加简单灵活,它的出现和实用化在光纤通信发展史上具有里程碑意义,使超高速、超大容量、超常距离的波分、密集波分、全光传输、光孤子传输等成为现实.

光放大器大致可分三种:1稀土掺杂光放大器,如掺铒光纤放大器(EDFA)、掺铥光纤放大器(TDFA)、掺镨光纤放大器(PDFA),Er3+:Yb3+共掺玻璃波导放大器(EDW A)等;o非线性效应光放大器,如光纤拉曼放大器(FRA)等;?半导体光放大器(SOA).

目前,光纤通信的发展从电信光纤低损耗波长1550nm的C波段(1528~1565nm)向邻近波段L波段(1570~1610nm)、S波段(1450~1520nm)发展.可以说,随着光纤大容量、高速率传输技术的发展,对光放大器也提出了新的技术要求与挑战,促使其向高性能、宽带、多功能、智能化、标准化、低功耗、低价位发展.

1掺铒光纤放大器(EDFA)

EDFA是密集波分复用(DWDM)光纤传输系统的核心器件之一,是DWD M系统的传输链路的重要组成部分,其性能直接影响到系统的传输特性.EDFA以掺铒光纤为增益介质,利用980nm和1480nm泵浦作为泵浦光源,使铒离子Er3+粒子数反转,信号光入射使亚稳态Er3+粒子受激辐射,产生信号放大.

EDFA的结构如图1所示[1]

图1EDFA结构

由图1可见,EDFA主要由掺铒光纤、泵浦光源、光耦合器、光隔离器以及光滤波器组成,而其主体部件是泵浦光源和掺铒光纤.按照泵浦光源的泵浦方式不同,EDFA又有三种不同的结构方式,即同向泵浦结构、反向泵浦结构及双向泵浦结构.采用同向泵浦,可获得较好的噪声性能;采用反向泵浦,可获得较高的输出功率;采用双向泵浦,使EDFA的增益和噪声性能都优于单向泵浦,但增加一个泵浦源,成本也增加很多.

目前,对于常规通信段,多采用EDFA对光信号进行放大.EDFA具有饱和输出光功率高、信号增益大、工作带宽宽等特点,且在1520~1610nm都存在放大的可能性;缺点是带宽还不够大,在1530nm~1560nm波段才有较大且平坦的增益,这对WDM宽带宽传输系统放大有很大的限制,并且EDFA中光纤非线性限制入射功率,同时也限制信噪比的提高.在EDFA增益谱上还有潜在L波段的平坦增益谱,其波长范围为1570~1610nm,由于该波段远离铒离子的发射谱中心,增益明显低于C波段,因此其带宽资源一直没有被利用.目前,有以下几种光纤放大器来提高有用带宽[2]:碲化物EDFA、增益漂移碲化物EDFA、1580nm带宽EDFA、掺铥光纤放大器、Raman放大器,而对L波段的放大主要为以宽带放大特性见称的碲化物EDFA,碲化物EDFA是相干光放大器.在掺铒光纤放大器中,激励光和信号光的同向分量与正交分量受到同样程度的放

收稿日期:2003-02-15

大,影响了放大倍数的提高;而相干光放大器则让激励光与信号光的正交分量的相位不一致,使正交分量变弱,从而得到超低杂音的光放大器.碲化物EDFA 有50nm 增益带宽,增益光谱覆盖1550nm 和1580nm 两个增益波段区,能实现20dB 以上的均匀放大.目前,已用于C+L 波段的太比特传输实验系统放大.

EDFA 是目前及未来一段时间放大器的主要选择,在骨干网和城域网/接入网中发挥着关键性作用,其发展趋势应是宽带宽、高功率、高增益、增益平坦、低噪声、多功能、EDFA+FRA 混合放大以及小型化.

2 Er 3+:Yb 3+共掺玻璃波导放大器(EDWA)

与现在光通信系统中应用较多的E DFA 和其他集成放大器技术(如SOA)相比,EDW A 有其独特的优势:与EDFA 比,它有更好的性能价格比;而相对于SOA 来说,EDWA 有很小的极化相关性,且不存在通道间串

扰.总之,EDWA 既集中了EDFA 与SOA 的优点,又弥补了二者的缺陷,其结构如图2示[3]

.

图2 EDWA 结构示意图

基于光波导结构制作的EDW A 可成倍提高泵浦

光功率密度和有效作用长度,在大大降低放大器阈值

的同时提高单位长度的信号增益.EDWA 可非常容易

的与分插复用器、光开关、光交叉连接器等损耗器件集

成在同一基片上,从而制成多种光通信用集成有源器

件,且提高了器件的可靠性.相信,随着EDW A 的持续

发展,这种定位在城域网使用的光放大器会有更多的

应用.

3 掺铥光纤放大器(TDFA)

随着计算机网络及其它新的数据传输服务的飞速

发展,长距离光纤传输系统对通信容量和系统扩展的需求日益增长,原有的C 波段和L 波段已不能满足未来宽带网络的需求,而在S 波段,石英单模光纤色散和损耗小,光纤弯曲所引起的损耗也低于C 波段和L 波段,S 波段是潜在的通信资源带宽,开发适合于S 波段放大的掺铥光纤放大器成为目前光通信领域研究的热点之一.

TDFA 是通过在氟化物光纤的纤芯中掺铥(Tm 3+

)制成的,可采用单波长泵浦和双波长泵浦.采用单波长泵浦可在1450~1480nm 和1480~1510nm 实现增益放大,优点是光源单一,结构简单,缺点是功率转换效率低.OFC .2001中报导的TDFA [2],在1400nm 单泵浦下实现了对8@10Gb P s 的光信息流量中继放大,并使放大的光信号传输了120km;8个信道波段范围为1480~1510nm,增益大于26dB,能量转换效率为42%.采用双波长泵浦方式,一方面提高了功率转换效率,另一方面可获得增益谱线迁移,目前有四种双泵浦方式[4],即1.047L m P 1.55L m 、1.064L m P 1.117L m 、1.4L m P 1.56L m 、1.24L m P 1.4L m.Alcatel 公司报道采用1.24L m 和

1.4L m 双泵浦方式[5],信号光采用8信道,波长范围1470~1500nm,在总的泵浦功率为410mW 下,功率转换效率高达48%,但其结构复杂,成本较高.

目前,TDFA 的研究的主要问题是如何提高放大器的功率转换效率,实现增益迁移.相信随着信息技术和光通信技术的发展,作为宽带放大器重要组成部分的TDFA 必将有更为广阔的应用前景.4 光纤拉曼放大器(FRA)

随着IP 业务的爆炸式发展,对光纤通信系统的容量需求不断提高,10Gb P s 系统已成为主流,40Gb P s 系统正加速开发,光纤拉曼放大器由于可在任意波长上提供宽带、低噪声的光放大,在高速、长距离波分复用光通信系统中扮演着越来越重要的角色.与EDFA 利用掺铒光纤作为其增益介质不同,FRA 利用系统中的传输光纤作为它的增益介质.FRA 的工作原理基于非线性光学效应的原理,利用强泵浦光束通过光纤传输时产生受激拉曼散射(SRS).光纤中的拉曼效应很早就引起了人们的注意,但由于没有合适的高功率泵浦源,一直未能实用化,随着大功率激光器的出现,使在光纤中利用拉曼效应成为可能.FRA 的增益波长由泵浦波102山东师范大学学报(自然科学版) 第19卷

长决定,只要选择合适的泵浦波长,理论上可对任意波长的信号进行放大.FRA 主要分为两大类:分立式FRA 和分布式FRA.分立式FRA 所用的增益介质较短,通常在10km 以内,泵浦功率要求很高,一般要几w 甚至十几W,可产生40dB 以上的高增益,对信号光进行集总式放大,主要用于实现EDFA 无法实现的波段的放大;分布式FRA 所用光纤较长,一般为几十km,泵浦功率只需几百mW,与EDFA 结合使用,可提高DWD M 系统的性能,抑制非线性效应,提高信噪比,达到较理想的效果.分布式光纤拉曼放大器的结构如图3所示[6]. FRA 既可采用前向泵浦,也可采用后向泵浦,而后向

泵浦噪声低、增益高、偏振依赖性小,所以一般采用后向

泵浦.

FRA 是目前唯一能实现1290~1660nm 光谱放大的

器件,使现有的光纤线路提升到40G b P s 的关键器件,它

不但能工作在EDFA 常使用到的C 波段,

而且也能工作

图3 分布式拉曼放大器的构成在S 波段和L 波段,完全满足全波光纤对工作窗口的要求,可以说,FRA 具有广泛的应用前景,必将成为下一

代光放大器的主流.5 半导体光放大器(SOA)

半导体光放大器的结构基本上是具有减反涂层界面的波导设计的半导体激光器,波导设计是为了产生于偏振无关的增益.

低价格是SOA 的主要潜在优点,由于它本质上是一个带有增透涂层的半导体激光器,所以从原理上讲,SOA 的价格应大大低于EDFA 的价格;另外,新开发成功的磷化铟半导体光放大器不是放大一个窄带宽上的信号[7]

,而是能放大一组波长,即放大一个波段上的信号,并可以通过注入电流来改变放大增益,从而可均衡在网络不同节点上的增益.SOA 在非线性区有增益串扰问题,若SOA 工作在非线性区,则快速的增益动态变化将会引起多信道之间的串扰,解决的办法是让SOA 工作在线性区,提高饱和输出功率,使用一个内置的激光器结构作增益箝制.通过改变SOA 的偏置电流,既可以吸收也可以放大,而且具有高达50dB 的消光比及ns 量级的快速响应时间,这使SOA 用作光开关成为可能.

多年以来,SOA 被EDFA 的成功所淹没,随着全光网络的发展,相信成熟的半导体光放大器技术会有更多的应用.6 结束语

光放大器技术极大地推动了光纤通信的发展,而光传输网络的发展也为光放大器技术的发展提出更高要求.实验表明,由三个波段(S 波段、C 波段、L 波段)联合运用的大容量10Tb P s 的光纤传输系统是可行的,其中C 波段和L 波段使用E DFA,S 波段用TDFA,此外,还加用光纤拉曼放大器,相信随着信息技术和光通信技术的发展,宽带多波长光纤网络将成为信息网络的主流,而相应光放大方式必将由单一的放大模式向混合放大模式发展.

7 参考文献

[1] 孙学康,张金菊.光纤通信技术[M].北京:北京邮电大学出版社,2001.68

[2] 刘颂豪,陈伟成,罗爱平,等.从OFC2001看世界光纤通信的新发展[J].激光与红外,2001,31(6):323~327

[3] 田贺斌,杨天心,王永强,等.光通信用Er 3+:Yb 3+共掺玻璃波导放大器[J].光通信研究,2002,113(5):58~62

[4] 戴世勋,杨建虎,柳祝平,等.TDFA 最新研究进展[J]光线与电缆及其应用技术,2002,(3):12~16

[5] ROY F,LEPLINGARD F.48%power conversion efficiency in single pump gai n -shi fted thuliumdoped fiber amplifier [J ].Electronics Letters,2001,

37(15):943~945

[6] 原 荣.光线分布式拉曼放大技术及其系统设计[J].光通信研究,2002,110(2):33~37

[7] 张臣雄.全光网络的演进和发展[J].现代通信,2002,(4):3~6103第2期辛化梅等:关于光放大器的最新发展及应用

光放大器发展历史

历史: 1954年第一台NH3分子微波盆子放大器研制成功,人们发现,可通过原子或分子中的受激放大来获得单色的相干电磁波,称为脉塞(Maser——Microwave Amplification by Stimulated Emission of radiation)。1958年肖洛(Schawlow ) 和汤斯(Townes) 将Maser原理推广到光频波段,1960年梅曼(Mamain)利用红宝石介质的受激放大原理研制成第一台红宝石激光器,称为莱塞(Laser—Light Amplification by Stimulated Emission of Radiation) 或称激光。不管是Maser还是Laser,其产生相干电磁波辐射的机理都是基于电滋波的受激放大。自1960年以来激光器已得到了飞跃的发展和广泛的应用,然而作为激光器先导的光放大的发展却比较缓慢,直到80年代,在光纤通信发展的推动下,才开始引起足够的重视。进人90年代后光纤放大器的问世已引起了光纤通信技术的重大变革,在60年代半导体激光二极管尚未成熟,但已在77K下,首先进行了GaAs同质结行波半导体放大器的研究,开创了半导体光放大器研究的先河,确立了半导体光放大器的基本理论。至1970年,双异质结结构(DH)激光器问世后,又实现了TW半导体光放大器的室温连续工作。在1973年至1975年间,开始从光纤通信应用要求出发,研究双异质结结构TW和F-P光放大器的特性并取得重要进展。80年代初,采用消除反射光的光隔离器和精确的光频率调谐技术,深人研究了AlGaAs F-P 光放大器的增益、带宽、饱和增益与噪声特性及其对光纤通信系统性能的影响。同时开始研究半导体放大器的注人锁定现象、机理、设计和放大特性。随着光纤通信技术的发展,80年代中期开始研究适用于1. 3μm和1. 5μm波长的InGaAsP半导体光放大器 60年代初,与半导体光放大现象研究的同时,也对掺稀土元素的光纤的光谱特性进行了研究,Koesker发现了掺钕(Nd)光纤的激光辐射现象,Snitzerr发现了掺铒光纤在1.5μm处的激光辐射特性,当时这些研究都是期望研制稀土光纤激光光源而不是光纤放大器,由于稀土光纤的热悴灭效应难以解决,而半导体激光器发展迅速并日趋成熟,因此稀土光纤放大器的研究处于停步不前状态。直至80年代初,在光纤中发现了受激喇受效应,人们又开始恢复了对光纤放大器研究的兴趣,期望能用于光纤通信系统中但这种放大方案效率低,需要高功率的泵浦光源,无法在通信系统中应用。当时光纤通信的研究重点集中在高性能再生中继器和高灵敏度相干检测技术。但是在1985~ 1986年间,英国南安普顿大学的Payne等人有效地解决了掺铒光纤(EDF)的热淬灭问题,首次用MCVD方法研制成纤芯掺杂的铒光纤,并实现了1. 55μm低损耗窗口的激光辐射,1987年他们采用650nm染料激光器作为泵浦光源,获得了28dB小信号增益。同年AT&TBell实验室的Desurvire等人,采用514nm氢离子激光器作为泵浦光源,也获得了22. 4dB的小信号增益。接着在1989年,利用1. 49μm半导体激光器作为泵浦源获得了37dBE小信号增益,Laming等利用980nm, 11mW泵浦功率也得到24dB小信号增益,同年日本NTT实验室首次利用1. 48μm半导体激光泵浦的掺饵光纤放大器作为全光中继器放大5Gb/s孤子脉冲,实现了100km的无误码传输。980nm和1 480nm 半导体激光泵浦的掺铒光纤放大器具有增益高、频带宽、噪声低、效率高,连接损耗低,偏振不灵敏等特点,在90年代初得到了飞速发展,成为当时光放大器研究发展的主要方向,极大地推动了光纤通信技术的发展。自此以后,掺饵光纤放大器的研究在多方面开展,建立了多种理论分析模型,提出了增益均衡和扩大增益带宽的方案和方法,进行了多种系统应用研究,同时进行了氟化玻璃饵光纤放大、分布式光纤放大器和双向放大器的研究,使掺饵光纤放大器及其应用得到了飞速发展。此外又开展了掺镨(Pr),掺镱(Yb) ,掺钬(Ho},掺铥(Tm)等光纤放大器的研究。使光纤放大器的研究全面发展。 60年代初,在激光技术发展起来后,以高强度单色光照射光学介质,开辟了非线性光学的研究领域,揭示了受激喇曼散射、受激布里渊散射、四波混频和参量过程的物理机制。1972年Stolen等首先在光纤喇曼激光器的实验中发现了喇曼增益,初期的研究主要侧重于制成光

光纤通信课后习题解答第7章光放大器参考题答案 (1)

第七章光放大器 复习思考题答案 1.光放大器在光纤通信中有哪些重要用途? 答:(1)利用光放大器代替原有的光电光再生中继器,能够大幅度延长系统传输距离。 (2)在波分复用系统中,它一方面可以同时实现多波长的低成本放大,另一方面,可以补偿波分复用器,波分解复用器、光纤光缆等无源器件带来的损耗。 (3)光放大器在接入网中使用,可以补偿由于光分支增加带来的损耗,使得接入网服务用户增加,服务半径扩大。 (4)光孤子通信必须依靠光放大器放大光信号,使光脉冲能量大到可以在光纤中满足孤子传输条件,从而实现接近无穷大距离的电再生段传输。 (5)光放大器在未来的光网络中必将发现越来越多的新用途。 2.光放大器按原理可分为几种不同的类型? 答:光放大器按原理不同大体上有三种类型。 (1)掺杂光纤放大器,就是将稀土金属离子掺于光纤纤芯,稀土金属离子在泵浦源的激励下,能够对光信号进行放大的一种放大器。 (2)传输光纤放大器,就是利用光纤中的各种非线性效应制成的光放大器。 (3)半导体激光放大器,其结构大体上与激光二极管(Laser Diode,LD)相同。如果在法布里-派罗腔(Fabry-Perot cavity,F-P)两端面根本不镀反射膜或者镀增透膜则形成行波型光放大器。半导体光放大器就是行波光放大器。 3.光放大器有哪些重要参数? 答:光放大器参数主要有(1)增益;(2)增益带宽;(3)饱和输出光功率;(4)噪声指数。 4.简述掺杂光纤放大器的放大原理。 答:在泵浦源的作用下,掺杂光纤中的工作物质粒子由低能级跃迁到高能级,得到了粒子数反转分布,从而具有光放大作用。当工作频带范围内的信号光输入时,信号光就会得到放大,这就是掺杂光纤放大器的基本工作原理。只是掺杂光纤放大器细长的纤形结构使得有源区能量密度很高,光与物质的作用区很长,有利于降低对泵浦源功率的要求。 5.EDFA有哪些优缺点? 答:EDFA之所以得到迅速的发展,源于它的一系列优点: (1)工作波长与光纤最小损耗窗口一致,可在光纤通信中获得广泛应用。 (2)耦合效率高。因为是光纤型放大器,易于与光纤耦合连接,也可用熔接技术与传输光纤熔接在一起,损耗可降至0.1dB,这样的熔接反射损耗也很小,不易自激。 (3)能量转换效率高。激光工作物质集中在光纤芯子,且集中在光纤芯子中的近轴部分,而信号光和泵浦光也是在近轴部分最强,这使得光与物质作用很充分。 (4)增益高,噪声低。输出功率大,增益可达40dB,输出功率在单向泵浦时可达14dBm,双向泵浦时可达17dBm,甚至可达20dBm,充分泵浦时,噪声系数可低至3~4dB,串话也很小。 (5)增益特性不敏感。首先是EDFA增益对温度不敏感,在100 C内增益特性保持稳定,另外,增益也与偏振无关。

几种常见的光放大器的比较

几种常见的光放大器的比较

————————————————————————————————作者: ————————————————————————————————日期:

对几类放大器的认识 在DWDM系统中,特别是超远距离的传输中,由于不可避免的存在光纤信号功率的损失和衰减,所以补偿是必要的。现在常用的放大器有掺铒光纤放大器(EDFA),拉曼放大器(FRA),半导体激光放大器(SOA),光纤参量放大器(OPA)。现就这几类放大器的工作原理和特殊情况做一下说明。 1)掺铒光纤放大器(EDFA) EDFA(Erbiur Doped Fiber Amplifer)是光纤放大器中具有代表性的一种。由于EDFA工作波长为1550nm,与光纤的低损耗波段一致且其技术已比较成熟,所以得到广泛应用。掺铒光纤是EDFA的核心原件,它以石英光纤作基质材料,并在其纤芯中掺入一定比例的稀土原素铒离子(Er3+)。当一定的泵浦光注入到掺铒光纤中时,Er3+从低能级被激发到高能级,由于Er3+在高能级上寿命很短,很快以非辐射跃迁形式到较高能级上,并在该能级和低能级间形成粒子数反转分布。由于这两个能级之间的能量差正好等于1550nm 光子的能量,所以只能发生1550nm光的受激辐射,也只能放大1550nm的光信号。 EDFA的组成: 工作原理图:

那么,EDFA的输出公路车是如何控制的呢? 一般来说,EDFA的输出功率与输入信号光强度,铒纤的长度以及泵浦光的强度。 在EDFA使用的过程中,一般要控制好EDFA的平坦增益,那么不平坦的增益和平坦增益有什么区别呢? 平坦的输出增益会使EDFA放大的输出功率得到一个稳定的信号增益。 如何控制增益?增益的控制室有2种选择的,一种是掺金属元素,另外一种是GFF定制,所谓的掺金属元素是值得是掺杂金属铝元素。

半导体光放大器(SOA)

半导体光放大器(SOA) SOA的放大原理与半导体激光器的工作原理相同,也是利用能级间受激跃迁而出现粒子数反转的现象进行光放大。SOA有两种:一种是将通常的半导体激光器当作光放大器使用,称作F—P半导体激光放大器(FPA);另一种是在F—P激光器的两个端面上涂有抗反射膜,消除两端的反射,以获得宽频带、高输出、低噪声。 早在半导体激光器出现时,就开始了对SOA的研究,但由于初期的半导体材料激光放大器偏振灵敏度较高,使得SOA一度沉寂。但近几年来应变量子阱材料的研制成功,克服了偏振敏感的缺点,性能也有许多改进。半导体光放大器的增益可以达到30dB以上,而且在1310nm窗口和1550nm窗口上都能使用。如能使其增益在相应使用波长范围保持平坦,那么它不仅可以作为光放大的一种有益的选择方案,还可促成l310nm窗口WDM系统的实现。SOA的优点是:结构简单、体积小,可充分利用现有的半导体激光器技术,制作工艺成熟,成本低、寿命长、功耗小,且便于与其他光器件进行集成。另外,其工作波段可覆盖l.3~1.6/μm波段,这是EDFA或PDFA所无法实现的。但最大的弱点是与光纤的耦合损耗太大,噪声及串扰较大且易受环境温度影响,因此稳定性较差。SOA除了可用于光放大外,还可以作为光开关和波长变换器。 2.拉曼光纤放大器拉曼放大技术是采用受激拉曼散射(SRS)这种非线性效应来进行放大的。石英光纤具有很宽的受激拉曼散射增益谱,并在13THz附近有一较宽的主峰。如果一个弱信号与一强泵浦光波同时在光纤中传输,并使弱信号波长置于泵浦光的拉曼增益带宽内,弱信号光即可得到放大,这种基于受激拉曼散射机制的光放大器即称为拉曼光纤放大器。 (1)拉曼光纤放大器的类型拉曼光纤放大器有两种类型:一种是集总式拉曼光纤放大器;另一种是分布式拉曼放大器。集总式拉曼光纤放大器所用的光纤增益介质比较短,一般在几km,泵浦功率要求很高,一般为几W左右,可产生40dB以上的高增益,可作为功率放大器,放大EDFA所无法放大的波段。分布式拉曼放大器所用的光纤比较长,一般为几十km,泵源功率可降低到几百mW,主要辅助EDFA用于WDM通信系统性能的提高,抑制非线性效应,提高信噪比。在WDM系统中,采用分布式拉曼光纤放大辅助传输可大大降低信号的入射功率,同时保持适当的光信号信噪比(OSNR)。(2)拉曼光纤放大器的优点 拉曼光纤放大器的增益高、串扰小、噪声系数低、频谱范围宽、温度稳定性好,将拉曼光纤放大器与常规EDFA混合使用时可大大降低系统的噪声指数,增加传输跨距。①增益介质为传输光纤本身,与光纤系统有良好的兼容性这使得拉曼光纤放大器可以对光信号进行在线放大,构成分布式放大,实现长距离的无中继传输和远程泵浦,尤其适用于海底光缆通信等不方便设立中继器的场合。而且因为放大是沿光纤分布而不是集中作用,光纤中各处的信号光功率都比较小,从而可降低非线性效应尤其是四波混频(FWM)效应的干扰。②增益波长由泵浦光波长决定,不受其他因素的限制理论上只要泵浦源的波长适当,就可以放大任意波长的信号光。所以拉曼光纤放大器可以放大:EDFA所不能放大的波段,使用多个泵源还可得到比EDFA宽得多的增益带宽,对于开发光纤的整个低损耗区1260~1675nm具有无可替代的作用。 总之,拉曼光纤放大器结合EDFA等稀土掺杂光纤放大器必将成为未来宽带、高速、长距离光通信传输实现光放大的理想方案。 3.掺铒光纤放大器(EDFA) (1)掺杂光纤放大器简介 在介绍EDFA之前,首先来了解以下掺杂光纤放大器的基本概念。掺杂光纤放大器又称为掺稀土离子光纤放大器,是利用稀土金属离子作为激光工作物质的一种放大器。掺杂光纤放

几种常见的光放大器的比较

对几类放大器的认识 在DWDM系统中,特别是超远距离的传输中,由于不可避免的存在光纤信号功率的损失和衰减,所以补偿是必要的。现在常用的放大器有掺铒光纤放大器(EDFA),拉曼放大器(FRA),半导体激光放大器(SOA),光纤参量放大器(OPA)。现就这几类放大器的工作原理和特殊情况做一下说明。 1)掺铒光纤放大器(EDFA) EDFA(Erbiur Doped Fiber Amplifer)是光纤放大器中具有代表性的一种。由于EDFA 工作波长为1550nm,与光纤的低损耗波段一致且其技术已比较成熟,所以得到广泛应用。掺铒光纤是EDFA的核心原件,它以石英光纤作基质材料,并在其纤芯中掺入一定比例的稀土原素铒离子(Er3+)。当一定的泵浦光注入到掺铒光纤中时,Er3+从低能级被激发到高能级,由于Er3+在高能级上寿命很短,很快以非辐射跃迁形式到较高能级上,并在该能级和低能级间形成粒子数反转分布。由于这两个能级之间的能量差正好等于1550nm光子的能量,所以只能发生1550nm光的受激辐射,也只能放大1550nm的光信号。 EDFA的组成: 工作原理图: 那么,EDFA的输出公路车是如何控制的呢? 一般来说,EDFA的输出功率与输入信号光强度,铒纤的长度以及泵浦光的强度。 在EDFA使用的过程中,一般要控制好EDFA的平坦增益,那么不平坦的增益和平坦增益

有什么区别呢? 平坦的输出增益会使EDFA放大的输出功率得到一个稳定的信号增益。 如何控制增益?增益的控制室有2种选择的,一种是掺金属元素,另外一种是GFF定制,所谓的掺金属元素是值得是掺杂金属铝元素。 有上图可以知道,掺铝的金属元素的EDFA在增益的控制上明显要比不掺铝的EDFA平坦的多。 需要注意的是:EDFA在放大信号的同时也放大了噪声,而噪声主要来自EDFA的自身受激辐射,是主要的噪声源,也是系统OSNR劣化的主要原因。 放大器产生的自发辐射噪声功率为:PASE = -58 + NF + G (dBm) 其中NF为光放大器噪声系数(dB)、G为光放大器的增益(dB)

各种放大器及它们的特点

各种放大器及它们的特点 1.通用型集成运算放大器 通用型集成运算放大器是指它的技术参数比较适中,可满足大多数情况下的使用要求。通用型集成运算放大器又分为Ⅰ型、Ⅱ型和Ⅲ型,其中Ⅰ型属低增益运算放大器,Ⅱ型属中增益运算放大器,Ⅲ型为高增益运算放大器。Ⅰ型和Ⅱ型基本上是早期的产品,其输入失调电压在2mV左右,开环增益一般大于80dB。 2.高精度集成运算放大器 高精度集成运算放大器是指那些失调电压小,温度漂移非常小,以及增益、共模抑制比非常高的运算放大器。这类运算放大器的噪声也比较小。其中单片高精度集成运算放大器的失调电压可小到几微伏,温度漂移小到几十微伏每摄氏度。 3.高速型集成运算放大器 高速型集成运算放大器的输出电压转换速率很大,有的可达2~3kV/μS。 4.高输入阻抗集成运算放大器 高输入阻抗集成运算放大器的输入阻抗十分大,输入电流非常小。这类运算放大器的输入级往往采用MOS管。 5.低功耗集成运算放大器 低功耗集成运算放大器工作时的电流非常小,电源电压也很低,整个运算放大器的功耗仅为几十微瓦。这类集成运算放大器多用于便携式电子产品中。 6.宽频带集成运算放大器 宽频带集成运算放大器的频带很宽,其单位增益带宽可达千兆赫以上,往往用于宽频带放大电路中。 7.高压型集成运算放大器 一般集成运算放大器的供电电压在15V以下,而高压型集成运算放大器的供电电压可达数十伏。 8.功率型集成运算放大器 功率型集成运算放大器的输出级,可向负载提供比较大的功率输出。 9.光纤放大器 光纤放大器不但可对光信号进行直接放大,同时还具有实时、高增益、宽带、在线、低噪声、低损耗的全光放大功能,是新一代光纤通信系统中必不可少的关键器件;由于这项技术不仅解决了衰减对光网络传输速率与距离的限制,更重要的是它开创了1550nm频段的波分复用,从而将使超高速、超大容量、超长距离的波分复用(WDM)、密集波分复用(DWDM)、全光传输、光孤子传输等成为现实,是光纤通信发展史上的一个划时代的里程碑。在目前实用化的光纤放大器中主要有掺铒光纤放大器(EDFA)、半导体光放大器(SOA)和光纤拉曼放大器(FRA)等,其中掺铒光纤放大器以其优越的性能现已广泛应用于长距离、大容量、高速率的光纤通信系统、接入网、光纤CATV网、军用系统(雷达多路数据复接、数据传输、制导等)等领域,作为功率放大器、中继放大器和前置放大器。 光纤放大器一般都由增益介质、泵浦光和输入输出耦合结构组成。目前光纤放大器主要有掺铒光纤放大器、半导体光放大器和光纤拉曼放大器三种,根据其在光纤网络中的应用,光纤放大器主要有三种不同的用途:在发射机侧用作功率放大器以提高发射机的功率;在接收机之前作光预放大器以极大地提高光接收机的灵敏度;在光纤传输线路中作中继放大器以补偿光纤传输损耗,延长传输距离。

浅析光放大器特性及其应用

浅析光放大器特性及其应用 发表时间:2011-03-01T16:38:22.000Z 来源:《新校园》理论版2010年第6期供稿作者:彭婉娟刘锋华[导读] 光放大器能解决光纤通信系统中传输信号的功率衰减问题,它不仅可以提升光信号的传输距离彭婉娟刘锋华(江西先锋软件职业技术学院,江西南昌330041) 摘要:光放大器能解决光纤通信系统中传输信号的功率衰减问题,它不仅可以提升光信号的传输距离,而且能够同时放大多路高速光信号,大大简化了光纤通信系统。本文介绍掺铒光纤放大器(EDFA)、光纤拉曼放大器(FRA)和半导体光放大器(SOA)这三种光放大器的工作原理、特性及其在光纤通信系统中的应用。 关键词:光放大器;传输距离;光纤通信 在光纤通信中,光信号传输距离一直是人们关注的焦点。由于光纤具有损耗特性,光信号的传输距离受到很大限制,通常使用中继器来解决这个问题。光放大器是一种常用中继器,它直接放大光信号,能实现信号透明式传输,成为延长光信号传输距离的重要器件。 Ⅰ掺铒光纤放大器 掺铒光纤放大器是利用掺铒光纤作为增益介质实现光的放大。在泵浦光的激励下,掺铒光纤中的铒离子迅速跃迁至亚稳态,由于亚稳态上的铒离子寿命较长(约为10ms),亚稳态与基态之间很快形成粒子数反转,此时,向掺铒光纤中注入信号光,由于受激辐射效应,将释放出大量与信号光子完全相同的光子,信号光迅速被放大。 目前EDFA 技术十分成熟,它具有诸多优点。首先,工作波段处在传输光纤的低损耗窗口上,能减少信号光功率的衰减。其次,增益高,噪声系数低。EDFA 的增益和泵浦功率、输入信号光功率和掺铒光纤长度有关,在强泵浦高增益条件下,放大器噪声系数近乎极限值3dB。同时,EDFA 还具有增益谱平坦、增益可控和输出光功率可控的特性。 EDFA 在数字光纤通信系统中发挥着重要作用,主要有以下四种。第一种是在系统发射端用作功率放大器,提高发端入纤的信号光功率;第二种是在传输线路中用作中继放大器,及时补偿线路中信号光功率的衰减;第三种是在系统接收端用作前置放大器,提高光接收机的灵敏度。这三种用途均能延长光信号的传输距离。第四种是补偿局域网中的分配损耗,增加网络节点数。 Ⅱ光纤拉曼放大器 光纤拉曼放大器是利用受激拉曼散射效应来放大信号光。频率为强光与光纤介质相互作用,发出一个频率为光子和一个频率为的声子,或吸收一个频率为的声子,发出一个频率为的光子,这被称为斯托克斯过程。拉曼散射的峰值增益位置在下频移13THz 处。如果用比信号光频率高13THz的强光进行泵浦,在斯托克斯过程中,泵浦光功率将转移到信号光上,使弱信号光得到放大。 FRA 具有以下优势。首先,传输光纤既可作为传输介质,亦可作为放大介质;其次,增益带宽的位置会随泵浦波长的改变而改变,可以灵活调节增益范围;第三,采用多波长泵浦可以得到宽带、平坦的增益谱,实现宽带信号放大;第四,噪声小,在超长距离高速传输系统中能使光信号保持好的光信噪比。 相比EDFA,FRA 在增益带宽、噪声系数方面具有明显优势,但是,FRA 的泵浦效率不高,在超长距离传输系统中,需要大功率泵浦,增加系统成本。实际应用中常用FRA+EDFA 混合型光放大器,可以实现增益平坦宽带达到100nm。 Ⅲ半导体光放大器 半导体光放大器的结构类似于半导体激光器,它是在半导体材质制成的有源区内非平衡载流子(即电子空穴对)实现信号光放大。 根据半导体的发光效应,在泵浦激励下,有源区内将产生非平衡载流子,即电子、空穴分别累积在导带底、价带顶,实现粒子数反转分布。当非平衡载流子都迅速落回能带最底点并复合时,就发出一个能量等于禁带宽度的光子。在持续的泵浦激励下,释放出大量光子,实现信号光持续放大。放大的信号光波长和半导体材料有关,选取不同的半导体材料,就可以使其输出不同频率的且被放大的信号光。 SOA 的特点是,增益带宽很宽,能覆盖光纤的两个低损耗窗口(1.31μm 和1.55μm),并且有平坦的增益谱;器件体积小,泵浦方式简单,成本低。另外,非常显著的一点是,SOA能实现动态转换波长[5],不仅改变输入光波长,同时输出放大的信号光功率。基于SOA 的波长转换器在光开关、再生存储器等技术中有着广泛应用。 此外,SOA 还具有一定缺点,如噪声、串扰较显著,耦合效率较低,成本偏高,这抑制了SOA 商用化。总之,SOA 还有待进一步的开发和利用,相信在未来光纤通信网中能更好地发挥优势。 结束语 光放大器具有增益高、带宽宽的特点,能补偿光纤通信系统中信号光功率的衰减,实现大容量高速信号的远距离传输。根据EDFA、FRA、SOA 各自特性,根据不同应用场景,选择合适的光放大器或者光放大器组合来优化系统性能。随着新的设计和制造技术、新的器件组合方式,光放大器必然推动光纤通信网向高性能、低成本的方向迈进。 参考文献: [1]陈才和.光纤通信[M].北京:电子工业出版社,2004. [2] Masuda H, Kawai S, Aida K. Ultra-wideband hybrid amplifier comprising distributed Raman amplifier and erbium-doped fiber amplifier[J]. Electron.lett., 1998, 33(9):1342~1344. [3]赵书安.半导体光放大器的原理及应用分析[J].金陵科技学院学报,2005,21(3):22-26.

掺铒光纤放大器和拉曼光纤放大器分析和比较

掺铒光纤放大器和拉曼光纤放大器分析和比较摘要:光放大器技术是新一代光纤通信系统中一项必不可少的关键技术,目前几种主要的光放大器技术在工程应用中各有所长。此文介绍了光放大器技术的基本原理,并对现有主要几种光放大器技术在性能、应用和发展方向上进行了比较。 关键词:掺铒光纤放大器;光纤拉曼放大器 0、综述 20世纪90年代以来,Internet的普及发展和各种信息(如语音、图像、数据等)业务的快速增长,人们对现代通信系统提出了更高的要求。在市场需求的大力推动下,通信技术取得了长足的进步,其中光纤通信技术脱颖而出,以其高速优质的特点,一跃成为当今长距离、大容量传输干线的主流技术。但由于光纤损耗和非线性的影响,无中继传输距离成为制约系统容量和速率的瓶颈,而中继放大技术成了光通信领域的关键技术之一。传输系统中的光纤损耗使信号随传输距离呈指数衰减,极大地限制了通信传输跨距和网络的可扩展性,因此必须在通信线路上设置中继器对信号进行再生放大。在光放大器没有出现之前,光纤传输系统普遍采用光-电-光(OEO)的混合中继器,但这种中继方式存在“电子瓶颈”现象,在很大程度上限制了传输速率的提高,而且价格昂贵、结构复杂。20世纪80年代出现的光放大器技术具有对光信号进行实时、在线、宽带、高增益、低噪声、低功耗以及波长、速率和调制方式透明的直接放大功能,是新一代光纤通信系统中不可缺少的关键技术。此技术既解决了衰减对光网络传输距离的限制,又开创了1550nm波段的波分复用,从而将使超高速、超大容量、超长距离的波分复用(WDM)、密集波分复用(DWDM)、全光传输、光孤子传输等成为现实,是光纤通信发展史上的一个划时代的里程碑(1)。又由于此技术与调制形式和比特率无关,因而在光纤通信系统中得到了广泛应用。 1、光放大器分类及原理 光放大器(OA)一般由增益介质、泵浦光和输入输出耦合结构组成,其作用就是对复用后的光信号进行光放大,以延长无中继系统或无再生系统的光缆传输距离。一个好的光放大器应具有输出功率高、放大带宽宽、噪声系数低、增益谱平坦等特性。光放大器主要分为光纤型放大器(FA)和半导体放大器(SOA)两大类,其中光纤型放大器(FA)还可再分为掺稀土光纤放大器和常规光纤放大器,具体分类详见图1(2).本文中,仅对掺铒光纤放大器(EDFA)和光纤拉曼放大器(FRA)作以介绍和分析。

激光的发展与应用

激光的发展与应用 摘要:激光作为20世纪的新发明,从1960年第一台激光器问世以来,激光技术与应用发展迅猛。它不仅在产业上有了飞速发展,而且还为科学技术、国民经济和国防建设做出了积极贡献。本文综述性描写激光的发展与应用,首先简要的介绍激光的发展史,其次介绍激光的特性,最后结合激光的特性和发展史以典型的实例来简要的说明激光在各个方面的主要应用。 关键词:激光;发展;应用;特性;实例 1.引言 激光,作为高新技术的研究成果,它不仅广泛应用于科学技术研究的各个前沿领域,而且已经在人类生活和生产的许多方面得到了大量的应用,与激光相关的产业已在全球形成了超过千亿美元的年产值,可见它对人类社会的影响之深刻而广泛。 2.激光的发展简史 1916年,爱因斯坦在研究黑体辐射的普朗克公式时曾寓言了受激辐射的存在,从而提出受激辐射的概念,并预见到受激辐射光放大器诞生,也就是激光产生的可能性[1]。 20世纪50年代美国科学家汤斯及前苏联科学家普罗克霍洛夫等人分别独立发明了一种底噪声微波放大器,即一种在微波波段的受激辐射放大器(Microwave amplification by stimulate emission of radiation),并以其英文的第一个

字母缩写命名为maser[1]。1958年美国科学家汤斯和肖洛提出在一定的条件下,可将这种微波受激辐射放大器的原理推广到光波波段,制成受激辐射光放大器(Light amplification by stimulated emission of radiation,缩写为laser)。1960年7月美国的梅曼宣布制成了第一台红宝石激光器[2]。1961年我国科学家邓锡铭、王之江制成我国第一台红宝石激光器,在1961年11期《科学通报》上发表了相关论文,称其为“光量子学放大器”。其后在我国科学家钱学森的建议下,统一翻译为“激光”或“激光器”[3]。1962年雅文等人在美国贝尔实验室制成了氦氖激光器[1]。自此新的激光器不断的被研制出来,激光开始走上了高速发展的道路。 3.激光的特性 由于激光产生的机制与普通光不同,因此,它具有许多与普通光不同的特性。 3.1.单色性好。激光几乎是严格的单色光。通常所谓的单色光,实际上其波长并不只为某一数值,而是由许多波长相近的光所组成,其波长取值范围,称为谱线宽度[2]。不同光源发出的光有不同的谱线宽度。过去作为长度基准的单色性最好的氪灯,它的谱线宽度为,而氦氖激光器所发的632.8nm的激光,它的谱线宽度可达,由此可见其单色性之好[4]。正是由于激光单色性好,目前国际上采用甲烷稳定的氦氖激光器(激光波长为3392.23140nm)作为体现米定义的标准辐射源[4]。 3.2.方向性好。与普通光源以立体角不同,激光发射限定在很小的立体角内。它大致等于激光器通过光孔径的圆孔衍射的发散角因此是几乎平行的光

光纤通信的应用与发展趋势

光纤通信的应用与发展趋势 【摘要】随着科学技术的日益更新,通讯事业的逐步发展。光纤通信时代已经到来。光纤通信一直是推动整个通信网络发展的基本动力之一,是现代电信网络的基础。光纤通信不仅可以应用在通信的主干线路中,还可以应用在电力通信控制系统中,进行工业监测、控制,而且在军事领域的用途也越来越为广泛。本文介绍了现代光纤通信系统的特点、基本组成,光纤通信系统的应用及光纤通信系统发展趋势 【关键字】光纤;光纤通信系统;应用;发展趋势 1.前言 1966年,美籍华人高锟(C.K.1cao)和霍克哈姆(C.A.Hockham)发表论文,预见了低损耗的光纤能够用于通信,敲开了光纤通信的大门,引起了人们的重视。1970年,美国康宁公司首次研制成功损耗为20dB/km的光纤,与此同时GaAlAs-GaAs双异质结半导体激光器实现了室温下连续运转,光纤通信时代由此开始。光纤通信系统的传输容量从1980年到2000年增加了近一万倍.传输速度在过去的10年中大约提高了100倍,光纤的衰减系数在1550nm的最小值已经做到0.16db/km,接近理论极限值0.15db/km,这使得光纤能够广泛用于通信系统。光纤通信是以很高频率(1014Hz数量级)的光波作为载波、以光纤作为传输介质的通信。随着光纤通信技术的不断进步,其在通信领域的地位越来越重要,逐步成为现代通信系统中不可或缺的组成部分。 2.光纤通信系统 2.1光纤通信的特点 光纤通信与电通信的主要差异:一是以很高频率的光波作为载波传输信号;二是用光导纤维构成的光缆作为传输线路。 光纤通信之所以能够飞速发展,是由于它具有以下的突出优点所决定:(1)传输频带宽,通信容量大 由信息理论知道,载波频率越高通信容量越大,因目前使用的光波频率比微波频率高104~105倍,所以通信容量约可增加104~105倍。

光电子技术的发展与应用

题目:光电子技术的发展与应用 姓名:刘欢 学号:2015953024 班级:光电一班 指导老师:李宏棋 日期:2018.12.1

目录 1摘要:___________________________________________________________________________3 2光电子技术的发展________________________________________________________________3 2.1世界光电子技术和产业的发展__________________________________________3 2.2我国的光电子技术和产业的发展________________________________________4 3光电子技术的应用探讨____________________________________________________________5 3.1在通信领域的应用____________________________________________________________5 3.2在军事领域的应用 _____________________________________________________________5 3.3在医药领域的应用 _____________________________________________________________5 3.4在工业领域的应用 _____________________________________________________________5 3.5在光通信的应用__________________________________________________6 3.6在RS光应用的应用___________________________________________________________6 3.7在光智能的应用______________________________________________________________7 3.8在矿井安全中的应用__________________________________________________________7 4结论__________________________________________________________________________7参考文献: ________________________________________________________________________8

关于光放大器的最新发展及应用

2004年6月 第19卷第2期 山东师范大学学报(自然科学版) Journal of Shandong Normal Universi ty(Natural Science) Jun.2004 Vol.19No.2关于光放大器的最新发展及应用 辛化梅1)薛林2) (1)山东师范大学物理与电子科学学院,250014,济南;2)海军工程大学信息与电气学院,433033,湖北武汉M第一作者32岁,女,讲师) 摘要介绍了国际上光放大器的最新发展及应用,主要包括掺铒光纤放大器、Er3+:Yb3+共掺玻璃波导放大器、掺铥光纤放大器、光纤拉曼放大器及半导体光放大器,并指出相关光放大器的发展趋势. 在光纤通信系统中,随着传输速率的增加,传统的O P E P O中继方式的成本迅速增加,于是,人们寻找用光放大的方法来代替传统的中继方式,并延长传输距离.光放大器能直接放大光信号,对信号的格式和速率具有高度的透明性,使得整个系统更加简单灵活,它的出现和实用化在光纤通信发展史上具有里程碑意义,使超高速、超大容量、超常距离的波分、密集波分、全光传输、光孤子传输等成为现实. 光放大器大致可分三种:1稀土掺杂光放大器,如掺铒光纤放大器(EDFA)、掺铥光纤放大器(TDFA)、掺镨光纤放大器(PDFA),Er3+:Yb3+共掺玻璃波导放大器(EDW A)等;o非线性效应光放大器,如光纤拉曼放大器(FRA)等;?半导体光放大器(SOA). 目前,光纤通信的发展从电信光纤低损耗波长1550nm的C波段(1528~1565nm)向邻近波段L波段(1570~1610nm)、S波段(1450~1520nm)发展.可以说,随着光纤大容量、高速率传输技术的发展,对光放大器也提出了新的技术要求与挑战,促使其向高性能、宽带、多功能、智能化、标准化、低功耗、低价位发展. 1掺铒光纤放大器(EDFA) EDFA是密集波分复用(DWDM)光纤传输系统的核心器件之一,是DWD M系统的传输链路的重要组成部分,其性能直接影响到系统的传输特性.EDFA以掺铒光纤为增益介质,利用980nm和1480nm泵浦作为泵浦光源,使铒离子Er3+粒子数反转,信号光入射使亚稳态Er3+粒子受激辐射,产生信号放大. EDFA的结构如图1所示[1] 图1EDFA结构 由图1可见,EDFA主要由掺铒光纤、泵浦光源、光耦合器、光隔离器以及光滤波器组成,而其主体部件是泵浦光源和掺铒光纤.按照泵浦光源的泵浦方式不同,EDFA又有三种不同的结构方式,即同向泵浦结构、反向泵浦结构及双向泵浦结构.采用同向泵浦,可获得较好的噪声性能;采用反向泵浦,可获得较高的输出功率;采用双向泵浦,使EDFA的增益和噪声性能都优于单向泵浦,但增加一个泵浦源,成本也增加很多. 目前,对于常规通信段,多采用EDFA对光信号进行放大.EDFA具有饱和输出光功率高、信号增益大、工作带宽宽等特点,且在1520~1610nm都存在放大的可能性;缺点是带宽还不够大,在1530nm~1560nm波段才有较大且平坦的增益,这对WDM宽带宽传输系统放大有很大的限制,并且EDFA中光纤非线性限制入射功率,同时也限制信噪比的提高.在EDFA增益谱上还有潜在L波段的平坦增益谱,其波长范围为1570~1610nm,由于该波段远离铒离子的发射谱中心,增益明显低于C波段,因此其带宽资源一直没有被利用.目前,有以下几种光纤放大器来提高有用带宽[2]:碲化物EDFA、增益漂移碲化物EDFA、1580nm带宽EDFA、掺铥光纤放大器、Raman放大器,而对L波段的放大主要为以宽带放大特性见称的碲化物EDFA,碲化物EDFA是相干光放大器.在掺铒光纤放大器中,激励光和信号光的同向分量与正交分量受到同样程度的放 收稿日期:2003-02-15

半导体光放大器(SOA)

半导体光放大器(SOA) SOA的放大原理与半导体激光器的工作原理相同,也是利用能级间受激跃迁而出现粒子数反转的现象进行光放大。SOA有两种:一种是将通常的半导体激光器当作光放大器使用,称作F—P半导体激光放大器(FPA);另一种是在F—P激光器的两个端面上涂有抗反射膜,消除两端的反射,以获得宽频带、高输出、低噪声。 早在半导体激光器出现时,就开始了对SOA的研究,但由于初期的半导体材料激光放大器偏振灵敏度较高,使得SOA一度沉寂。但近几年来应变量子阱材料的研制成功,克服了偏振敏感的缺点,性能也有许多改进。半导体光放大器的增益可以达到30dB以上,而且在1310nm窗口和1550nm窗口上都能使用。如能使其增益在相应使用波长范围保持平坦,那么它不仅可以作为光放大的一种有益的选择方案,还可促成l310nm窗口WDM系统的实现。SOA的优点是:结构简单、体积小,可充分利用现有的半导体激光器技术,制作工艺成熟,成本低、寿命长、功耗小,且便于与其他光器件进行集成。另外,其工作波段可覆盖l.3~1.6/μm 波段,这是EDFA或PDFA所无法实现的。但最大的弱点是与光纤的耦合损耗太大,噪声及串扰较大且易受环境温度影响,因此稳定性较差。SOA除了可用于光放大外,还可以作为光开关和波长变换器。 2.拉曼光纤放大器拉曼放大技术是采用受激拉曼散射(SRS)这种非线性效应来进行放大的。石英光纤具有很宽的受激拉曼散射增益谱,并在13THz附近有一较宽的主峰。如果一个弱信号与一强泵浦光波同时在光纤中传输,并使弱信号波长置于泵浦光的拉曼增益带宽内,弱信号光即可得到放大,这种基于受激拉曼散射机制的光放大器即称为拉曼光纤放大器。(1)拉曼光纤放大器的类型拉曼光纤放大器有两种类型:一种是集总式拉曼光纤放大器;另一种是分布式拉曼放大器。集总式拉曼光纤放大器所用的光纤增益介质比较短,一般在几km,泵浦功率要求很高,一般为几W左右,可产生40dB以上的高增益,可作为功率放大器,放大EDFA所无法放大的波段。分布式拉曼放大器所用的光纤比较长,一般为几十km,泵源功率可降低到几百mW,主要辅助EDFA用于WDM通信系统性能的提高,抑制非线性效应,提高信噪比。在WDM系统中,采用分布式拉曼光纤放大辅助传输可大大降低信号的入射功率,同时保持适当的光信号信噪比(OSNR)。(2)拉曼光纤放大器的优点?拉曼光纤放大器的增益高、串扰小、噪声系数低、频谱范围宽、温度稳定性好,将拉曼光纤放大器与常规EDFA混合使用时可大大降低系统的噪声指数,增加传输跨距。①增益介质为传输光纤本身,与光纤系统有良好的兼容性这使得拉曼光纤放大器可以对光信号进行在线放大,构成分布式放大,实现长距离的无中继传输和远程泵浦,尤其适用于海底光缆通信等不方便设立中继器的场合。而且因为放大是沿光纤分布而不是集中作用,光纤中各处的信号光功率都比较小,从而可降低非线性效应尤其是四波混频(FWM)效应的干扰。②增益波长由泵浦光波长决定,不受其他因素的限制理论上只要泵浦源的波长适当,就可以放大任意波长的信号光。所以拉曼光纤放大器可以放大:EDFA所不能放大的波段,使用多个泵源还可得到比EDFA宽得多的增益带宽,对于开发光纤的整个低损耗区1260~1675nm具有无可替代的作用。?总之,拉曼光纤放大器结合EDFA等稀土掺杂光纤放大器必将成为未来宽带、高速、长距离光通信传输实现光放大的理想方案。 3.掺铒光纤放大器(EDFA) (1)掺杂光纤放大器简介?在介绍EDFA之前,首先来了解以下掺杂光纤放大器的基本概念。掺杂光纤放大器又称为掺稀土离子光纤放大器,是利用稀土金属离子作为激光工作物质的一种放大器。掺杂光纤放大器的原理与激光放大器的原理相类似。但掺杂光纤放大器的工作腔是一段掺稀土粒子光纤,细长的纤形结构使得有源区能量密度很高,光与物质的作用区很长,

光电子技术的发展与应用

光电子技术的发展与应用 摘要 光电子技术产业是由光子技术和电子技术结合而成的新技术,是我国的先导产业, 对我国国防工业、太阳能能源产业、汽车产业和信息技术等产业发展具有重要战略影响。本文重在讨论啦光电子技术发展在世界和国内的态势及其应用。 关键词:光电子技术;发展态势;光电子技术的应用; 引言 光电子技术产业是由光子技术和电子技术结合而成的新技术,是我国的先导产业, 对我国国防工业、太阳能能源产业、汽车产业和信息技术等产业发展具有重要战略影响。 光电技术的发展态势 目前,人们都倾向认为光电子技术的发展历史应从1960年激光器的诞生算起。尽管其历史可追溯到19世纪70年代,但那时期到1960年,光学和电子学仍然是两门独立的学科,因而只能算作光电子学与光电子技术的孕育期。 最早出现的光电子器件是光电探测器,而光电探测器的基础是光电效应的发现和研究。1888年,德国H.R.赫兹观察到紫外线照射到金属上时,能使金属发射带电粒子,当时无法解释。1890年,P.勒纳通过对带电粒子的电荷质量比的测定,证明它们是电子,由此弄清了光电效应的实质。1900年,德国物理学家普朗克在黑体辐射研究中引入能量量子,提出了著名的描述黑体辐射现象的普朗克公式,为量子论坚定了基础。1929年,L.R.科勒制成银氧铯光电阴极,出现了光电管。1939年,前苏联V.K.兹沃雷金制成实用的光电倍增管。20世纪30 年代末,硫化铅(PbS)红外探测器问世,它可探测到3μm辐射。40年代出现用半导体材料制成的温差电型红外探测器和测辐射热计。50年代中期,可见光波段的硫化镉(CdS)、硒化镉(CdSe)、光敏电阻和短波红外硫化铅光电探测器投入使用。50年代末,美国军队将探测器用于代号为“响尾蛇”的空空导弹,取得明显作战效果。1958年,英国劳森等发明碲镉汞(HgCdTe)红外探测器。在军事需求牵引和半导体工艺等技术发展的推动下,红外探测器自60年代以来迅速发展 1.世界光电子技术和产业的发展 光纤通信技术的发展速度远远超过当初人们的预料,光纤已经成为通信网的重要传输媒介,现在世界上大约有60% 的通信业务经光纤传输,到20 世纪末将达到85%,但从目前光纤通信的整体水平来看,仍处于初级阶段,光纤通信的巨大潜力 还没有完全开发出来。目前,各种新技术层出不穷,密集波分复用技术( D W D M , 在同一根光纤内传输多路不同波长的光信号,以提高单根光纤的传输能力)、掺铒光纤放大器技术( E D F A ,可将光信号直接放大,具有输出功率高、噪声小,增益带宽等优点)已取得突破性进展并得到广泛的应用。

相关主题
文本预览
相关文档 最新文档