当前位置:文档之家› 神二电厂主保护动作机组跳闸分析报告

神二电厂主保护动作机组跳闸分析报告

神二电厂主保护动作机组跳闸分析报告
神二电厂主保护动作机组跳闸分析报告

神二电厂6月18日#1机组因#11引风机失速,锅炉“炉膛压力>+500Pa延时25秒”

主保护动作机组跳闸分析报告

一、机组情况介绍:

机组额定容量500MW,锅炉为亚临界、一次中间再热、前后墙对冲燃烧,塔式布置,锅炉最大蒸发量为1650T/H,主汽压力为17.46Mpa,主再热汽温均为540℃,为斯洛伐克托尔马其锅炉厂制造,于1992年投产。配置有6套正压直吹式制粉系统,磨煤机为MPS-245中速磨,引风机为双动叶轴流式风机,送风机为变频轴流式风机,一次风机为变频离心式风机;采用四分仓容克式回转式空气预热器,设计烟气侧差压为1100Pa;采用电袋除尘器,设计烟气差压为1200Pa;采用石灰石湿法脱硫,配有四台浆液循环泵。

二、事件发生前机组运行方式及烟风燃烧系统参数:

1、运行方式:

#1机组负荷499MW,汽泵运行,#11、#12、#13、#14、#15磨运行,#11、#13、#14脱硫浆液循环泵运行,#11、#12电泵、#16磨、#12脱硫浆液循环泵备用,炉膛负压自动、送风自动投入,AGC投入。

2、烟风燃烧系统运行参数情况:

炉膛负压:-45Pa

#11/#12引风机动叶开度:84%/79%;#11/#12引风机

电流:558A/645A

#11引风机入口/出口压力:-5107/3695Pa;#12引风机入口/出口压力:-5303/3619Pa

除尘器布袋差压:1750Pa左右

原烟气S02含量:4600mg/Nm3,净烟气S02含量:27mg/Nm3

燃煤:收到基低位发热量14.78MJ/kg(3535千卡/千克),空气干燥基灰分43.65%。

三、事件发生过程:

19:29:50 因原烟气含硫量高4600mg/Nm3,为防止脱硫出口SO2超标,启#12浆液循环泵

19:30:29 炉膛压力达+200Pa报警

19:30:33 炉膛压力达+500Pa

19:30:58 值班员进行降负荷(在AGC方式下限制负荷高限值由500MW至450MW)

19:30:58 “炉膛压力超限”(炉膛压力+500Pa,延时25S)保护发出,锅炉灭火,汽机掉闸,发电机逆功率解列。

注:炉膛压力超限保护设置情况:(1)+500Pa或-400Pa,延时25秒(捷克锅炉设计要求);(2)+1700Pa或-1500Pa 延时0秒。

三、数据分析

1、事件发生后查相关参数趋势:

19:29:50启#12浆液循环泵

19:29:55 #12浆液循环泵启动电流回头,显示正常值102A

19:30:03 #11引风机出口压力由3695Pa开始上升,轴承箱X轴振动开始由4.02mm/s上升,炉膛负压由-44Pa 开始向正微小变化,此时#11/12引风机动叶开度84.7%/78.9%尚未变化,#11引风机电流557A降至544A,#12引风机电尚未变化

19:30:11 #11引风机出口压力升高至4138Pa(升高了443Pa),轴承箱X轴振动升高至5.02mm/s(升高了1.00mm/s)

19:30:18 #11引风机电流由544A开始大幅下降,19:30:20降至418A,#11引风机出口压力由4127Pa降至3379Pa,#12引风机出口压力由4126Pa降至2870Pa,并且两台引风机动叶开始明显开大

19:30:23 #11引风机电流由418A由升高至557A

19:30:24 炉膛负压达到+200Pa(报警值)

19:30:29 #11引风机电流再次突降,由557A降至427A,且两台引风机动叶开度升高至88%/81.4% 19:30:31#11引风机电流再次回升至501A,此时炉膛压力达+500A(开始延时)

19:30:40 #11/12引风机动叶开度89.2%/83.7%,电流

电厂欢热Ⅱ线机保护动作跳闸事件分析报告

电厂欢热Ⅱ线机保护动作跳闸事件分析报告 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

电厂欢热Ⅱ线、#6机保护动作跳闸事件分析报告1、事件经过 (1)6月30日5:45时,根据调度指令配合进行电厂由110kV“两厂”运行方式转为“三厂”的调整操作。 (2)7:00时,调度令断开欢热Ⅰ线厂侧开关1494、欢热Ⅱ线厂侧开关1495。当时#1、#2、#3、#4、#6、#8、#11机、欢热线、南热线挂110kVⅦ段母线上,当班值长监视到欢热线负荷较重(80MW),担心操作时潮流分配引起异常,向调度提出异议。调度在模拟机上进行潮流计算后,认为断开欢热Ⅰ开关可行,7:05时调度重新发令断开欢热线开关。 (3)当值长下令断开欢热Ⅰ线时,发现所带负荷上升至99MW,按调度规程执行调度令,没有再提出异议。7:08:23断开欢热Ⅰ线开关1494,约2秒钟左右,欢热Ⅱ线距离Ⅲ段保护和#6机失磁保护相继动作跳闸,#8机快速减负荷解列停机(#5机检修)。 (4)欢热Ⅱ线保护动作打印记录为“距离Ⅲ段动作”、“测距 0158.7km”、“故障相别为A、B、C”。

(5)#6机MarkV报警有“无功低自动退出PF控制”、“发电机差动跳闸”、“重油状态下跳闸”,发电机保护盘上报警有“失磁保护动作掉牌”。 (6)检修到场后检查确认欢热线Ⅱ距离Ⅲ段动作属于断开欢热Ⅰ线开关时负荷全部转移至欢热Ⅱ线引起线路保护测距进入距离Ⅲ段保护区域而动作跳闸,#6发电机失磁保护动作属于欢热Ⅱ跳闸后,无功负荷重新分配暂态过程中,因励磁调节器的动态调节特性较差造成减磁过调,导致失磁保护动作跳机; (7)10:15时,#6机重新开机;10:31时,并网正常。整个故障历时3.3小时。 2、原因分析 (1)从欢热Ⅱ线保护动作故障录波查得:故障相别为A、B、C三相,故障电流为4.86A,母线电压没有变化,计算当时的测量阻抗值为13.768欧,小于距离Ⅲ段的保护定值17.45欧,显然已进入距离Ⅲ段保护动作区域,保护动作正确。

发电机差动保护动作原因分析

发电机差动保护动作原因分析 一、事故经过 2012年10月23日07时29分,网控值班员听见巨响声同时发现盘面柴发电源二103-16断路器跳闸,网控值班员立即前往网控10KV配电室发现浓烟,经检查柴发电源二103-16高压柜后盖已被甩出,柜内已烧黑。2号发电机纵差保护动作,2号发电机组跳闸。07时33分,低频保护动作,甩负荷至第5轮。07时33分41秒,1号、3号机组跳闸,全厂失电。 二、故障分析 继电保护人员随后调取事故动作报告,发现发电机差动保护动作时刻,差动电流确实已经远超过了整定值,说明在103-16柜故障时刻发抗组差动回路确实存在很大的不平衡电流。与此同时为验证发电机差动回路内一次设备是否有故障,对发电机绕组及其一次母线进行对地及相间绝缘检查,未发现异常。证明发电机等一次设备未发生故障,发抗组保护装臵本身在这次大修期间已经对保护装臵及二次回路连线可靠性及差动极性正确性进行检查均未发现有误之处。差动动作时间和103-16柜发生故障时间基本同时发生,但是就算在故障过程中产生的瞬间大电流对发电机差动回路来说也应该是一个穿越性电流,不应该对发电机差动保护产生影响。随后保护人员调取录波图进行分析,发现故障时刻发电机中性点B相电流波形严重畸变。经过计算,发电机中性点B相电流与发电机机端B相电流之差正好等于装臵

采样的差流值。 从录波图上可以看出,故障时刻发电机中性点B相电流波形发生严重畸变,且故障时刻发电机中性点B相电流与发电机机端电流在同一时刻的相位及幅值均不相同,说明故障电流对发电机中性点电流互感器和发电机机端电流互感器造成的影响不同。 三、波形畸变分析 1、从录波图上可以看出,B相电流波形开始发生畸变前一刻波形

1主变差动保护动作

运行方式:焦东1112带110kV乙母经1100母联带110kV甲母,1号2号主变并列运行,10kVⅠⅡ段母线分段运行。 现象:警铃、喇叭响、1101、101绿灯闪光,有功、无功、电流指示为零,10kVⅠ段母线失压及所有运行出线有功、无功、电流指示为零,监控机一次图上1101、101开关为绿色闪光,发出#1主变差动保护动作信号。 处理:将1101、101开关放至对应位置,经检查#1主变保护装置上显示差动保护动作信号,对#1主变差动保护范围内检查发现#1主变高压侧A相套管闪络有放电痕迹。将保护动作情况,开关跳闸时间记录好,恢复装置信号,将10kVⅠ段所有运行出线开关由运行转热备用,汇报有关领导及金调。 将101小车开关摇至试验位置,断开1101、101开关储能空开,拉开1101丙刀闸、甲刀闸,断开1101、101控制电源空开,合上1101丙丁1刀闸,通知检修人员对A相套管进行检修,经检修好后恢复#1主变运行。 恢复:#1主变检修转运行,拉开1101丙丁1刀闸,合上1101、101控制电源空开,合上1号主变中丁刀闸,合上1101甲刀闸、丙刀闸,将101小车开关摇至工作位置,合上1101、101开关储能空开,将10kVⅠ段所有运行出线开关由热备用转运行。检查全站设备运行正常。汇报有关领导及金调。

运行方式:焦东1112带110kV乙母经1100母联带110kV甲母,1、2号主变并列运行,10kVⅠⅡ段母线分段运行。100分段备自投投入。现象:警铃、喇叭响、1101、101绿灯闪光,有功、无功、电流指示为零,监控机一次图上1101、101开关为绿色闪光,发出#1主变差动保护动作信号。100分段备自投动作。 处理:将1101、101开关放至对应位置,经检查#1主变保护装置上显示差动保护动作信号,对#1主变差动保护范围内检查发现#1主变高压侧A相套管闪络有放电痕迹。将保护动作情况,开关跳闸时间记录好,恢复装置信号,汇报有关领导及金调。 将101小车开关摇至试验位置,断开1101、101开关储能空开,拉开1101丙刀闸、甲刀闸,断开1101、101控制电源空开,合上1101丙丁1刀闸,通知检修人员对A相套管进行检修,经检修好后恢复#1主变运行。 恢复:#1主变检修转运行,拉开1101丙丁1刀闸,合上1101、101控制电源空开,合上1号主变中丁刀闸,合上1101甲刀闸、丙刀闸,将101小车开关摇至工作位置,合上1101、101开关储能空开,断开100分段开关,检查全站设备运行正常。汇报有关领导及金调。

软件可行性研究报告

软件可行性研究报告软件可行性分析报告 文档名称:家庭理财系统可行性分析报告 项目名称:家庭理财系统 软件标识: 项目负责人: 编写人: 校对: 审核: 批准: 开发单位:BL开发小组 目录

一、概 述 ........................................................ ........................................................... (1) 1.1项目名 称 ........................................................ ........................................................... .. (1) 1.2项目背 景 ........................................................ ........................................................... .. (1) 1.3项目产品的主要用途与性 能 ........................................................ .. (1)

1.4投资必要性和预期效 益 ........................................................ . (2) 二、可行性研究的前提......................................................... .. (2) 2.1 要 求 ........................................................ ........................................................... (2) 2.2 家庭理财系统的主要功 能 ........................................................ .. (3) 2.3 系统运行的软硬件环 境 ........................................................ (6)

高压电机差动保护动作的几种原因

咼压电机差动保护动作的几种原因 时间:2016/1/30 点击数:526 高压电机在运行过程中特别是改造初次投产时会因接线不正确、变比选择不匹配及其他疏漏,引起电机、 变压器差动保护动作,这些问题如不能及时、准确的处理,便会影响到油气生产。我们在实践中找到了很多解决此类问题的办法,供大家共享。 1电机差动保护动作原因分析 1.1已经投产运行中的电机 已经投产运行的电机当岀现差动保护动作时,大都不是因为接线错误了,而是因为电机、电缆或保护装置岀现了问题。解决办法:对电机差动保护的定值和动作值进行比对,就能大致判断岀故障的主要原因并决定先对那些设备进行检查。一般来说,依次对电机、电缆进行绝缘测试、直阻测试,对差动回路包括电流互感器进行测试,检查是否有异常,对保护装置进行检查,也可分班同时进行检查。根据我们的经验,主要是电机内部短路、电缆短路特别是有中间接头的地方以及 CT和二次回路的问题。 投产后的电机也会因外界因素或运行方式的改变,造成电机差动保护动作。我单位卫二变电所就出现了这 种问题。卫二变高压622注水电机在正常运行时,由于给2号主变充电,造成622注水电机差动保护动作。 这个看似没有关联的操作却引起了差动保护动作。后经分析、查找、试验,发现差动电流互感器开关侧其 二次线错接在了测量级上,其电机两侧CT的特性不一致。当给 2号35kV主变充电时就会有直流分量和 谐波串到6kV电机保护回路中(具体分析不在这里赘述),造成差流过大(动作值 1.6A左右,动作整定 值1.02A )。更改后,再次启动电机并用钱形电流表(4只表)检测二次回路,其差流正常,保护不再误 动。 2改造或新设备第一次投产时,电机差动保护动作原因分析 由于安装人员技术水平不高或是粗心或是对设备了解不够、理解偏差,对电机、保护装置改造后或是新设 备第一次投产试运行时,往往会岀现差动保护动作的现象。下面就介绍我供电服务中心所管辖的变电所岀现过的几种情况。 ⑴郭村变624高压注水电机改造后,几乎每次启动都会出现差动保护动作(动作值 6.2A-7.2A。动作整定 值5.2A )。对装置的参数整定,CT的极性、接线进行反复检查均没问题,电机试验也正常。后来确认, 由于电机距离开关柜较远(1000m ),电机中心点CT的带负载能力不够,从而在电机直接启动时(启动电流是额定电流的4-6倍)造成差流岀现。测量电动机尾端到开关柜保护装置的接线直阻为 3.5欧,CT带 负载能力为2.2欧。我们从厂家制造了两只专用CT,二次绕组都制成保护级且变比相同,把其副边串接起 来,在不改变变比的情况下,提升了带负载能力。改造后正常。 ⑵郭村变624电机再次改造后,第一次试运行出现了差动速断跳闸,动作值30.2A,动作整定值21.7A。我们对电机、电缆、CT变比、极性及二次回路进行了检查,都没有问题。对差速的动作值与动作整定值进行比对分析,不该是电机差动CT极性接反(相角差180度),接反后其动作值应在 42A以上,更像是差 动回路或一次回路相序不对,其动作电流肯定大于 21.7A,一般小于42A。其动作值与启动电流 258 2015年9月下 的大小成正比,也可以每次启动时,用四只钳形电流表测得数据,再根据余玄定理大致算岀来理想状态下

差动保护的工作原理

1、变压器差动保护的工作原理 与线路纵差保护的原理相同,都是比较被保护设备各侧电流的相位和数值的大小。 2、变压器差动保护与线路差动保护的区别: 由于变压器高压侧和低压侧的额定电流不相等再加上变压器各侧电流的相位往往不相同。因此,为了保证纵差动保护的正确工作,须适当选择各侧电流互感器的变比,及各侧电流相位的补偿使得正常运行和区外短路故障时,两侧二次电流相等。例如图8-5所示的双绕组变压器,应使 8.3.2变压器纵差动保护的特点 1 、励磁涌流的特点及克服励磁涌流的方法 (1)励磁涌流:

在空载投入变压器或外部故障切除后恢复供电等情况下在空载投入变压器或外部故障切除后恢复供电等情况下,变压器励磁电流的数值可达变压器额定6~8倍变压器励磁电流通常称为励磁涌流。 (2)产生励磁涌流的原因 因为在稳态的情况下铁心中的磁通应滞后于外加电压90°,在电压瞬时值u=0瞬间合闸,铁芯中的磁通应为-Φm。但由于铁心中的磁通不能突变,因此将出现一个非周期分量的磁通+Φm,如果考虑剩磁Φr,这样经过半过周期后铁心中的磁通将达到2Φm+Φr,其幅值为如图8-6所示。此时变压器铁芯将严重饱和,通过图8-7可知此时变压器的励磁电流的数值将变得很大,达到额定电流的6~8倍,形成励磁涌流。

(3)励磁涌流的特点: ①励磁电流数值很大,并含有明显的非周期分量,使励磁电流波形明显偏于时间轴的一侧。

②励磁涌流中含有明显的高次谐波,其中励磁涌流以2次谐波为主。 ③励磁涌流的波形出现间断角。 表8-1 励磁涌流实验数据举例 (4)克服励磁涌流对变压器纵差保护影响的措施: 采用带有速饱和变流器的差动继电器构成差动保护; ②利用二次谐波制动原理构成的差动保护; ③利用间断角原理构成的变压器差动保护; ④采用模糊识别闭锁原理构成的变压器差动保护。 2、不平衡电流产生的原因 (1)稳态情况下的不平衡电流

电子制程行业分析报告

电子制程行业分析报告

目录 一、行业主管部门、监管体制和主要法律法规及政策 (5) 1、行业主管部门和监管体制 (5) 2、产业政策 (6) (1)《电子信息产业调整和振兴规划》 (6) (2)《信息产业科技发展“十一五”规划和2020年中长期规划纲要》 (7) (3)《高技术产业“十一五”规划》 (7) (4)《当前优先发展的高技术产业化重点领域指南(2007 年度)》 (8) (5)《电子信息产品污染控制管理办法》 (8) 二、行业基本情况 (9) 1、电子信息产业基本情况 (9) 2、电子制程行业的基本情况 (9) (1)电子制程行业的产生 (9) (2)电子制造行业的发展趋势对电子制程行业的影响 (11) (3)电子制程行业的产业链关系与电子制程行业的服务内容 (12) (4)我国电子制程行业的未来发展 (13) (5)中国电子制程行业的市场容量 (15) ①电子制程产品在电子信息产品总成本中的比重 (15) ②市场规模及增长情况 (16) ③2009-2011年市场需求预测及增长 (16) 三、行业竞争状况 (17) 1、行业总体竞争格局及市场化状况 (17) (1)与供应商竞争 (18) (2)电子制程技术 (18) (3)合格供应商资格认证 (18) 2、行业内的主要企业 (19) (1)国内的主要企业综合竞争实力排名 (19)

(2)国外实力企业简要情况 (19) 3、进入本行业的主要障碍 (21) (1)技术壁垒 (21) (2)供应商壁垒 (22) (3)人力资源壁垒 (22) (4)客户壁垒 (23) (5)销售渠道及规模壁垒 (24) 4、市场供求状况 (24) 5、行业利润水平的变动趋势和原因 (24) 四、影响行业发展的有利和不利因素 (25) 1、有利因素 (25) (1)电子行业整体水平和产业集中度的提高 (25) (2)电子信息产业整体规模将继续保持上升势头 (27) (3)电子制造业竞争的加剧和产品更新换代速度提高 (27) (4)国内GDP将继续保持快速增长 (27) 2、不利因素 (28) (1)经济周期对下游行业造成了短期负面影响 (28) (2)国内电子行业对电子制程的重要性和意义认识不足 (30) 五、行业技术特点及技术水平、行业特征 (30) 1、行业技术特点与水平 (30) 2、行业经营模式 (31) 3、行业发展趋势 (32) (1)兼并趋势 (32) (2)一体化趋势 (33) 4、行业的区域性 (34) 六、上、下游行业之间的关联性 (35) 1、本行业与上游行业的相关性 (35)

光纤差动保护动作原因分析

关于线路光纤差动保护误动的原因分析 1、摘要 2014年5月30日晚22:57分,在内蒙杭锦旗源丰生物热电厂,发生两条线路光纤差动保护动作跳闸事故;后经调度同意恢复线路供电,在操作1#主变进行冲击合闸时,本条线路光纤差动保护动作跳闸,经检查1#主变没有任何故障,申请调度令再次恢复供电,调度同意并仅限最后一次恢复供电,当又一次次操作1#主变进行冲击合闸时,本条线路光纤差动保护动作跳闸。至此,不能正常运行。 2、基本概况及事故发生经过 内蒙杭锦旗源丰生物热电厂有两台发电机变压器组,主变高压侧为35KV系统,两路进线由上级220KV变电站引来,两路进线之间有母联开关,启动备用变压器由Ⅰ段母线供电。由于两路进线在上级变电站为同段母线输送,所以正常运行时母联合环,两台机组并列运行。听当值运行人员讲,5月30日晚22:08分,事故发生之前系统报出过TV断线、零序过压、主变过负荷故障,并且C相系统电压均为零的状况,即刻到35KV配电室巡视,最终发现在Ⅱ段主变出线柜跟前闻见焦糊味。当即汇报调度采取措施,申请调度断开35KV母联开关310,保证Ⅰ段发电机变压器组正常运行。然后意在使Ⅱ段发电机变压器组退出运行,以便检查Ⅱ段主变出线柜焦糊味的来源情况。结果在间隔50分钟后,当晚22:57分左右,2#主变差动保护动作,跳开高低压侧开关,发电机解列.Ⅰ段、Ⅱ段线路光纤差动保护莫名其秒的同时动作跳闸,1#主变高低压侧开关紧跟着也跳闸,造成全厂停电事故。

上述情况发生后,向调度汇报,申请恢复线路供电,以保厂用系统不失电安全运行。调度要求自行检查故障后在送电,在晚上23:50分,检查出2#主变出线柜C相CT接地烧毁,后向调度汇报并经调度同意恢复了供电。厂用电所带设备运转正常后,计划启动Ⅰ段发电机变压器组,调度同意.在3:49分,操作1#主变冲击合闸时,本条线路光纤差动保护动作跳闸,同时向调度汇报。在检查1#主变没有任何故障后,申请调度令,恢复杭源一回线供电.调度同意并仅限最后一次恢复供电, 4:52分, 操作1#主变冲击合闸时, 本条线路光纤差动保护再次动作跳闸,11:33分申请调度恢复本厂厂用电系统,经调度同意,在11:39分恢复了厂用电系统. 根据其它运行人员反映,在此次事故之前,也有光纤差动保护动作跳闸的事情发生,而且不只一次。并且奇怪的是,在两台机组并列运行时,想让两台机组分段运行。在分断联络开关时,线路光纤差动保护也会同时动作跳闸,两条线路全部失电。或是正常操作断开一条线路时,也会使另一条线路光纤差动保护动作跳闸,说明光纤差动保护动作非常不可靠,存在着巨大引患. 3、光纤差动保护误动的原因分析 经过认真检查,2#主变出线柜C相CT接地烧毁(一次对二次及地绝缘为零),B相CT也有严重拉弧现象,C相CT二次侧也有拉弧过的痕迹.A、B、C相CT一次触头螺丝没有紧死,有不同程度的虚接现象。必须重新更换CT.这也说明相关装置报出TV断线、零序过压、主变过负荷故障的原因所在, C相CT接地并存在严重拉弧现象,那么 C相系

差动保护试验方法总结

数字式发电机、变压器差动保护试 验方法 关键词: 电机变压器差动保护 摘要:变压器、发电机等大型主设备价值昂贵,当他们发生故障时,变压器、发电机的主保护纵向电流差动保护应准确及时地将他们从电力系统中切除,确保设备不受损坏。模拟发电机、变压器实际故障时的电流情况来进行差动试验,验证保护动作的正确性至关重要。 关键词:数字式差动保护试验方法 我们知道,变压器、发电机的电气主保护为纵向电流差动保护,该保护原理成熟,动作成功率高,从常规的继电器保护到晶体管保护再到现在的微机保护,保护原理都没有多大改变,只是实现此保护的硬件平台随着电子技术的发展在不断升级,使我们的日常操作维护更方便、更容易。传统继电器差动保护是通过差动CT的接线方式与变比大小不同来进行角度校正及电流补偿的,而微机保护一般接入保护装置的CT全为星型接法,

然后通过软件移相进行角差校正,通过平衡系数来进行电流大小补偿,从而实现在正常运行时差流为零,而变压器内部故障时,差流很大,保护动作。由于变压器正常运行和故障时至少有6个电流(高、低压侧),而我们所用的微机保护测试仪一般只能产生3个电流,因此要模拟主变实际故障时的电流情况来进行差动试验,就要求我们对微机差动保护原理理解清楚,然后正确接线,方可做出试验结果,从而验证保护动作的正确性。 下面我们以国电南京自动化设备总厂电网公司的ND300系列的发变组差动保护为例来具体说明试验方法,其他厂家的应该大同小异。这里我们选择ND300系列数字式变压器保护装置中的NDT302型号作为试验对象。该型号的差动保护定值(已设定)见表1: 表1NDT302变压器保护装置保护定值单

项目可行性分析报告(模板)

项目可行性分析报告 第一部分:项目总论 一、项目概况 二、可行性研究结论 三、主要技术经济指标表 四、项目存在问题与建议 第二部分项目背景 一、项目提出背景 二、项目发展概况 三、项目投资的必要性 第三部分项目投资所在城市的基本概况 一、城市基本发展情况 二、城市地理位置、交通、 三、城市气候与生态环境 四、城市的人文环境 五、城市经济状况 六、城市的人口结构及人均经济状况 七、城市整体发展规划及功能布局 八、城市对项目的影响与建议措施 第四部分市场分析 一、整体房地产市场发展状况分析 二、项目区域市场分析 第五部分地块分析 一、地块概况 二、地块分析 三、土地价格 四、土地升值潜力初步评估 五、项目取得用地的法律及政策性风险分析

六、地块SWOT分析 七、项目评价 第六部分项目定位 一、项目目标设置 二、项目整体定位策略 三、项目定位建议 第七部分项目整体规划分析 一、项目规划设计可行性分析 二、项目规划设计的主题及概念 第八部分项目开发建设进度安排与销售节点 一、项目分期开发设置 二、工程计划 三、销售节点 第九部分投资估算与资金筹措 一、成本预测 二、税务分析 三、资金筹措 四、资金投放使用计划 第十部分销售收入测定 一、销售收入测算 二、销售利润测算 第十一部分财务与敏感性分析 一、项目盈利能力分析 二、项目盈亏平衡分析 三、项目敏感性分析 第十二部分综合评价 一、经济评价(定性) 二、社会评价(定性) 三、环境评价 四、市场预测

五、存在问题与建议 六、总体结论及建议 第十三部分竞拍和投标方式取得土地需要增加和完善的内容 一、主要指标测算 二、竞争对手分析 三、制定策略 第十四部分附件 第一部分:项目总论 一、项目概况

电厂发电机失磁保护动作跳闸事件分析报告

电厂#2发电机失磁保护动作跳闸事件分析报告1、事件经过 2006年03月27日9:23时,#2汽轮发电机失磁保护动作跳闸,但在#1电子间#2汽机保护屏前未见任何保护动作信号,询问在场的运行人员答复已将保护屏跳闸信号复归。检查动作记录报文,其中有失磁保护动作与TV断线。于是拉开#1PT刀闸,检查1PT的一次保险和二次接线无开路现象,检查#2PT二次空开下桩头接线B相松动,将其紧固。因怀疑PT一次保险质量不良,用保险丝与1PT一次保险并联后,推上#1PT刀闸,重新起励,控制屏上显示励磁为FCR 方式,检查励磁屏上两通道均有PT断线告警,将其复归(在检查PT 回路拉开1PT刀闸时发出),再次起励升压并网成功。 2、原因分析 (1)保护屏内故障报文,因CPUO和CPUE的报文一样,CPUE的时间更接近实际时间,故以CPUE的报文作为分析依据,相关故障报文如下:

09:17:25:306失磁保护动作t1(0.5s) 09:17:26:303失磁保护动作t2(1s) 09:17:28:291主汽门关闭 09:18:48:463发电机3W定子接地TV1断线 09:18:35:541发电机3U0定子接地TV1断线 09:19:00:393发电机逆功率TV1断线 09:19:01:388发电机失磁保护TV1断线 可知故障是因#2发电机失磁引起失磁保护动作跳开发电机出口开关502,联跳主汽门。综合检查情况,基本可排除PT断线的因素造成,PT断线保护可闭锁,励磁也可切换到手动通道,保护出口前无PT断线信号,TV1断线信号是在发电机开关跳闸甩负荷后发出的,为甩负

荷时系统冲击引起(3W、3U0定子接地同理),现场检查PT也未开路,从失磁保护报文看,保护启动正确,当时检测到的参数已达到动作范围。 (2)造成失磁的原因由于分析素材不足,难以作出准确的判断,但可能是: ①励磁装置自行误动作减磁或灭磁。 ②不排除有人在触摸屏检查时误按“灭磁开关跳闸”按键。(正常时黑屏) 3、暴露问题 (1)保护屏上信号复归过快,不利于故障分析。 (2)运行励磁投切方式无记录。

变压器纵差动保护动作电流的整定原则

变压器纵差动保护动作电流的整定原则差动保护初始动作电流的整定原则,是按躲过正常工况下的最大不平衡电流来整定;拐点电流的整定原则,应使差动保护能躲过区外较小故障电流及外部故障切除后的暂态过程中产生的最大不平衡电流。比率制动系数的整定原则,是使被保护设备出口短路时产生的最大不平衡电流在制动特性的边界线之下。 为确保变压器差动保护的动作灵敏、可靠,其动作特性的整定值(除BCH型之外)如下: Idz0=(0.4,0.5)IN, Izd0=(0.6,0.7)IN, Kz=0.4,0.5 式中,Idz0为差动保护的初始动作电流;I,zd0为拐点电流;Kz =tgα点电流等于零的;IN为额定电流(TA二次值)。 电流速断保护限时电流速断保护定时限过电流保护的特点 速断保护是一种短路保护,为了使速断保护动作具有选择性,一般电力系统中速断保护其实都带有一定的时限,这就是限时速断,离负荷越近的开关保护时限设置得越短,末端的开关时限可以设置为零,这就成速断保护,这样就能保证在短路故障发生时近故障点的开关先跳闸,避免越级跳闸。定时限过流保护的目的是保护回路不过载,与限时速断保护的区别在于整定的电流相对较小,而时限相对较长。这三种保护因为用途的不同,不能说各有什么优缺点,并且往往限时速断和定时限过流保护是结合使用的。 瞬时电流速断保护与限时电流速断保护的区别就是,瞬时是没有带时限的,动作值达到整定值就瞬时出口跳闸,不经过任何延时。而限时电流速断是带有延时的,动作值达到整定值后经过一定的延时才启动出口跳闸;

瞬时电流速断保护与限时电流速断保护的区别,限时电流速断保护与过电流保护有什么不同, 瞬时电流速断和限时电流速断除了时间上的区别外就是他们在整定的大小和范围的不同,瞬时速断保护的范围比限时的要小,整定动作值要比限时速断的要大。 过电流保护和限时电流速断的区别? 电流速断,限时电流速断和过电流保护都是反映电流升高而动作的保护装置。 区别:速断是按躲开某一点的最大短路电流来整定,限时速断是按照躲开下一级相邻元件电流速断保护的动作电流来整定,而过流保护是按躲开最大负荷电流来整定的。 由于电流速断不能保护线路的全长,限时电流速断又不能作为相邻元件的后备保护,因此保证迅速而又有选择的切除故障,常将三者组合使用,构成三段电流保护。 过电流保护的整定值为什么要考虑继电器的返回系数,而电流速断保护则不需要考虑, 这是综合考虑保护的灵敏性和可靠性的结果。为了保证保护的灵敏性,动作的整定值 应当尽量小,但是过电流的动作值与额定运行电流相差不大,这样有可能造成保护误动作,从而降低了供电的可靠性。所以我们为过电流保护加了时限,过电流必须要持续一定的时间才会动作,如果在时限内电流降到返回值以下,那么保护就复归不用动作了,从而在不降低灵敏性的情况下增加了可靠性。而电流速断本身动作电流比较大,且没有时间的限制,只要电流一超过速断的整定值,马上动作跳闸,所以不需要设置返回值。 何谓线路过电流保护,瞬时电流速断保护?和它们的区别, 两种保护的基本原理是相同的。

技术可行性分析报告

XXXXX系统 技术可行性分析报告 项目名称: 项目编号: 编写: 审核: 批准: 日期:

目录 1项目简介.......................................................................................................................................................... 22系统构成.......................................................................................................................................................... 33产品技术平台分析.......................................................................................................................................... 3 3.1系统运行环境...................................................................................................................................... 3 3.2开发环境.............................................................................................................................................. 44主要关键技术.................................................................................................................................................. 45关键技术的解决方案...................................................................................................................................... 5 5.1Struts2框架.......................................................................................................................................... 5 5.2持久层框架.......................................................................................................................................... 8 5.3Ajax技术 ......................................................................................................................................... 11 5.4XML解析器.................................................................................................................................... 15 5.5SNMP ............................................................................................................................................... 186系统架构解决方案...................................................................................................................................... 22 6.1架构1 ............................................................................................................................................... 22 6.2架构2 ............................................................................................................................................... 227本项目确定的方案...................................................................................................................................... 23 7.1系统架构.......................................................................................................................................... 23 7.2技术方案.......................................................................................................................................... 231项目简介

主变压器差动保护动作的原因及处理示范文本

主变压器差动保护动作的原因及处理示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

主变压器差动保护动作的原因及处理示 范文本 使用指引:此操作规程资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 主变压器差动保护动作跳闸的原因是: (1)主变压器及其套管引出线发生短路故障。 (2)保护二次线发生故障。 (3)电流互感器短路或开路。 (4)主变压器内部故障。 处理的原则是: (1)检查主变压器外部套管及引线有无故障痕迹和异 常现象。 (2)如经过第(1)项检查,未发现异常,但本站 (所)曾有直流不稳定接地隐患或曾带直流接地运行,则 考虑是否有直流两点接地故障。如果有,则应及时消除短

路点,然后对变压器重新送电。 (3)如果进行第(2)项检查,未发现直流接地故障,但出口中间继电器线圈两端有电压,同时差动继电器接点均已返回,则可能是差动跳闸回路和保护二次线短路所致,应及时消除短路点,然后试送电。 (4)检查高低压电流互感器有无开路或接触不良现象,发现问题及时处理,然后向变压器恢复送电。 (5)如果上述检查未发现故障或异常,则可初步判断为变压器内部故障,应停止运行,等待试验;如果是引出线故障,则应及时更换引出线。 (6)如果差动保护和瓦斯保护同时动作跳闸,应首先判断为变压器内部故障,按重瓦斯保护动作处理。 请在此位置输入品牌名/标语/slogan Please Enter The Brand Name / Slogan / Slogan In This Position, Such As Foonsion

可行性分析报告案例

第五章可行性分析 可行性分析是企业进行清洁生产审核工作的第五个阶段。本阶段的目的是对筛选出来的中/高费方案进行分析和评估,以选择最佳的、可实施的清洁生产方案。本阶段工作重点是:在结合市场调查和收集一定资料的基础上,进行方案的技术、环境、经济的可行性分析和比较,从中选择和推荐最佳的可行方案。5.1矿粉矾渣综合利用方案可行性分析 5.1.1方案简介 公司原有生产工艺是孰料、石灰粉、炉渣、粉煤灰和脱硫石膏混合,经粉磨后选粉进入包装车间。考虑到水泥中加入矿粉矾渣可以节约原料,公司决定实施该方案。在粉磨车间,在粉磨车间粉磨工段后配置2个300吨储罐,矿粉矾渣加入储罐后,由提升机提升至水泥输送线,将矿渣和矾渣掺入到水泥成品,再混匀。 该方案主要设备如下: 斗提提升机NE50×17m 2台 螺旋闸门500×500 2台 电动三通分料器400×400 2台 300吨矿粉、矾渣储罐 2套 机械吊装 2只 绞刀、转子秤及配套产品 2台 方案工艺流程图如下图:

图5-1 矿粉矾渣综合利用方案工艺流程图 5.1.2技术可行性评估 矾渣是一种灰白色的粒状物,有时亦呈粉红色。其主要成份为硅、铝的化合物及少量铁、硫、钙、碱的化合物。由于矾渣中含有一定数量的可溶性铝,在石膏存在的条件下,有可能形成钙矾石,起着良好的增强作用。目前国家支持水泥行业利用工业废渣在制造复合水泥,《国家重点行业清洁生产技术导向目录》(第二批)中指出,采用此技术可以减少粉尘产生量,水泥生产成本大大降低,同时使工业废渣得到综合利用。通过本方案实施,每年可提高混合材配料比,降低熟料使用量,通过核算,混合材配料比为31.2%,熟料配料比为68.8%,优化了配料结构,减少熟料使用量。因此本方案符合国家有关的技术政策和能源政策。 本方案采用的设备为行业通用设备,自动化程度高,易于操作,安全可靠。因此本方案在技术上是可行的。 5.1.3环境可行性评估 矿渣、矾渣是工业废物,目前还没有有效的处理方法,对环境的影响也较大。该项目实施后,不但可以解决工业废渣处理问题,年收纳矿粉、矾渣各22500t,将其很好利用,解决了矾渣堆积对环境的影响,同时提高了企业的废渣利用率,并节约了熟料4万t。矾渣、矿粉均采用罐车运输至厂区,分别直接打入新建的储罐中,由储罐底部卸料口直接加入水泥成品输送线,整个进料和卸料过程全部密封,减少了原料装卸及输送过程产生的粉尘,经核算每年可减少粉尘1t,对

主变压器差动保护动作的原因及处理

主变压器差动保护动作的原因及处理 一、变压器差动保护范围: 变压器差动保护的保护范围,是变压器各侧的电流互感器之间的一次连接部分,主要反应以下故障: 1、变压器引出线及内部绕组线圈的相间短路。 2、变压器绕组严重的匝间短路故障。 3、大电流接地系统中,线圈及引出线的接地故障。 4、变压器CT故障。 二、差动保护动作跳闸原因: 1、主变压器及其套管引出线发生短路故障。 2、保护二次线发生故障。 3、电流互感器短路或开路。 4、主变压器内部故障。 5、保护装置误动 三、主变压器差动保护动作跳闸处理的原则有以下几点: 1、检查主变压器外部套管及引线有无故障痕迹和异常现象。 2、如经过第1项检查,未发现异常,但曾有直流不稳定接地隐患或带直流接地运行,则考虑是否有直流两点接地故障。如果有,则应及时消除短路点,然后对变压器重新送电。差动保护和瓦斯保护共同组成变压器的主保护。差动保护作为变压器内部以及套管引出线相间短路的保护以及中性点直接接地系统侧的单相接地短路保护,同时对变压器内部绕组的匝间短路也能反应。瓦斯保护能反应变压器内部的绕组相间短路、中性点直接地系统侧的单相接地短路、绕组匝间短路、铁芯或其它部件过热或漏油等各种故障。 差动保护对变压器内部铁芯过热或因绕组接触不良造成的过热无法反应,且当绕组匝间短路时短路匝数很少时,也可能反应不出。而瓦斯保护虽然能反应变压器油箱内部的各种故障,但对于套管引出线的故障无法反应,因此,通过瓦斯保护与差动保护共同组成变压器的主保护。 四、变压器差动保护动作检查项目: 1、记录保护动作情况、打印故障录波报告。 2、检查变压器套管有无损伤、有无闪络放电痕迹变压器本体有无因内部故障引起的其它异常现象。 3、差动保护范围内所有一次设备瓷质部分是否完好,有无闪络放电痕迹变压器及各侧刀闸、避雷器、瓷瓶有无接地短路现象,有无异物落在设备上。 4、差动电流互感器本身有无异常,瓷质部分是否完整,有无闪络放电痕迹,回路有无断线接地。 5、差动保护范围外有无短路故障(其它设备有无保护动作)差动保护二次回路有无接地、短路等现象,跳闸时是否有人在差动二次回路上工作。 五、动作现象及原因分析: 1、差动保护动作跳闸的同时,如果同时有瓦斯保护动作,即使只报轻瓦斯信号,变压器内部故障的可能性极大。 2、差动保护动作跳闸前如变压器套管、引线、CT有异常声响及其它故障现

制程能力分析

制程能力分析 緒言 在產品生產周期內統計技朮可用來協助制造前之開發活動、制程變異性之數量化、制程變性相對于產品規格之分析及協助降低制 程內之變異性。這些工作一般稱為制程能力分析(process capability analysis)。制程能力是指制程之一致性,制程之變異性可用來衡量制程輸出之一致性。 我們一般是將產品品質特性之6個標准差范圍當做是制程能力之量測。此范圍稱為自然允差界限(natural tolerance limits)或稱為制程能力界限(process capability limits)。圖9-1顯示品質特性符合常態分配且平均值為μ,標准差為σ之制程。制程之上、下自然允差界限為 UNTL=μ+3σ上自然允差界限 LNTL=μ-3σ下自然允差界限 對于一常態分配,自然允差界限將包含99.73%之品質數據,或者可說是0.27%之制程輸出將落在自然允差界限外。如果制程數據之分配不為常態,則落在μ±3σ外之機率將不為0.27%。

(例) 產品外徑之規格為5±0.015cm,由樣本資料得知X=4.99cm,σ=0.004cm,試計算制程之自然允差界限。 (解): UNTL=4.99+3(0.004)=5.002 LNTL=4.99-3(0.004)=4.978 制程能力分析可定議為估計制程能力之工程研究。制程能力分析通常是量測產品之功能參數而非制程本身。當分析者可直接觀察制程及控制制程數據之收集時,此種分析可視為一種真的制程能力分析。因為經由數據收集之控制及了解數據之時間次序性,可推論制程之穩定性。若當只有品質數據而無法直接觀測制程時,這種研究稱為產品特性分析(product characterization)。產品特性分析只可估計產品品質特性之分布,或者是制程之輸出(不合格率),對于制程之動態行為或者是制程是否在管制內則無法估計。這種性形通常是發生在分析供應商提供之品質數據或者是進貨檢驗之品質資料。

相关主题
文本预览
相关文档 最新文档