当前位置:文档之家› 实验排队论问题的编程实现

实验排队论问题的编程实现

实验排队论问题的编程实现
实验排队论问题的编程实现

实验排队论问题的编程实

Prepared on 21 November 2021

实验7 排队论问题的编程实现

专业班级信息112 学号 0218 姓名高廷旺报告日期 .

实验类型:●验证性实验○综合性实验○设计性实验

实验目的:熟练排队论问题的求解算法。

实验内容:排队论基本问题的求解算法。

实验原理对于几种基本排队模型:M/M/1、M/M/1/N、M/M/1/m/m、M/M/c 等能够根据稳态情形的指标公式,求出相应的数量指标。

实验步骤

1 要求上机实验前先编写出程序代码

2 编辑录入程序

3 调试程序并记录调试过程中出现的问题及修改程序的过程

4 经反复调试后,运行程序并验证程序运行是否正确。

5 记录运行时的输入和输出。

预习编写程序代码:

实验报告:根据实验情况和结果撰写并递交实验报告。

实验总结:排队问题用lingo求解简单明了,容易编程。加深了对linggo 中for语句,还有关系式表达的认识。挺有成就感。很棒。

参考程序

例题 1 M/M/1 模型

某维修中心在周末现只安排一名员工为顾客提供服务,新来维修的顾客到达后,若已有顾客正在接受服务,则需要排队等待,假设来维修的顾客到达过程为Poisson流,平均每小时5人,维修时间服从负指数分布,

平均需要6min,试求该系统的主要数量指标。

例题 2 M/M/c 模型

设打印室有 3 名打字员,平均每个文件的打印时间为 10 min,而文件的到达率为每小时16 件,试求该打印室的主要数量指标。

例题 3 混合制排队 M/M/1/N 模型

某理发店只有 1 名理发员,因场所有限,店里最多可容纳 5 名顾客,假设来理发的顾客按Poisson过程到达,平均到达率为 6 人/h,理发时间服从负指数分布,平均12 min可为1名顾客理发,求该系统的各项参数指标。

例题 4 闭合式排队 M/M/1/K/1 模型

设有 1 名工人负责照管 8 台自动机床,当机床需要加料、发生故障或刀具磨损时就自动停车,等待工人照管。设平均每台机床两次停车的时间间隔为1h,停车时需要工人照管的平均时间是6min,并均服从负指数分布,求该系统的各项指标。

实验总结:排队问题用lingo求解简单明了,容易编程,但不同模型的排队问题,需要编写不同的程序,如果大量的问题求解,较废时间。

基于排队理论的仿真模型

关键词:动态模拟蒙特卡洛模拟排队论 内容摘要:论文根据超市顾客到达的随机性和服务时间的随机性,用蒙特卡洛方法模拟不同的顾客到达和服务水平,在MA TLAB/Simulink上对超市单队列多收银台的服务系统进行了动态模拟仿真,得到不同顾客到达率和不同服务水平下,顾客的排队等待时间,服务器的空闲率等要素。 在超市收银排队系统中,顾客希望排队等待的时间越短越好,这就需要服务机构设置较多的收银台,这样可以减少排队等待时间,但会增加商场的运营成本。而收银台过少,会使服务质量降低,甚至造成顾客流失。如何科学合理地设置收银台的数量,以降低成本和提高效益,是商场管理人员需要解决的一个重要问题。 蒙特卡洛方法简介 蒙特卡洛方法又称随机模拟方法,它以随机模拟和统计试验为手段,从符合某种概率分布的随机变量中,通过随机选择数字的方法,产生一组符合该随机变量概率分布特性的随机数值序列,作为输入变量序列进行特定的模拟试验、求解(杜比,2007)。在应用该方法时,要求产生的随机数序列应符合该随机变量特定的概率分布。应用该方法的基本步骤如下: 步骤1:建立概率模型,即将所研究的问题变为概率问题,构造一个符合其特点的概率模型;步骤2:产生一组符合该随机变量概率分布特性的随机数值序列;步骤3:以随机数值序列作为系统的抽样输入进行大量的数字模拟试验,以得到模拟试验值;步骤4:对模拟试验结果进行统计处理(如计算频率、均值等),进而对研究问题做出解释。 基于排队理论的仿真模型建立 (一)超市服务排队模型(M/M/C) 超市收款台服务是一个随机服务系统(唐应辉,2006),该系统具有如下特征:服务的对象是已经选购好商品的顾客,顾客源是无限的,顾客之间相互独立,顾客相继到达的时间间隔是随机的。系统有多个服务员且对每个顾客的服务时间是相互独立的。服务规则遵从先到后服务(FCFS)的原则。每个收款台前都有排队队列,顾客选择较短的队列排队等候,这样形成单队列多服务员(M/M/C)的排队系统。超市收银台顾客排队系统结构见图1。 (二)产生随机数值序列 由于顾客到达间隔时间和顾客服务的时间服从负指数颁布的随机数。令这个负指数分布的随机数为x,负指数分布密度函数为:,其分布函数为:,F(x)的反函数为。设u为[0,1]区间上的独立、均匀分布的随机变量,则所求随机数为,进而简化得,这样得到负指数分布的随机数(吴飞,2006)。 针对商场顾客到达和服务水平的统计数据,据此可产生两个随机数列:顾客到达时间间隔a (i)和顾客服务时间st(i),以此数值序列进行动态输入仿真。 (三)模型变量设置 at(i):表示第i 个顾客到达时刻; a(i):表示第i个顾客到达的时间间隔;st(i):第i个顾客的服务时间;sst(i): 第i个顾客的开始服务时间;lea(i):第i个顾客离开时间;ls(j):第j个队列中最后一个顾客的离开时间;ls(m):每个队列中最后一个顾客离开时间的最早值;freet(j):第j个

排队论模型

排队论模型 排队论也称随机服务系统理论。它涉及的是建立一些数学模型,藉以对随机发生的需求提供服务的系统预测其行为。现实世界中排队的现象比比皆是,如到商店购货、轮船进港、病人就诊、机器等待修理等等。排队的内容虽然不同,但有如下共同特征: 有请求服务的人或物,如候诊的病人、请求着陆的飞机等,我们将此称为“顾客”。 有为顾客提供服务的人或物,如医生、飞机跑道等,我们称此为“服务员”。 由顾客和服务员就组成服务系统。 顾客随机地一个一个(或者一批一批)来到服务系统,每位顾客需要服务的时间不一定是确定的,服务过程的这种随机性造成某个阶段顾客排长队,而某些时候服务员又空闲无事。 排队论主要是对服务系统建立数学模型,研究诸如单位时间内服务系统能够服务的顾客的平均数、顾客平均的排队时间、排队顾客的平均数等数量规律。 一、排队论的一些基本概念 为了叙述一个给定的排队系统,必须规定系统的下列组成部分: 输入过程 即顾客来到服务台的概率分布。排队问题首先要根据原始资料,由顾客到达的规律、作出经验分布,然后按照统计学的方法(如卡方检验法)确定服从哪种理论分布,并估计它的参数值。我们主要讨论顾客来到服务台的概率分布服从泊松分布,且顾客的达到是相互独立的、平稳的输入过程。所谓“平稳”是指分布的期望值和方差参数都不受时间的影响。 排队规则 即顾客排队和等待的规则,排队规则一般有即时制和等待制两种。所谓即时制就是服务台被占用时顾客便随即离去;等待制就是服务台被占用时,顾客便排队等候服务。等待制服务的次序规则有先到先服务、随机服务、有优先权的先服务等,我们主要讨论先到先服务的系统。 服务机构 服务机构可以是没有服务员的,也可以是一个或多个服务员的;可以对单独顾客进行服务,也可以对成批顾客进行服务。和输入过程一样,多数的服务时间都是随机的,且我们总是假定服务时间的分布是平稳的。若以ξ 表示服务员为 n },n=1,2,…第n个顾客提供服务所需的时间,则服务时间所构成的序列{ξ n 所服从的概率分布表达了排队系统的服务机制,一般假定,相继的服务时间ξ , 1ξ2,……是独立同分布的,并且任意两个顾客到来的时间间隔序列{T n}也是独立的。 如果按服务系统的以上三个特征的各种可能情形来对服务系统进行分类,那么分类就太多了。因此,现在已被广泛采用的是按顾客相继到达时间间隔的分布、服务时间的分布和服务台的个数进行分类。 研究排队问题的目的,是研究排队系统的运行效率,估计服务质量,确定系统参数的最优值,以决定系统的结构是否合理,设计改进措施等。所以,必须确

泊松过程及其在排队论中的应用

泊松过程及其在排队论中的应用 摘要:叙述了泊松过程的基本定义和概念,并列举了泊松过程的其他等价定义和证明并分析了泊松过程在排队论中的应用,讨论了完成服务和正在接受服务的顾客的联合分布。 关键词:泊松过程;齐次泊松过程;排队论 1. 前言 泊松分布是概率论中最重要的分布之一,在历史上泊松分布是由法国数学家泊松引人的。近数十年来,泊松分布日益显现了其重要性而将泊松随机变量的概念加以推广就得到了泊松过程的概念。泊松过程是被研究得最早和最简单的一类点过程,他在点过程的理论和应用中占有重要的地位。泊松过程在现实生活的许多应用中是一个相当适合的模型,它在物理学、天文学、生物学、医学、通讯技术、交通运输和管理科学等领域都有成功运用的例子。 2. 泊松过程的概念 定义3.2 :设计数过程{ X(t),t ≥ 0}满足下列条件: (1) X(0) = 0; (2) X(t)是独立增量过程; (3) 在任一长度为t 的区间中,事件A 发生的次数服从参数0t >λ的泊松分布,即对任意是s, t ≥ 0,有 ! )(})()({n t e n s X s t X P n t λλ-==-+, ,1,0=n 则称计数过程{ X(t),t ≥ 0}为具有参数0>λ的泊松过程。 注意,从条件(3)知泊松过程是平稳增量过程且t t X E λ=)]([,由于, t t X E )]([= λ表示单位时间内事件A 发生的平均个数,故称λ为此过程的速率或强度。 从定义3.2中,我们看到,为了判断一个计数过程是泊松过程,必须证明它满足条件(1)、(2)及(3)。条件(1)只是说明事件A 的计数是从t = 0时开始的。条件(2)通常可从我们对过程了解的情况去验证。然而条件(3)的检验是非常困难的。为此,我们给出泊松过程的另一个定义。 定义3.3 :设计数过程{ X(t),t ≥ 0}满足下列条件: (1) X(0) = 0; (2) X(t)是独立平稳增量过程; (3) X(t)满足下列两式: o(h). 2} X(t)-h)P{X(t o(h),h 1} X(t)-h)P{X(t =≥++==+λ

第六章 排队论

第六章排队论模型 排队论起源于1909年丹麦电话工程师A. K.爱尔朗的工作,他对电话通话拥挤问题进行了研究。1917年,爱尔朗发表了他的著名的文章—“自动电话交换中的概率理论的几个问题的解决”。排队论已广泛应用于解决军事、运输、维修、生产、服务、库存、医疗卫生、教育、水利灌溉之类的排队系统的问题,显示了强大的生命力。 排队是在日常生活中经常遇到的现象,如顾客到商店购买物品、病人到医院看病常常要排队。此时要求服务的数量超过服务机构(服务台、服务员等)的容量。也就是说,到达的顾客不能立即得到服务,因而出现了排队现象。这种现象不仅在个人日常生活中出现,电话局的占线问题,车站、码头等交通枢纽的车船堵塞和疏导,故障机器的停机待修,水库的存贮调节等都是有形或无形的排队现象。由于顾客到达和服务时间的随机性。可以说排队现象几乎是不可避免的。 排队论(Queuing Theory)也称随机服务系统理论,就是为解决上述问题而发展的一门学科。它研究的内容有下列三部分: (i)性态问题,即研究各种排队系统的概率规律性,主要是研究队长分布、等待时间分布和忙期分布等,包括了瞬态和稳态两种情形。 (ii)最优化问题,又分静态最优和动态最优,前者指最优设计。后者指现有排队系统的最优运营。 (iii)排队系统的统计推断,即判断一个给定的排队系统符合于那种模型,以便根据排队理论进行分析研究。 这里将介绍排队论的一些基本知识,分析几个常见的排队模型。 §1 基本概念 1.1 排队过程的一般表示 下图是排队论的一般模型。 一定的排队规则等待服务,直到按一定的服务规则接受完服务后离开排队系统。 凡要求服务的对象统称为顾客,为顾客服务的人或物称为服务员,由顾客和服务员组成服务系统。对于一个服务系统来说,如果服务机构过小,以致不能满足要求服务的众多顾客的需要,那么就会产生拥挤现象而使服务质量降低。因此,顾客总希望服务机构越大越好,但是,如果服务机构过大,人力和物力方面的开支也就相应增加,从而会造成浪费,因此研究排队模型的目的就是要在顾客需要和服务机构的规模之间进行权衡决策,使其达到合理的平衡。 1.2 排队系统的组成和特征 一般的排队过程都由输入过程、排队规则、服务过程三部分组成,现分述如下: 1.2.1 输入过程 输入过程是指顾客到来时间的规律性,可能有下列不同情况: (i)顾客的组成可能是有限的,也可能是无限的。 (ii)顾客到达的方式可能是一个—个的,也可能是成批的。

matlab单服务台排队系统实验报告

matlab 单服务台排队系统实验报告 一、实验目的 本次实验要求实现M/M/1单窗口无限排队系统的系统仿真,利用事件调度法实现离散事件系统仿真,并统计平均队列长度以及平均等待时间等值,以与理论分析结果进行对比。 二、实验原理 根据排队论的知识我们知道,排队系统的分类是根据该系统中的顾客到达模式、服务模式、服务员数量以及服务规则等因素决定的。 1、 顾客到达模式 设到达过程是一个参数为λ的Poisson 过程,则长度为t 的时间内到达k 个呼 叫的概率 服从Poisson 分布,即 e t k k k t t p λλ-= !)()(,?????????=,2,1,0k ,其中λ>0为一 常数,表示了平均到达率或Poisson 呼叫流的强度。 2、 服务模式 设每个呼叫的持续时间为i τ,服从参数为μ的负指数分布,即其分布函数为 {}1,0t P X t e t μ-<=-≥ 3、 服务规则 先进先服务的规则(FIFO ) 4、 理论分析结果 在该M/M/1系统中,设λρμ= ,则稳态时的平均等待队长为1Q ρλ ρ= -,顾客 的平均等待时间为 T ρμλ= -。 三、实验内容 M/M/1排队系统:实现了当顾客到达分布服从负指数分布,系统服务时间也服 从负指数分布,单服务台系统,单队排队,按FIFO 方式服务。 四、采用的语言 MatLab 语言 源代码: clear; clc; %M/M/1排队系统仿真

SimTotal=input('请输入仿真顾客总数SimTotal='); %仿真顾客总数;Lambda=0.4; %到达率Lambda; Mu=0.9; %服务率Mu; t_Arrive=zeros(1,SimTotal); t_Leave=zeros(1,SimTotal); ArriveNum=zeros(1,SimTotal); LeaveNum=zeros(1,SimTotal); Interval_Arrive=-log(rand(1,SimTotal))/Lambda;%到达时间间隔Interval_Serve=-log(rand(1,SimTotal))/Mu;%服务时间 t_Arrive(1)=Interval_Arrive(1);%顾客到达时间 ArriveNum(1)=1; for i=2:SimTotal t_Arrive(i)=t_Arrive(i-1)+Interval_Arrive(i); ArriveNum(i)=i; end t_Leave(1)=t_Arrive(1)+Interval_Serve(1);%顾客离开时间LeaveNum(1)=1; for i=2:SimTotal if t_Leave(i-1)

M M C ∞排队系统模型及其应用实例分析

M M C ∞排队系统模型及其应用实例分析 摘要:文章阐述了M/M/C/∞排队系统的理论基础,包括排队论的概念,排队系统的基本组成部分以及排队系统的模型。在理论分析的基础上,文章以建行某储蓄所M/M/C/∞排队系统为例,对该系统进行分析并提出了最优解决方案。 关键词:排队论;银行储蓄所;M/M/C/∞模型;最优解 1M/M/C/∞排队系统 1.1排队论的概念及排队系统的组成 上世纪20年代,丹麦数学家、电气工程师爱尔朗(A. K. Erlang)在用概率论方法研究电话通话问题时,开创了这门应用数学学科。排队论主要研究各种系统的排队队长,排队的等待时间及所提供的服务等各种参数,以便求得更好的服务。研究排队问题实质上就是研究如何平衡等待时间与服务台空闲时间。目前,排队论已经广泛应用于通信工程、交通运输、生产与库存管理、计算机系统设计、计算机通信网络、军事作战、柔性制造系统和系统可靠性等众多领域。 任意一个排队系统都是由三个基本部分构成,即输入过程、排队规则和服务机构。①输入过程是描述顾客来源以及顾客按什么规律达到排队系统。②排队规则描述的顾客到达服务系统时顾客是否愿意排队,以及在排队等待情形下的服务顺序。③服务机构描述服务台数目及服务规律。服务机构可分为单服务台和多服务台;接受服务的顾客是成批还是单个的;服务时间服从何种分布。 1.2M/M/C/∞排队模型 ①排队系统模型的表示。目前排队模型的分类采用1953年由D. G. Kendall 提出的分类方法。他用3个字母组成的符号A/B/C表示排队系统。为了表示其它特征有时也用4~5个字母来表示如A/B/C/D/E。其中:A 顾客到达间隔时间的概率分布;B 服务时间的概率分布;C 服务台数目;D 系统容量限制(默认为∞);E 顾客源数目(默认为∞);概率分布的符号表示:M:泊松分布或负指数分布,D:定长分布,Ek:k阶爱尔朗分布,C:一般随机分布。 ②排队系统的衡量指标。—所有服务设施空闲的概率;—系统中的顾客总数;—队列中的顾客总数;—顾客在系统中的停留时间;—顾客在队列中的等待时间。 ③M/M/C/∞排队模型。排队系统模型大体上可以分为简单排队系统,特殊排队系统,休假排队系统及可修排队系统。纵观所有排队系统的模型,无非是系统的三个组成部分分别为不同情况时,进行的排列组合,并由此导致排队系统的数量指标的计算公式不一致。无论是何种排队系统,其研究实质都是如何平衡等待时间

排队论

排队论实验报告

《排队现象的建模、解析与模拟》 课程设计 姓名: 学号: 班级:

题目描述:排队系统的稳定性与什么有关?与系统的一步概率转移矩阵有什么关系?收敛速度快慢与什么有关? 解答过程: (1)初始设定: 设初始状态X=(P1 P2 P3 … Pn),一步状态概率转移矩阵为P ,最终系统趋于稳定的状态为Y=(Y1 Y2 Y3 … Yn),可知X 和Y 是一个固定不变的行向量,且P1+P2+P3+…+Pn=1,Y1+Y2+Y3+…+Yn=1。 (2)描述模型: 对排队系统最终趋于稳定的描述为:Y=X*P n ,n>N(N 是一个足够大的数)。 (3)提出假想: 由(2)中对于系统最终趋于稳定状态的描述,因为X 和Y 都是固定的向量,所以,若系统趋于稳定,则P n 收敛。假设P 最终收敛为 P σ=(a1 a2 ?an ???x1x2?xn ) , 由概率转移矩阵的性质可知各行概率之和为1,即a1+a2+…+an=1。 因为Y* P σ= (Y1 Y2 Y3 … Yn)* (a1 a2 ?an ???x1x2?xn )=Y=(Y1 Y2 Y3 … Yn),故提出猜测:概率转移矩阵收敛后各列的元素值相等。 (4)MATLAB 验证猜想: ① 当n ≥73时收敛:

② 当n≥38时收敛 ③ 当n≥11时收敛

④ 当n≥3时收敛 ⑤ P本身就是收敛后的结果

(5)结论: 经过一系列验证,得出系统的稳定性只与一步转移概率矩阵P 有关,若P 收敛,则系统趋于稳定,反之系统不稳定。并且P 收敛后行和为1,每列元素值相同。 因为Y* P σ= (Y1 Y2 Y3 …… Yn)* (a1 a2 ?an ???a1a2?an ) =((Y1+Y2+Y3+…Yn)*a1 (Y1+Y2+Y3+…Yn)*a2 … (Y1+Y2+Y3+…Yn)*an) =(a1 a2 … an) 所以最终的概率分布的结果是矩阵收敛后的一行。 收敛速度快慢与一步概率转移矩阵每列元素值的分布有关,若每列元素值分布比较均匀,则收敛速度较快,反之收敛速度较慢。每列元素值相等的矩阵,本身就是收敛后的结果。单位阵是一个特例,它每列元素值不相等,但是单位阵收敛。与单位阵类似的一类矩阵,即 每列有且仅有一个1出现的矩阵,这类矩阵不会收敛。

运筹学--第十三章 排队论

328 习题十三 13.1 某市消费者协会一年365天接受顾客对产品质量的申诉。设申诉以λ=4件/天的普阿松流到达,该协会每天可以处理申诉5件,当天处理不完的将移交专门小组处理,不影响每天业务。试求: (1)一年内有多少天无一件申诉; (2)一年内多少天处理不完当天的申诉。 13.2 来到某餐厅的顾客流服从普阿松分布,平均每小时20人。餐厅于上午11:00开始营业,试求: (1)当上午11:07有18名顾客在餐厅时,于11:12恰好有20名顾客的概率(假定该时间段内无顾客离去); (2)前一名顾客于11:25到达,下一名顾客在11:28至11:30之间到达的概率。 13.3 某银行有三个出纳员,顾客以平均速度为4人/分钟的泊松流到达,所有的顾客排成一队,服务时间服从均值为0.5分钟的负指数分布,试求: (1) 银行内空闲时间的概率; (2) 银行内顾客数为n 时的稳态概率; (3) 平均队列长Lq ; (4) 银行内的顾客平均数Ls ; (5) 平均逗留时间Ws ; (6) 平均等待时间Wq 。 13.4 某加油站有一台油泵。来加油的汽车按普阿松分布到达,平均每小时20辆,但当加油站中已有n 辆汽车时,新来汽车中将有一部分不愿等待而离去,离去概率为4 n (n =0,1,2,3,4)。油泵给一辆汽车加油所需时间为具有均值3分钟的负指数分布。 (1)画出此排队系统的速率图; (2)导出其平衡方程式; (3)求出加油站中汽车数的稳态概率分布; (4)求那些在加油站的汽车的平均逗留时间。 13.5 某无线电修理商店保证每件送到的电器在一小时内修完取货,如超过一小时则分文不取。已知该商店每修理一件平均收费10元,其成本平均每件5.50元。已知送来修理的电器按普阿松分布到达,平均每小时6件,每维修一件的时间平均为7.5分钟,服从负指数分布。试问: (1)该商店在此条件下能否盈利; (2)当每小时送达的电器为多少件时该商店的经营处于盈亏平衡点。 13.6 某企业有5台车运货,已知每台车每运行100小时平均需维修2次,每次需时20分钟,以上分别服从普阿松及负指数分布。求该企业全部车辆正常运

基于排队论的决策系统研究

基于排队论的决策系统研究 【摘要】在排队系统中,顾客总是希望尽快接受服务,为减少顾客逗留时间(降低逗留费用),需要提高服务水平,服务水平是服务率μ和并行服务台数c 的函数,因此优化的目标是使两者的费用总和最小。本文运用了排队系统“合适的”服务水平的决策模型:费用模型,渴望水平模型以及排队系统的经济分析等内容对上述问题进行了研究和分析,并用实例证明分析,以至于在服务水平和等待的各个冲突因素之间寻求某种平衡。 关键词:服务水平决策模型费用模型渴望水平模型

一、前言 1.1研究排队系统的必要性 日常生活中我们常常需要等待服务,例如在参观就餐是等待服务,在超市付款台前“排队等候”,在邮局“排队”等待服务等。但是排队现象也不仅仅是人类独有的,比如工件的等待机器加工,飞机在机场上空盘旋等待批准着陆,汽车等待交通信号灯等,它们也存在着排队现象。排队现象花费极大的成本,等待现象是不可能完全消除的,我们的目标是把它不利影响减小到“可以忍受的”程度。 排队论主要是运用像:平均队列长度、平均等待时间,以及设施平均利用率这样的性能度量指标,来定量研究排队现象。 1.2 排队模型的要素 一个排队系统中的主要参与之是顾客和服务台,顾客从某个输入源产生,到达一个服务设施,他们可以立即得到服务;加入服务设施繁忙,也可能在队列中等待。当一个设施完成一次服务,如果有顾客等待的话,则自动地“拉出”一个等待顾客;加入队列为空,设施就变成空闲,直到新的顾客到达。 从分析队列的角度,我们用连续两个顾客之间的到达时间间隔来表示顾客的到达,用对每个顾客的服务时间来描述服务。一般地,到达时间和服务时间可以是随机的,如邮局的服务系统;也可以是确定的,如求职面试申请者的到达。 队列长度对于队列的分析有作用,它可以是有限长的,如两个相邻机器之间的缓冲区;也可以是无限的,如邮寄订单处理。 排队规则表示从队列里选择顾客的顺序,是排队模型分析的一个重要因素。最常见的排队规则是先到先服务(first come,first served,FCFS)。其他的排队规则还有后到先服务(last come,first served,LCFS)和随机顺序服务(service in random order,SIRO)。也可以按照某种优先权(priority)顺序从队列里挑选顾客,例如车间里把紧急工件放在普通工件前面进行处理。 在队列分析中,顾客的排队行为也起着重要作用。“人类”顾客可能从一个队列跳到另一个队列,以期望缩短排队时间。顾客也可能由于预计的排队时间过长而暂时不加入队列,或者可能会从一个队列中等待过久而退出,因为已经等待了太长的时间。服务设施的设计可以包括并行服务,如邮局或银行服务,服务人

基于排队论模型的收费站优化设计

龙源期刊网 https://www.doczj.com/doc/5817798818.html, 基于排队论模型的收费站优化设计 作者:刘昕岳丁韩旭杨佳琪 来源:《科学家》2017年第15期 摘要本文从形状、尺寸、组合等因素入手,以减少等待时间与不必要的费用为目的,设计了一个新型高速公路收费站。首先,在系统稳态的基础上,运用排队论模型建立收费站车辆行为模型的基本模型。其次,利用元胞自动机算法模拟了四种不同轮廓下的交通流,并分析了它们对拥塞的抵抗能力。最后,进行了遗传算法优化分析,最大限度地提高了吞吐量,降低了成本,提出一种新型的具有双重停车和互惠共享车道的高速公路收费站方案。 关键词排队论模型;元胞自动机算法;遗传算法;高速公路收费站 中图分类号 TP2 文献标识码 A 文章编号 2095-6363(2017)15-0010-01 随着经济不断发展,人们的日常生活节奏不断加快,需要避免把时间浪费在不必要的事情上,比如等待排队,应该花更多的时间去创造更多的价值。基于这样的社会背景,有必要系统地评估高速公路收费站设计。众所周知,高速公路收费站总是浪费时间。除了司机在等待收费亭的时间浪费,如果车辆迅速增加,更容易造成交通堵塞(瓶颈)。如何合理的设计收费站是一个急需解决的问题。 1 排队论模型建立 排队论模型中,车到达一个单次和连续到达的时间间隔服从负指数分布的参数λ。系统中有s服务站。每个服务站的服务时间是相互独立的,服从参数m的负指数分布。当顾客到达时,如果有免费服务台,第一辆车将立即接受服务,否则汽车将排队等候。且等待的时间是无限的。 下面讨论了这个排队系统的平滑分布。本文认为,在系统达到稳定状态后,队列长度n的概率分布等于(n=1,2,…)。设收费站数目为B。 通过公式推导表明,繁忙收费站平均数目并不取决于收费站数目B。 λn=λ,n=0,1,2,… 相关文献给出了在平衡条件下系统中车辆数为n的概率。当收费广场的车辆数目超过或等于收费站的数目,返回的车辆必须等候。 继续推导得到平均队列长度: LB=平均队列长度+被送达车辆的平均数=Lq+p

基于排队论的校园服务系统的分析及优化

基于排队论的校园服务系统的分析及优化 摘要:服务窗口的排队问题在生活中随处可见,为提高系统效率,本文以我校 食堂超市等服务窗口问题为例,基于泊松分布和排队论分析来确定所需要的服务 窗口和服务人员数目,理论计算结果和实际情况相比较,为解决目前大学生在校 就餐购物排队等时间问题,构建了基于排队论的校园窗口设置优化模型。 关键词:排队论;数学建模;系统优化 Analysis and optimization of campus service system based on queuing theory. Abstract: Service window of queuing problem can be seen everywhere in our daily life, to improve the efficiency of system, this article in our school canteen service window problem such as supermarkets, for example, based on the poisson distribution and queuing theory analysis to determine the required number of service Windows, compared with the theoretical calculation results and actual situation, to solve the problem of the current college students in the school dining shopping queuing time, build the campus window set optimization model based on queuing theory. Key words: queuing theory; Mathematical modeling; System optimization 一、引言 排队是在日常生活中经常遇到的问题,比如顾客到商店购物去火车站买票等 都需要排队。此时要求服务的人数超过服务机构(服务台服务员等)的容量,也 就是说,到达的顾客不能立即得到服务进而出现了排队现象。在大学里,会因为 人数多而相关的一些服务窗口或者服务人员数目不够导致经常看见食堂超市等场 所出现冗长的队伍和拥挤现象。为了减少学生排队等待时间,提高服务台服务效 率和管理水平,就有必要运用排队论对校园服务窗口进行优化配置。本文以数学 理论中的排队论为依据,结合学校服务窗口出现的排队问题进行分析建模,以期 学校能用最优的服务窗口和人员数目获得学生和服务窗口间的较好效率。 二、校园排队相关情况调查 2.1调查对象: 这次抽样以阜阳师范学院在校本科生为对象,其中问卷对象包含了大一到大 三的学生。 我们将问卷以每个年级各70份,以年级宿舍楼寝室为单位随机发放匿名填写。此次调查,共发放210份问卷,回收201份,其中有效问卷195份。 2.2调查内容: 1、排队运营形式及排队中出现问题。 2、学生排队等待时间研究。 3、学校针对排队这一现象所采取的实施办法的总体情况。 2.3调查方法: 调查的过程采用抽样调查法,为了使样本遍布所有年级,因此以年级为层次 对我校大学生进行随机抽样。 三、调查内容及分析 3.1调查结果分析 1、排队运营形式及排队中出现问题 针对这一内容涉及到调查问卷中“在校园内哪些地方需要排队”、“同学们在排 队时是否遇到过插队现象”两个问题。从表格中可以反映出,在校园内需要排队的地点。而在这些地点

数学建模港口问题_排队论

排队模型之港口系统 本文通过排队论和蒙特卡洛方法解决了生产系统的效率问题,通过对工具到达时间和服务时间的计算机拟合,将基本模型确定在//1 M M排队模型,通过对此基本模型的分析和改进,在概率论相关理论的基础之上使用计算机模拟仿真(蒙特卡洛法)对生产系统的整个运行过程进行模拟,得出最后的结论。好。关键词:问题提出: 一个带有船只卸货设备的小港口,任何时间仅能为一艘船只卸货。船只进港是为了卸货,响铃两艘船到达的时间间隔在15分钟到145分钟变化。一艘船只卸货的时间有所卸货物的类型决定,在15分钟到90分钟之间变化。 那么,每艘船只在港口的平均时间和最长时间是多少 若一艘船只的等待时间是从到达到开始卸货的时间,每艘船只的平均等待时间和最长等待时间是多少 卸货设备空闲时间的百分比是多少 船只排队最长的长度是多少 问题分析: | 排队论:排队论(Queuing Theory) ,是研究系统随机聚散现象和随机服务系统工作过程的数学理论和方法,又称随机服务系统理论,为运筹学的一个分支。本题研究的是生产系统的效率问题,可以将磨损的工具认为顾客,将打磨机当做服务系统。【1】 M M:较为经典的一种排队论模式,按照前面的Kendall记号定义,前//1 面的M代表顾客(工具)到达时间服从泊松分布,后面的M则表示服务时间服从负指数分布,1为仅有一个打磨机。 蒙特卡洛方法:蒙特卡洛法蒙特卡洛(Monte Carlo)方法,或称计算机随机模拟方法,是一种基于“随机数”的计算方法。这一方法源于美国在第一次世界大战进研制原子弹的“曼哈顿计划”。该计划的主持人之一、数学家冯·诺伊曼用驰名世界的赌城—摩纳哥的Monte Carlo—来命名这种方法,为它蒙上了一层神

2011-2012-2实验7排队论问题的编程实现

实验7 排队论问题的编程实现 成绩 专业班级 信息112学号18姓名 高廷旺 报告日期 实验类型: 实验目的: 实验内容: 实验原理 态情形的指标公式, 实验步骤 要求上机实验前先编写出程序代码 编辑录入程序 调试程序并记录调试过程中出现的问题及修改程序的过程 经反复调试后,运行程序并验证程序运行是否正确。 记录运行时的输入和输出。 ?验证性实验 o 综合性实验 o 设计性实验 熟练排队论问题的求解算法 。 排队论基本问题的求解算法。 对于几种基本排队模型: M/M/1、M/M/1/N 、M/M/1/m/m 、M/M/c 等能够根据稳 求岀相应的数量指标。 1 2 3 4 5 预习编写程序代码: 实验报告:根据实验情况和结果撰写并递交实验报告。 实验总结:排队问题用lingo 求解简单明了, 还有关系式表达的认识。挺有成就感。很棒。 参考程序 例题1 M/M/1 模型 某维修中心在周末现只安排一名员工为顾客提供服务, 正在接受服务,则需要排队等待,假设来维修的顾 5人,维修时间服从负指数分布, 平均需要6min ,试求该系统的主要数量指标。 例题 2 M/M/C 模型 设打印室有3名打字员,平均每个文件的打印时间为 16件,试求该打印室的主要数量指标。 例题3混合制排队 M/M/1/N 模型 某理发店只有 1名理发员,因场所有限,店里最多可容纳 5名顾客,假设来理发的顾客 按Poisson 过程到达,平均到达率为 6人/h ,理发时间服从负指数分布,平均 12 min 可 为1名顾客理发,求该系统的各项参数指标。 例题4闭合式排队 M/M/1/K/1 模型 设有1名工人负责照管 8台自动机床,当机床需要加料、 发生故障或刀具磨损时就自动停车, 等待工人照管。设平均每台机床两次停车的时间间隔为 1h ,停车时需要工人照管的平均时间是 6min ,并均服从负指数分布,求该系统的各项指标。 参考程序 ______________ 例题1等待制M/M/1 模型 sx=1; rx=5; tx=6/60; lq=rx*tx; twait= @p eb(lq,sx); 容易编程。加深了对 linggo 中for 语句, 新来维修的顾客到达后,若已有顾客 客到达过程为Po isso n 流,平均每小时 10 min ,而文件的到达率为每小时 例题2等待制 M/M/C 模型 sx=3; rx=16; tx=10/60; lq=rx*tx; twait= @p eb(lq,sx);

排队论第三部分-第四章 排队模型,第五章 MG1, 第六章 G1 M 1

第四章 排队模型 两类排队模型: 1. Markov 排队模型 2. 非Markov 排队模型 Markov 排队模型: 4-0 Little 定理 1961 年 J.D.Little 证明 1974 年 S.Slidhan 一般性证明 定理 : 在极限平稳状态下,排队系统内顾客平均数L 系 和 顾客在系统内平均逗留时间W 系 之间的关系,不管到达流的分布如何,也不管服务规则如何,均有以下关系: 为到达流的强度 系 系λλ1 4.-=L W 证明: 设 X(t) ---- t 时刻前到达的瞬时顾客数, Y(t)--- t 时刻前离开的瞬时顾客数. Y(t)

在稳定后,流入与流出的顾客数应相等, 则在t 时刻留在系统内的顾客数为: Z(t)=X(t)-Y(t) 在足够长的时间T 来考虑有: 队 队系 系系系同理可以证明所以有逗留时间系统内每个顾客的平均时 间的总和所有顾客在系统内逗留时间个顾客在系统内的逗留第其中的小面积的总和高度为长度为阴影部分的面积W L W L W T t t i t t T t T t T T dt t Z T L i i i i i i i i i i T .: .:. ..,: .11 ]1*[1][1)(10λλλλλ ==--=--= ?= ===∑∑∑∑?

4-1 M/M/1/0 (单通道损失制) 服务员数:n=1 队长:m=0 M -- 到达流为Poisson,流强λ M -- 服务时间服从指数分布:)0()(>=?-t e t f t μμ 状态为系统内顾客数,I={0,1} "0"表示服务员闲,其概率为:P 0(t); "1"表示服务员忙,其概率为:P 1(t); 状态转换图: Fokker-Plank k 方程: 可得: )0(1 )0(:341)()(24)()()(14)()()(1010011100==-=+-+-=-+-=?? P P t P t P t P t P t P t P t P t P 初始条件λμμλ 联立求解4-1与4-3得: λ

排队论开题报告

基于Matlab的排队论问题 仿真模拟研究 一、选题意义 排队论(queuing theory), 或称随机服务系统理论, 是通过对服务对象到来及服务时间的统计研究,得出这些数量指标(等待时间、排队长度、忙期长短等)的统计规律,然后根据这些规律来改进服务系统的结构或重新组织被服务对象,使得服务系统既能满足服务对象的需要,又能使机构的费用最经济或某些指标最优。它是数学运筹学的分支学科。也是研究服务系统中排队现象随机规律的学科。广泛应用于计算机网络, 生产, 运输, 库存等各项资源共享的随机服务系统。排队论研究的内容有3个方面:统计推断,根据资料建立模型;系统的性态,即和排队有关的数量指标的概率规律性;系统的优化问题。其目的是正确设计和有效运行各个服务系统,使之发挥最佳效益。日常生活中存在大量有形和无形的排队或拥挤现象,如旅客购票排队,市内电话占线等现象。排队论的应用非常广泛。它适用于一切服务系统。尤其在通信

系统、交通系统、计算机、存贮系统、生产管理系统等发面应用得最多。排队论的产生与发展来自实际的需要,实际的需要也必将影响它今后的发展方向。 二、论文综述 基于现实生活,我选取用餐高峰时间的高校的食堂某摊位的窗口数量和用餐学生排队等候情况为研究对象,采集数据,分析整理。首先采用排队论理论知识进行推断,建立模型,确定输入过程,服务规则,和服务台。理论计算出顾客流的概率分布,损失制,等待制,服务台数量及构成,最后确定顾客等待时间及合理的窗口数量。再采用Matlab 软件进行仿真模拟,产生随机数模拟顾客流,运用语言确定服务规则,进行模拟,仿真出顾客流概率,顾客等待时间,窗口设置情况。最后理论和模拟实验一同对比分析,得出结论提出合理建议。 三、论文提纲 一、文献综述 1、研究背景及意义 2、国内外发展状况 3、研究内容及目标 · 二、排队论模型的理论支撑 1、排队论模型的概念及特征 2、排队论模型计常用公式及模型方法 三、基于蒙特卡罗方法的排队论模型随机模拟 1、基本思想 2、算法 3、程序清单 4、运行与调试结果 四、结果与分析

第十一章排队论

11. 排队论 11.1基本概念 排队现象是指到达服务机构的顾客数量超过服务机构提供服务的容量,也就是说顾客不能够立即得到服务而产生的等待现象。顾客可以是人,也可以是物,比如说,在银行营业部办理存取款的储户,在汽车修理厂等待修理的车辆,在流水线上等待下一到工序加工的半成品,机场厂上空等待降落的飞机,以及等待服务器处理的网页等,都被认为是顾客。服务机构可以是个人,像理发员和美容师,也可以是若干人,像医院的手术小组。服务机构也还可以是包装糖果的机器,机场的跑道,十字路口的红绿灯,以及提供网页查询的服务器等等。 因为顾客到达,服务时间具有不确定性,排队系统又称随机服务系统,它的基本结构如图11所示: 1. 11 图1. 11给出了一些现实排队系统的例子。 表1. 表11.1: 排队系统应用 商业服务理发店,银行柜台,机场办理登机手续的柜台,快餐店的点餐柜台 运输行业城市道路的红绿灯,等待降落或起飞的飞机,出租车 制造业待修理的机器,待加工的材料,生产流水线 社会服务法庭,医疗机构 11.1.1排队系统的特征 为了描述一个排队系统,我们需要说明输入(到达)和输出(服务)过程,及其他基本特征。表11列举了一些排队系统的到达和服务过程。 2. 表11.2: 排队系统举例 )1(到达过程 通常,我们假设顾客的相继到达间隔时间是相互独立并且都具有相同概率分布。在许多

(Poisson流,或指数分布。顾客源可能是有限实际情况中,顾客的相继到达间隔是服从泊松) 的,也可能是无限的。顾客到来方式可能是一个接一个的,也可能是批量的。比如,到达机场海关的旅行团就是成批顾客。 一般来说,我们假设到达过程不受排队系统中顾客数量的影响。以银行为例,无论银行内有3位顾客还是300位顾客,顾客来到银行的到达过程是不会受到影响的。但是在两种情况下到达过程与排队系统中的顾客数量相关。第一种情况发生在顾客源是有限的系统,比如某工厂共有五台机床,若在维修部中已有两台机床,接下来到达维修部的最大量是三台。另一种情况是当顾客到达排队系统时,如果服务机构的设施都被占用,顾客可能耐心等待,也可能选择离开。比如,当一家航空公司的电话订票中心出现排队时,如果顾客等待时间太长,他就可能挂断电话。顾客就会选择另外一家航空公司。 )2(服务过程 为了描述排队系统的服务过程,我们需要确定服务时间的概率分布。在大多数情况下,服务时间是独立于排队系统中的顾客数量,即服务机构不会因为顾客数量增多而加快服务进度。不同服务机构提供的服务时间之间是相互独立,并都服从同一种概率分布,而且也独立于顾客相继到达间隔时间。服务时间一般分为确定型的和随机型的。在大多数情形下,服务时间的是随机型的,排队论主要研究随机型的服务时间。对于随机型的服务时间,我们必须知道它的概率分布,通常假定是指数分布。 从服务队列的安排上来说,我们将重点研究以下几种形式。从队列的数目来看,可以是单 11说明了一个服列,也可以是多列。服务机构在提供服务时,可以有一个或多个服务台。图2. 务台的排队系统: 顾客到达流顾客队列服务台 11 图2. 在有多个服务台的情形中,它们可以是并列,可以是串列,也可以是混合排列,最典型的是以下二种排队方式: 顾客到达流顾客队列服务台 11 图3.

排队论模型

排队论模型 研究系统随机聚散现象和随机服务系统工作过程的数学理论和方 法,又称随机服务系统理论,为运筹学的一个分支。 日常生活中存在大量有形和无形的排队或拥挤现象,如旅客购票排队,市内电话占线等现象。排队论的基本思想是1910年丹麦电话工程师A.K.埃尔朗在解决自动电话设计问题时开始形成的,当时称为话务理论。他在热力学统计平衡理论的启发下,成功地建立了电话统计平衡模型,并由此得到一组递推状态方程,从而导出著名的埃尔朗电话损失率公式。自20世纪初以来,电话系统的设计一直在应用这个公式。30年代苏联数学家А.Я.欣钦把处于统计平衡的电话呼叫流称为最简单流。瑞典数学家巴尔姆又引入有限后效流等概念和定义。他们用数学方法深入地分析了电话呼叫的本征特性,促进了排队论的研究。50年代初, 美国数学家关于生灭过程的研究、英国数学家D.G.肯德尔提出嵌入马尔可夫链理论,以及对排队队型的分类方法,为排队论奠定了理论 基础。在这以后,L.塔卡奇等人又将组合方法引进排队论,使它更能适应各种类型的排队问题。70年代以来,人们开始研究排队网络和复杂排队问题的渐近解等,成为研究现代排队论的新趋势。 排队系统模型的基本组成部分 排队系统又称服务系统。服务系统由服务机构和服务对象(顾客)构成。服务对象到来的时刻和对他服务的时间(即占用服务系统的时间)

都是随机的。图1为一最简单的排队系统模型。排队系统包括三个组成部分:输入过程、排队规则和服务机构。 输入过程 输入过程考察的是顾客到达服务系统的规律。它可以用一定时间内顾客到达数或前后两个顾客相继到达的间隔时间来描述,一般分为确定型和随机型两种。例如,在生产线上加工的零件按规定的间隔时间依次到达加工地点,定期运行的班车、班机等都属于确定型输入。随机型的输入是指在时间t内顾客到达数n(t)服从一定的随机分布。如服从泊松分布,则在时间t内到达n个顾客的概率为 排队规则 排队规则分为等待制、损失制和混合制三种。当顾客到达时,所有服务机构都被占用,则顾客排队等候,即为等待制。在等待制中,

相关主题
文本预览
相关文档 最新文档