当前位置:文档之家› -简谐运动的图像

-简谐运动的图像

-简谐运动的图像
-简谐运动的图像

简谐运动的图像

知识要点:

一、简谐运动的图像

1、坐标轴:横轴表示时间,纵轴表示位移。

具体作法:以平衡位置为坐标原点,以横轴表示,以纵轴表示质点对平衡位置的位

移,根据实验数据在坐标平面上画出各个点,并用平滑曲线将各点连接起来,即得

到简谐运动的位移——时间图像。(通常称之为振动图像)

2、简谐运动图像的特点:理论和实验都证明,所有简谐运动的振动图像都是正弦或余

弦曲线。

3、简谐运动图像的物理意义:表示做简谐运动的质点的位移随时间变化的规律,即位

移——时间函数图像。

注意:切不可将振动图像误解为物体的运动轨迹。处理振动图像问题时,一定要把图像还原为质点的实际振动过程分析。

二、从简谐运动图像可获取的信息

1、任一时刻振动质点离开平衡位置的位移:纵坐标值。

2、振幅A:图像中纵坐标的最大值。

3、周期T:两相邻的位移和速度始终完全相同的两状态间的时间间隔。

4、任一时刻的速度大小及方向:图线上该时刻对应的斜率大小反映速度大小,斜率正、

负反映速度方向。斜率大时速度大,斜率为正时速度为正,斜率为负值时速度为负。

5、任一时刻加速度(回复力)方向:与位移方向相反,总是指向平衡位置,即时间轴。

6、某一段时间内位移、回复力、加速度、速度、动能及势能的变化情况:当振动质点

向平衡位置方向运动时,速度、动能均增大,而位移、回复力、加速度、势能均减

小,否则相反。

典型例题:

例1、如图9-15所示为某质点简谐运动的振动图像,根据图像回答:

⑴振幅、周期;

⑵具有正向最大速度的时刻;

⑶具有正向最大加速度的时刻;

⑷在3~4s内,质点的运动情况;

⑸1~4s内质点通过的路程。

解析:⑴由图像可知振幅A=10cm,周期T=4s。

⑵物体在平衡位置时有最大速度,顺着时间轴向后看,看它下一时刻的位移,就知道

它向哪个方向运动,故可知t=0,4s,8s,…4ns(n为非负整数)时,具有正向最

大速度。

⑶物体在最大位移处时具有最大加速度,由于加速度与位方向相反,故只胡当质点位

为负时,加速度方为正,故可知t=3s,7s,11s,…(4n+3)s(n为非负整数)时,

具有正向最大加速度。

⑷在3~4s内物体由负向最大位移处返回平衡位置,加速度逐渐减小,速度逐渐增大,

加速度和速度方向均为正,物体做加速度逐渐减小的加速运动。

⑸1~4s内质点通过的路程s=3A=30cm。

例2、一弹簧振子做简谐运动,周期为T,则()

A.若t时刻和(t+Δt)时刻振子运动位移的大小相等,方向相同,则Δt一定等于T 的整数倍;

B .若t 时刻和(t +Δt )时刻振子运动位移的大小相等,方向相反,则Δt 一定等于T/2

的整数倍;

C .若Δt =T ,则在t 时刻和(t +Δt )时刻振子运动的加速度一定相等;

D .若Δt =T/2,则在t 时刻和(t +Δt )时刻弹簧的长度一定相等。

解析:设弹簧振子的振动图像如图9-16所示,B 、C 两点的位移大小相等、

方向相同,但B 、C 两点的时间间隔Δt ≠T ,故A 选项错误。

B 、

C 两点的速度大小相等、方向相反,但Δt ≠T/2,故B 选项错误。 A 、

D 两点间的间隔Δt =T ,A 、D 两点的位移大小和方向均相等,所 以A 、D 两点的加速度一定相等,C 选项正确。 A 、C 两点的时间间隔Δt =T/2,A 点与C

在A 点弹簧的伸长的,在C 点弹簧是压缩的,所以在A 、C 两点,弹 图9-16 簧的形变量大小相同,而弹簧的长度不相等,D 选项错误。

故正确选项为C 。

例3、一个质点经过平衡位置O ,在A 、B 间做简谐运动如图9-17(a),它

的振动图像如图9-17(b)所示,设向右为正方向,则OB =_______cm , 第0.2s 末质点的速度方向_______,加速度大小_______;第0.4s 末质 点加速度方向是_______;第0.7s 时,质点位置在_______区间,质点 从O 运动到B 再到A 需时间t =_______s ,在4s 内完成______次全振 动。 解析:从图像上看出振幅是5cm ,所以OB =5cm 。 图9-17

根据正方向的规定及振动图像知,质点从位置B 开始计时,第0.2s 末,质点回到平衡位置O ,向负方向运动,所以此时速度方向从O 指向A ,位移为0,由a =-kx/m ,得a =0。第0.4s 末质点到达A 点位移为负,回复力应为正,此时加速度方向由A 指向O 。第0.7s 时,位移为正,质点在OB 之间。从图线读出T =0.8s ,从O 经B 到A 需时间t =3T/4=0.6s 。f =1/T =1.25Hz ,4s 内完成全振动n =1.25×4=5次。

例4、甲、乙两弹簧振子,振动图像如图9-18所示,则可知( ) A .两弹簧振子完全相同; B .两弹簧振子所受回复力最大值之比F 甲︰F 乙=2︰1; C .振子甲速度为零时,振子乙速度最大;

D .振子的振动频率之比f 甲︰f 乙=1︰2。

解析:从图像中可以看出,两弹簧振子周期之比T 甲︰T 乙=2︰1, 图9-18

得频率之比f 甲︰f 乙=1︰2。D 正确。

弹簧振子周期与振子质量、弹簧劲度系数k 有关,周期不同,说明两弹簧振子不同,A 错误。

由于弹簧的劲度系数k 不一定相同,所以两振子受回复力(F =-kx)的最大值之比F 甲︰F 乙不一定为2︰1,所以B 错误。

对简谐运动进行分析可知,在振子到达平衡位置时位移为零,速度最大;在振子到达最大位移处时,速度为零。从图像中可以看出,在振子甲到达最大位移处时,振子乙恰到达平衡位置,所以C 正确。

故正确选项为CD 。

同步训练

知识掌握

1、简谐运动图像是一条__________或__________,它表示振动质点的__________________

的规律。 -10

高中物理-简谐运动的图像和公式教学设计

高中物理-简谐运动的图像和公式教学设计 教学目标 1.理解振动图象的物理意义。 2.通过利用图象得到的信息,例如判断物体的位移、速度、加速度等物理量的大小与方向的变化规律,培养学生的抽象思维能力。 3.理解简谐运动的表达式,进一步使学生掌握解决物理问题的两种方法:公式法和图象法。 4.通过实验法得到简谐运动的图象,培养学生认真、严谨、实事求是的科学态度。 重点难点 重点:简谐运动图象的物理意义和特点;运用简谐运动的图象解决有关位移、周期、频率、加速度、回复力等问题。 难点:用实验法描绘出简谐运动的图象;运用简谐运动的图象求解实际问题。 设计思想 在高考中对本节的考查重点在于由振动图像获得振动的信息,并能理解振动方程,学生学习过程中重点在于理解振动图像的物理意义,并能很好得寻找出图像中包含的信息。这些重点知识,重要方法的学习,本课采用了学习自主探究的方式,培养学生的观察习惯,提高学生处理图像的能力。 教学资源《简谐运动的图像和公式》多媒体课件、、 实验器材:沙漏,悬挂支架,可拖动的长板,单摆 教学设计 【课堂引入】 质点做直线运动时,x-t图象能形象地说明质点的位移随时间变化的规律。物体做简 谐运动时,它的位移随时间变化的规律又是什么样的呢? 问题1:思考能否也用x-t图象来形象的描述简谐运动,还是你有其他的想法,并说明如 何获得你想要的图像? (学生分析、讨论:可以仍然作x-t图像,但此处的x与以往的位移不同,是指相对于平衡位置的位移;可以用拍照的方式,记下很多时刻做简谐运动的物体的位置,再用测量、描点的方式得到图像。) 老师引导: 老师小结:这位同学提的方案非常好,我们就以他的想法来画简谐运动的x-t图像,不过课堂上实验条件有限,下面我们就用最简便的装置来描绘x-t图像。 实验仪器介绍、分析:如图所示,沙摆装置,漏斗相对于绳子的长度是比较小的,并且摆动时角度较小,所以它的摆动近似可以看成是简谐运动,当它摆动时在沙漏的下方有一块可以拖动的薄板,薄板匀速拖动时接收漏下的沙子,就可以在板上留下一张图。下面我们就进行实验。 【课堂学习】 学习活动一:探究描述简谐运动的图像 实验演示:让砂摆振动,同时沿着与振动垂直的方向匀速拉 动摆下的长木板(即平板匀速抽动,如图所示)。 实验现象:砂子在长木板上形成一条曲线。现以板拖动的 反方向为横轴,以垂直于拖动方向为纵轴,得到了如图所示的图 像。 问题1:如图这样建立了坐标那么图线的横、纵坐标分别表 示什么物理量? (学生答案:横坐标表示时间,纵坐标表示质点在不同时刻相对

知识讲解 简谐运动及其图象

简谐运动及其图象 编稿:张金虎审稿:吴嘉峰 【学习目标】 1.知道什么是弹簧振子以及弹簧振子是理想化模型。 2.知道什么样的振动是简谐运动。 3.明确简谐运动图像的意义及表示方法。 4.知道什么是振动的振幅、周期和频率。 5.理解周期和频率的关系及固有周期、固有频率的意义。 6.知道简谐运动的图像是一条正弦或余弦曲线,明确图像的物理意义及图像信息。 7.能用公式描述简谐运动的特征。 【要点梳理】 要点一、机械振动 1.弹簧振子 弹簧振子是小球和弹簧所组成的系统,这是一种理想化模型.如图所示装置,如果球与杆之间的摩擦可以忽略,且弹簧的质量与小球的质量相比也可以忽略,则该装置为弹簧振子. 2.平衡位置 平衡位置是指物体所受回复力为零的位置. 3.振动 物体(或物体的一部分)在平衡位置附近所做的往复运动,叫做机械振动. 振动的特征是运动具有重复性. 要点诠释:振动的轨迹可以是直线也可以是曲线. 4.振动图像 (1)图像的建立:用横坐标表示振动物体运动的时间t,纵坐标表示振动物体运动过程中对平衡位置的位移x,建立坐标系,如图所示.

(2)图像意义:反映了振动物体相对于平衡位置的位移x 随时间t 变化的规律. (3)振动位移:通常以平衡位置为位移起点,所以振动位移的方向总是背离平衡位置的.如图所示,在x t -图像中,某时刻质点位置在t 轴上方,表示位移为正(如图中12t t 、时刻),某时刻质点位置在t 轴下方,表示位移为负(如图中34t t 、时刻). (4)速度:跟运动学中的含义相同,在所建立的坐标轴(也称为“一维坐标系”)上,速度的正负表示振子运动方向与坐标轴的正方向相同或相反. 如图所示,在x 坐标轴上,设O 点为平衡位置。A B 、为位移最大处,则在O 点速度最大,在A B 、两点速度为零. 在前面的x t -图像中,14t t 、时刻速度为正,23t t 、时刻速度为负. 要点二、简谐运动 1.简谐运动 如果质点的位移与时间的关系遵从正弦函数规律,即它的振动图像是一条正弦曲线,这样的振动叫做简谐运动. 简谐运动是物体偏离平衡位置的位移随时间做正弦或余弦规律而变化的运动,它是一种非匀变速运动. 物体在跟位移的大小成正比,方向总是指向平衡位置的力的作用下的振动,叫做简谐运动. 简谐运动是最简单、最基本的振动. 2.实际物体看做理想振子的条件 (1)弹簧的质量比小球的质量小得多,可以认为质量集中于振子(小球);(2)当与弹簧相接的小球体积足够小时,可以认为小球是一个质点;(3)当水平杆足够光滑时,可以忽略弹簧以及小球与水平杆之间的摩擦力;(4)小球从平衡位置拉开的位移在弹簧的弹性限度内. 3.理解简谐运动的对称性 如图所示,物体在A 与B 间运动,O 点为平衡位置,C 和D 两点关于O 点对称,则有: (1)时间的对称: 4 OB BO OA AO T t t t t ==== , OD DO OC CD t t t t ===,

高中物理教案示例[简谐运动的图像].

教案示例 一、素质教育目标 (一)知识教学点 1、知道振动图像的物理含义。 2、知道简谐运动的图像是一条正弦或余弦曲线。 3、能根据图象知道振动的振幅、周期和频率。 (二)能力训练点 1、学会用图象法、列表法表示简谐运动位移随时间变化规律,提高运用工具解决物理问题的能力。 2、分析简谐运动图像所表示的位移,速度、加速度和回复力等物理量大小及方向变化的规律,培养抽象思维能力。 (三)德育渗透点 1、描绘简谐运动的图像,培养学生认真、严谨、实事求是的科学态度。 2、从图像了解简谐运动的规律,培养学生分析问题的能力,以及审美能力(逐步认识客观存在着简洁美、对称美等)。 二、重点、难点、疑点及解决办法 1、重点 (二)简谐运动图像的物理意义。 (2)简谐运动图像的特点。 2、难点 (1)用描点法画出简谐运动的图像。 (2)振动图像和振动轨迹的区别。 (3)由简谐运动图像比较各时刻的位移、速度、加速度和回复力的大小及方向。 3、疑点 能用正弦(或余弦)图像判定一个物体的振动是否是简谐运动。 4、解决办法 (1)通过对颗闪照相的分析,利用表格,通过作图比较,认识简谐运动的特点。 (2)复习数学中的正弦(或余弦)图像知识;比较几种典型运动(匀速直线运动,匀加速、匀减速直线运动)的图像与简谐运动图像的区别。

三、课时安排 1课时 四、教具、学具准备 自制幻灯片、幻灯机(或多媒体课件)、音叉(带共鸣箱)(附小槌、灵敏话筒、示波器)。 五、学生活动设计 1、学生观看多媒体课件,观察振子的简谐运动情况及其频闪照片、位移一时间变化表格。 2、学生根据表格画出s-t图 3、学生分组讨论,确定振子在各时刻的位移、速度、回复力和加速度的方向。 六、教学步骤 (一)明确目标 (略) (二)整体感知 理解简谐运动图像的物理意义是认识简谐运动规律的关键。 (三)重点、难点的学习与目标完成过程 [导入新课] 提问 1、在匀速直线运动中,设开始计时的那一时刻位移为零,则运动的位移图像是一条什么线? (是一条过原点的直线) 2、在匀变速直线运动中,设开始计时的那一时刻位移为零,则运动的位移图像是一条什么线? (根据s=at2,运动的位移图像是一条过原点的抛物线) 那么,简谐运动的位移图像是一条什么线? [新课教学] 多媒体课件(或幻灯)显示。观察气垫导轨上弹簧振子的振动情况,这是典型的简谐运动。 观察振子从离平衡位置最左侧20mm处向右运动的1/2周期内频闪照片,以及接

高三物理简谐运动的公式描述.docx

简谐运动的公式描述教案 教学目标 1.知识与技能 (1)会用描点法画出简谐运动的运动图象. (2)知道振动图象的物理含义,知道简谐运动的图象是一条正弦或余弦曲线. (3)了解替代法学习简谐运动的位移公式的意义. (4) 知道简谐运动的位移公式为x=A sin (ωt+),了解简谐运动位移公式中各量的物 理含义. (5) 了解位相、位相差的物理意义. (6) 能根据图象知道振动的振幅、周期和频率、位相. 2.过程与方法 (1) 通过“讨论与交流”匀速圆周运动在Ⅳ方向的投影与教材表1— 3— 1 中数据的 比较,并描出z— t 函数曲线,判断其结果,使学生获知匀速圆周运动在x 方向的投影和简谐运动的图象一样,是一条正弦或余弦曲线. (2)通过用参考圆替代法学习简谐运动的位移公式和位相,使学生懂得化难为易 以及应用已学的知识解决问题. (3)通过课堂讲解习题,可以巩固教学的知识点与清晰理解重点与难点. 3.情感、态度与价值观 (1)通过本节的学习,培养学生学会用已学的知识使难题化难为易、化繁为简, 科学地寻找解决问题的方法. (2)培养学生合作学习、探究自主学习的学习习惯. ●教学重点 ,难点 1.简谐运动位移公式x=Asin(ω t +)的推导 2.相位 , 相位差的物理意义 .. ●教学过程 教师讲授 简谐振动的旋转矢量法 。y 在平面上作一坐标轴 OX,由原点 O 作一长度等于振幅的矢量 A t=0 ,矢量与坐标轴的夹角等于初相 矢量 A 以角速度w 逆时针作匀速圆周运动, 研究端点M 在 x 轴上投影点的运动, 1.M 点在 x 轴上投影点的运动 x=Asin(ω t+)为简谐振动。 x 代表质点对于平衡位置的位移,t 代表时间,简谐运动的三角函数表示 回答下列问题 a:公式中的 A 代表什么 ? b:ω叫做什么 ?它和 f 之间有什么关系? c:公式中的相位用什么来表示? d:什么叫简谐振动的初相? M A t M 0 o x P x

-简谐运动的图像

简谐运动的图像 知识要点: 一、简谐运动的图像 1、坐标轴:横轴表示时间,纵轴表示位移。 具体作法:以平衡位置为坐标原点,以横轴表示,以纵轴表示质点对平衡位置的位 移,根据实验数据在坐标平面上画出各个点,并用平滑曲线将各点连接起来,即得 到简谐运动的位移——时间图像。(通常称之为振动图像) 2、简谐运动图像的特点:理论和实验都证明,所有简谐运动的振动图像都是正弦或余 弦曲线。 3、简谐运动图像的物理意义:表示做简谐运动的质点的位移随时间变化的规律,即位 移——时间函数图像。 注意:切不可将振动图像误解为物体的运动轨迹。处理振动图像问题时,一定要把图像还原为质点的实际振动过程分析。 二、从简谐运动图像可获取的信息 1、任一时刻振动质点离开平衡位置的位移:纵坐标值。 2、振幅A:图像中纵坐标的最大值。 3、周期T:两相邻的位移和速度始终完全相同的两状态间的时间间隔。 4、任一时刻的速度大小及方向:图线上该时刻对应的斜率大小反映速度大小,斜率正、 负反映速度方向。斜率大时速度大,斜率为正时速度为正,斜率为负值时速度为负。 5、任一时刻加速度(回复力)方向:与位移方向相反,总是指向平衡位置,即时间轴。 6、某一段时间内位移、回复力、加速度、速度、动能及势能的变化情况:当振动质点 向平衡位置方向运动时,速度、动能均增大,而位移、回复力、加速度、势能均减 小,否则相反。 典型例题: 例1、如图9-15所示为某质点简谐运动的振动图像,根据图像回答: ⑴振幅、周期; ⑵具有正向最大速度的时刻; ⑶具有正向最大加速度的时刻; ⑷在3~4s内,质点的运动情况; ⑸1~4s内质点通过的路程。 解析:⑴由图像可知振幅A=10cm,周期T=4s。 ⑵物体在平衡位置时有最大速度,顺着时间轴向后看,看它下一时刻的位移,就知道 它向哪个方向运动,故可知t=0,4s,8s,…4ns(n为非负整数)时,具有正向最 大速度。 ⑶物体在最大位移处时具有最大加速度,由于加速度与位方向相反,故只胡当质点位 为负时,加速度方为正,故可知t=3s,7s,11s,…(4n+3)s(n为非负整数)时, 具有正向最大加速度。 ⑷在3~4s内物体由负向最大位移处返回平衡位置,加速度逐渐减小,速度逐渐增大, 加速度和速度方向均为正,物体做加速度逐渐减小的加速运动。 ⑸1~4s内质点通过的路程s=3A=30cm。 例2、一弹簧振子做简谐运动,周期为T,则() A.若t时刻和(t+Δt)时刻振子运动位移的大小相等,方向相同,则Δt一定等于T 的整数倍;

高中物理.《简谐运动的图像和公式》教案教科版选修解析

《简谐运动的图像》 一、教学三维目标 (一)知识与技能 1、知道振动图像的物理含义。 2、知道简谐运动的图像是一条正弦或余弦曲线。 3、能根据图象知道振动的振幅、周期和频率。 (二)过程与方法 1、学会用图象法、列表法表示简谐运动位移随时间变化规律,提高运用工具解决物理问题的能力。 2、分析简谐运动图像所表示的位移,速度、加速度和回复力等物理量大小及方向变化的规律,培养抽象思维能力。 (三)情感态度与价值观 1、描绘简谐运动的图像,培养学生认真、严谨、实事求是的科学态度。 2、从图像了解简谐运动的规律,培养学生分析问题的能力,以及审美能力(逐步认识客观存在着简洁美、对称美等)。 二、重点、难点、疑点及解决办法 1、重点 (1)简谐运动图像的物理意义。 (2)简谐运动图像的特点。 2、难点 (1)用描点法画出简谐运动的图像。 (2)振动图像和振动轨迹的区别。 (3)由简谐运动图像比较各时刻的位移、速度、加速度和回复力的大小及方向。 3、疑点 能用正弦(或余弦)图像判定一个物体的振动是否是简谐运动。 4、解决办法 (1)通过对颗闪照相的分析,利用表格,通过作图比较,认识简谐运动的特点。 (2)复习数学中的正弦(或余弦)图像知识;比较几种典型运动(匀速直线运动,匀加速、匀减速直线运动)的图像与简谐运动图像的区别。

三、课时安排 1课时 四、教具、学具准备 自制幻灯片、幻灯机(或多媒体课件)、音叉(带共鸣箱)(附小槌、灵敏话筒、示波器)。 五、学生活动设计 1、学生观看多媒体课件,观察振子的简谐运动情况及其频闪照片、位移一时间变化表格。 2、学生根据表格画出s-t图 3、学生分组讨论,确定振子在各时刻的位移、速度、回复力和加速度的方向。 六、教学步骤 [导入新课] 提问 1、在匀速直线运动中,设开始计时的那一时刻位移为零,则运动的位移图像是一条什么线?(是一条过原点的直线) 2、在匀变速直线运动中,设开始计时的那一时刻位移为零,则运动的位移图像是一条什么线? (根据s=at2,运动的位移图像是一条过原点的抛物线) 那么,简谐运动的位移图像是一条什么线? [新课教学] 多媒体课件(或幻灯)显示。观察气垫导轨上弹簧振子的振动情况,这是典型的简谐运动。 观察振子从离平衡位置最左侧20mm处向右运动的1/2周期内频闪照片,以及接下来1/2周期内的频门照片,已知频闪的频率为9.0Hz提问,相邻两次闪光的时间间隔t。是多少? 时间t0=s=0.11s 提问,频闪照片上记录下来什么? (照片上记录下来每隔t0振子所在的位置) 取平衡位置的右方为正方向。根据频门照片上的读数,列出位移。随时间;变

简谐运动及其图象(习题)

简谐运动及其图象 一、选择题 1.弹簧上端固定在O 点,下端连结一小球,组成一个振动系统,如图所示,用手向下拉一小段距离后释放小球,小球便上下振动起来,下列说法正确的是( ). A .球的最低点为平衡位置 B .弹簧原长时的位置为平衡位置 C .球速为零的位置为平衡位置 D .球原来静止的位置为平衡位置 2.如图所示为某物体做简谐运动的图像,下列说法中正确的是( ). A .由P→Q 位移在增大 B .由P→Q 速度在增大 C .由M→N 速度是先减小后增大 D .由M→N 位移始终减小 3.如图所示为质点P 在0~4 s 内的振动图像,下列叙述正确的是( ). A .再过1 s ,该质点的位移是正的最大值 B .再过1 s ,该质点回到平衡位置 C .再过1 s ,该质点的速度方向向上 D .再过1 s ,该质点的速度方向向下 4.一水平弹簧振子的振动周期是0.025 s ,当振子从平衡位置开始向右运动,经过0.17 s 时,振子的运动情况是( ). A .正在向右做减速运动 B .正在向右做加速运动 C .正在向左做减速运动 D .正在向左做加速运动 5.一个做简谐运动的弹簧振子,周期为T ,振幅为A ,设振子第一次从平衡位置运动到2 A x =处所经最短时间为t 1,第一次从最大正位移处运动到2 A x = 处所经最短时间为t2(如图).关于t 1与t 2,以下说法正确的是( ). A .t 1=t 2 B .t 1<t 2 C .t 1>t 2 D .无法判断 6.有一个弹簧振子,振幅为0.8 cm ,周期为0.5 s ,初始时具有负方向的最大加速度,则它的振动方程是( ). A .3 810sin(4)m 2x t π π-=?+ B .3810sin(4)m 2 x t π π-=?- C .13810sin()m 2x t ππ-=?+ D .1810sin()m 42 x t ππ-=?+ 7.一弹簧振子在振动过程中,振子经a 、b 两点的速度相同,若它从a 到b 历时0.2 s ,从b 再回 到a 的最短时间为0.4 s ,则振子的振动频率为( ). A .1 Hz B .1.25 Hz C .2 Hz D .2.5 Hz 8.一个质点在平衡位置O 点附近做简谐运动,如图所示,若从O 点开始计时,经过3 s 质点第一次经过M 点,再继续运动,又经过2 s 它第二次经过M 点,则该质点第三次经过M 点还需的时间是( ). A .8 s B .4 s C .14 s D . 10 s 3 9.如图(a )是演示简谐运动图像的装置,当盛沙漏斗下面的薄木板N 被匀速地拉出时,摆动着的漏斗中漏出的沙在板上形成的曲线显示出摆的位移随时间变化的关系.板上的直线OO '代表时间

简谐运动图像的演示

简谐运动图像的演示 温珍温暁恒 现行教材采用沙摆描绘简谐运动的图像,该方法原理科学、直观,能很好的帮助学生理解简谐运动的运动规律。 这种方法的缺点是:①随着沙的流出,沙摆的重心不断变化,导致摆长变化,从而导致沙摆振动周期变化。②用手拉放在桌面上的底板很难保证其匀速直线运动,因而影响效果;③释放沙摆开始振动时,操作者要同时放开沙漏口和启动板,操作难度比较大;④难以控制沙子流量均匀,描绘的图像容易被破坏,不便对其做进一步研究。 于是我们根据这些缺点对该实验进行了改进,以下是改进后的实验: 一、实验材料: 支架台、矿泉水瓶、针筒、细软管、笔芯、底板 二、改进思路 在单摆振动时,用1 根极细的软管附着其上随之振动,管中虽然有水流动,但它对摆球振动的影响很小,摆球的质量也可以认为基本不变,这样,就可实现在不显著影响摆球运动的情况下,将摆球的运动“传感”到细软管上,通过细管流出的墨水再射到运动的记录底板上。喷墨的开始和终止可由与细软管相连的注射器进行控制,这样,就简单有效地实现了振动体和记录体的分离,使它们之间的相互影响降低到最小程度。 三、制作过程 (1)用电烙铁在矿泉水瓶的底部、瓶盖和瓶盖附近分别打一个小孔;

(2)用塑料接头连接足够长的细软管,它一头与注射器连通,另一头穿过矿泉水瓶的孔而过,通过接头与1 个注射针头相连; (3)在矿泉水瓶的两个小孔处用热熔胶把细软管固定好,并确保底部无漏水; (4)向矿泉水瓶注入适量的水,并用注射器向管中注入适量的清水,直至清水流到接近针头处; (5)当矿泉水瓶开始振动并稳定后,启动记录底板,然后再开始轻推注射器活塞,一股细水流随即从针头喷出,射向平放在运动记录底板上,图象描绘开始。若要终止图象描绘,只需将轻推改为轻拉注射器活塞,喷墨即可停止。由于从小号针头喷出的墨水流很细,描绘好的图象可立即拿起来立放供学生观看。 四、改进的优点: 该设计演示克服了传统的“漏沙摆”演示的不足,能保持单摆的摆长不变,从注射针管里流出的水描绘的振动图象清晰、均匀、美观,演示后的图象更准确,可供全班学生观察、分析,达到了客观、直观、美观的演示效果,同时对单摆作简谐运动的图象是正弦或余弦图象具有很强的说服力。此外,实验操作难度不大,实验需要的器材取材也很方便。 五、另外一个造型 它的做法跟上述的差不多,这个造型更利于在课堂上进行实验演示,能使大多数学生清楚地看到得出简谐运动图像的过程。

80巩固练习 简谐运动及其图象

【巩固练习】 一、选择题 1.弹簧上端固定在O点,下端连结一小球,组成一个振动系统,如图所示,用手向下拉一小段距离后释放小球,小球便上下振动起来,下列说法正确的是(). A.球的最低点为平衡位置 B.弹簧原长时的位置为平衡位置 C.球速为零的位置为平衡位置 D.球原来静止的位置为平衡位置 2.如图所示为某物体做简谐运动的图像,下列说法中正确的是(). A.由P→Q位移在增大 B.由P→Q速度在增大 C.由M→N速度是先减小后增大 D.由M→N位移始终减小 3.(2015 枣阳市期末)如图甲所示,弹簧振子以O点为平衡位置,在A、B两点之间做简谐运动.取向右为正方向,振子的位移x随时间t的变化如图乙所示,下列说法正确的是()

A .t =0.8 s 时,振子的速度方向向左 B .t =0.2 s 时,振子在O 点右侧6 cm 处 C .t =0.4 s 和t =1.2 s 时,振子的加速度完全相同 D .t =0.4 s 到t =0.8 s 的时间内,振子的速度逐渐减小 4.一水平弹簧振子的振动周期是0.025 s ,当振子从平衡位置开始向右运动,经过0.17 s 时,振子的运动情况是( ). A .正在向右做减速运动 B .正在向右做加速运动 C .正在向左做减速运动 D .正在向左做加速运动 5.一个做简谐运动的弹簧振子,周期为T ,振幅为A ,设振子第一次从平衡位置运动到2 A x =处所经最短时间为t 1,第一次从最大正位移处运动到2 A x =处所经最短时间为t2(如图).关于t 1与t 2,以下说法正确的是( ). A .t 1=t 2 B .t 1<t 2 C .t 1>t 2 D .无法判断 6.(2015 进贤县校级期中)某质点做简谐运动,其位移随时间变化的关系式为sin 4 π x A t =x ,则质点 ( ) A .第1 s 末与第3 s 末的位移相同 B .第1 s 末与第3 s 末的速度相同 C .3 s 末至5 s 末的位移方向都相同 D .3 s 末至5 s 末的速度方向都相同 7.一弹簧振子在振动过程中,振子经a 、b 两点的速度相同,若它从a 到b 历时0.2 s ,从b 再回到a 的最短时间为0.4 s ,则振子的振动频率为( ). A .1 Hz B .1.25 Hz C .2 Hz D .2.5 Hz 8.一个质点在平衡位置O 点附近做简谐运动,如图所示,若从O 点开始计时,经过3 s 质点第一次经过M 点,再继续运动,又经过2 s 它第二次经过M 点,则该质点第三次经过M 点还需的时间是( ).

简谐运动的六种图象

简谐运动的六种图象 北京顺义区杨镇第一中学范福瑛 简谐运动在时间和空间上具有运动的周期性,本文以水平方向弹簧振子的简谐运动为情境,用图象法描述其位移、速度、加速度及能量随时间和空间变化的规律,从不同角度认识简谐运动的特征. 运动情境:如图1,弹簧振子在光滑的水平面B、C之间做简谐运动,振动周期为T,振幅为A,弹簧的劲度系数为K。 以振子经过平衡位置O向右运动的时刻为计时起点和初始位置,取向右为正方向。分析弹簧振子运动的位移、速度、加速度、动能、弹性势能随时间或位置变化的关系图象。 1.位移-时间关系式,图象是正弦曲线,如图2 2.速度-时间关系式,图象是余弦曲线,如图3

3.加速度-时间关系式,图象是正弦曲线,如图4 4.加速度-位移关系式,图象是直线,如图5 5.速度-位移关系式,图象是椭圆,如图6

, 整理化简得 6.能量-位移关系 弹簧和振子组成的系统能量(机械能)守恒, 总能量不随位移变化,如图7直线c 弹性势能,图象是抛物线的一部分,如图7曲线b

振子动能,图象是开口向下的抛物线的一部分,如图7曲线a 图象是数形结合的产物,以上根据简谐运动的位移、速度、加速度、动能、弹性势能与时间或位移之间的关系式,得到对应的图象,从不同角度直观、全面显示了简谐运动的规律,同时体现了数与形的和谐完美统一。 2011-12-20 人教网 【基础知识精讲】 1.振动图像 简谐运动的位移——时间图像叫做振动图像,也叫振动曲线. (1)物理意义:简谐运动的图像表示运动物体的位移随时间变化的规律,而不是运动质点的运动轨迹. (2)特点:只有简谐运动的图像才是正弦(或余弦)曲线. 2.振动图像的作图方法 用横轴表示时间,纵轴表示位移,根据实际数据定出坐标的单位及单位长度,根据振动质点各个时刻的位移大小和方向指出一系列的点,再用平滑的曲线连接这些点,就可得到周期性变化的正弦(或余弦)曲线. 3.振动图像的运用 (1)可直观地读出振幅A、周期T以及各时刻的位移x. (2)判断任一时刻振动物体的速度方向和加速度方向 (3)判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况. 【重点难点解析】 本节重点是理解振动图像的物理意义,难点是根据图像分析物体的运动情况. 一切复杂的振动都不是简谐运动.但它们都可以看做是若干个振幅和频率不同的简谐运动的合运动. 所有简谐运动图像都是正弦或余弦曲线,余弦曲线是计时起点从最大位移开始,正弦曲 线是计时起点从平衡位置开始,即二者计时起点相差.我们要通过振动图像熟知质点做简谐运动的全过程中,各物理量大小、方向变化规律. 例1一质点作简谐运动,其位移x与时间t的关系曲线如下图所示,由图可知,在t=4S时,质点的( )

第一章第三节 简谐运动的公式描述

1-3简谐运动的公式描述(选修3-4) 教材分析:这节课的内容标准主要是用公式和图像描述简谐运动,与前两节一起完成《课程标准》中对简谐运动的要求,即“通过观察与分析,理解简谐运动的特征”。本节的内容比较抽象,过去的教学安排是从简谐运动的回复力出发,直接给出简谐运动的运动图像,现在不仅增加了简谐运动的运动公式,并且增加了运用参考圆得出简谐运动的位移公式以及各个量的物理意义的过程,并讨论公式的x-t 图像中表示,难度是比较大的。教学中应注意将教学难点分散,逐层进行教学,多采取学生动手练习、讨论和启发式讲述的方法,同时设计配套课件,节约一定时间,提高直观性。 教学目标: 1.知识与技能 (1)会用描点法画出简谐运动的运动图像。 (2)知道振动图象的物理含义,知道简谐运动的图像是一条正弦或余弦曲线。 (3)了解替代法学习简谐运动的位移公式的意义。 (4)知道简谐运动的位移公式为)(?ω+=t A x cos ,了解简谐运动位移公式中各 量的物理含义。 (5)了解位相、位相差的物理意义。 (6)能根据图像知道振动的振幅、周期和频率、位相。 2.过程与方法 (1)通过“讨论与交流”匀速圆周运动在“方向的投影与教材中给出的数据比较,描出x-t 函数曲线,判断其结果,使学生获知匀速圆周运动在x 方向的投影和简谐运动的图像一样,是一条正弦或余弦曲线. (2)通过用参考圆替代法学习简谐运动的位移公式和位相,使学生懂得化难为易以及应用已学的知识解决问题。 (3)通过课堂讲解习题,可以巩固教学的知识点与清晰理解重点与难点。 3.情感、态度与价值观 (1)通过本节的学习,培养学生学会用已学的知识使难题化难为易、化繁为简,科学地寻找解决问题的方法。 (2)培养学生合作学习、探究自主学习的学习习惯。 重难点分析: 1、得出简谐运动的位移公式、x-t 图象是重点。 2、运用参考圆来分析和理解简谐运动及图象,对各量的理解是难点。 教学过程: 1、复习回顾:简谐运动最基本的特征?(周期性) 2、提出问题:简谐运动的位移是如何随时间的变化做周期性变化的? 3、引导学生分析讨论得到简谐运动的运动公式。 (1)给出用频闪照相的方法得到的一组简谐运动的位移x 随时间t 变化的数据,引导学生找出大致规律。 (2)讲述分析参考圆的方法。

高中物理-《简谐运动的图像》说课

高中物理-《简谐运动的图像》说课各位评委老师好!我叫xx,我申请的学科是高中物理,我抽到的说课题目是《简谐运动的图像》。下面是我的说课内容。 (一).教材所处的地位及前后联系: 《简谐运动》是人教版高中物理(必修)第二册第八章《机械振动和机械波》中的内容。机械振动和机械波是在学生学习了运动学、动力学及功和能的知识后而编排的,是力学的一个特例。机械振动和机械波是一种比较复杂的机械运动形式,对它的研究为以后学习电磁振荡、电磁波和光的本性奠定了知识基础.此外,机械振动和机械波的知识与人们的日常生活,生产技术和科学研究有着密切的关系,因此学习这部分知识有着广泛的现实意义。简谐运动是第八章中的第一节内容,是学习本章后面各节内容的基础,也是本章的重点和难点之一。在研究简谐运动规律时要用到以前学过的运动学、动力学、功和能的知识,可起到复习巩固的作用,因此这部分内容在教材中起着承前启后的作用。 (二).教学目标: 根据物理科的课程标准,物理教学应包括知识、能力和情感态度教育等三个方面。因此,本节课教学目标也应该包括以下三个方面: 1.知识目标 (1)知道什么是机械振动、简谐运动。了解简谐运动的若干实例。 (2)知道简谐运动中回复力的特点。 (3)知道简谐运动是一种理想化模型。 (4)理解简谐运动中位移、速度、回复力和加速度的变化规律。 (5)知道在研究物理规律时一般遵循从简单到复杂的规律。 2.能力目标 (1)通过对实验的观察,培养学生的观察和发现问题的能力。 (2)分析简谐运动过程中有关物理量的变化规律,认识物理量之间存在密切的相互依存关系,培养逻辑思维能力。 3.情感态度和价值观 (1)通过对简单实验的操作,及参与对简谐运动规律的分析,培养学生参与科学研究的兴趣。 (2)通过对简谐运动的研究,使学生发现其中所严格遵循的简谐美、对称美

机械振动与机械波-简谐运动及其图象

机械振动与机械波-简谐运动及其图象 要点一机械振动 1.简谐运动的平衡位置是指( ) A.速度为零的位置 B.回复力为零的位置 C.加速度为零的位置 D.位移最大的位置 答案 B 要点二简谐运动 2.一弹簧振子做简谐运动,周期为T,以下说法正确的是( ) A.若t时刻和(t+?t)时刻振子运动位移的大小相等、方向相同,则?t一定等于T的整数倍 B.若t时刻和(t+?t)时刻振子运动速度的大小相等、方向相反,则?t一定等于T/2的整数倍 C.若?t =T,则在t时刻和(t+?t)时刻振子运动的加速度一定相等 D.若?t =T/2,则在t时刻和(t+?t)时刻弹簧的长度一定相等 答案 C 要点三简谐运动的图象 3.一个质点经过平衡位置O,在A、B间做简谐运动,如图(a)所示,它的振动图象如图(b)所示,设向右为正方向,则 (1)OB= cm. (2)第0.2 s末质点的速度方向是 ,加速度大小为 .

(3)第0.4 s 末质点的加速度方向是 . (4)第0.7 s 时,质点位置在 点与 点之间. (5)质点振动的周期T = s. (6)在4 s 内完成 次全振动. 答案 (1)5 (2)O →A 0 (3)A →O (4)O B (5)0.8 (6)5 题型1 简谐运动的多解性问题 【例1】一质点在平衡位置O 附近做简谐运动,从它经过平衡位置起开始计时,经过3 s 质点第一次通过M 点,再经过2 s 第二次通过M 点,则该质点第三次经过M 点还需多长的时间. 答案 14 s 或 3 10s 题型2 振动图象的应用 【例2】如图所示为一沿水平方向振动的弹簧振子的振动图象.求: (1)从计时开始,什么时刻第一次达到动能最大? (2)在第2 s 末到第3 s 末这段时间内振子的加速度、速度、动能、弹性势能各怎样变化? (3)该振子在前100 s 内总位移是多少?总路程是多少? 答案 (1)0.5 s 末 (2)加速度先减小后增大,速度和动能先增大后减小,弹性势能先减小后增大(3)0 100 cm 题型3 振动模型 【例3】如图所示,两木块的质量为m 、M ,中间弹簧的劲度系数为k ,弹簧下端与M 连接,m 与弹簧不连接,现将m 下压一段距离释放,它就上下做简谐运动,振动过程中,m 始终没有离开弹簧.试求: (1)m 振动的振幅的最大值. (2)m 以最大振幅振动时,M 对地面的最大压力.

选修3-4 第2讲 简谐运动的公式描述

选修3-4 第2讲简谐运动的公式描述 1.以振幅值为半径做一个参考圆,一个小球在此参考圆上做匀速圆周运动,周期为12t0,把圆周分成12等分,测量圆周上每一个等分点在水平轴上的投影,描出过点t0、2 t0、3 t0、…12 t0的曲线。 2.匀速圆周运动在x轴上的投影和简谐运动图像一样,是余弦或正弦曲线。物体做匀速圆周运动,设半径为A,周期为T,质点从x1开始运动,则其在t时刻在x轴上的投影为。 式中w就是简谐运动所对应匀速圆周运动的角速度,在研究简谐运动时,称之为圆频率(或角频率)。 3.如果圆周运动的质点在t=0时刻从x7位置开始运动,则t时刻在x轴上的投影刚好与图1-3-2的曲线大小相等,方向相反,称之为反相,或者称这两种振动的相位差相反,也称相位差等于,数学公式为。 4.如果t=0时刻,质点的运动不是从x7开始,而是由任意一个角度开始,则应该写为:,叫做简谐运动在t时刻的相位,由于时间t

是变量,所以相位也在变化,是t=0时的相位叫做初相。相位每增加,振子完成一次全振动。相位从0变到,需要的时间。 5.对于频率、振幅相同,相位不同的振子,我们常通过相位差来比较它们,相位差用表示,有:。 当相位差为时,振动相差的时间为。 6.如图,一辆玩具电动车在一水平面上做匀速圆周运动,在同一水平面上放置一台幻灯机,灯光水平照射在这量小车上,小车运动时在墙壁的投影正好和弹簧振子做简谐运动的情景相似。 设小车沿半径为A的圆周做匀速圆周运动,其角速度为w,则 向心力F= 。 F在水平方向的投影Fx= 。式中负号表示Fx与坐标x轴的正方向相反。由几何关系知x= 。 于是有Fx= 。 由于m、w都有确定的值,mw2可以用一个常数k表示,k=mw2, 上式可写成:Fx= 。与弹簧振子做简谐运动的力相同。 由此可知,做匀速圆周运动的物体在直径方向的投影正好与弹簧振子做简谐运动的情景完全相同,并且w= 。 简谐运动的振动周期与物体做匀速圆周运动周期相等,所以T== 。

简谐运动及其图象

简谐运动及其图象 【学习目标】 1.知道什么是弹簧振子以及弹簧振子是理想化模型。 2.知道什么样的振动是简谐运动。 3.明确简谐运动图像的意义及表示方法。 4.知道什么是振动的振幅、周期和频率。 5.理解周期和频率的关系及固有周期、固有频率的意义。 6.知道简谐运动的图像是一条正弦或余弦曲线,明确图像的物理意义及图像信息。 7.能用公式描述简谐运动的特征。 【要点梳理】 要点一、机械振动 1.弹簧振子 弹簧振子是小球和弹簧所组成的系统,这是一种理想化模型.如图所示装置,如果球与杆之间的摩擦可以忽略,且弹簧的质量与小球的质量相比也可以忽略,则该装置为弹簧振子. 2.平衡位置 平衡位置是指物体所受回复力为零的位置. 3.振动 物体(或物体的一部分)在平衡位置附近所做的往复运动,叫做机械振动. 振动的特征是运动具有重复性. 要点诠释:振动的轨迹可以是直线也可以是曲线. 4.振动图像 (1)图像的建立:用横坐标表示振动物体运动的时间t ,纵坐标表示振动物体运动过程中对平衡位置的位移x ,建立坐标系,如图所示. (2)图像意义:反映了振动物体相对于平衡位置的位移x 随时间t 变化的规律. (3)振动位移:通常以平衡位置为位移起点,所以振动位移的方向总是背离平衡位置的.如图所示,在x t -图像中,某时刻质点位置在t 轴上方,表示位移为正(如图中12t t 、时刻),某时刻质点位置在t 轴下方,表示位移为负(如图中34t t 、时刻). (4)速度:跟运动学中的含义相同,在所建立的坐标轴(也称为“一维坐标系”)上,速度的正负号表示振子运动方向与坐标轴的正方向相同或相反. 如图所示,在x 坐标轴上,设O 点为平衡位置。A B 、为位移最大处,则在O 点速度最大,在A B 、两点速度为零. 在前面的x t -图像中,14t t 、时刻速度为正,23t t 、时刻速度为负. 要点二、简谐运动 1.简谐运动 如果质点的位移与时间的关系遵从正弦函数规律,即它的振动图像是一条正弦曲线,这样的振动叫做简谐运动. 简谐运动是物体偏离平衡位置的位移随时间做正弦或余弦规律而变化的运动,它是一种非匀变速运动. 物体在跟位移的大小成正比,方向总是指向平衡位置的力的作用下的振动,叫做简谐运动. 简谐运动是最简单、最基本的振动. 2.实际物体看做理想振子的条件

简谐运动及其图像

专题一:简谐运动及其图象 知识点一:弹簧振子 1.弹簧振子 如图,把连在一起的弹簧和小球穿在水平杆上,弹簧左端固定在支架上,小球可以在杆上滑动。小球滑动时的摩擦力可以忽略,弹簧的质量比小球的质量小得多,也可忽略。这样就成了一个弹簧振子。 注意: ①小球原来静止的位置就是平衡位置。小球在平衡位置附近所做的往复运动,是一种机械振动。 ②小球的运动是平动,可以看作质点。 ③弹簧振子是一个不考虑摩擦阻力,不考虑弹簧的质量,不考虑振子(金属小球)的大小和形状的理想化的物理模型。 2.弹簧振子的位移——时间图象 (1)振动物体的位移是指由平衡位置指向振子所在处的有向线段,可以说某时刻的位移。说明:振动物体的位移与运动学中位移的含义不同,振子的位移总是相对于平衡位置而言的,即初位置是平衡位置,末位置是振子所在的位置。因而振子对平衡位置的位移方向始终背离平衡位置。 (2)振子位移的变化规律 (3)弹簧振子的位移-时间图象是一条正(余)弦曲线。 知识点二:简谐运动 1.简谐运动 如果质点的位移与时间的关系遵从正弦函数的规律,即它的振动图象(x-t图象)是一条正弦曲线,这样的振动,叫做简谐运动。 简谐运动是机械振动中最简单、最基本的振动。弹簧振子的运动就是简谐运动。 2.描述简谐运动的物理量 (1)振幅(A) 振幅是指振动物体离开平衡位置的最大距离,是表征振动强弱的物理量。 (2)周期(T)和频率(f)周期和频率的关系是: (3)相位(φ) 相位是表示物体振动步调的物理量,用相位来描述简谐运动在一个全振动中所处的阶段。 3. 固有周期、固有频率 简谐运动的周期只由系统本身的特性决定,与振幅无关,因此T叫系统的固有周期,f叫固有频率。

2.2简谐运动的描述 练习题(解析版)

第二章 机械振动 2.2 简谐运动的描述 一、单选题: 1.一个做简谐运动的质点,它的振幅是4 cm ,频率是 2.5 Hz ,该质点从平衡位置开始经过2.5 s 后,位移的大小和经过的路程为( ) A .4 cm 10 cm B .4 cm 100 cm C .0 24 cm D .0 100 cm B [质点的振动周期T =1f =0.4 s ,故时间t =2.50.4T =61 4T ,所以2.5 s 末质点在最大位移处,位移 大小为4 cm ,质点通过的路程为4×4×61 4 cm =100 cm ,选项B 正确.] 2.下列说法正确的是( ) A .物体完成一次全振动,通过的位移是4个振幅 B .物体在1 4个周期内,通过的路程是1个振幅 C .物体在1个周期内,通过的路程是4个振幅 D .物体在3 4 个周期内,通过的路程是3个振幅 C [在一次全振动中,物体回到了原来的位置,故通过的位移一定为零,A 错误;物体在1 4个周 期内,通过的路程不一定是1个振幅,与物体的初始位置有关,只有当物体的初始位置在平衡位置或最大位移处时,物体在1 4个周期内,通过的路程才等于1个振幅,B 错误;根据对称性可知,物体 在1个周期内,通过的路程是4个振幅,C 正确;物体在3 4个周期内,通过的路程不一定是3个振幅, 与物体的初始位置有关,只有当物体的初始位置在平衡位置或最大位移处时,物体在3 4个周期内,通 过的路程才是3个振幅,D 错误.] 3.如图所示,m 为在光滑水平面上的弹簧振子,弹簧形变的最大限度为20 cm ,图中P 位置是弹簧振子处于自然伸长状态的位置,若将振子m 向右拉动5 cm 后由静止释放,经过0.5 s 后振子m 第一次回到P 位置,关于该弹簧振子,下列说法正确的是( )

简谐运动 简谐运动的表达式和图象

简谐运动简谐运动的表达式和图象Ⅱ 1、机械振动: 物体(或物体的一部分)在某一中心位置两侧来回做往复运动,叫做机械振动。机械振动产生的条件是:(1)回复力不为零。(2)阻力很小。使振动物体回到平衡位置的力叫做回复力,回复力属于效果力,在具体问题中要注意分析什么力提供了回复力。 2、简谐振动: 在机械振动中最简单的一种理想化的振动。对简谐振动可以从两个方面进行定义或理解: (1)物体在跟位移大小成正比,并且总是指向平衡位置的回复力作用下的振动,叫做简谐振动。 (2)物体的振动参量,随时间按正弦或余弦规律变化的振动,叫做简谐振动,在高中物理教材中是以弹簧振子和单摆这两个特例来认识和掌握简谐振动规律的。 3、描述振动的物理量,研究振动除了要用到位移、速度、加速度、动能、势能等物理量以外,为适应振动特点还要引入一些新的物理量。 (1)位移x:由平衡位置指向振动质点所在位置的有向线段叫做位移。位移是矢量,其最大值等于振幅。 (2)振幅A:做机械振动的物体离开平衡位置的最大距离叫做振幅,振幅是标量,表示振动的强弱。振幅越大表示振动的机械能越大,做简揩振动物体的振幅大小不影响简揩振动的周期和频率。 (3)周期T:振动物体完成一次余振动所经历的时间叫做周期。所谓全振动是指物体从某一位置开始计时,物体第一次以相同的速度方向回到初始位置,叫做完成了一次全振动。 (4)频率f:振动物体单位时间内完成全振动的次数。 (5)角频率:角频率也叫角速度,即圆周运动物体单位时间转过的弧度数。引入这个参量来描述振动的原因是人们在研究质点做匀速圆周运动的射影的运动规律时,发现质点射影做的是简谐振动。因此处理复杂的简谐振动问题时,可以将其转化为匀速圆周运动的射影进行处理,这种方法高考大纲不要求掌握。 周期、频率、角频率的关系是:。 (6)相位:表示振动步调的物理量。现行中学教材中只要求知道同相和反相两种情况。 4、研究简谐振动规律的几个思路: (1)用动力学方法研究,受力特征:回复力F =-Kx;加速度,简谐振动是一种变加速运动。在平衡位置时速度最大,加速度为零;在最大位移处,速度为零,加速度最大。 (2)用运动学方法研究:简谐振动的速度、加速度、位移都随时间作正弦或余弦规律的变化,这种用正弦或余弦表示的公式法在高中阶段不要求学生掌握。(3)用图象法研究:熟练掌握用位移时间图象来研究简谐振动有关特征是本章学习的重点之一。 (4)从能量角度进行研究:简谐振动过程,系统动能和势能相互转化,总机械能守恒,振动能量和振幅有关。

相关主题
文本预览
相关文档 最新文档