当前位置:文档之家› 王镜岩生化第三版考研笔记

王镜岩生化第三版考研笔记

王镜岩生化第三版考研笔记
王镜岩生化第三版考研笔记

王镜岩生化第三版考研总结王镜岩生化第三版考研总结笔记笔记笔记

(09最新最新详细版)详细版)

By 湖风微竹 https://www.doczj.com/doc/5e9686638.html,/

目 录

绪 论-------------------------------01

第 一 章 糖 类------------------------------01 第 二 章 脂 类------------------------------05 第 三 章 蛋 白 质------------------------------10 第 四 章 酶 类------------------------------34 第 五 章 核 酸------------------------------46 第 六 章 维生素与辅酶--------------------------56 第 七 章 激素和信号传导------------------------60 第 八 章 生物氧化------------------------------66 第 九 章 糖代谢--------------------------------70 第 十 章 脂类代谢------------------------------82 第十一章 氨基酸代谢----------------------------93 第十二章 核酸的降解和核苷酸代谢---------------106 第十三章 DNA 复制和修复------------------------115 第十四章 RNA 合成------------------------------125 第十五章 蛋白质合成--------------------------- 137 第十六章 细胞代谢和基因表达的调控------------- 143

绪 论

一、生物化学

生物化学Biochemistry:研究生物体的物质基础及在生命过程中的化学变化;研究生一、

命现象的化学本质。用化学的理论和方法研究生命现象,揭示生命的奥秘。

还原论:个体、器官、组织、细胞、细胞器、超分子、分子、结构域、结构单元、原子

整体论:生命科学的飞跃

二、研究内容

1. 生物大分子结构与性质:糖、脂、蛋白质、酶、维生素、核酸、激素、抗生素(序列分析、X射线衍射、波谱、质谱、圆二色散性)

2. 生物大分子结构与功能:生物大分子分解、合成、转化、能量平衡

3. 遗传信息传递及细胞代谢调控的分子机理

4. 生物大分子的提取、改造及利用(生物工程)

三、生物化学的发展历史

1. 静态生物化学时期(1920年前)

研究生物体内物质的化学组成和性质

2. 动态生物化学时期(1950年前)

糖、脂、蛋白质、核酸等的代谢关系;物质代谢途径及动态平衡、生物氧化、能量转化3. 机能生物化学时期(1950年后)

功能:遗传、生殖、生长、发育、循环、呼吸、消化、运动、内分泌的分子机理

第一章糖类

第一节糖类概述

一、糖类是地球上数量最多的化合物

贮藏性糖:低聚糖,淀粉(植物),糖原(动物)

结构多糖:纤维素,木质素,壳多糖, 肽聚糖

二、糖的概念

多羟基的醛类或酮类以及它们的衍生物或聚合物。

元素组成:CH2O(碳水化合物是不科学但默认的称呼)

功能基团:醛糖,酮糖

碳链长短:丙糖(甘油醛和二羟丙酮) 、丁糖、戊糖、己糖

三、糖的分类与命名

1、单糖:不能被水解为更小分子的糖。

2、寡糖:2-6个单糖分子脱水缩合而成

3、多糖:

均一性多糖:淀粉、糖原、纤维素、半纤维素、几丁质

不均一性多糖:糖胺多糖类(透明质酸、硫酸软骨素、硫酸皮肤素等)

4、结合糖(复合糖,糖缀合物,glycoconjugate ):糖脂、糖蛋白(蛋白聚糖)、糖-核苷酸等

5、糖的衍生物:糖醇、糖酸、糖胺、糖苷

四、糖类的生物学功能

1、能源

2、结构成分

3、物质代谢的碳骨架(碳源)。

4、细胞或生物大分子之间识别的信息:糖蛋白

第二节单糖

一、单糖的结构

1、单糖的链状结构Fisher投影式表示

确定链状结构的方法(葡萄糖):

a. 与Fehling试剂或其它醛试剂反应,含有醛基。

b. 与乙酸酐反应,产生具有五个乙酰基的衍生物。

c. 用钠、汞剂作用,生成山梨醇。

Fisher投影式表示方法:碳骨架、竖直写;氧化程度最高的碳原子在上方

左旋异构体(levorotary,L)或L型异构体。

右旋型异构体(dextrorotary),或D型异构体。

差向异构体(epimer):又称表异构体,只有一个不对称碳原子上的基因排列方式不同的非对映异构体,如D-葡萄糖与D-半乳糖。

2、单糖的环状结构用Havorth结构式或构象式表示

Havorth结构式:

①画一个五员或六员环

②从氧原子右侧的端基碳(anomerio carbon)开始,画上半缩醛羟基,在Fischer投影式中右侧的居环下,左侧居环上。

α-型头异构体:半缩醛羟基与羟甲基位于环平面两侧

β-型头异构体:半缩醛羟基与羟甲基位于环平面同侧

构象式:最能正确地反映糖的环状结构——折叠形结构。

3、几种重要的单糖的链状和环状结构式

(1) 丙糖:D-甘油醛二羟丙酮(√)

(2) 丁糖:D-赤鲜糖

(3) 戊糖:D-核糖D-脱氧核糖D-核酮糖(√)

(4) 己糖:D-葡萄糖(α-型及β型) D-果糖(√)

(5) 庚糖:D-景天庚酮糖

4、构型与构象的概念

构型:分子中由于各原子或基团间特有的固定的空间排列方式不同而使它呈现出不同的较定的立体结构

构象:由于分子中的某个原子(基团)绕C-C单键自由旋转而形成的不同的暂时性的易变的空间结构形式

5、构型与旋光性没有对应关系

构型不同旋光性就不同。但是构型与旋光性之间没有必然的对应规律,每一种物质的旋光性只能通过实验来确定。

二、单糖的物理化学性质

(一)物理性质

旋光性:是鉴定糖的一个重要指标

甜度:以蔗糖的甜度为标准

溶解性:易溶于水而难溶于乙醚、丙酮等有机溶剂

(二) 化学性质

1、变旋现象(mutarotation)

在溶液中,糖的链状结构和环状结构(α、β)之间可以相互转变,最后达到一个动态平衡,称为变旋现象。

2、糠醛反应(HCL)

(1) Molish反应可以鉴定单糖的存在。

(2) Seliwannoff反应可以鉴别醛糖与酮糖

酮糖HCL、间苯二酚红色

醛糖HCL、间苯二酚浅色

3、单糖具有还原性

还原性糖:能被弱氧化剂(如Fehhing试剂、Benedict试剂)氧化的糖

醛基氧化:糖酸(aldonic acid)

伯醇基氧化:糖醛酸(uronic acid)

醛基、伯醇基同时氧化:糖二酸(alduric acid)

4、单糖的羰基可以被还原为羰醇

5、同分异构化

在弱碱性溶液中,D-葡萄糖、D-甘露糖和D-果糖,可以通过烯醇或而相互转化

6、羟基酯化

糖的磷酸酯及其衍生物是糖的代谢活性形式(糖代谢的中间产物)。

葡萄糖的核苷二磷酸酯,如UDPG参与多糖的生物合成。

7、糖苷化(半缩醛羟基发生取代)

8、糖脎反应(亲核加成)

糖脎反应发生在醛糖和酮糖的链状结构上。

四、重要的单糖衍生物

1、糖醇:山梨醇

2、糖醛酸

单糖的伯醇基被氧化成-COOH。α-D-葡萄醛酸和差向异构物β-L-艾杜糖醛酸

3、氨基糖(糖胺)amino sugar, glycosamine)

4、糖苷

Glc糖苷,Gal糖苷。

5、脱氧糖

6-脱氧D-甘露糖L-岩藻糖2-脱氧D-核糖

第三节寡糖

1、麦芽糖(meltose)

性质:①变旋现象②具有还原性③能成脎

性质

2、蔗糖(sucrose)[葡萄糖-α,β(1-2)-果糖苷]

性质:①无变旋现象②无还原性③不能成脎

性质:

3、乳糖(α-Lactose β-lactose ):

β-半乳糖----- β(1-4)糖苷键---- α(或β)-葡萄糖

性质:①有变旋现象②具有还原性③能成脎

性质:

4、纤维二糖(cellobiose) [葡萄糖-β(1,4)-葡萄糖苷]

性质:①具有变旋现象②具有还原性③能成脎

5、海藻糖trehalose(自补)

两分子α-D-Glc,在C1上的两个半缩醛羟基之间脱水,由α-1.1糖苷键构成。

第四节多糖

一、均一性多糖

1、淀粉

①直链淀粉:α-1,4糖苷键,长而紧密的螺旋管形。遇碘显兰色

②支链淀粉:α-1,4、α-1,6糖苷键,不能形成螺旋管,遇碘显紫色。

2、糖元

与支链淀粉类似,但分支程度更高,每隔4个葡萄糖残基便有一个分支,含有大量的非原性端,可以被迅速动员水解。遇碘显红褐色。

3、纤维素

β-D-葡萄糖分子以β-(1-4)糖苷键相连而成直链。

4、几丁质(壳多糖):

N-乙酰-β-D-葡萄糖胺以β(1,4)糖苷链相连成的直链。

二、不均一性多糖

其中,糖胺聚糖类(也称粘多糖,mucopoly saceharides,、氨基多糖等)是蛋白聚糖的主要组分

1、透明质酸

2、硫酸软骨素

3、硫酸皮肤素

4、硫酸用层酸

5、肝素

6、硫酸乙酰肝素

第五节结合糖

糖+蛋白→糖蛋白(蛋白聚糖、肽聚糖)

糖+脂→糖脂

糖+核酸→糖—核酸

一、糖蛋白

短的寡糖链与蛋白质共价相连即形成糖蛋白。

糖蛋白的总体性质更接近蛋白质。

寡糖链常常是具分支的杂糖链,不呈现重复的双糖系列,一般由2-10个单体(少于15)组成,未端成员常常是唾液酸或L-岩藻糖。

1、糖链与蛋白的连接方式

①N-糖苷键型:寡糖链(GlcNAC的β-羟基)与Asn的酰胺基、N-未端的α-氨基、Lys或Arg的ω-氨基相连

②O-糖苷键型:寡糖链(GalNAC的α-羟基)与Ser、Thr和羟基赖氨酸、羟脯氨酸的羟基相连。

③S-糖苷键型:以半胱氨酸为连接点的糖肽键。

④酯糖苷键型:以天冬氨酸、谷氨酸的游离羧基为连接点。

2、糖蛋白中糖链的结构

(1)N-糖苷键型(N-连接)有五糖核心

①高甘露糖型:由GlcNAc和甘露糖组成;

②复合型:除了GlcNAc和甘露糖外,还有果糖、半乳糖、唾液酸;

③杂合型:包含①和②的特征。

(2)O-糖苷键型(O-连接)没有五糖核心。

例如人血纤维蛋白溶酶原和免疫球蛋白IgA:

GlcNac=N-acetylglucosamine Man=mannose

SA=sialic acid Gal=galactose NANA=N-aceytyl neuraminic acid

3、糖蛋白的生物学功能

寡糖链参与分子识别

糖链影响蛋白质的稳定性和生物活性

二、蛋白聚糖(Poroteoglycans)

由一条或多条糖胺聚糖与一个核心蛋白共价相连构成的分子

总体性质与多糖更为接近。

糖胺聚糖(glycosaminoglycan,GAG),也称粘多糖,氨基多糖,是高等动物结缔组织中的一类结构多糖,长而不分支,呈现重复双糖系列结构。

1、蛋白聚糖中的糖肽键

①O-糖肽键:

D-木糖与Ser羟基之间形成的糖肽键。

N-乙酰半乳糖胺与Thr或Ser羟基之间形成的糖肽键。

②N-糖肽键:N-乙酰葡萄糖胺与Asn之间形成的糖肽键。

2、糖白聚糖的生物学功能

主要存在于软骨、键等结缔组织和各种腺体分泌的粘液中,构成组织间质、润滑剂、防护剂等。

三、肽聚糖peptidoglycan

细菌细胞壁的主要成分

由N-乙酰葡萄糖胺和N-乙酰胞壁酸通过β-1.4糖苷键连接而成。

四、脂多糖(糖脂)

脂多糖是革兰氏阴性细菌细胞壁的特有结构成分,构成外膜外表面的主要物质。

从繁殖或破裂细菌中释放出的脂多糖在哺乳动物宿主中会引起毒性效应,被称为内毒活性。

第二章脂质( Lipids

Lipids)

(重点:三酯酰甘油;磷脂、糖脂的结构和功能)

第一节脂质概述

脂质概述(重点:三酯酰甘油;磷脂、糖脂的结构和功能)

一、脂质的概念

低溶或微溶于水而易溶于乙醚、氯仿、苯等非极性有机溶剂的化合物。一般都是由醇和脂肪酸组成的酯类或它们的衍生物。

二、分类

按化学组成分:

(1)单纯脂类:脂肪酸与醇类形成的酯。甘油酯、鞘酯、胆固醇酯、蜡

(2)复合脂类:除脂肪酸和醇外,还有其他非脂分子的成分。

磷脂:甘油磷脂、鞘磷脂糖脂:甘油糖脂、鞘糖脂脂蛋白

(3)衍生脂类:由单纯脂质和复合脂质衍生而来的复合物,具有脂质的一般性质。

脂肪酸及其衍生物;甘油、鞘氨醇、固醇类、高级醇等;萜类;脂溶性维生素

按脂质在水中和水界面上的行为分:

非极性脂质:不具有容积可溶性,不具有界面可溶性。

I类极性脂质:不具有容积可溶性,具有界面可溶性。能掺入膜,但自身不能形成膜。

Ⅱ类极性脂质(磷脂和鞘磷脂):成膜分子,能形成双分子层和微囊。

Ⅲ类极性脂质(去污剂):可溶性脂质,具有界面可溶性,但形成的单分子层不稳定。

三、脂质的生物学功能

贮存脂质:三酰甘油、蜡

脂质结构脂质(生物膜的组成成分):磷脂、胆固醇、糖脂

活性脂质:萜(脂溶性维生素、光和色素)、类固醇(激素)、酶的辅助因子

①生物膜的结构组分:磷脂(甘油磷脂和鞘磷脂),胆固醇,糖脂

②能量贮存形式:动物、油料种子的甘油三酯

③激素、维生素和色素的前体:萜类、固醇类、二十碳四稀酸

④化学信号:PIP2(磷脂酰肌醇二磷酸),前列腺素等

⑤保护功能:动物的脂肪组织,植物的蜡质

第二节脂肪酸及其衍生物

一、脂肪酸的结构特点

线形不分支

脂肪酸:具有长碳氢碳(尾)和一个羧基末端(头)的有机化合物总称。

二、脂肪酸的种类

饱和脂肪酸

软脂酸(棕榈酸)n-十六酸16:0

硬脂酸n-十八酸18:0

花生酸n-二十酸20:0

不饱和脂肪酸(1-6个双键)

油酸:顺-十八碳-9-稀酸,18:1△9c,

亚油酸(ω-6):顺,顺-十八碳-9,12-二稀酸,18:2△9c,12c

α-亚麻酸(ω-3):全顺-十八碳-9,12,15-三稀酸,18:3△9c,12c,15c

花生四稀酸(ω-6):全顺-二十碳-5,8,11,14四稀酸,20:4 △5c,8c,11c,14c

二十二碳六稀酸(DHA)(ω-3):

全顺-二十二碳-4-7-10-13-16-19六稀酸,22:6 △4c,7c,10c,13c,16c,19c

三、脂肪酸的理化性质

烃链越长,溶解度越低;双键越多,熔点越低

四、脂肪酸盐与乳化作用

脂肪酸盐具有亲水基(电离的羧基)和和疏水基(长的烃链),是典型的两亲化合物,是离子型去污剂。

五、多不饱和脂肪酸

1、生物膜中多是顺式不饱和脂肪酸

增加膜流动性;降低膜相变温度,抗寒冷

2、多不饱和脂肪酸降低血脂

生物膜中多是顺式不饱和脂肪酸:顺式不饱和脂肪酸增加膜流动性,降低膜相变温度,抗寒冷

3、必需脂肪酸(essential fatty acids)

亚油酸和α-亚麻酸

4、皂化值(评估油的质量)

完全皂化1克油脂所需KOH的毫克数

5、酸值(酸败程度)

中和1 克油脂中的游离脂肪酸所消耗的KOH毫克数

6、碘值(不饱和键的多少)

100克油脂吸收碘的克数。

六、类二十碳烷

是花生四烯酸的衍生物

前列腺素、凝血恶烷、白三烯

第三节脂酰甘油和蜡

简单三脂酰甘油

三酰甘油(甘油三脂)

酰基甘油二酰甘油(甘油二脂)混合三脂酰甘油

单酰甘油(甘油单脂)

蜡长链脂肪酸+长链一元醇(或固醇)

CH2OH CH2OH

HO ─C ─H 甘油HO ─C ─H 甘油-3-磷酸

CH2OH CH2O ─PO32-

CH2O ─CO ─R1

R2─CO ─O ─CH 三酰甘油

H2C ─O ─CO ─R3

第四节磷脂

甘油磷脂:甘油、脂肪酸、磷酸和一分子氨基醇(如胆碱、乙醇胺、丝氨酸或肌醇)

组成

磷脂

鞘氨醇磷脂:以鞘氨醇代替了甘油。

一、甘油磷脂

1、结构与种类

(1)磷脂酰胆碱(卵磷脂)(PC)HO—CH2CH2N+(CH3)3(胆碱)

(2)磷脂酰乙醇胺(脑磷脂)(PE)HO—CH2CH2—N+H3(乙醇胺)

(3)磷脂酰丝氨酸(PS)

HO—CH2CH—COO-(丝氨酸)

N+H3

(4)磷脂酰肌醇(PI)

(5)磷脂酰甘油(PG)

(6)二磷脂酰甘油

2、甘油磷脂的基本结构

3、甘油磷脂的一般性质

纯的甘油磷脂为白色蜡状固体

溶于大多数含少量水的非极性溶剂,但难溶于无水丙酮。

在水中能形成双分子层的微囊。

二、鞘磷脂(见第五节鞘脂类)

1、组成:

鞘氨醇脂肪酸磷酸胆碱或乙醇胺

第五节糖脂glycolipid

一、甘油糖脂

甘油糖脂是二酰甘油分子的羟基与糖基以糖苷键连接而成。

植物的叶绿体和微生物的质膜富含甘油糖脂

单(二)半乳糖基甘油二酯6—磺基Glc甘油二酯

二、鞘糖脂(神经酰胺糖脂)

单糖、双糖或寡糖通过O-糖苷键与神经酰胺相连而形成

1、脑苷脂:半乳糖苷神经酰胺、葡萄糖苷神经酰胺

2、硫脑苷脂:脑苷脂被硫酸化,在生理pH下带负电荷。

3、神经节苷脂:寡糖链(带有一个或多个唾液酸残基)与神经酰胺形成的鞘糖脂。

三、糖脂的生物学功能

1、细胞结构的刚性

2、抗原的化学标记血型抗原

3、细胞分化阶段可鉴定的化学标记

4、调节细胞的正常生长

5、授予细胞与其它生物活性物质的反应性倾向。

第六节鞘脂类

一、鞘氨醇

二、神经酰胺

鞘脂类的核心结构,由鞘氨醇氨基以酰胺键与长链(18—26C)脂肪酸的羟基相连。

三、鞘磷脂(见第四节磷脂)

四、鞘糖脂(见第五节糖脂)

第七节血浆脂蛋白Lipoprotein

血浆脂蛋白可以把脂类(三酰甘油、磷脂、胆固醇)从一个器官运输到另一个器官。

一、乳糜微粒(chylomicron CM)

颗粒大小约为500nm,脂类含量高达98%,蛋白质含量少于2%,密度极低。

CM由小肠粘膜细胞在吸收食物脂类(主要是甘油三酯)时合成,经乳糜导管,胸导管到血液。主要功能为转运外源性甘油三酯及胆固醇脂,从小肠到组织肌肉和adipose组织。二、极低密度脂蛋白(very low density lipoprotein VLDL)

极低密度脂蛋白VLDL中TG主要在肝脏利用脂肪酸和葡萄糖合成。若食物摄取过量糖或体内脂肪动用过多,均可导致血VLDL增高。VLDL中脂类占85%-90%,其中TG占55%,其密度也很低。

VLDL是运输内源性甘油三酯TG及胆固醇的主要形式。将脂类运输到组织中。

三、低密度脂蛋白(low density lipoprotein LDL)

转运内源性胆固醇,把胆固醇运输到组织。

四、高密度脂蛋白(high density lipoprotein HDL)

1.063-1.210g/cm3,主要由肝合成,小肠也可合成,逆向转运胆固醇,清除细胞膜上过量的胆固醇。将胆固醇从肝外组织转运到肝进行代谢。

HDL按密度大小又可分为HDL1、HDL2和HDL3。HDL1又称为HDLc,仅在摄取高胆固醇膳食后才在血中出现,健康人血浆中主要含HDL2和HDL3。

载脂蛋白:脂质的增溶剂,脂蛋白受体的识别部位(细胞导向)

第八节萜类和固醇类化合物

统称为类异戊二烯类(isoprenoid)

一、萜类

萜分子的碳架可以看成是由两个或多个异戊二烯单位连接而成。是重要的活性物质。二、类固醇(甾类)

含有环戊烷多氢菲母核的一类醇、酸及其衍生物。

1、胆固醇(二氢胆固醇、7—脱氢胆酸、胆固醇酯)

(2)性质

物理性质:白色、斜方晶体。

化学性质:a. 醇基可与脂酸成酯(棕榈酸、硬脂酸、油酸) b. 双键可加氢

(3)分布及功能

脑及神经组织中,肝、肾、肾上腺、卵巢等合成固醇激素的腺体

胆固醇是生物膜的重要成分,羟基极性端分布于膜的亲水界面,母核及侧链深入膜双层,控制膜的流动性,阻止磷脂在相变温度以下时转变成结晶状态,保证膜在低温时的流动性及正常功能。

胆固醇是合成胆汁酸、类固醇激素、维生素D等生理活性物质的前体。

肾上腺皮质激素、雌激素、雄激素

2、植物甾醇

不能被动物吸收和利用。

豆甾醇(大豆中)麦甾醇(麦芽中)

3、酵母固醇

又称麦角甾醇,经紫外光照射可转化成维生素D3。

三、固醇衍生物

1、胆汁酸

与脂肪酸或其他脂类结合(胆固醇,胡萝卜素)成盐,乳化肠腔内油脂,增加脂肪酶作用位点,便于油脂消化吸收。

2、类固醇激素(见第七章激素)

(1)肾上腺皮质激素(7种)

(2)性激素

雄性激素:睾丸酮雌性激素:雌二醇、黄体酮

生物化学王镜岩(第三版)课后习题解答

第一章糖类 提要 糖类是四大类生物分子之一,广泛存在于生物界,特别是植物界。糖类在生物体内不仅作为结构成分和主要能源,复合糖中的糖链作为细胞识别的信息分子参与许多生命过程,并因此出现一门新的学科,糖生物学。 多数糖类具有(CH2O)n的实验式,其化学本质是多羟醛、多羟酮及其衍生物。糖类按其聚合度分为单糖,1个单体;寡糖,含2-20个单体;多糖,含20个以上单体。同多糖是指仅含一种单糖或单糖衍生物的多糖,杂多糖指含一种以上单糖或加单糖衍生物的多糖。糖类与蛋白质或脂质共价结合形成的结合物称复合糖或糖复合物。 单糖,除二羟丙酮外,都含有不对称碳原子(C*)或称手性碳原子,含C*的单糖都是不对称分子,当然也是手性分子,因而都具有旋光性,一个C*有两种构型D-和L-型或R-和S-型。因此含n个C*的单糖有2n个旋光异构体,组成2n-1对不同的对映体。任一旋光异构体只有一个对映体,其他旋光异构体是它的非对映体,仅有一个C*的构型不同的两个旋光异构体称为差向异构体。 单糖的构型是指离羧基碳最远的那个C*的构型,如果与D-甘油醛构型相同,则属D系糖,反之属L 系糖,大多数天然糖是D系糖Fischer E论证了己醛糖旋光异构体的立体化学,并提出了在纸面上表示单糖链状立体结构的Fischer投影式。许多单糖在水溶液中有变旋现象,这是因为开涟的单糖分子内醇基与醛基或酮基发生可逆亲核加成形成环状半缩醛或半缩酮的缘故。这种反应经常发生在C5羟基和C1醛基之间,而形成六元环吡喃糖(如吡喃葡糖)或C5经基和C2酮基之间形成五元环呋喃糖(如呋喃果糖)。成环时由于羰基碳成为新的不对称中心,出现两个异头差向异构体,称α和β异头物,它们通过开链形式发生互变并处于平衡中。在标准定位的Hsworth式中D-单糖异头碳的羟基在氧环面下方的为α异头物,上方的为β异头物,实际上不像Haworth式所示的那样氧环面上的所有原子都处在同一个平面,吡喃糖环一般采取椅式构象,呋喃糖环采取信封式构象。 单糖可以发生很多化学反应。醛基或伯醇基或两者氧化成羧酸,羰基还原成醇;一般的羟基参与成脂、成醚、氨基化和脱氧等反应;异头羟基能通过糖苷键与醇和胺连接,形成糖苷化合物。例如,在寡糖和多糖中单糖与另一单糖通过O-糖苷键相连,在核苷酸和核酸中戊糖经N-糖苷键与心嘧啶或嘌呤碱相连。 生物学上重要的单糖及其衍生物有Glc, Gal,Man, Fru,GlcNAc, GalNAc,L-Fuc,NeuNAc (Sia),GlcUA 等它们是寡糖和多糖的组分,许多单糖衍生物参与复合糖聚糖链的组成,此外单糖的磷酸脂,如6-磷酸葡糖,是重要的代谢中间物。 蔗糖、乳糖和麦芽糖是常见的二糖。蔗糖是由α-Glc和β- Fru在两个异头碳之间通过糖苷键连接而成,它已无潜在的自由醛基,因而失去还原,成脎、变旋等性质,并称它为非还原糖。乳糖的结构是Gal β(1-4)Glc,麦芽糖是Glcα(1-4)Glc,它们的末端葡萄搪残基仍有潜在的自由醛基,属还原糖。环糊精由环糊精葡糖基转移酶作用于直链淀粉生成含6,7或8个葡萄糖残基,通过α-1,4糖苷键连接成环,属非还原糖,由于它的特殊结构被用作稳定剂、抗氧化剂和增溶剂等。 淀粉、糖原和纤维素是最常见的多糖,都是葡萄糖的聚合物。淀粉是植物的贮存养料,属贮能多糖,是人类食物的主要成分之一。糖原是人和动物体内的贮能多糖。淀粉可分直链淀粉和支链淀粉。直链淀粉分子只有α-1,4连键,支链淀粉和糖原除α-1,4连键外尚有α-1,6连键形成分支,糖原的分支程度比支链淀粉高。纤维素与淀粉、糖原不同,它是由葡萄糖通过β-1.4糖苷键连接而成的,这一结构特点使纤维素具有适于作为结构成分的物理特性,它属于结构多糖。 肽聚糖是细菌细胞壁的成分,也属结构多糖。它可看成由一种称胞壁肽的基本结构单位重复排列构成。胞壁肽是一个含四有序侧链的二糖单位,G1cNAcβ(1-4)MurNAc,二糖单位问通过β-1,4连接成多糖,链相邻的多糖链通过转肽作用交联成一个大的囊状分子。青霉素就是通过抑制转肽干扰新的细胞壁形成而起抑菌作用的。磷壁酸是革兰氏阳性细菌细胞壁的特有成分;脂多糖是阴性细菌细胞壁的特有成分。 糖蛋白是一类复合糖或一类缀合蛋白质。许多内在膜蛋白质和分泌蛋白质都是糖蛋白。糖蛋白和糖脂中的寡糖链,序列多变,结构信息丰富,甚至超过核酸和蛋白质。一个寡糖链中单糖种类、连接位置、异

生物化学笔记(整理版)1

《生物化学》绪论 生物化学可以认为是生命的化学,是研究微生物、植物、动物及人体等的化学组成和生命过程中的化学变化的一门科学。 生命是发展的,生命起源,生物进化,人类起源等,说明生命是在发展,因而人类对生命化学的认识也在发展之中。 20世纪中叶直到80年代,生物化学领域中主要的事件: (一)生物化学研究方法的改进 a. 分配色谱法的创立——快捷、经济的分析技术由Martin.Synge创立。 b. Tisellius用电泳方法分离血清中化学构造相似的蛋白质成分。吸附层析法分离蛋白质及其他物质。 c. Svedberg第一台超离心机,测定了高度复杂的蛋白质。 d. 荧光分析法,同位素示踪,电子显微镜的应用,生物化学的分离、纯化、鉴定的方法向微量、快速、精确、简便、自动化的方向发展。 (二)物理学家、化学家、遗传学家参加到生命化学领域中来 1. Kendrew——物理学家,测定了肌红蛋白的结构。 2. Perutz——对血红蛋白结构进行了X-射线衍射分析。 3. Pauling——化学家,氢键在蛋白质结构中以及大分子间相互作用的重要性,认为某些protein具有类似的螺旋结构,镰刀形红细胞贫血症。 (1.2.3.都是诺贝尔获奖者) 4.Sanger―― 生物化学家 1955年确定了牛胰岛素的结构,获1958年Nobel prize化学奖。1980年设计出一种测定DNA内核苷酸排列顺序的方法,获1980年诺贝尔化学奖。 5.Berg―― 研究DNA重组技术,育成含有哺乳动物激素基因的菌株。 6.Mc clintock―― 遗传学家发现可移动的遗传成分,获1958年诺贝尔生理奖。 7.Krebs―― 生物化学家 1937年发现三羧酸循环,对细胞代谢及分生物的研究作出重要贡献,获1953年诺贝尔生理学或医学奖。 8.Lipmann―― 发现了辅酶A。 9. Ochoa——发现了细菌内的多核苷酸磷酸化酶 10.Korberg——生物化学家,发现DNA分子在细菌内及试管内的复制方式。(9.10.获1959年的诺贝尔生理医学奖) 11.Avery―― 加拿大细菌学家与美国生物学家Macleod,Carty1944年美国纽约洛克菲勒研究所著名实验。肺炎球菌会产生荚膜,其成分为多糖,若将具荚膜的肺炎球菌(光滑型)制成无细胞的物质,与活的无荚膜的肺炎球菌(粗糙型)细胞混合 ->粗糙型细胞也具有与之混合的光滑型的荚膜->表明,引起这种遗传的物质是DNA 1 / 29

王镜岩生物化学知识点整理版80605

v1.0 可编辑可修改 教学目标: 1.掌握蛋白质的概念、重要性和分子组成。 2.掌握α-氨基酸的结构通式和20种氨基酸的名称、符号、结构、分类;掌握氨基酸的重要性质;熟悉肽和活性肽的概念。 3.掌握蛋白质的一、二、三、四级结构的特点及其重要化学键。 4.了解蛋白质结构与功能间的关系。 5.熟悉蛋白质的重要性质和分类 第一节蛋白质的分子组成 一、蛋白质的元素(化学)组成 主要有 C(50%~55%)、H(6%~7%)、O(19%~24%)、N(13%~19%)、S(0%~4%)。有些蛋白质还含微量的P、Fe、Cu、Zn、Mn、Co、Mo、I等。 各种蛋白质的含氮量很接近,平均为16%。因此,可以用定氮法来推算样品中蛋白质的大致含量。 每克样品含氮克数××100=100g样品中蛋白质含量(g%)二、蛋白质的基本组成单位——氨基酸 蛋白质在酸、碱或蛋白酶的作用下,最终水解为游离氨基酸(amino acid),即蛋白质组成单体或构件分子。存在于自然界中的氨基酸有300余种,但合成蛋白质的氨基酸仅20种(称编码氨基酸),最先发现的是天门冬氨酸(1806年),最后鉴定的是苏氨酸(1938年)。(三)氨基酸的重要理化性质 1.一般物理性质 α-氨基酸为无色晶体,熔点一般在200 oC以上。各种氨基酸在水中的溶解度差别很大(酪氨酸不溶于水)。一般溶解于稀酸或稀碱,但不能溶解于有机溶剂,通常酒精能把氨基酸从其溶液中沉淀析出。 芳香族氨基酸(Tyr、Trp、Phe)有共轭双键,在近紫外区有光吸收能力,Tyr、Trp的吸收峰在280nm,Phe在265 nm。由于大多数蛋白质含Tyr、Trp残基,所以测定蛋白质溶液280nm的光吸收值,是分析溶液中蛋白质含量的快速简便的方法。 2.两性解离和等电点(isoelectric point, pI) 氨基酸在水溶液或晶体状态时以两性离子的形式存在,既可作为酸(质子供体),又可作为碱(质子受体)起作用,是两性电解质,其解离度与溶液的pH有关。 在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势和程度相等,成为兼性离子,呈电中性,此时溶液的pH称为该氨基酸的等电点。氨基酸的pI是由α-羧基和α-氨基的解离常数的负对数pK1和pK2决定的。计算公式为:pI=1/2(pK1+ pK2)。 若1个氨基酸有3个可解离基团,写出它们电离式后取兼性离子两边的pK值的平均值,即为此氨基酸的等电点(酸性氨基酸的等电点取两羧基的pK值的平均值,碱性氨基酸的等电点取两氨基的pK值的平均值)。 第二节蛋白质的分子结构 蛋白质是生物大分子,结构比较复杂,人们用4个层次来描述,包括蛋白质的一级、二级、三级和四级结构。一级结构描述的是蛋白质的线性(或一维)结构,即共价连接的氨基酸残基的序列,又称初级或化学结构。二级以上的结构称高级结构或构象(conformation)。 一、蛋白质的一级结构(primary structure) 1953年,英国科学家F. Sanger首先测定了胰岛素(insulin)的一级结构,有51个氨基酸残基,由一条A链和一条B链组成,

王镜岩生物化学名词解释#精选.

生物化学名词解释 1 .氨基酸( i ):是含有一个碱性氨基( H 2)和一个酸性羧基()的有机化合物,氨基一般连在α -碳上。氨基酸是蛋白质的构件分子 2.必需氨基酸( i ):指人(或其它脊椎动物)(赖氨酸,苏氨酸等)自己不能合成,需要从食物中获得的氨基酸。 3.非必需氨基酸(n i d):指人(或其它脊椎动物)自己能由简单的前体合成,不需要从食物中获得的氨基酸。 4.等电点():使氨基酸处于兼性离子状态,在电场中不迁移(分子的静电荷为零)的值。 5.茚三酮反应():在加热条件下,氨基酸或肽与茚三酮反应生成紫色(与脯氨酸及羟脯氨酸反应生成黄色)化合物的反应。 6.层析() :按照在移动相和固定相(可以是气体或液体)之间的分配比例将混合成分分开的技术。 7.离子交换层析( n):一种用离子交换树脂作支持剂的层析技术。 8.透析():利用蛋白质分子不能通过半透膜的性质,使蛋白质和其他小分子物质如无机盐、单糖等分开的一种分离纯化技术。 9.凝胶过滤层析(,):也叫做分子排阻层析/凝胶渗透层析。一种利用带孔凝胶珠作基质,按照分子大小分离蛋白

质或其它分子混合物的层析技术。 10.亲合层析():利用共价连接有特异配体的层析介质,分离蛋白质混合物中能特异结合配体的目的蛋白质或其它分子的层析技术。 11.高压液相层析():使用颗粒极细的介质,在高压下分离蛋白质或其他分子混合物的层析技术。 12.凝胶电泳():以凝胶为介质,在电场作用下分离蛋白质或核酸的分离纯化技术。 13聚丙烯酰氨凝胶电泳():在去污剂十二烷基硫酸钠存在下的聚丙烯酰氨凝胶电泳。只是按照分子的大小,而不是根据分子所带的电荷大小分离的。 14.等电聚焦电泳():利用一种特殊的缓冲液(两性电解质)在聚丙烯酰氨凝胶制造一个梯度,电泳时,每种蛋白质迁移到它的等电点()处,即梯度为某一时,就不再带有净的正或负电荷了。 1 5.双向电泳():等电聚焦电泳和的组合,即先进行等电聚焦电泳(按照)分离,然后再进行(按照分子大小分离)。经染色得到的电泳图是二维分布的蛋白质图。 1 6 降解():从多肽链游离的 N 末端测定氨基酸残基的序列的过程。N 末端氨基酸残基被苯异硫氰酸酯()修饰,然后从多肽链上切下修饰的残基,再经层析鉴定,余下的多肽链(少了一个残基)被回收再进行下一轮降解循环。

王镜岩生物化学题库精选(含详细标准答案)

第十章 DNA 的生物合成(复制) 一、A型选择题 1.遗传信息传递的中心法则是() A.DNA→RNA→蛋白质 B.RNA→DNA→蛋白质 C.蛋白质→DNA→RNA D.DNA→蛋白质→RNA E.RNA→蛋白质→DNA 2.关于DNA的半不连续合成,错误的说法是() A.前导链是连续合成的 B.随从链是不连续合成的 C.不连续合成的片段为冈崎片段 D.随从链的合成迟于前导链酶合成 E.前导链和随从链合成中均有一半是不连续合成的 3.冈崎片段是指() A.DNA模板上的DNA片段 B.引物酶催化合成的RNA片段 C.随从链上合成的DNA片段 D.前导链上合成的DNA片段 E.由DNA连接酶合成的DNA 4.关于DNA复制中DNA聚合酶的错误说法是() A.底物都是dNTP B.必须有DNA模板 C.合成方向是5,→3, D.需要Mg2+参与 E.需要ATP参与 5.下列关于大肠杆菌DNA聚合酶的叙述哪一项是正确() A.具有3,→5,核酸外切酶活性 B.不需要引物 C.需要4种NTP D.dUTP是它的一种作用物 E.可以将二个DNA片段连起来 6.DNA连接酶() A.使DNA形成超螺旋结构 B.使双螺旋DNA链缺口的两个末端连接 C.合成RNA引物D.将双螺旋解链 E.去除引物,填补空缺 7.下列关于DNA复制的叙述,哪一项是错误的() A.半保留复制 B.两条子链均连续合成 C.合成方向5,→3, D.以四种dNTP为原料 E.有DNA连接酶参加 8.DNA损伤的修复方式中不包括() A.切除修复 B.光修复 C.SOS修复 D.重组修复 E.互补修复 9.镰刀状红细胞性贫血其β链有关的突变是() A.断裂B.插入C.缺失 D.交联 E.点突变 10.子代DNA分子中新合成的链为5,-ACGTACG-3,,其模板链是() A.3,-ACGTACG-5, B.5,-TGCATGC-3, C.3,-TGCATGC-5, D.5,-UGCAUGC-3, E.3,-UGCAUGC-5, 二、填空题 1.复制时遗传信息从传递至;翻译时遗传信息从传递至。2.冈崎片段的生成是因为DNA复制过程中,和的不一致。 3.能引起框移突变的有和突变。 4.DNA复制的模板是;引物是;基本原料是;参与反应的主要酶类有、、、和。 5.DNA复制时连续合成的链称为链;不连续合成的链称为链。 6.DNA的半保留复制是指复制生成的两个子代DNA分子中,其中一条链是,另一条链是。 7.DNA 复制时,阅读模板方向是,子代DNA合成方向是,催化DNA合成的酶是。

生物化学重点笔记(整理版)

教学目标: 1.掌握蛋白质的概念、重要性和分子组成。 2.掌握α-氨基酸的结构通式和20种氨基酸的名称、符号、结构、分类;掌握氨基酸的重要性质;熟悉肽和活性肽的概念。 3.掌握蛋白质的一、二、三、四级结构的特点及其重要化学键。 4.了解蛋白质结构与功能间的关系。 5.熟悉蛋白质的重要性质和分类 导入:100年前,恩格斯指出“蛋白体是生命的存在形式”;今天人们如何认识蛋白质的概念和重要性? 1839年荷兰化学家马尔德(G.J.Mulder)研究了乳和蛋中的清蛋白,并按瑞典化学家Berzelius的提议把提取的物质命名为蛋白质(Protein,源自希腊语,意指“第一重要的”)。德国化学家费希尔(E.Fischer)研究了蛋白质的组成和结构,在1907年奠立蛋白质化学。英国的鲍林(L.Pauling)在1951年推引出蛋白质的螺旋;桑格(F.Sanger)在1953年测出胰岛素的一级结构。佩鲁茨(M.F.Perutz)和肯德鲁(J.C.kendrew) 在1960年测定血红蛋白和肌红蛋白的晶体结构。1965年,我国生化学者首先合成了具有生物活性的蛋白质——胰岛素(insulin)。 蛋白质是由L-α-氨基酸通过肽键缩合而成的,具有较稳定的构象和一定生物功能的生物大分子(biomacromolecule)。蛋白质是生命活动所依赖的物质基础,是生物体中含量最丰富的大分子。 单细胞的大肠杆菌含有3000多种蛋白质,而人体有10万种以上结构和功能各异的蛋白质,人体干重的45%是蛋白质。生命是物质运动的高级形式,是通过蛋白质的多种功能来实现的。新陈代谢的所有的化学反应几乎都是在酶的催化下进行的,已发现的酶绝大多数是蛋白质。生命活动所需要的许多小分子物质和离子,它们的运输由蛋白质来完成。生物的运动、生物体的防御体系离不开蛋白质。蛋白质在遗传信息的控制、细胞膜的通透性,以及高等动物的记忆、识别机构等方面都起着重要的作用。随着蛋白质工程和蛋白质组学的兴起和发展,人们对蛋白质的结构与功能的认识越来越深刻。 第一节蛋白质的分子组成 一、蛋白质的元素组成 经元素分析,主要有C(50%~55%)、H(6%~7%)、O(19%~24%)、N(13%~19%)、S(0%~4%)。有些蛋白质还含微量的P、Fe、Cu、Zn、Mn、Co、Mo、I等。 各种蛋白质的含氮量很接近,平均为16%。因此,可以用定氮法来推算样品中蛋白质的大致含量。 每克样品含氮克数×6.25×100=100g样品中蛋白质含量(g%) 二、蛋白质的基本组成单位——氨基酸 蛋白质在酸、碱或蛋白酶的作用下,最终水解为游离氨基酸(amino acid),即蛋白质组成单体或构件分子。存在于自然界中的氨基酸有300余种,但合成蛋白质的氨基酸仅20种(称编码氨基酸),最先发现的是天门冬氨酸(1806年),最后鉴定的是苏氨酸(1938年)。 (一)氨基酸的结构通式 组成蛋白质的20种氨基酸有共同的结构特点: 1.氨基连接在α- C上,属于α-氨基酸(脯氨酸为α-亚氨基酸)。 2.R是側链,除甘氨酸外都含手性C,有D-型和L-型两种立体异构体。天然蛋白质中的氨基酸都是L-型。 注意:构型是指分子中各原子的特定空间排布,其变化要求共价键的断裂和重新形成。旋光性是异构体的光学活性,是使偏振光平面向左或向右旋转的性质,(-)表示左旋,(+)表示右旋。构型与旋光性没有直接对应关系。 (二)氨基酸的分类 1.按R基的化学结构分为脂肪族、芳香族、杂环、杂环亚氨基酸四类。 2.按R基的极性和在中性溶液的解离状态分为非极性氨基酸、极性不带电荷、极性带负电荷或带正电荷的四类。 带有非极性R(烃基、甲硫基、吲哚环等,共9种):甘(Gly)、丙(Ala)、缬(Val)、亮(Leu)、异亮(Ile)、苯丙(Phe)、甲硫(Met)、脯(Pro)、色(Trp) 带有不可解离的极性R(羟基、巯基、酰胺基等,共6种):丝(Ser)、苏(Thr)、天胺(Asn)、谷胺(Gln)、酪(Tyr)、半(Cys)带有可解离的极性R基(共5种):天(Asp)、谷(Glu)、赖(Lys)、精(Arg)、组(His),前两个为酸性氨基酸,后三个是碱性氨基酸。 蛋白质分子中的胱氨酸是两个半胱氨酸脱氢后以二硫键结合而成,胶原蛋白中的羟脯氨酸、羟赖氨酸,凝血酶原中的羧基谷氨酸是蛋白质加工修饰而成。 (三)氨基酸的重要理化性质 1.一般物理性质 α-氨基酸为无色晶体,熔点一般在200 oC以上。各种氨基酸在水中的溶解度差别很大(酪氨酸不溶于水)。一般溶解于稀酸或稀碱,

生物化学知识点汇总(王镜岩版)

生物化学知识点汇总(王镜岩版)

————————————————————————————————作者:————————————————————————————————日期:

生物化学讲义(2003) 孟祥红 绪论(preface) 一、生物化学(biochemistry)的含义: 生物化学可以认为是生命的化学(chemistryoflife)。 生物化学是用化学的理论和方法来研究生命现象。 1、生物体是有哪些物质组成的?它们的结构和性质如何?容易回答。 2、这些物质在生物体内发生什么变化?是怎样变化的?变化过程中能量是怎样转换的?(即这些物质在生物体 内怎样进行物质代谢和能量代谢?)大部分已解决。 3、这些物质结构、代谢和生物功能及复杂的生命现象(如生长、生殖、遗传、运动等)之间有什么关系?最复 杂。 二、生物化学的分类 根据不同的研究对象:植物生化;动物生化;人体生化;微生物生化 从不同的研究目的上分:临床生物化学;工业生物化学;病理生物化学;农业生物化学;生物物理化学等。 糖的生物化学、蛋白质化学、核酸化学、酶学、代谢调控等。 三、生物化学的发展史 1、历史背景:从十八世下半叶开始,物理学、化学、生物学取得了一系列的重要的成果(1)化学方面 法国化学家拉瓦锡推翻“燃素说”并认为动物呼吸是像蜡烛一样的燃烧,只是动物体内燃烧是缓慢不发光的 燃烧——生物有氧化理论的雏形 瑞典化学家舍勒——发现了柠檬酸、苹果酸是生物氧化的中间代谢产物,为三羧酸循环的发现提供了线索。 (2)物理学方面:原子论、x-射线的发现。 (3)生物学方面:《物种起源——进化论》发现。 2、生物化学的诞生:在19世纪末20世纪初,生物化学才成为一门独立的科学。 德国化学家李比希: 1842年撰写的《有机化学在生理与病理学上的应用》一书中,首次提出了新陈代谢名词。另一位是德国医生霍佩赛勒: 1877年他第一次提出Biochemie这个名词英文译名是Biochemistry(orBiologicalchemistry)汉语翻译成 生物化学。 3、生物化学的建立: 从生物化发展历史来看,20世纪前半叶,在蛋白质、酶、维生素、激素、物质代谢及生物氧化方面有了长足 进步。成就主要集中于英、美、德等国。 英国,代表人物是霍普金斯——创立了普通生物化学学派。

王镜岩《生物化学》课后习题详细解答

生物化学(第三版)课后习题详细解答 第三章氨基酸 提要 α-氨基酸是蛋白质的构件分子,当用酸、碱或蛋白酶水解蛋白质时可获得它们.蛋白质中的氨基酸都是L型的.但碱水解得到的氨基酸是D型和L型的消旋混合物。 参与蛋白质组成的基本氨基酸只有20种。此外还有若干种氨基酸在某些蛋白质中存在,但它们都是在蛋白质生物合成后由相应是基本氨基酸(残基)经化学修饰而成.除参与蛋白质组成的氨基酸外,还有很多种其他氨基酸存在与各种组织和细胞中,有的是β-、γ-或δ—氨基酸,有些是D型氨基酸。 氨基酸是两性电解质。当pH接近1时,氨基酸的可解离基团全部质子化,当pH在13左右时,则全部去质子化.在这中间的某一pH(因不同氨基酸而异),氨基酸以等电的兼性离子(H3N+CHRCOO-)状态存在。某一氨基酸处于净电荷为零的兼性离子状态时的介质pH称为该氨基酸的等电点,用pI表示。 所有的α—氨基酸都能与茚三酮发生颜色反应。α—NH2与2,4-二硝基氟苯(DNFB)作用产生相应的DNP-氨基酸(Sanger反应);α—NH2与苯乙硫氰酸酯(PITC)作用形成相应氨基酸的苯胺基硫甲酰衍生物( Edman反应).胱氨酸中的二硫键可用氧化剂(如过甲酸)或还原剂(如巯基乙醇)断裂.半胱氨酸的SH基在空气中氧化则成二硫键.这几个反应在氨基酸荷蛋白质化学中占有重要地位。 除甘氨酸外α—氨基酸的α-碳是一个手性碳原子,因此α-氨基酸具有光学活性.比旋是α-氨基酸的物理常数之一,它是鉴别各种氨基酸的一种根据. 参与蛋白质组成的氨基酸中色氨酸、酪氨酸和苯丙氨酸在紫外区有光吸收,这是紫外吸收法定量蛋白质的依据。核磁共振(NMR)波谱技术在氨基酸和蛋白质的化学表征方面起重要作用。 氨基酸分析分离方法主要是基于氨基酸的酸碱性质和极性大小。常用方法有离子交换柱层析、高效液相层析(HPLC)等。 习题 1。写出下列氨基酸的单字母和三字母的缩写符号:精氨酸、天冬氨酸、谷氨酰氨、谷氨酸、苯丙氨酸、色氨酸和酪氨酸。[见表3-1]

封面、目录、 概要 王镜岩《生物化学》第三版笔记(打印版)

生物化学笔记王镜岩等《生物化学》第三版 适合以王镜岩《生物化学》第三版为考研指导 教材的各高校的生物类考生备考

目录 第一章概述------------------------------01 第二章糖类------------------------------06 第三章脂类------------------------------14 第四章蛋白质(注1)-------------------------21 第五章酶类(注2)-------------------------36 第六章核酸(注3)--------------------------------------45 第七章维生素(注4)-------------------------52 第八章抗生素------------------------------55 第九章激素------------------------------58 第十章代谢总论------------------------------63 第十一章糖类代谢(注5)--------------------------------------65 第十二章生物氧化------------------------------73 第十三章脂类代谢(注6)--------------------------------------75 第十四章蛋白质代谢(注7)-----------------------------------80 第十五章核苷酸的降解和核苷酸代谢--------------86 第十六章 DNA的复制与修复(注8)---------------------------88 第十七章 RNA的合成与加工(注9)---------------------------93 第十八章蛋白质的合成与运转--------------------96 第十九章代谢调空------------------------------98 第二十章生物膜(补充部分)---------------------102

生物化学笔记(完整版)

第一章绪论 一、生物化学的的概念: 生物化学(biochemistry)是利用化学的原理与方法去探讨生命的一门科学,它是介于化学、生物学及物理学之间的一门边缘学科。 二、生物化学的发展: 1.叙述生物化学阶段:是生物化学发展的萌芽阶段,其主要的工作是分析和研究生物体的组成成分以及生物体的分泌物和排泄物。 2.动态生物化学阶段:是生物化学蓬勃发展的时期。就在这一时期,人们基本上弄清了生物体内各种主要化学物质的代谢途径。 3.分子生物学阶段:这一阶段的主要研究工作就是探讨各种生物大分子的结构与其功能之间的关系。 三、生物化学研究的主要方面: 1.生物体的物质组成:高等生物体主要由蛋白质、核酸、糖类、脂类以及水、无机盐等组成,此外还含有一些低分子物质。 2.物质代谢:物质代谢的基本过程主要包括三大步骤:消化、吸收→中间代谢→排泄。其中,中间代谢过程是在细胞内进行的,最为复杂的化学变化过程,它包括合成代谢,分解代谢,物质互变,代谢调控,能量代谢几方面的内容。 3.细胞信号转导:细胞内存在多条信号转导途径,而这些途径之间通过一定的方式方式相互交织在一起,从而构成了非常复杂的信号转导网络,调控细胞的代谢、生理活动及生长分化。 4.生物分子的结构与功能:通过对生物大分子结构的理解,揭示结构与功能之间的关系。 5.遗传与繁殖:对生物体遗传与繁殖的分子机制的研究,也是现代生物化学与分子生物学研究的一个重要内容。 第二章蛋白质的结构与功能 一、氨基酸: 1.结构特点:氨基酸(amino acid)是蛋白质分子的基本组成单位。构成天然蛋白质分子的氨基酸约有20种,除脯氨酸为α-亚氨基酸、甘氨酸不含手性碳原子外,其余氨基酸均为L-α-氨基酸。 2.分类:根据氨基酸的R基团的极性大小可将氨基酸分为四类:①非极性中性氨基酸(8种);②极性中性氨基酸(7种);③酸性氨基酸(Glu和Asp);④碱性氨基酸(Lys、Arg和His)。 二、肽键与肽链: 肽键(peptide bond)是指由一分子氨基酸的α-羧基与另一分子氨基酸的α-氨基经脱水而形成的共价键(-CO -NH-)。氨基酸分子在参与形成肽键之后,由于脱水而结构不完整,称为氨基酸残基。每条多肽链都有两端:即自由氨基端(N端)与自由羧基端(C端),肽链的方向是N端→C端。 三、肽键平面(肽单位): 肽键具有部分双键的性质,不能自由旋转;组成肽键的四个原子及其相邻的两个α碳原子处在同一个平面上,为刚性平面结构,称为肽键平面。 四、蛋白质的分子结构:

王镜岩生物化学题库精选有详细答案

第十章D N A的生物合成(复制) 一、A型选择题 1.遗传信息传递的中心法则是() A.DNA→RNA→蛋白质 B.RNA→DNA→蛋白质 C.蛋白质→DNA→RNA D.DNA→蛋白质→RNA E.RNA→蛋白质→DNA 2.关于DNA的半不连续合成,错误的说法是() A.前导链是连续合成的 B.随从链是不连续合成的 C.不连续合成的片段为冈崎片段 D.随从链的合成迟于前导链酶合成 E.前导链和随从链合成中均有一半是不连续合成的 3.冈崎片段是指() A.DNA模板上的DNA片段 B.引物酶催化合成的RNA片段 C.随从链上合成的DNA片段 D.前导链上合成的DNA片段 E.由DNA连接酶合成的DNA 4.关于DNA复制中DNA聚合酶的错误说法是() A.底物都是dNTP B.必须有DNA模板 C.合成方向是5,→3, D.需要Mg2+参与 E.需要ATP参与 5.下列关于大肠杆菌DNA聚合酶的叙述哪一项是正确() A.具有3,→5,核酸外切酶活性 B.不需要引物 C.需要4种NTP D.dUTP是它的一种作用物 E.可以将二个DNA片段连起来 6.DNA连接酶() A.使DNA形成超螺旋结构 B.使双螺旋DNA链缺口的两个末端连接 C.合成RNA引物D.将双螺旋解链 E.去除引物,填补空缺 7.下列关于DNA复制的叙述,哪一项是错误的() A.半保留复制 B.两条子链均连续合成 C.合成方向5,→3, D.以四种dNTP为原料 E.有DNA连接酶参加 8.DNA损伤的修复方式中不包括() A.切除修复 B.光修复 C.SOS修复 D.重组修复 E.互补修复 9.镰刀状红细胞性贫血其β链有关的突变是() A.断裂B.插入C.缺失 D.交联 E.点突变 10.子代DNA分子中新合成的链为5,-ACGTACG-3,,其模板链是() A.3,-ACGTACG-5, B.5,-TGCATGC-3, C.3,-TGCATGC-5, D.5,-UGCAUGC-3, E.3,-UGCAUGC-5, 二、填空题 1.复制时遗传信息从传递至;翻译时遗传信息从传递至。 2.冈崎片段的生成是因为DNA复制过程中,和的不一致。 3.能引起框移突变的有和突变。 4.DNA复制的模板是;引物是;基本原料是;参与反应的主要酶类有、、、和。 5.DNA复制时连续合成的链称为链;不连续合成的链称为链。 6.DNA的半保留复制是指复制生成的两个子代DNA分子中,其中一条链是,另一条链 是。 7.DNA 复制时,阅读模板方向是,子代DNA合成方向是,催化DNA合成的酶是。 8.以5,-ATCGA-3,模板,其复制的产物是5, 3,。

复旦大学生物化学笔记完整版

复旦大学生物化学笔记完整版 第一篇生物大分子的结构与功能 第一章氨基酸和蛋白质 一、组成蛋白质的20种氨基酸的分类 1、非极性氨基酸 包括:甘氨酸、丙氨酸、缬氨酸、亮氨酸、异亮氨酸、苯丙氨酸、脯氨酸 2、极性氨基酸 极性中性氨基酸:色氨酸、酪氨酸、丝氨酸、半胱氨酸、蛋氨酸、天冬酰胺、谷氨酰胺、苏氨酸酸性氨基酸:天冬氨酸、谷氨酸 碱性氨基酸:赖氨酸、精氨酸、组氨酸 其中:属于芳香族氨基酸的是:色氨酸、酪氨酸、苯丙氨酸 属于亚氨基酸的是:脯氨酸 含硫氨基酸包括:半胱氨酸、蛋氨酸 注意:在识记时可以只记第一个字,如碱性氨基酸包括:赖精组 二、氨基酸的理化性质 1、两性解离及等电点 氨基酸分子中有游离的氨基和游离的羧基,能与酸或碱类物质结合成盐,故它是一种两性电解质。在某一PH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性,此时溶液的PH称为该氨基酸的等电点。 2、氨基酸的紫外吸收性质 芳香族氨基酸在280nm波长附近有最大的紫外吸收峰,由于大多数蛋白质含有这些氨基酸残基,氨基酸残基数与蛋白质含量成正比,故通过对280nm波长的紫外吸光度的测量可对蛋白质溶液进行定量分析。 3、茚三酮反应 氨基酸的氨基与茚三酮水合物反应可生成蓝紫色化合物,此化合物最大吸收峰在570nm波长处。由于此吸收峰值的大小与氨基酸释放出的氨量成正比,因此可作为氨基酸定量分析方法。 三、肽 两分子氨基酸可借一分子所含的氨基与另一分子所带的羧基脱去1分子水缩合成最简单的二肽。二肽中游离的氨基和羧基继续借脱水作用缩合连成多肽。10个以内氨基酸连接而成多肽称为寡肽;39个氨基酸残基组成的促肾上腺皮质激素称为多肽;51个氨基酸残基组成的胰岛素归为蛋白质。 多肽连中的自由氨基末端称为N端,自由羧基末端称为C端,命名从N端指向C端。 人体内存在许多具有生物活性的肽,重要的有: 谷胱甘肽(GSH):是由谷、半胱和甘氨酸组成的三肽。半胱氨酸的巯基是该化合物的主要功能基团。GSH的巯基具有还原性,可作为体内重要的还原剂保护体内蛋白质或酶分子中巯基免被氧化,使蛋白质或酶处于活性状态。 四、蛋白质的分子结构 1、蛋白质的一级结构:即蛋白质分子中氨基酸的排列顺序。 主要化学键:肽键,有些蛋白质还包含二硫键。 2、蛋白质的高级结构:包括二级、三级、四级结构。

王镜岩生物化学上册总结

糖类可以定义为:多羟基醛;多羟基酮;多羟基醛或多羟基酮的衍生物。 糖的命名与分类:1.单糖:不能被水解称更小分子的糖.2。寡糖:2-6个单糖分子脱水缩合而成3.多糖:同多糖:杂多糖:4.结合糖(复合糖,糖复合物):糖脂、糖蛋白(蛋白聚糖)、糖核苷酸等5。糖的衍生物:糖醇、糖酸、糖胺、糖苷 蛋白聚糖属于() A.多糖 B.双糖 C.复合糖 D.寡糖 E.单糖 第三章 蛋白质(protein)是由许多氨基酸(amino acids)通过肽键(peptide bond)相连形成的高分子含氮化合物。 存在自然界中的氨基酸有300余种,但组成人体蛋白质的氨基酸仅有20种,且均属 L-氨基酸(甘氨酸除外)。 等电点(isoelectric point, pI) 在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性。此时溶液的pH值称为该氨基酸的等电点。 氨基酸既含有能释放H+ 的基团(如羧基).也含有接受H+ 的基团(如氨基),因此是两性化合物,亦称两性电解质或兼性离子 pH 〉 pI时,氨基酸带负电荷,—COOH解离成- COO-,向正极移动。★ pH = pI时,氨基酸净电荷为零★ pH 〈 pI时,氨基酸带正电荷,-NH2解离成— NH3+,向负极移动. 若pI?pH 〉 0,两性离子带净正电荷,若pI?pH 〈 0,两性离子带净负电荷,差值越大,所带的净电荷越多。 1.半胱氨酸 pK1(α-COO—)=1.96, pK2(R-SH)=8。18,pK3(α—NH3+)=10.28,该氨基酸pI值为:A.5。07 B.6.12 C。6。80 D.7。68 E。9.23 2。赖氨酸 pK1(α-COO—)=2.18, pK1(α-NH3+)=8.95,pK3(R-NH3+)=10.53,该氨基酸pI值为:A. (pK1+ pK2)/2 B. (pK2+ pK3)/2 C. (pK1+ pK3)/2 D. (pK1+ pK2+ pK3)/3 E. (pK1+ pK2+ pK3)/2 3 .天冬氨酸 pK1(α-COO-)=1。96, pK2(α-COO—)=3.65,pK3(α—NH3+)=9。60,该氨基酸pI值为:A。2。92 B.3.65 C。5.7 4 D。6。62 E。7。51苯丙氨酸、色氨酸、酪氨酸的最大吸收峰在 280 nm 附近。 第四章 100克样品中蛋白质的含量 ( g % )= 每克样品含氮克数× 6。25×100 蛋白质具有重要的生物学功能1)作为生物催化剂(酶)2)代谢调节作用3)免疫保护作用4)物质的转运和存储5)运动与支持作用6)参与细胞间信息传递 蛋白质的一级结构指蛋白质多肽链中氨基酸的排列顺序,即氨基酸序列。 主要的化学键肽键,有些蛋白质还包括二硫键 肽键(peptide bond)是由一个氨基酸的a—羧基与另一个氨基酸的a-氨基脱水缩合而形成的化学键。肽链中的氨基酸分子因为脱水缩合而不完整,被称为氨基酸残基(residue)。参与肽键的6个原子Ca1、C、O、N、H、Ca2位于同一平面,Ca1和Ca2在平面上所处的位置为反式(trans)构型,此同一平面上的6个原子构成了所谓的肽单元 (peptide unit) .肽键的结构特点:酰胺氮上的孤对电子与相邻羰基之间形成共振杂化体。肽键具有部分双键性质,不能自由旋转。肽键具有平面性,组成肽键的4个原子和2个Cα几乎处在同一平面内(酰氨平面).肽链中的肽键一般是反式构型 同源蛋白质:在不同的生物体内行使相同或相似功能的蛋白质。 如:血红蛋白在不同的脊椎动物中都具有输送氧气的功能,细胞色素在所有的生物中都是电子传递链的组分。

脂类--王镜岩生物化学第三版笔记(完美打印版)

第三章脂类 提要 一、概念 酸、皂化值、碘值、酸价、酸败、油脂的硬化、甘油磷脂、鞘氨醇磷脂、神经节苷脂、脑苷脂、乳糜微粒 二、脂类的性质与分类单纯脂、复合脂、非皂化脂、衍生脂、结合脂 单纯脂 脂肪酸的俗名、系统名和缩写、双键的定位 三、油脂的结构和化学性质 (1)水解和皂化脂肪酸平均分子量=3×56×1000÷皂化值 (2)加成反应碘值大,表示油脂中不饱和脂肪酸含量高,即不饱和程度高。 (3)酸败 蜡是由高级脂肪酸和长链脂肪族一元醇或固醇构成的酯。 四、磷脂(复合脂) (一)甘油磷脂类 最常见的是卵磷脂和脑磷脂。卵磷脂是磷脂酰胆碱。脑磷脂是磷脂酰乙醇胺。 卵磷脂和脑磷脂都不溶于水而溶于有机溶剂。磷脂是兼性离子,有多个可解离基团。在弱碱下可水解,生成脂肪酸盐,其余部分不水解。在强碱下则水解成脂肪酸、磷酸甘油和有机碱。磷脂中的不饱和脂肪酸在空气中易氧化。 (二)鞘氨醇磷脂 神经鞘磷脂由神经鞘氨醇(简称神经醇)、脂肪酸、磷酸与含氮碱基组成。脂酰基与神经醇的氨基以酰胺键相连,所形成的脂酰鞘氨醇又称神经酰胺;神经醇的伯醇基与磷脂酰胆碱(或磷脂酰乙醇胺)以磷酸酯键相连。 磷脂能帮助不溶于水的脂类均匀扩散于体内的水溶液体系中。 非皂化脂 (一)萜类是异戊二烯的衍生物 多数线状萜类的双键是反式。维生素A、E、K等都属于萜类,视黄醛是二萜。天然橡胶是多萜。(二)类固醇都含有环戊烷多氢菲结构 固醇类是环状高分子一元醇,主要有以下三种:动物固醇胆固醇是高等动物生物膜的重要成分,对调节生物膜的流动性有一定意义。胆固醇还是一些活性物质的前体,类固醇激素、维生素D3、胆汁酸等都是胆固醇的衍生物。 植物固醇是植物细胞的重要成分,不能被动物吸收利用。 1,酵母固醇存在于酵母菌、真菌中,以麦角固醇最多,经日光照射可转化为维生素D2。 2.固醇衍生物类 胆汁酸是乳化剂,能促进油脂消化。 强心苷和蟾毒它们能使心率降低,强度增加。 性激素和维生素D 3. 前列腺素 结合脂 1.糖脂。它分为中性和酸性两类,分别以脑苷脂和神经节苷脂为代表。 脑苷脂由一个单糖与神经酰胺构成。 神经节苷脂是含唾液酸的糖鞘脂,有多个糖基,又称唾液酸糖鞘脂,结构复杂。 2.脂蛋白 根据蛋白质组成可分为三类:核蛋白类、磷蛋白类、单纯蛋白类,其中单纯蛋白类主要有水溶性的血浆脂蛋白和脂溶性的脑蛋白脂。 血浆脂蛋白根据其密度由小到大分为五种: 乳糜微粒主要生理功能是转运外源油脂。 极低密度脂蛋白(VLDL) 转运内源油脂。 低密度脂蛋白(LDL) 转运胆固醇和磷脂。 高密度脂蛋白(HDL) 转运磷脂和胆固醇。 极高密度脂蛋白(VHDL) 转运游离脂肪酸。 脑蛋白脂不溶于水,分为A、B、C三种。top 第一节概述 一、脂类是脂溶性生物分子 脂类(lipids)泛指不溶于水,易溶于有机溶剂的各类生物分子。脂类都含有碳、氢、氧元素,有的还含有氮和磷。共同特征是以长链或稠环脂肪烃分子为母体。脂类分子中没有极性基团的称为非极性脂;有极性基团的称为极性脂。极性脂的主体是脂溶性的,其中的部分结构是水溶性的。 二、分类 1.单纯脂单纯脂是脂肪酸与醇结合成的酯,没有极

考研生物化学复习笔记

第一篇生物大分子的结构与功能 第一章氨基酸和蛋白质 一、组成蛋白质的20种氨基酸的分类 1、非极性氨基酸 包括:甘氨酸、丙氨酸、缬氨酸、亮氨酸、异亮氨酸、苯丙氨酸、脯氨酸 2、极性氨基酸 极性中性氨基酸:色氨酸、酪氨酸、丝氨酸、半胱氨酸、蛋氨酸、天冬酰胺、谷氨酰胺、苏氨酸 酸性氨基酸:天冬氨酸、谷氨酸 碱性氨基酸:赖氨酸、精氨酸、组氨酸 其中:属于芳香族氨基酸的是:色氨酸、酪氨酸、苯丙氨酸 属于亚氨基酸的是:脯氨酸含硫氨基酸包括:半胱氨酸、蛋氨酸 注意:在识记时可以只记第一个字,如碱性氨基酸包括:赖精组 二、氨基酸的理化性质 1、两性解离及等电点 氨基酸分子中有游离的氨基和游离的羧基,能与酸或碱类物质结合成盐,故它是一种两性电解质。在某一PH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性,此时溶液的PH称为该氨基酸的等电点。 2、氨基酸的紫外吸收性质 芳香族氨基酸在280nm波长附近有最大的紫外吸收峰,由于大多数蛋白质含有这些氨基酸残基,氨基酸残基数与蛋白质含量成正比,故通过对280nm波 长的紫外吸光度的测量可对蛋白质溶液进行定量分析。 3、茚三酮反应 氨基酸的氨基与茚三酮水合物反应可生成蓝紫色化合物,此化合物最大吸收峰在570nm波长处。由于此吸收峰值的大小与氨基酸释放出的氨量成正比,因此可作为氨基酸定量分析方法。 三、肽 两分子氨基酸可借一分子所含的氨基与另一分子所带的羧基脱去1分子水缩合成最简单的二肽。二肽中游离的氨基和羧基继续借脱水作用缩合连成多肽。10个以内氨基酸连接而成多肽称为寡肽;39个氨基酸残基组成的促肾上腺皮质激素 称为多肽;51个氨基酸残基组成的胰岛素归为蛋白质。 多肽连中的自由氨基末端称为N端,自由羧基末端称为C端,命名从N端指向C端。 人体内存在许多具有生物活性的肽,重要的有: 谷胱甘肽(GSH ):是由谷、半胱和甘氨酸组成的三肽。半胱氨酸的巯基是该化合物的主要功能基团。GSH的巯基具有还原性,可作为体内重要的还原剂保护体内蛋白质或酶分子中巯基免被氧化,使蛋白质或酶处于活性状态。 四、蛋白质的分子结构 1、蛋白质的一级结构:即蛋白质分子中氨基酸的排列顺序。 主要化学键:肽键,有些蛋白质还包含二硫键。 2、蛋白质的高级结构:包括二级、三级、四级结构。 1)蛋白质的二级结构:指蛋白质分子中某一段肽链的局部空间结构,也就是该段肽链骨架

王镜岩《生物化学》笔记(整理版)第一章

导入:100年前,恩格斯指出“蛋白体是生命的存在形式”;今天人们如何认识蛋白 质的概念和重要性? 1839年荷兰化学家马尔德(G.J.Mulder)研究了乳和蛋中的清蛋白,并按瑞典化学家Berzelius的提议把提取的物质命名为蛋白质(Protein,源自希腊语,意指“第一重要的”)。德国化学家费希尔(E.Fischer)研究了蛋白质的组成和结构,在1907年奠立蛋白质化学。英国的鲍林(L.Pauling)在1951年推引出蛋白质的螺旋;桑格(F.Sanger)在1953 年测出胰岛素的一级结构。佩鲁茨(M.F.Perutz)和肯德鲁(J.C.kendrew) 在1960年测定血红蛋白和肌红蛋白的晶体结构。1965年,我国生化学者首先合成了具有生物活性的蛋白质——胰岛素(insulin)。 蛋白质是由L-α-氨基酸通过肽键缩合而成的,具有较稳定的构象和一定生物功能的 生物大分子(biomacromolecule)。蛋白质是生命活动所依赖的物质基础,是生物体中含 量最丰富的大分子。 单细胞的大肠杆菌含有3000多种蛋白质,而人体有10万种以上结构和功能各异的蛋 白质,人体干重的45%是蛋白质。生命是物质运动的高级形式,是通过蛋白质的多种功能 来实现的。新陈代谢的所有的化学反应几乎都是在酶的催化下进行的,已发现的酶绝大多 数是蛋白质。生命活动所需要的许多小分子物质和离子,它们的运输由蛋白质来完成。生 物的运动、生物体的防御体系离不开蛋白质。蛋白质在遗传信息的控制、细胞膜的通透性,以及高等动物的记忆、识别机构等方面都起着重要的作用。随着蛋白质工程和蛋白质组学 的兴起和发展,人们对蛋白质的结构与功能的认识越来越深刻。 第一节蛋白质的分子组成 一、蛋白质的元素组成 经元素分析,主要有 C(50%~55%)、H(6%~7%)、O(19%~24%)、N(13%~19%)、S(0%~4%)。有些蛋白质还含微量的P、Fe、Cu、Zn、Mn、Co、Mo、I等。 各种蛋白质的含氮量很接近,平均为16%。因此,可以用定氮法来推算样品中蛋白质 的大致含量。

相关主题
文本预览
相关文档 最新文档