当前位置:文档之家› 飞秒光学频率梳测距技术的研究进展

飞秒光学频率梳测距技术的研究进展

飞秒光学频率梳测距技术的研究进展
飞秒光学频率梳测距技术的研究进展

关于光学频率梳的概述

关于光学频率梳的概述 06061102 扈琦 摘要:光梳技术,秒的新标准。 引言:从1958年激光被首次成功制造至今,这个光学新的领域获得了异乎寻常的飞快发展,它使我们能够有效地利用前所未有的先进方法和手段,去获得空前的效益和成果,从而促进了生产力的发展。现在,一种新型的激光——“光学频率梳”诞生了,它就像一把“光尺”,使人类能够对光学频率实现及其精密的测量。这里我将简要说明光学频率梳的结构以及其广阔的前景。 一、光梳结构 光学频率梳由“锁模激光器”产生,是一种超短脉冲激光。超短光脉冲的载波由单一频率的光构成,这种光会在光谱上该频率显示为一条竖线,表示只存在该频率的光波。在这里,锁模激光器发射的光脉冲的两个特征成为了研制光学频率梳的关键。第一个特征是,包络相对于载波发生微小位移,导致脉冲发生细微变化。脉冲包络的峰值,可以和对应的载波波峰同时出现,也可以偏移到载波的波峰同时出现,该偏移量被称为脉冲位相。第二个特征,锁模激光器以重复频率发射脉冲序列。这种脉冲序列光的频谱不是以载波频率为中心向两边连续延展,而是形成许多离散的频率。这个频谱分布很像梳齿,彼此间隔与激光器的重复频率精确相等。但在通常情况下,前后两个脉冲的位相会发生一些不可预知但却固定不变的偏移,这时,梳齿的频率会偏离重复频率的整数倍,出现零点漂移,使得梳齿频率不可确定。随着钛宝石激光器的出现,德国马普量子光学研究所的Theodor. W. Hansch 利用新型激光器证明了输出光梳输出光谱两端的光梳谱线具有确切的对应关系,使得光梳真正的可以被作为“光尺”使用。 二、光梳技术应用 光学原子钟 光学原子钟是迄今为止,人类制造的最精确的时钟,它的精度已经超过了1967年来一直作为标准的微波原子钟。光学原子钟将在空间导航、卫星通信、基础物理问题的超高精度检。 化学探测器研究人员已经演示了利用光梳的超灵敏化学探测器,目前正在研制商业化仪器的样机。这种探测器,能够让安检人员更快捷的识别爆炸物及危险病原体等有害物质。医生可以通过检测病人呼出的气体的化学成分来诊断疾病。 超级激光器利用光学频率梳,许多激光器输出的激光脉冲可以合称为单束光脉冲序列。合成激光的相干性极好,就像是同一个激光器发出来的一样。这种技术将来有望对从无线电波到X射线的电磁波谱实现相干控制。 长途通信使单根光纤传输的信号量增加好几个数量级,所需的只是一把光梳,各通道之间的干扰也将减少,尤其是安全通信,将从光梳的运用上获得许多好处。 激光雷达激光雷达用激光来测定远距离目标的位置、速度和性质。用光学频率梳产生的特定波形的激光,有望将雷达的灵敏度和探测范围提高几个数量级。 三、秒的新定义 稳定的光学频率梳发明以后,精确测量连续波激光器的频率就变得轻而易举了。像倍频链一样,基于光梳的频率测量仍然需要以铯钟作为标准。首先,必须测量光梳的零点偏移频率和光梳梳齿的频率间隔。有了这两个数据,我们就能计算出所有梳齿对应的频率。接下来,就要把待测激光与光梳的光混合在一起,测量激光与最接近它的梳齿产生的拍频频率,也就是两者频率差。这三个频率都属于微波频段,可以用铯钟非常精确的进行测定。至此,光梳的这些优点使得时间标准从微波的向光学的转变。

高平均功率飞秒光纤光学频率梳产生及其噪声特性的研究

高平均功率飞秒光纤光学频率梳产生及其噪声特性的研究 基于飞秒锁模激光脉冲和高功率光纤放大技术发展的高功率光纤光学频率梳有望替代钛宝石光学频率梳,在精密光谱测量、时间频率计量和阿秒超快光学等领域具有重要的应用。目前,高功率光纤光学频率梳的发展急需突破以下技术瓶颈:研究稳定的新型光纤锁模技术,降低激光脉冲的噪声,提升激光光源的稳定性;探索光纤超短脉冲放大的新技术,突破增益窄化、非线性效应和模式不稳定等限制,降低脉冲放大过程中非线性累积的相位噪声和强度噪声;发展高功率飞秒激光脉冲时频域控制技术,实现更高平均功率的光纤光学频率梳。本论文以高平均功率飞秒光纤光学频率梳产生技术和噪声抑制为主题展开研究。研究了光纤锁模技术和腔内噪声抑制技术,获得了超低噪声高重复频率飞秒激光脉冲;选用高增益大模场掺镱光纤,分别实现了超短脉冲激光的啁啾脉冲光纤放大和自相似脉冲光纤放大,抑制了飞秒激光脉冲高功率放大过程中引入的附加噪声;研制了高功率飞秒激光脉冲的时-频域控制系统,实现了两台低噪声高功率的飞秒光纤光学频率梳。 本论文具体研究内容和创新点概括如下:1.研制了基于非线性偏振旋转锁模的超低噪声的集成化光纤激光器。通过合理设计腔型结构,结合腔内色散管理和泵浦优化,获得了脉冲宽度50fs,光谱宽度50nm超短激光脉冲,激光脉冲重复频率提升到500MHz。采用谐波锁模技术,获得重复频率为1GHz的稳定的谐波锁模脉冲输出;综合抑制泵浦噪声、色散噪声和环境噪声,实验中大幅度地降低了激光种子源的相位和强度噪声,获得了1Hz-10MHz内累计相位噪声和累计强度噪声仅为1.6mrad和0.085%的超低噪声飞秒激光脉冲,是目前文献报道的最低自由运转噪声的1GHz光纤飞秒锁模激光器。2.通过理论计算和实验研究,深入研究了高功率啁啾脉冲光纤放大器中脉冲时频域演化过程。 计算模拟了脉冲展宽、增益窄化、自相位调制以及受激拉曼散射等过程对啁啾脉冲光纤放大器输出脉冲的影响,优化了放大噪声抑制技术,设计了高功率棱栅高阶色散压缩器,发展了高平均功率低噪声啁啾脉冲光纤放大技术,获得了250MHz,132W,180fs的高平均功率的傅里叶变换极限脉冲。为了进一步压缩高功率光学频率梳的脉冲宽度,发展了高平均功率低噪声自相似脉冲光纤放大技术,输出光谱在非线性放大过程中得到展宽,获得了覆盖1000-1100nm的脉冲输出光

光学干涉测量技术

光学干涉测量技术 ——干涉原理及双频激光干涉 1、干涉测量技术 干涉测量技术和干涉仪在光学测量中占有重要地位。干涉测量技术是以光波干涉原理为基础进行测量的一门技术。相干光波在干涉场中产生亮、暗交替的干涉条纹,通过分析处理干涉条纹获取被测量的有关信息。 当两束光亮度满足频率相同,振动方向相同以及相位差恒定的条件,两束光就会产生干涉现象,在干涉场中任一点的合成光强为: 122I I I πλ=++ 式中△是两束光到达某点的光程差。明暗干涉条纹出现的条件如下。 相长干涉(明): min 12I I I I ==+ ( m λ=) 相消干涉(暗): min 12I I I I ==+-, (12m λ? ?=+ ??? ) 当把被测量引入干涉仪的一支光路中,干涉仪的光程差则发生变化。通过测量干涉条纹的变化量,即可以获得与介质折射率和几何路程有关的各种物理量和几何量。 按光波分光的方法,干涉仪有分振幅式和分波阵面式两类。按相干光束传播路径,干涉仪可分为共程干涉和非共程干涉两种。按用途又可将干涉仪分为两类,一类是通过测量被测面与参考标准波面产生的干涉条纹分布及其变形量,进而求得试样表面微观几何形状、场密度分布和光学系统波像差等,即所谓静态干涉;另一类是通过测量干涉场上指定点干涉条纹的移动或光程差的变化量,进而求得试样的尺寸大小、位移量等,即所谓动态干涉。 下图是通过分波面法和分振幅法获得相干光的途径示意图。光学测量常用的是分振幅式等厚测量技术。 图一 普通光源获得相干光的途径 与一般光学成像测量技术相比,干涉测量具有大量程、高灵敏度、高精度等特点。干涉测量应用范围十分广泛,可用于位移、长度、角度、面形、介质折射率的变化及振动等方面的测量。在测量技术中,常用的干涉仪有迈克尔逊干涉仪(图二)、马赫-泽德干涉仪、菲索

光学测量技术详解

光学测量技术详解(图文) 光学测量是生产制造过程中质量控制环节上重要的一步。它包括通过操作者的观察进行的快速、主观性的检测,也包括通过测量仪器进行的自动定量检测。光学测量既可以在线下进行,即将工件从生产线上取下送到检测台进行测量;还可以在线进行,即工件无须离开产线;此外,工件还可以在生产线旁接受检测,完成后可以迅速返回生产线。 人的眼睛其实就是一台光学检测仪器;它可以处理通过晶状体映射到视网膜上的图像。当物体靠近眼球时,物体的尺寸感觉上会增加,这是因为图像在视网膜上覆盖的“光感器”数量增加了。在某一个位置,图像达到最大,此时再将物体移近时,图像就会失焦而变得模糊。这个距离通常为10英寸(250毫米)。在这个位置上,图像分辨率大约为0.004英寸(100微米)。举例来说,当你看两根头发时,只有靠得很近时才能发现它们之间是有空隙的。如果想进一步分辨更加清楚的细节的话,则需要进行额外的放大处理。 本部分设定了隐藏,您已回复过了,以下是隐藏的内容 人的眼睛其实就是一台光学检测仪器;它可以处理通过晶状体映射到视网膜上的图像。本图显示了人眼成 像的原理图。 人眼之外的测量系统 光学测量是对肉眼直接观察获得的简单视觉检测的强化处理,因为通过光学透镜来改进或放大物体的图像,可以对物体的某些特征或属性做出准确的评估。大多数的光学测量都是定性的,也就是说操作者对放大的图像做出主观性的判断。光学测量也可以是定量的,这时图像通过成像仪器生成,所获取的图像数据再用于分析。在这种情况下,光学检测其实是一种测量技术,因为它提供了量化的图像测量方式。 无任何仪器辅助的肉眼测量通常称为视觉检测。当采用光学镜头或镜头系统时,视觉检测就变成了光学测量。光学测量系统和技术有许多不同的种类,但是基本原理和结构大致相同。

光纤激光频率梳关键技术的研究

光纤激光频率梳关键技术的研究 作为20世纪最伟大的发明之一,由频率控制的锁模激光所产生的光学频率梳在光频计量、光原子钟与时频传递、精密相干测量等领域具有重要应用。光纤激光频率梳结构简单、成本低且易于维护,是近年来的研究重点。本论文着重于光纤激光频率梳的关键理论和技术。从理论和实验方面对光纤激光频率梳开展了研究,主要内容包括:第一,基于脉冲在光纤色散非线性传输所满足的非线性薛定谔方程(NLSE)和广义非线性薛定谔方程(GNLSE),研究了锁模光纤激光脉冲特性、啁啾脉冲光纤放大技术和高非线性光纤超连续谱的产生技术;基于Master方程微扰理论,研究了重复频率和偏移频率的传递函数;利用固定点模型,分析了光纤激光频率梳的噪声特性和反馈机制,并提出了噪声抑制方法与实现途径;第二,提出了一种基于飞秒光纤激光器的光频率梳设计方案。 设计与研制出脉冲宽度55 fs、重复频率210 MHz的色散管理孤子锁模掺铒光纤激光器,优化设计了啁啾脉冲光纤放大链路,由负色散高非线性光纤产生了频率范围1080~2320 nm的倍频程超连续谱,经f-2f自差拍检测出信噪比达32 dB的载波包络偏移频率;论证了基于P-I电路的PLL的长期稳定的优越性,并基于此设计部分电路构建锁定电子链路;通过将重复频率的4次谐波和载波包络偏移频率锁定到商用铷钟,实现了对光学频率梳的高精度锁定。测量结果表明,1s 计数门控时间下的重复频率和偏移频率标准偏差分别为0.65 mHz和1.76 mHz,100 s采样时间时下的Allan偏差分别为1.74×10-13和1.80×10-11。第三,研究了基于双倍周期锁模光纤激光器的光梳锁定机制和锁定结果。通过优化激光腔内的OFS-980长度,设计了一种仅改变泵浦偏置电流就可实现基本被动锁模和双倍周期锁模之间切换,且两种状态下输出脉冲特性相仿的光纤激光器。 研究表明,双倍周期锁模产生的新梳齿模与原梳齿模强烈相关并具有一致的载波包络偏移频率,采用反馈控制腔长和激光泵浦功率的锁定方式同样适用。此外,仅改变泵浦偏置电流,经同一f-2f自差拍系统和与双倍周期锁模完全相同的锁定电路,还实现了基本锁模运转下的光梳锁定,从而在同一光纤系统实现了两种不同梳齿间隔的相位锁定光梳及其相互之间的切换。以上研究结果对研制实用化的低噪声光纤激光频率梳以满足光频计量、光梳光谱和微波产生等领域的应用需求具有重要的参考价值。

【CN209356822U】一种光学频率梳产生系统【专利】

(19)中华人民共和国国家知识产权局 (12)实用新型专利 (10)授权公告号 (45)授权公告日 (21)申请号 201920302555.X (22)申请日 2019.03.11 (73)专利权人 南京大学 地址 210093 江苏省南京市鼓楼区汉口路 22号 (72)发明人 姜校顺 王瀚 麻霁阳 肖龙甫  顾佳新 肖敏  (74)专利代理机构 北京品源专利代理有限公司 11332 代理人 孟金喆 (51)Int.Cl. G02F 1/35(2006.01) H01S 5/06(2006.01) H01S 5/00(2006.01) (ESM)同样的发明创造已同日申请发明专利 (54)实用新型名称 一种光学频率梳产生系统 (57)摘要 本实用新型公开了一种光学频率梳产生系 统。该系统包括波长可调光源、偏振控制器、光纤 以及光学微腔;波长可调光源提供泵浦光,泵浦 光耦合入光纤;光纤与偏振控制器的输入端连 接;光纤从偏振控制器的输出端延伸至光学微 腔,光纤包括锥状结构,光纤通过锥状结构与光 学微腔耦合;其中,光学微腔包括衬底和位于衬 底一侧的支撑柱和大倾角微盘腔;泵浦光通过锥 状结构耦合入光学微腔;偏振控制器调节光纤中 泵浦光的偏振方向,提高与光学微腔的耦合效 率;泵浦光在光学微腔中由于三阶非线性效应, 产生可见光波段的光学频率梳。本实用新型的技 术方案,产生可见光波段的光学频率梳,而且利 用片上集成的光学微腔器件,有利于小型化和集 成化器件的发展。权利要求书2页 说明书7页 附图5页CN 209356822 U 2019.09.06 C N 209356822 U

光学频率梳的绝对距离测量研究

光学频率梳的绝对距离测量研究 光学频率梳的出现和飞速发展给超精密计量领域带来了革命性的进步。大尺寸高精度的绝对距离测量在基础科学研究和工程实际应用中都发挥着重要的作用。1983年,国际计量大会定义长度单位米为光在真空中行进1/299792458秒的距离,实现了长度(米)和时间(秒)的高度统一。光学频率梳作为一种新型的光源,可直接连接长度和时间,于是,光学频率梳的绝对距离测量很快成为了国际国内的研究热门。 本论文研究了光学频率梳的绝对距离测量,在几十米大范围内实现了高精度的绝对距离测量,满足大尺寸高精度的绝对距离测量需求。研究了强度探测的绝对距离测量方法,分析了脉冲互相关原理,建立了基于高斯脉冲、 Sech2脉冲和洛仑兹脉冲的脉冲互相关模型,通过两个脉冲的干涉强度实现绝对距离测量。在25m范围内,与参考干涉仪比对的结果表明,测量不确定度优于1.5μm。分析了色散干涉的原理,基于色散干涉条纹的调制频率实现绝对距离测量,但是采用低分辨率的光谱分析仪无法实现任意测距。 为了克服这一局限性,采用一段长的延迟光纤作为参考臂,通过改变光学频率梳的重复频率,可以实现任意测距。实验结果表明,在75m范围内,测量不确定度优于25μm。进行了测量不确定度的最优化分析,以最优化系统的参数配置。通过调节重复频率进行光学采样,实现绝对距离测量。 采用一段长的延迟光纤作为参考臂,通过扫描重复频率,获得脉冲干涉条纹。采用希尔伯特变换测量干涉条纹的峰值位置,实现绝对距离测量。实验结果表明,在60m范围内,测量不确定度优于3μm。在自由空间中,通过扫描重复频率,获得了脉冲干涉条纹。 采用傅立叶变换测量干涉条纹携带的距离信息。实验结果表明,在75m范围内,测量不确定度优于4μm。进行了多目标测量场合下的实验,测量了玻璃厚度和折射率。实验结果表明,通过扫描重复频率光学采样的方法可以高精度的测量玻璃厚度和折射率。 提出了光学频率梳与单频激光多外差干涉的绝对距离测量方法。分析了光频梳与单频激光多外差干涉的原理,通过拍频信号的相位实现绝对距离测量。为了改善拍频信号的稳定性,采用Pound-Drever-Hall锁定原理,将单频激光锁定至

光学测量原理与技术

第一章、对准、调焦 ?对准、调焦的定义、目的; 1.对准又称横向对准,是指一个对准目标与比较标志在垂直瞄准轴方向像的重合或置 中。目的:瞄准目标(打靶);精确定位、测量某些物理量(长度、角度度量)。 2、调焦又称纵向对准,是指一个目标像与比较标志在瞄准轴方向的重合。 目的: --使目标与基准标志位于垂直于瞄准轴方向的同一个面上,也就是使二者位于同一空间深度; --使物体(目标)成像清晰; --确定物面或其共轭像面的位置——定焦。 人眼调焦的方法及其误差构成; 清晰度法:以目标和标志同样清晰为准则; 消视差法:眼睛在垂直视轴方向上左右摆动,以看不出目标和标志有相对横移为准则。可将纵向调焦转变为横向对准。 清晰度法误差源:几何焦深、物理焦深; 消视差法误差源:人眼对准误差; 几何焦深:人眼观察目标时,目标像不一定能准确落在视网膜上。但只要目标上一点在视网膜上生成的弥散斑直径小于眼睛的分辨极限,人眼仍会把该弥散斑认为是一个点,即认为成像清晰。由此所带来的调焦误差,称为几何焦深。 物理焦深:光波因眼瞳发生衍射,即使假定为理想成像,视网膜上的像点也不再是一个几何点,而是一个艾里斑。若物点沿轴向移动Δl后,眼瞳面上产生的波像差小于λ/K(常取K=6),此时人眼仍分辨不出视网膜上的衍射图像有什么变化。 (清晰度)人眼调焦扩展不确定度: (消视差法)人眼调焦扩展不确定度: 人眼摆动距离为b ?对准误差、调焦误差的表示方法; 对准:人眼、望远系统用张角表示;显微系统用物方垂轴偏离量表示; 调焦:人眼、望远系统用视度表示;显微系统用目标与标志轴向间距表示 ?常用的对准方式; 22 22 122 8 e e e D KD αλ φφφ ???? ''' =+=+ ? ? ???? 121 11e e l l D α φ'=-= 22 21 118 e l l KD λ φ'=-= e b δ φ'=

光学波长标准-飞秒光梳频率列-铯原子微波频率基准-光钟

从光学波长到微波频率基准: 光学波长标准 - 飞秒光梳频率列 - 铯原子微波频率基准 - 光钟 中国计量科学研究院(NIM) 量子处 李天初, 方占军 电话: (10) 6429 5811, e-mail: litch@https://www.doczj.com/doc/575448696.html, 摘要: 迄今, 光学波长依赖于传统的光学谐波波长链溯源到铯钟微波频率基准。本文简略介绍中国计量院量子处保存和在研的激光波长标准, 报导我们研制新一代NIM4#"激光冷却-原子喷泉"微波频率基准铯钟和"飞秒脉冲激光-光学梳状频率"的原理和进展。冷原子喷泉钟将使我国频率基准不确定度进入10-15。飞秒梳状频率使光学波长和微波频率直接准确地联系起来。上述两项课题将改变我国光学波长标准和溯源系统的基本格局, 使得光学波长计量发展到一个新水平。同时, "飞秒梳状频率"与"原子/离子存储光学频率标准"的结合, 将推动"光钟"的发展. 关键词:冷原子喷泉钟; 飞秒光梳; 微波频率基准; 光学波长标准. 1, 稳频激光光学波长标准 -实际复现米定义 1983年, 国际计量大会(CGPM)颁布了新的米定义,将长度单位米定义为光波在一定时间间隔传播的真空距离[1], 并陆续推荐了十二条光辐射波长, 作为光学波长标准[2]。 在CGPM推荐的标准波长中, 利用饱和吸收技术将He-Ne激光频率锁定到127I2的115-5, R(127) 跃迁a i峰的633nm波长[3], 由于其结构简单、使用广泛、准确可靠而成为最常用、最常规的光学波长标准。 中国计量院(NIM)自70年代就开始了激光稳频的研究。目前NIM保存着碘稳频633nm He-Ne激光波长标准, 不确定度为5x10-11(2σ)。我们正在改造更新He-Ne激光543nm 波长标准, 开展碘稳频Nd:YAG激光倍频532nm波长和乙炔稳频半导体激光1542nm 波长标准的研究。通过定期参加国际比对, 检验波长标准准确性, 我们保持着中国光学波长与国际量值一致。 2, 时间/微波频率基准 - NIM4# 铯冷原子喷泉钟 1983年米定义意味着在计量的意义上米已经不再是一个独立定义量, 而是溯源到时间单位--秒。随之, 光学波长也溯源到微波频率基准-铯原子钟。依照1967年CGPM通过的定义, 秒是铯133同位素原子基态两个超精细能级对应辐射的9,192,631,770个周期[4]。秒由于复现准确度高, 传递使用方便而成为国际单位制(SI)七个基本单位中使用最广, 计量意义最重要的基准量. NIM在八十年代建成磁选态铯束时间频率基准-NIM3#铯钟, 不确定度3x10-13[5]。目前, 我们正按照当今国际最先进的原理, 研制NIM4# "激光冷却-铯原子喷泉"钟。

光学非接触式三维测量技术

光学三维测量技术及应用 摘要:随着现代科学技术的发展,光学三维测量已经在越来越广泛的领域起到了重要作用。本文主要对接触式三维测量和非接触式三维测量进行了介绍。着重介绍了光学三维测量技术的各种实现方法及原理。最后对目前光学三维测量的应用进行了简单介绍。 1 引言 随着科学技术和工业的发展,三维测量技术在自动化生产、质量控制、机器人视觉、反求工程、CAD/CAM以及生物医学工程等方面的应用日益重要。传统的接触式测量技术存在测量时间长、需进行测头半径的补偿、不能测量弹性或脆性材料等局限性,因而不能满足现代工业发展的需要。。 光学测量是光电技术与机械测量结合的高科技。光学测量主要应用在现代工业检测。借用计算机技术,可以实现快速,准确的测量。方便记录,存储,打印,查询等等功能。 光学三维测量技术是集光、机、电和计算机技术于一体的智能化、可视化的高新技术,主要用于对物体空间外形和结构进行扫描,以得到物体的三维轮廓,获得物体表面点的三维空间坐标。随着现代检测技术的进步,特别是随着激光技术、计算机技术以及图像处理技术等高新技术的发展,三维测量技术逐步成为人们的研究重点。光学三维测量技术由于非接触、快速测量、精度高的优点在机械、汽车、航空航天等制造工业及服装、玩具、制鞋等民用工业得到广泛的应用。 2 三维测量技术方法及分类 三维测量技术是获取物体表面各点空间坐标的技术,主要包括接触式和非接触式测量两大类。如图1所示。 图1 三维测量技术分类

2.1 接触式测量 物体三维接触式测量的典型代表是坐标测量机(CMM,Coordinate Measuring Machine)。CMM是一种大型精密的三坐标测量仪器[1],它以精密机械为基础,综合应用电子、计算机、光学和数控等先进技术,能对三维复杂工件的尺寸、形状和相对位置进行高精度的测量。 三坐标测量机作为现代大型精密、综合测量仪器,有其显著的优点,包括:(1)灵活性强,可实现空间坐标点测量,方便地测量各种零件的三维轮廓尺寸及位置参数;(2)测量精度高且可靠;(3)可方便地进行数字运算与程序控制,有很高的智能化程度。 早期的坐标测量机大多使用固定刚性测头,它最为简单,缺点也很多[2]。主要为(1)测量时操作人员凭手的感觉来保证测头与工件的接触压力,这往往因人而异且与读数之间很难定量描述;(2)刚性测头为非反馈型测头,不能用于数控坐标测量机上;(3)必须对测头半径进行三维补偿才能得到真实的实物表面数据。针对上述缺陷,人们陆续开发出各种电感式、电容式反馈型微位移测头,解决了数控坐标测量机自动测量的难题,但测量时测头与被测物之间仍存在一定的接触压力,对柔软物体的测量必然导致测量误差。另外测头半径三维补偿问题依然存在。三维测头的出现可以相对容易地解决测头半径三维补偿的难题,但三维测头仍存在接触压力,对不可触及的表面(如软表面,精密的光滑表面等)无法测量,而且测头的扫描速度受到机械限制,测量效率很低,不适合大范围测量。 2.2 非接触式测量 非接触式测量技术是随着近年来光学和电子元件的广泛应用而发展起来的,其测量基于光学原理,具有高效率、无破坏性、工作距离大等特点,可以对物体进行静态或动态的测量。此类技术应用在产品质量检测和工艺控制中,可大大节约生产成本,缩短产品的研制周期,大大提高产品的质量,因而倍受人们的青睐。随着各种高性能器件如半导体激光器LD、电荷耦合器件CCD、CMOS图像传感器和位置敏感传感器PSD等的出现,新型三维传感器不断出现,其性能也大幅度提高,光学非接触测量技术得到迅猛的发展。 非接触式三维测量不需要与待测物体接触,可以远距离非破坏性地对待测物体进行测量。其中,光学非接触式测量是非接触式测量中主要采用的方法。 3 光学非接触式三维测量的概述 光学非接触式三维测量技术根据获取三维信息的基本方法可分为两大类:被动式与主动式。如图2所示[3]。 主动式是利用特殊的受控光源(称为主动光源)照射被测物,根据主动光源的已知结构信息(几何的、物体的、光学的)获取景物的三维信息。被动式是在自然光(包括室内可控照明光)条件下,通过摄像机等光学传感器摄取的二维灰度图像获取物体的三维信息。

高精度光学测量微位移技术综述

word格式文档 高精度光学测量微位移技术综述 *** (******大学光电**学院,重庆400065) 摘要 微位移测量技术在科学与工业技术领域应用广泛。光学测量微位移技术与传统测量方法相比,具有灵敏度高、抗电磁干扰能力强、耐腐蚀、防爆、结构简单、体积小、重量轻等优点。本文介绍了几种高精度光学测量微位移的方法,从激光三角法、激光干涉法、光栅尺法、光纤光栅法、X射线干涉法和F-P干涉法几个类别对各种微位移测量原理和仪器进行了系统的分析和比较,并对各种方法的特点进行了归纳,对光学微位移测量方法的发展趋势进行了概括。 关键词:微位移测量,高精度,光学测量,发展趋势 1 引言 随着科学技术的发展,微小位移的检测手段已发展到多种,测量准确度也不断提高。目前,高分辨力微位移测量技术主要分为包含电学、显微镜等测量方法的非光学测量技术和以激光干涉测量为代表的光学测量技术两大类。电学测量技术又包括电阻法、电容和电感法以及电涡流法等,其中,电容和电感法发展迅速,较为常用。目前,三端电容传感器可测出5×10-5μm的微位移,最大稳定性为每天漂移几个皮米[1]。而显微镜测量技术种类较多,主要有高性能透射电子显微镜、扫描电子显微镜、扫描探针显微镜(包括扫描隧道显微镜和原子力显微镜)等二十多个品种[2]。按光学原理不同,光学测量技术可分为激光三角测量[3]、光杠杆法[1,4]、光栅尺测量法[5]、光纤位移测量法[5]和激光干涉法等,测量分辨力在 专业资料整理

几十皮米到几纳米之间。此外,利用X射线衍射效应进行位移测量的X射线干涉技术近年来备受关注,其最大特点是以晶格结构中的原子间距作为溯源标准,可实现皮米量级的高分辨力,避免了光学干涉仪的各种非线性误差[6]。现将主要的具有纳米量级及以上分辨力的微位移测量技术概括如表1所示。 纵观位移测量技术的发展历程,如果说扫描探针技术为高分辨力位移测量领域带来了革命性变革,那么近几十年来激光技术的发展则将该领域带入了一个崭新的时代。由表1可见,目前电容传感器和SPM的测量分辨力也很高,但它们的共同缺陷是当溯源至国际标准长度单位时,必须借助激光干涉仪等方法进行标定和校准。根据1983年第17次度量大会对“米”的新定义,激光干涉法对几何量值溯源有着天然优越性,同时具有非接触测量、分辨力高、测量速度快等优势。本文将对目前主要的光学微位移测量技术介绍和比较分析。 表1 常用微位移测量技术 仪器种类分辨力/nm 测量范围 电容传感器0.05-2 10nm-300μm 电感传感器 5 10μm SPM 0.05 1-10μm 激光三角测头 2.5 100-500μm 光纤位移传感器 2.5 30-100μm 双频激光干涉仪0.1 >10m 光栅尺0.1-10 70-200mm X射线干涉仪0.005 200μm F-P干涉仪0.001 5nm-300μm 2 光学微位移测量技术概述 2.1 激光三角法微位移测量技术 随着工业测量领域的不断扩展以及对测量精度和测量速度的不断提高,传统的接触式测量已经无法满足工业界的需求。而非接触测量由于其良好的精确性和

光学测试技术复习资料

光学检测原理复习提纲 第一章 基本光学测量技术 一、光学测量中的对准与调焦技术 1、对准和调焦的概念(哪个是横向对准与纵向对准?) P1 对准又称横向对准,指一个目标与比较标志在垂轴方向的重合。调焦又称纵向对准,是指一个目标像与比较标志在瞄准轴方向的重合。 2、常见的五种对准方式。 P2 压线对准,游标对准。。。。 3、常见的调焦方法 最简便的调焦方法是:清晰度法和消视差法。p2 二、光学测试装置的基本部件及其组合 1、平行光管的组成、作用;平行光管的分划板的形式(abcd )。P14 作用:提供无限远的目标或给出一束平行光。 组成:由一个望远物镜(或照相物镜)和一个安置在物镜 焦平面上的分划板。二者由镜筒连在一起,焦距 1000mm 以上的平行光管一般都带有伸缩筒,伸缩筒 的滑动量即分划板离开焦面的距离,该距离可由伸 缩筒上的刻度给出,移动伸缩筒即能给出不同远近 距离的分划像(目标)。 2、什么是自准直目镜(P15)(可否单独使用?),自准直法? 一种带有分划板及分划板照明装置的目镜。Zz 自准直:利用光学成像原理使物和像都在同一平面上。 3、;高斯式自准直目镜(P16)、阿贝式自准直目镜(P16)、双分划板式自准直目镜(P17)三种自准直目镜的工作原理、特点。P15—p17(概念,填空或判断) 1高斯式自准直目镜缺点--分划板只能采用透明板上刻不透光刻线的形式,不能采用不透明板上刻透光刻线的形式,因而像的对比度较低,且分束板的光能损失大,还会产生较强的杂光。 2阿贝式自准直目镜---特点射向平面镜的光线不能沿其法线入射,否则看不到亮“+”字线像。阿贝目镜大大改善了像的对比度,且目镜结构紧凑,焦距较短,容易做成高倍率的自准直仪。 主要缺点:直接瞄准目标时的视轴(“+”字刻度线中心与物镜后节点连线)与自准直时平面 (a )"+"字或"+"字 刻线分划板; (b )分辨率板; (c )星点板; (d )玻罗板

光学三维测量技术与应用

光学三维测量技术 1. 引言 人类观察到的世界是一个三维世界, 尽可能准确和完备地获取客观世界的三维信息才能尽可能准确和完备地刻画和再现客观世界。对三维信息的获取和处理技术体现了人类对客观世界的把握能力,因而从某种程度上来说它是体现人类智慧的一个重要标志。 近年来, 计算机技术的飞速发展推动了三维数字化技术的逐步成熟, 三维数字化信息获取与处理技术以各种不同的风貌与特色进入到各个不同领域之中 [1]:在工业界, 它已成为设计进程中的一环, 凡产品设计、模具开发等, 无一不与三维数字化测量有着紧密的结合; 虚拟现实技术需要大量景物的三维彩色模型数据, 以用于国防、模拟训练、科学试验; 大量应用的三坐标测量机和医学上广泛应用的 CT 机和 MRI 核磁共振仪器,也属于三维数字化技术的典型应用;文化艺术数字化保存(意大利的古代铜像数字化、中国的古代佛像数字化、古文物数字化保存、 3D 动画的模型建构(电影如侏罗纪公园、太空战士、医学研究中的牙齿、骨头扫描, 甚至人类学的考古研究等, 都可运用三维扫描仪快速地将模型扫描、建构; 而随着宽频与计算机速度的提升, Web 3D的网络虚拟世界将更为普及,更带动了三维数字化扫描技术推广到商品的电子商务、产品简报、电玩动画等, 这一切都表明未来的世界是三维的世界。 目前, 有很多种方法可用来获取目标物体的三维形状数据, 光学三维测量技术(Optiacl Three-dimensional Measurement Techniques因为其“非接触”与“全场”的特点,是目前工程应用中最有发展前途的三维数据采集方法。光学三维测量技术是二十世纪科学技术飞速发展所催生的丰富多彩的诸多实用技术之一, 它是以现代光学为基础, 融光电子学、计算机图像处理、图形学、信号处理等科学技术为一体的现代测量技术。它把光学图像当作检测和传递信息的手段或载体加以利用, 其目的是从图像中提取有用的信号, 完成三维实体模型的重构 [2]。随着激光技术、精密计量光栅制造技术、计算机技术以及图像处理等高新技术的发展, 以及不断推出的高

光学测量仪器

https://www.doczj.com/doc/575448696.html, 光学测量仪器 光学影像测量仪是集光学、机械、电子、计算机图像处理技术于一体的高精度、效率高、高可靠性的测量仪器。由光学放大系统对被测物体进行放大,经过CCD摄像系统采集影像特征并送入计算机后,可以效率高地检测各种复杂零部件的轮廓和表面形状尺寸、角度及位置,进行微观检测与质量控制。 在实际应用中,尽管光学计量仪器多种多样,但它们的光学原理却都基于四种基本原理,它们是:望远光学原理、显微光学原理、投影光学原理、干涉光学原理。基于应用不同的光学原理,光学计量仪器可分为:自准直类光学计量仪器、显微镜类光学计量仪器、投影类光学计量仪器、光干涉类光学计量仪器四大类。 光电探测技术是现代信息获取的主要手段之一,光电探测技术的发展是随着其他关键技术的发展而发展的,由于激光技术、光波导技术、光电子技术、光纤技术、计算机技术的发展,以及新材料、新器件、新工艺的不断涌现,光精密量仪测量工具传感器游标卡尺

https://www.doczj.com/doc/575448696.html, 电探测技术取得了巨大发展。近年来,光电探测技术引起了业内人士的普遍关注,在军事和民用领域占有越来越重要的地位。近年来涌现出的各种新型光电探测技术,包括微光探测、偏振探测、量子探测、单光子探测技术。 光学测量仪器选择首先要做到符合要求。比如,一台高精度的研发级别的光谱仪,并不一定适合日常对显示设备的校正,由于其精度高导致速度慢;由于光谱仪一般为非接触式的仪器,那么对环境要求就比较高。一个正确的流程应该是用低级的能保证测量速度和稳定性的色度计采集数据校正,用一台精度高符合标准的光谱仪来对色度计做一组校正数据(Offset),这样可以保证色度计在大部分亮度校正时的准确测量。 马尔测量始于1861年。19世纪的工业革命不仅促进了制造业快速发展, 同时唤起了对机械零件加工的精度要求。我们的工作就是确保测量结果的准确性。作为世界测量仪器的顶级生产商之一,多年以来,马尔的产品已涉及许多领域,并成为专业的测量应用专家。 精密量仪测量工具传感器游标卡尺

光学测量原理和技术

第一章、 对准、调焦 ? 对准、调焦的定义、目的; 1. 对准又称横向对准,是指一个对准目标与比较标志在垂直瞄准轴方向像的重合或置 中。目的:瞄准目标(打靶);精确定位、测量某些物理量(长度、角度度量)。 2、调焦又称纵向对准,是指一个目标像与比较标志在瞄准轴方向的重合。 目的: --使目标与基准标志位于垂直于瞄准轴方向的同一个面上,也就是使二者位于同一空间深度; --使物体(目标)成像清晰; --确定物面或其共轭像面的位置——定焦。 人眼调焦的方法及其误差构成; 清晰度法:以目标和标志同样清晰为准则; 消视差法:眼睛在垂直视轴方向上左右摆动,以看不出目标和标志有相对横 移为准则。可将纵向调焦转变为横向对准。 清晰度法误差源:几何焦深、物理焦深; 消视差法误差源:人眼对准误差; 几何焦深:人眼观察目标时,目标像不一定能准确落在视网膜上。但只要目标上一点在视网膜上生成的弥散斑直径小于眼睛的分辨极限,人眼仍会把该弥散斑认为是一个点,即认为成像清晰。由此所带来的调焦误差,称为几何焦深。 物理焦深:光波因眼瞳发生衍射,即使假定为理想成像,视网膜上的像点也不再是一个几何点,而是一个艾里斑。若物点沿轴向移动Δl 后,眼瞳面上产生的波像差小于λ/K(常取K=6),此时人眼仍分辨不出视网膜上的衍射图像有什么变化。 (清晰度)人眼调焦扩展不确定度: (消视差法)人眼调焦扩展不确定度: 人眼摆动距离为b ,所选对准扩展不确定度为δe , ? 对准误差、调焦误差的表示方法; 对准:人眼、望远系统用张角表示;显微系统用物方垂轴偏离量表示; 调焦:人眼、望远系统用视度表示;显微系统用目标与标志轴向间距表示 ? 常用的对准方式; φ'==12111e e l l D αφ'=-= 2 2 21118e l l KD λ φ'=-= e b δφ'=

光学测量技术及仪器

光学测量技术及仪器 阿贝折射仪 旋光仪 分光光度计 分光光度计的构造原理 72型分光光度计 752型分光光度计 光与物质相互作用可以产生各种光学现象(如光的折射、反射、散射、透射、吸收、旋光以及物质受激辐射等),通过分析研究这些光学现象,可以提供原子、分子及晶体结构等方面的大量信息。所以,不论在物质的成分分析、结构测定及光化学反应等方面,都离不开光学测量。下面介绍物理化学实验中常用的几种光学测量仪器。 一、阿贝折射仪 折射率是物质的重要物理常数之一,许多纯物质都具有一定的折射率,如果其中含有杂质则折射率将发生变化,出现偏差,杂质越多,偏差越大。因此通过折射率的测定,可以测定物质的浓度。 1.阿贝折射仪的构造原理 阿贝折射仪的外形图如图Ⅱ-5-1所示。 当一束单色光从介质Ⅰ进入介质Ⅱ(两种介质的密度不同)时,光线在通过界面时改变了方向,这一现象称为光的折射,如图Ⅱ-5-2所示。

图Ⅱ-5-1 阿贝折射仪外形图 1.测量望远镜; 2.消散手柄; 3.恒温水入口; 4.温度计; 5.测量棱镜; 6.铰链; 7.辅助棱镜; 8.加液槽; 9.反射镜;10.读数望远镜;11.转轴;12.刻度盘罩;13.闭合旋钮;14.底座。 图Ⅱ-5-2光的折射 光的折射现象遵从折射定律: 式中α为入射角,β为折射角,n Ⅰ、nⅡ为交界面两侧两种介质的折射率;n Ⅰ, Ⅱ 为介质Ⅱ对介质Ⅰ的相对折射率。 若介质Ⅰ为真空,因规定n=1.0000,故n ⅠⅡ=n Ⅱ 为绝对折射率。但介质 Ⅰ通常为空气,空气的绝对折射率为1.00029,这样得到的各物质的折射率称为常用折射率,也称作对空气的相对折射率。同一物质两种折射率之间的关系为: 绝对折射率=常用折射率×1.00029

光学测量与光学工艺知识点答案

目录 第一章基本光学测试技术 (2) 第二章光学准直与自准直 (5) 第三章光学测角技术 (9) 第四章:光学干涉测试技术 (12) 第六章:光学系统成像性能评测 (15)

第一章 基本光学测试技术 ? 对准、调焦的定义、目的; 对准又称横向对准,是指一个对准目标(?)与比较标志(?)在垂直瞄准轴(?)方向像的重合或置中。例:打靶、长度度量 人眼的对准与未对准: 对准的目的:1.瞄准目标(打靶); 2.精确定位、测量某些物理量(长度、角度度量)。 调焦又称纵向对准,是指一个目标像(?)与比较标志(?)在瞄准轴(?)方向的重合。 人眼调焦: 调焦的目的 :1.使目标与基准标志位于垂直于瞄准轴方向的同一个面上,也就是使二者位 于同一空间深度; 2.使物体(目标)成像清晰; 3.确定物面或其共轭像面的位置——定焦。 12 1'2' 1'P 2' 2' '

?人眼调焦的方法及其误差构成; 常见的调焦方法有清晰度法和消视差法。 清晰度法是以目标与比较标志同样清晰为准。调焦误差是由于存在几何焦深和物理焦深所造成的。 消视差法是以眼镜在垂直平面上左右摆动也看不出目标和标志有相对横移为准的。误差来源于人眼的对准误差。 (消视差法特点: 可将纵向调焦转变为横向对准; 可通过选择误差小的对准方式来提高调焦精确度; 不受焦深影响) ?对准误差、调焦误差的表示方法; 对准误差的表示法:人眼、望远系统用张角表示; 显微系统用物方垂轴偏离量表示; 调焦误差的表示法:人眼、望远系统用视度表示; 显微系统用目标与标志轴向间距表示; ?常用的对准方式; 常见的对准方式有压线对准,游标对准,夹线对准,叉线对准,狭缝叉线对准或狭缝夹线对准。 ?光学系统在对准、调焦中的作用; 提高对准、调焦精度,减小对准、调焦误差。 ?提高对准精度、调焦精度的途径; 使用光学系统进行对准,调焦;光电自动对准、光电自动调焦; ?光具座的主要构造; 平行光管(准直仪);带回转工作台的自准直望远镜(前置镜);透镜夹持器;带目镜测微器的测量显微镜;底座 ?平行光管的用途、简图; 作用是提供无限远的目标或给出一束平行光。 简图如下:

光学三维测量技术综述

光学三维测量技术综述 1.引言 客观景物三维信息的获取是计算机辅助设计、三维重建以及三维成像技术中的基础环节,被测物体的三维信息的快速、准确的获得在虚拟现实、逆向工程、 生物与医学工程等领域有着广泛的应用[1]。 三维测量方法总的包括两大类,接触式以及非接触式。如图 1.1 所示。 图1.1 三维测量方法分类 接触式的三维测量方法到目前为止已经发展了很长一段时间,这方面的技术理论已经非常完善和成熟,所以,在实际的测量中会有比较高的准确性。但是尽 管如此,依然会有一些缺点[2]: (1) 在测量过程中,接触式测量必须要接触被测物体,这就很容易造成被测物体表面的划伤。 (2) 接触式测量设备在经过长时间的使用之后,测量头有时会出现形变现象,这无疑会对整个测量结果造成影响。 (3) 接触式测量要依靠测量头遍历被测物体上所有的点,可见,其测量效率还是相当低的。 接触式三维测量技术发展已久,应用最广泛的莫过于三坐标测量机。该方法基于精密机械,并结合了当前一些比较先进技术,如光学、计算机等。并且该方法现在已经得到了广泛的应用,特别是在一些复杂物体的轮廓、尺寸等信息的精确测量上。在测量过程中,三坐标测量机的测量头在世界坐标系的三个坐标轴上都可以移动,而且测量头可以到达被测物体上的任意一个位置上,只要测量头能到达该位置,测量机就可以得到该位置的坐标,而且可以达到微米级的测量精度。但由于三坐标机测量系统成本较高,加之上述的一些缺点,广泛应用还不太现实。 非接触式三维测量技术一般通过利用磁学、光学、声学等学科中的物理量测量物体表面点坐标位置。核磁共振法、工业计算机断层扫描法、超声波数字化法

光学三维测量技术综述

光学三维测量技术综述 Prepared on 24 November 2020

光学三维测量技术综述 1.引言 客观景物三维信息的获取是计算机辅助设计、三维重建以及三维成像技术中的基础环节,被测物体的三维信息的快速、准确的获得在虚拟现实、逆向工程、生物与医学工程等领域有着广泛的应用。 三维测量方法总的包括两大类,接触式以及非接触式。如图所示。 图三维测量方法分类 接触式的三维测量方法到目前为止已经发展了很长一段时间,这方面的技术理论已经非常完善和成熟,所以,在实际的测量中会有比较高的准确性。但是尽管如此,依然会有一些缺点: (1) 在测量过程中,接触式测量必须要接触被测物体,这就很容易造成被测物体表面的划伤。 (2) 接触式测量设备在经过长时间的使用之后,测量头有时会出现形变现象,这无疑会对整个测量结果造成影响。 (3) 接触式测量要依靠测量头遍历被测物体上所有的点,可见,其测量效率还是相当低的。 接触式三维测量技术发展已久,应用最广泛的莫过于三坐标测量机。该方法基于精密机械,并结合了当前一些比较先进技术,如光学、计算机等。并且该方法现在已经得到了广泛的应用,特别是在一些复杂物体的轮廓、尺寸等信息的精确测量上。在测量过程中,三坐标测量机的测量头在世界坐标系的三个

坐标轴上都可以移动,而且测量头可以到达被测物体上的任意一个位置上,只要测量头能到达该位置,测量机就可以得到该位置的坐标,而且可以达到微米级的测量精度。但由于三坐标机测量系统成本较高,加之上述的一些缺点,广泛应用还不太现实。 非接触式三维测量技术一般通过利用磁学、光学、声学等学科中的物理量测量物体表面点坐标位置。核磁共振法、工业计算机断层扫描法、超声波数字化法等非光学的非接触式三维测量方法也都可以测量物体的内部及外部结构的表面信息,且不需要破坏被测物体,但是这种测量方法的精度不高。而光学三维轮廓测量由于其非接触性、高精度与高分辨率,在CAD /CAE、反求工程、在线检测与质量保证、多媒体技术、医疗诊断、机器视觉等领域得到日益广泛的应用,被公认是最有前途的三维轮廓测量方法。由于光不能深入物体内部,所以光学三维测量只能测量物体表面轮廓,因此,本文中所言光学三维测量即指光学三维轮廓测量,此后不再单独解释。 光学三维测量技术总体而言可以分为主动式光学三维测量和被动式光学三维测量,根据具体的原理又可以分为双目立体视觉测量法、离焦测量法、飞行时间法、激光三角法、莫尔轮廓术和结构光编码法等。下面就刚刚提到的几种光学三维测量技术的原理进行逐一讲解。

相关主题
文本预览
相关文档 最新文档