当前位置:文档之家› 2005年诺贝尔物理学奖与光学频率梳

2005年诺贝尔物理学奖与光学频率梳

2005年诺贝尔物理学奖与光学频率梳
2005年诺贝尔物理学奖与光学频率梳

关于光学频率梳的概述

关于光学频率梳的概述 06061102 扈琦 摘要:光梳技术,秒的新标准。 引言:从1958年激光被首次成功制造至今,这个光学新的领域获得了异乎寻常的飞快发展,它使我们能够有效地利用前所未有的先进方法和手段,去获得空前的效益和成果,从而促进了生产力的发展。现在,一种新型的激光——“光学频率梳”诞生了,它就像一把“光尺”,使人类能够对光学频率实现及其精密的测量。这里我将简要说明光学频率梳的结构以及其广阔的前景。 一、光梳结构 光学频率梳由“锁模激光器”产生,是一种超短脉冲激光。超短光脉冲的载波由单一频率的光构成,这种光会在光谱上该频率显示为一条竖线,表示只存在该频率的光波。在这里,锁模激光器发射的光脉冲的两个特征成为了研制光学频率梳的关键。第一个特征是,包络相对于载波发生微小位移,导致脉冲发生细微变化。脉冲包络的峰值,可以和对应的载波波峰同时出现,也可以偏移到载波的波峰同时出现,该偏移量被称为脉冲位相。第二个特征,锁模激光器以重复频率发射脉冲序列。这种脉冲序列光的频谱不是以载波频率为中心向两边连续延展,而是形成许多离散的频率。这个频谱分布很像梳齿,彼此间隔与激光器的重复频率精确相等。但在通常情况下,前后两个脉冲的位相会发生一些不可预知但却固定不变的偏移,这时,梳齿的频率会偏离重复频率的整数倍,出现零点漂移,使得梳齿频率不可确定。随着钛宝石激光器的出现,德国马普量子光学研究所的Theodor. W. Hansch 利用新型激光器证明了输出光梳输出光谱两端的光梳谱线具有确切的对应关系,使得光梳真正的可以被作为“光尺”使用。 二、光梳技术应用 光学原子钟 光学原子钟是迄今为止,人类制造的最精确的时钟,它的精度已经超过了1967年来一直作为标准的微波原子钟。光学原子钟将在空间导航、卫星通信、基础物理问题的超高精度检。 化学探测器研究人员已经演示了利用光梳的超灵敏化学探测器,目前正在研制商业化仪器的样机。这种探测器,能够让安检人员更快捷的识别爆炸物及危险病原体等有害物质。医生可以通过检测病人呼出的气体的化学成分来诊断疾病。 超级激光器利用光学频率梳,许多激光器输出的激光脉冲可以合称为单束光脉冲序列。合成激光的相干性极好,就像是同一个激光器发出来的一样。这种技术将来有望对从无线电波到X射线的电磁波谱实现相干控制。 长途通信使单根光纤传输的信号量增加好几个数量级,所需的只是一把光梳,各通道之间的干扰也将减少,尤其是安全通信,将从光梳的运用上获得许多好处。 激光雷达激光雷达用激光来测定远距离目标的位置、速度和性质。用光学频率梳产生的特定波形的激光,有望将雷达的灵敏度和探测范围提高几个数量级。 三、秒的新定义 稳定的光学频率梳发明以后,精确测量连续波激光器的频率就变得轻而易举了。像倍频链一样,基于光梳的频率测量仍然需要以铯钟作为标准。首先,必须测量光梳的零点偏移频率和光梳梳齿的频率间隔。有了这两个数据,我们就能计算出所有梳齿对应的频率。接下来,就要把待测激光与光梳的光混合在一起,测量激光与最接近它的梳齿产生的拍频频率,也就是两者频率差。这三个频率都属于微波频段,可以用铯钟非常精确的进行测定。至此,光梳的这些优点使得时间标准从微波的向光学的转变。

频率响应测量的方法

频率响应测量的方法 频率响应测量的方法很多,一般同使用的测试信号有关。 可分为:i. 点测法:完全按定义设计的测量方法,逐个频率输入振幅恒定的正弦信号,逐个点测量相应频率扬声器输出声压级,在频率响应坐标纸上绘出相应的点,把这些不连续的点的平滑连线即为频率响应曲线。测量耗时、测量有限的非连续频率点,过渡点是推测的。 ii. 扫频自动记录法:使用机械传动的方法改变振荡电路中的电容,使信号的频率连续改变,输出电压恒定,这叫扫频信号,记录仪上记录纸的频率刻度与信号源同步,记录扬声器的输出声压级随频率的变化,即为频率响应曲线,这方法叫扫频自动记录法。后来,机械扫频信号改成电压控制频率的压控振荡器,改进了机械传动的麻烦。这是60~80年代丹麦B&K 公司为代表的测量技术。扫频自动测量原理大约已有40年的历史,其测量原理没有变化,改变的只是使用的技术,譬如扫频信号的产生方法,测量传声器测得的数据的采集、处理、运算和输出数据和曲线都可以由计算机完成。其中需要特别一提的是:对扫频信号的理解和生成技术,连续扫频信号过去理解为点频信号随时间变化,但点频信号是一个连续周期信号,从示波器看到的是一个按周期重复的正弦波形,而扫频信号没有一个频率是经历时间周期的,随扫频时间变化的是它的瞬时频率。瞬时频率数学上是相位对时间的微分。可以这样理解:譬如f=100Hz正弦信号的周期是T=0.01秒,其走过的相位φ= 2π弧度(360°),而f=200Hz时,T=0.005秒,其走过的相位仍然是φ= 2π弧度,这样,一个微小时间内的相位变化(等效于相位对时间的微分)同周期成反比,相当于稳态频率。同稳态信号不同的是它引入扫频速率(S:Hz/s)的概念,瞬时频率fi =S t +f0;t为扫频时间;f0为扫频初始频率。t和f0确定扫频频率范围。稳态单频信号的公式是u(t)=Acos(2πft);f为稳态单频信号的频率。而扫频信号的公式是u(t)=ACos(πSt2),B&K公司的2012音频分析仪的TSR(时选响应)技术中使用的测试信号,就是采用该数学模型生成的信号。 iii. 阶步步进的猝发声测量。猝发声是若干个周期的正弦信号脉冲,或称正弦波列。它由连续周期信号加一时间控制电路组成,当测量声压级的时间窗正好在猝发声的稳定部分时,它更接近点频测量。由一个个不同频率的猝发声组成一个阶步步进的猝发声,用对应的跟踪滤波器跟踪每一个猝发声,类似点频测量得到扬声器的频率响应。美国ATI公司的扬声器测量系统LMS使用的正是这种信号源,它最多可以在一个十进制频率范围内设置200个猝发声频率点,即频率阶步的间隔是1/60倍频程。 iv. 多频音(Muiti-tone Burst也叫多频猝发声)它是数字生成的M个纯音信号的叠加的一个短时间间隔的信号,该时间间隔对M个频率来说正好都是整周期的,并且这由低到高M个频率之间没有谐波关系,即2个频率相除(大数除小数)的商不会是整数。例如:14.5,31.9,37.7,49.3,55.1……Hz;可以排列成一个数列,选择适当的频率间隔,组成M个频率的多频音。其M个频率的同步FFT即为基频即幅频响应,由其谐波可以实现其谐波失真测量。该技术使用在AP公司的“系统1”和“系统2”的仪器上。 v. 脉冲数字测量技术上面所有的方法都离不开正弦信号,只是频率的连续变化、频率的阶步变化和有限频率成分的合成信号,脉冲信号和MLS信号需要进行时域(时间波形)和频域(频率响应和频率分析)之间的变换,从中可以得到更多信息,它作用于被测系统后的输出响应,经过变换和运算可以得到被测系统的许多信息,这需要对测试信号有充分了解,涉及信号与系统的基本理论,又要借助数字信号处理技术进行变换运算。单脉冲信号的性质,

固有频率测定方式

实验三振动系统固有频率的测量 一、实验目的 1、了解和熟悉共振前后利萨如图形的变化规律和特点; 2、学习用“共振法”测试机械振动系统的固有频率(幅值判别法和相位判别法); 3、学习用“锤击法”测试机械振动系统的固有频率(传函判别法); 4、学习用“自由衰减振动波形自谱分析法”测试振动系统的固有频率(自谱分析法)。 二、实验装置框图

图3-1实验装置框图 三、实验原理 对于振动系统,经常要测定其固有频率,最常用的方法就是用简谐力激振,引起系统共振,从而找到系统的各阶固有频率。另一种方法是锤击法,用冲击力激振,通过输入的力信号和输出的响应信号进行传函分析,得到各阶固有频率。以下对这两种方法加以说明: 1、简谐力激振 简谐力作用下的强迫振动,其运动方程为: 方程式的解由21X X +这两部分组成: ) sin cos (211t w C t w C e X D D t +=-ε 21D w w D -= 式中1C 、2C 常数由初始条件决定: t w A t w A X e e sin cos 212+= 其中 ,, 1X 代表阻尼自由振动基,2X 代表阻尼强迫振动项。 自由振动周期: D D T ωπ 2= 强迫振动项周期: e e T ωπ 2= 由于阻尼的存在,自由振动基随时间不断得衰减消失。最后,只剩下后两项,也就是通常讲的定常强动,即强迫振动部分: 通过变换可写成

)sin(?-=t w A X e 式中 4 2 22222 2 2214)1(/ωωεωωωe e q A A A +- = += 设频率比 ω ωμe = ,Dw =ε 代入公式 则振幅 2 2 2 22 4)1(/D q A μμω+-= 滞后相位角: 2 12μμ ?-=D arctg 因为 xst K F m K m F q === 02 //ω为弹簧受干扰力峰值作用引起的静位移, 所以振幅A 可写成:st st x x D A .4)1(1 2 2 2 2βμμ=+-= 其中β称为动力放大系数: 2 2 2 2411 D μμβ+-= )( 动力放大系数β是强迫振动时的动力系数即动幅值与静幅值之比。这个数值对拾振器和单自由度体系的振动的研究都是很重要的。 当1=μ,即强迫振动频率和系统固有频率相等时,动力系数迅速增加,引起系统共振,由式: )sin(?-=t w A X e 可知,共振时振幅和相位都有明显变化,通过对这两个参数进行测量,我们可以判别系统是否达到共振动点,从而确定出系统的各阶振动频率。 (一)幅值判别法 在激振功率输出不变的情况下,由低到高调节激振器的激振频率,通过示波器,我们可以观察到在某一频率下,任一振动量(位移、速度、加速度)幅值迅速增加,这就是机械振动系统的某阶固有频率。这种方法简单易行,但在阻尼较大的情况下,不同的测量方法的出的共振动频率稍有差别,不同类型的振动量对振幅变化敏感程度不一样,这样对于一种类型的传感器在某阶频率时不够敏感。 (二)相位判别法 相位判别是根据共振时特殊的相位值以及共振前后相位变化规律所提出来的一种共振判别法。在简谐力激振的情况下,用相位法来判定共振是一种较为敏感的方法,而且共振是

【CN209356822U】一种光学频率梳产生系统【专利】

(19)中华人民共和国国家知识产权局 (12)实用新型专利 (10)授权公告号 (45)授权公告日 (21)申请号 201920302555.X (22)申请日 2019.03.11 (73)专利权人 南京大学 地址 210093 江苏省南京市鼓楼区汉口路 22号 (72)发明人 姜校顺 王瀚 麻霁阳 肖龙甫  顾佳新 肖敏  (74)专利代理机构 北京品源专利代理有限公司 11332 代理人 孟金喆 (51)Int.Cl. G02F 1/35(2006.01) H01S 5/06(2006.01) H01S 5/00(2006.01) (ESM)同样的发明创造已同日申请发明专利 (54)实用新型名称 一种光学频率梳产生系统 (57)摘要 本实用新型公开了一种光学频率梳产生系 统。该系统包括波长可调光源、偏振控制器、光纤 以及光学微腔;波长可调光源提供泵浦光,泵浦 光耦合入光纤;光纤与偏振控制器的输入端连 接;光纤从偏振控制器的输出端延伸至光学微 腔,光纤包括锥状结构,光纤通过锥状结构与光 学微腔耦合;其中,光学微腔包括衬底和位于衬 底一侧的支撑柱和大倾角微盘腔;泵浦光通过锥 状结构耦合入光学微腔;偏振控制器调节光纤中 泵浦光的偏振方向,提高与光学微腔的耦合效 率;泵浦光在光学微腔中由于三阶非线性效应, 产生可见光波段的光学频率梳。本实用新型的技 术方案,产生可见光波段的光学频率梳,而且利 用片上集成的光学微腔器件,有利于小型化和集 成化器件的发展。权利要求书2页 说明书7页 附图5页CN 209356822 U 2019.09.06 C N 209356822 U

频率测量方法

0引言 随着无线电技术的发展与普及,"频率"已经成为广大群众所熟悉的物理量。而单片机的出现,更是对包括测频在内的各种测量技术带来了许多重大的飞跃,然而,小体积、价廉、功能强等优势也在电子领域占有非常重要的地位。为此.本文给出了一种以单片机为核心的频率测量系统的设计方法。 1 测频系统的硬件结构 测量频率的方法一般分为无源测频法、有源测频法及电子计数法三种。无源测频法(又可分为谐振法和电桥法),常用于频率粗测,精度在1%左右。有源比较法可分为拍频法和差频法,前者是利用两个信号线性叠加以产生拍频现象,再通过检测零拍现象进行测频,常用于低频测量,误差在零点几Hz;后者则利用两个非线性信号叠加来产生差频现象,然后通过检测零差现象进行测频,常用于高频测量,误差在±20 Hz左右。以上方法在测量范围和精度上都有一定的不足,而电子计数法主要通过单片机进行控制。由于单片机的较强控制与运算功能,电子计数法的测量频率范围宽,精度高,易于实现。本设计就是采用单片机电子计数法来测量频率,其系统硬件原理框图如图1所示。 为了提高测量的精度,拓展单片机的测频范围,本设计采取了对信号进行分频的方法。设计中采用两片同步十进制加法计数器74LS160来组成一个100分频器。该100分频器由两个同步十进制加法计数器74LS160和一个与非门74LS00共同设计而成。由于一个74LS160 可以分频十的一次方,而当第一片74LS160工作时,如果有进位,输出端TC便有进位信号送进第二片的CEP端,同时CET也为高电平,这样两个工作状态控制端CET、CEP将同时为高电平,此时第二片74LS160将开始工作。 2 频率测量模块的电路设计 用单片机电子计数法测量频率有测频率法和测周期法两种方法。测量频率主要是在单位定时时间里对被测信号脉冲进行计数;测量周期则是在被测信号一个周期时间里对某一基准时钟脉冲进行计数。 2.1 8051测频法的误差分析 电子计数器测频法主要是将被测频率信号加到计数器的计数输入端,然后让计数器在标准时间Ts1内进行计数,所得的计数值N1。与被测信号的频率fx1的关系如下:

光学频率梳的绝对距离测量研究

光学频率梳的绝对距离测量研究 光学频率梳的出现和飞速发展给超精密计量领域带来了革命性的进步。大尺寸高精度的绝对距离测量在基础科学研究和工程实际应用中都发挥着重要的作用。1983年,国际计量大会定义长度单位米为光在真空中行进1/299792458秒的距离,实现了长度(米)和时间(秒)的高度统一。光学频率梳作为一种新型的光源,可直接连接长度和时间,于是,光学频率梳的绝对距离测量很快成为了国际国内的研究热门。 本论文研究了光学频率梳的绝对距离测量,在几十米大范围内实现了高精度的绝对距离测量,满足大尺寸高精度的绝对距离测量需求。研究了强度探测的绝对距离测量方法,分析了脉冲互相关原理,建立了基于高斯脉冲、 Sech2脉冲和洛仑兹脉冲的脉冲互相关模型,通过两个脉冲的干涉强度实现绝对距离测量。在25m范围内,与参考干涉仪比对的结果表明,测量不确定度优于1.5μm。分析了色散干涉的原理,基于色散干涉条纹的调制频率实现绝对距离测量,但是采用低分辨率的光谱分析仪无法实现任意测距。 为了克服这一局限性,采用一段长的延迟光纤作为参考臂,通过改变光学频率梳的重复频率,可以实现任意测距。实验结果表明,在75m范围内,测量不确定度优于25μm。进行了测量不确定度的最优化分析,以最优化系统的参数配置。通过调节重复频率进行光学采样,实现绝对距离测量。 采用一段长的延迟光纤作为参考臂,通过扫描重复频率,获得脉冲干涉条纹。采用希尔伯特变换测量干涉条纹的峰值位置,实现绝对距离测量。实验结果表明,在60m范围内,测量不确定度优于3μm。在自由空间中,通过扫描重复频率,获得了脉冲干涉条纹。 采用傅立叶变换测量干涉条纹携带的距离信息。实验结果表明,在75m范围内,测量不确定度优于4μm。进行了多目标测量场合下的实验,测量了玻璃厚度和折射率。实验结果表明,通过扫描重复频率光学采样的方法可以高精度的测量玻璃厚度和折射率。 提出了光学频率梳与单频激光多外差干涉的绝对距离测量方法。分析了光频梳与单频激光多外差干涉的原理,通过拍频信号的相位实现绝对距离测量。为了改善拍频信号的稳定性,采用Pound-Drever-Hall锁定原理,将单频激光锁定至

光学波长标准-飞秒光梳频率列-铯原子微波频率基准-光钟

从光学波长到微波频率基准: 光学波长标准 - 飞秒光梳频率列 - 铯原子微波频率基准 - 光钟 中国计量科学研究院(NIM) 量子处 李天初, 方占军 电话: (10) 6429 5811, e-mail: litch@https://www.doczj.com/doc/147154916.html, 摘要: 迄今, 光学波长依赖于传统的光学谐波波长链溯源到铯钟微波频率基准。本文简略介绍中国计量院量子处保存和在研的激光波长标准, 报导我们研制新一代NIM4#"激光冷却-原子喷泉"微波频率基准铯钟和"飞秒脉冲激光-光学梳状频率"的原理和进展。冷原子喷泉钟将使我国频率基准不确定度进入10-15。飞秒梳状频率使光学波长和微波频率直接准确地联系起来。上述两项课题将改变我国光学波长标准和溯源系统的基本格局, 使得光学波长计量发展到一个新水平。同时, "飞秒梳状频率"与"原子/离子存储光学频率标准"的结合, 将推动"光钟"的发展. 关键词:冷原子喷泉钟; 飞秒光梳; 微波频率基准; 光学波长标准. 1, 稳频激光光学波长标准 -实际复现米定义 1983年, 国际计量大会(CGPM)颁布了新的米定义,将长度单位米定义为光波在一定时间间隔传播的真空距离[1], 并陆续推荐了十二条光辐射波长, 作为光学波长标准[2]。 在CGPM推荐的标准波长中, 利用饱和吸收技术将He-Ne激光频率锁定到127I2的115-5, R(127) 跃迁a i峰的633nm波长[3], 由于其结构简单、使用广泛、准确可靠而成为最常用、最常规的光学波长标准。 中国计量院(NIM)自70年代就开始了激光稳频的研究。目前NIM保存着碘稳频633nm He-Ne激光波长标准, 不确定度为5x10-11(2σ)。我们正在改造更新He-Ne激光543nm 波长标准, 开展碘稳频Nd:YAG激光倍频532nm波长和乙炔稳频半导体激光1542nm 波长标准的研究。通过定期参加国际比对, 检验波长标准准确性, 我们保持着中国光学波长与国际量值一致。 2, 时间/微波频率基准 - NIM4# 铯冷原子喷泉钟 1983年米定义意味着在计量的意义上米已经不再是一个独立定义量, 而是溯源到时间单位--秒。随之, 光学波长也溯源到微波频率基准-铯原子钟。依照1967年CGPM通过的定义, 秒是铯133同位素原子基态两个超精细能级对应辐射的9,192,631,770个周期[4]。秒由于复现准确度高, 传递使用方便而成为国际单位制(SI)七个基本单位中使用最广, 计量意义最重要的基准量. NIM在八十年代建成磁选态铯束时间频率基准-NIM3#铯钟, 不确定度3x10-13[5]。目前, 我们正按照当今国际最先进的原理, 研制NIM4# "激光冷却-铯原子喷泉"钟。

光纤激光频率梳关键技术的研究

光纤激光频率梳关键技术的研究 作为20世纪最伟大的发明之一,由频率控制的锁模激光所产生的光学频率梳在光频计量、光原子钟与时频传递、精密相干测量等领域具有重要应用。光纤激光频率梳结构简单、成本低且易于维护,是近年来的研究重点。本论文着重于光纤激光频率梳的关键理论和技术。从理论和实验方面对光纤激光频率梳开展了研究,主要内容包括:第一,基于脉冲在光纤色散非线性传输所满足的非线性薛定谔方程(NLSE)和广义非线性薛定谔方程(GNLSE),研究了锁模光纤激光脉冲特性、啁啾脉冲光纤放大技术和高非线性光纤超连续谱的产生技术;基于Master方程微扰理论,研究了重复频率和偏移频率的传递函数;利用固定点模型,分析了光纤激光频率梳的噪声特性和反馈机制,并提出了噪声抑制方法与实现途径;第二,提出了一种基于飞秒光纤激光器的光频率梳设计方案。 设计与研制出脉冲宽度55 fs、重复频率210 MHz的色散管理孤子锁模掺铒光纤激光器,优化设计了啁啾脉冲光纤放大链路,由负色散高非线性光纤产生了频率范围1080~2320 nm的倍频程超连续谱,经f-2f自差拍检测出信噪比达32 dB的载波包络偏移频率;论证了基于P-I电路的PLL的长期稳定的优越性,并基于此设计部分电路构建锁定电子链路;通过将重复频率的4次谐波和载波包络偏移频率锁定到商用铷钟,实现了对光学频率梳的高精度锁定。测量结果表明,1s 计数门控时间下的重复频率和偏移频率标准偏差分别为0.65 mHz和1.76 mHz,100 s采样时间时下的Allan偏差分别为1.74×10-13和1.80×10-11。第三,研究了基于双倍周期锁模光纤激光器的光梳锁定机制和锁定结果。通过优化激光腔内的OFS-980长度,设计了一种仅改变泵浦偏置电流就可实现基本被动锁模和双倍周期锁模之间切换,且两种状态下输出脉冲特性相仿的光纤激光器。 研究表明,双倍周期锁模产生的新梳齿模与原梳齿模强烈相关并具有一致的载波包络偏移频率,采用反馈控制腔长和激光泵浦功率的锁定方式同样适用。此外,仅改变泵浦偏置电流,经同一f-2f自差拍系统和与双倍周期锁模完全相同的锁定电路,还实现了基本锁模运转下的光梳锁定,从而在同一光纤系统实现了两种不同梳齿间隔的相位锁定光梳及其相互之间的切换。以上研究结果对研制实用化的低噪声光纤激光频率梳以满足光频计量、光梳光谱和微波产生等领域的应用需求具有重要的参考价值。

各种频率测量方法验证-详细

频率测量方法: 1 技巧离散傅立叶方法 设余弦输入信号:)cos()(φω+=t X t x ,其中φ,X 分别为信号的幅值和初相角。对)(t x 以 N 50的采样频率进行采样,则可得采样序列{})(k x : )50cos()(φω +=N k X k x (1) 同时)(t x 可表示为 2 )(*t j t j e x e x t x ωω-+= (2) 由全周傅氏算法,有 ∑-=-+=1 2)(2?N k N k j r e r k x N x π (3) (2)代入(3),考虑到)50(2f ?+=πω,则有 )]1(100)12([5022 * ]100)12([50112 2sin 22sin ?-++-+?-+-+?+=N r N r f N j r N r f N j r e N N x e N N x x ππθθθθ (4) 其中N f 5021?=πθ,N f ) 502(22?+=πθ 令)] 1002(50[ +?=f N j e a π *********************************************************************** α=[y(i) + y(i-2)+sqrt( ((y(i)+y(i-2))^2 – 4y(i-1)^2 ) ]/ (2 * y(i-1)) 1 11 1jb a jd c ++ 其中: )1(21-*=i real a )1(21-*=i imag b a i real i real c +-+=)2()(1 a d i imag i imag d 2)2()(1+ -+= [][][] )1()1(4)2()()2()(222 2 -+-*--+--+=i imag i real i imag i imag i real i real c

单片机的频率测量技术

基于8051单片机的频率测量技术 0引言 随着无线电技术的发展与普及,"频率"已经成为广大群众所熟悉的物理量。而单片机的出现,更是对包括测频在内的各种测量技术带来了许多重大的飞跃,然而,小体积、价廉、功能强等优势也在电子领域占有非常重要的地位。为此.本文给出了一种以单片机为核心的频率测量系统的设计方法。 1 测频系统的硬件结构 测量频率的方法一般分为无源测频法、有源测频法及电子计数法三种。无源测频法(又可分为谐振法和电桥法),常用于频率粗测,精度在1%左右。有源比较法可分为拍频法和差频法,前者是利用两个信号线性叠加以产生拍频现象,再通过检测零拍现象进行测频,常用于低频测量,误差在零点几Hz;后者则利用两个非线性信号叠加来产生差频现象,然后通过检测零差现象进行测频,常用于高频测量,误差在±20 Hz左右。以上方法在测量范围和精度上都有一定的不足,而电子计数法主要通过单片机进行控制。由于单片机的较强控制与运算功能,电子计数法的测量频率范围宽,精度高,易于实现。本设计就是采用单片机电子计数法来测量频率,其系统硬件原理框图如图1所示。 为了提高测量的精度,拓展单片机的测频范围,本设计采取了对信号进行分频的方法。设计中采用两片同步十进制加法计数器74LS160来组成一个100分频器。该100分频器由两个同步十进制加法计数器74LS160和一个与非门74LS00共同设计而成。由于一个74LS160可以分频十的一次方,而当第一片74LS160工作时,如果有进位,输出端TC便有进位信号送进第二片的CEP端,同时CET也为高电平,这样两个工作状态控制端CET、CEP将同时为高电平,此时第二片74LS160将开始工作。

一种全同步数字频率测量方法的研究

一种全同步数字频率测量方法的研究 摘要:在频率测量过程中,±1个计数误差通常是限制频率测量精度进一步提高的重要原因。在分析±1个计数误差产生原因的基础上,提出了一种利用被测信号、时钟基准和测量门限相位的全同步来消除计数误差的频率测量方法,给出了基于FPGA实现上述测量方法的实验原型和实验对比结果。 关键词:相位同步频率测量 FPGA 频率测量是电子测量技术中最基本的测量之一。工程中很多测量,如用振弦式方法测量力、时间测量、速度测量、速度控制等,都涉及到频率测量,或可归结为频率测量。频率测量方法的精度和效能常常决定了这些测量仪表或控制系统的性能。频率作为一种最基本的物理量,其测量问题等同于时间测量问题,因此 频率测量的意义更加显然。 常用数字频率测量方法有M法、T法和M/T法。M法是在给定的闸门时间内测量被测信号的脉冲个数,进行换算得出被测信号的频率。这种测量方法的测量精度取决于闸门时间和被测信号频率。当被测信号频率较低时将产生较大误差,除非闸门时间取得很大。所以这种方法比较适合测量高频信号的频率。T法是通过测量被测信号的周期然后换算得出被测信号的频率。这种测量方法的测量精度取决于被测信号的周期和计时精度,当被测信号频率较高时,对计时精度的要求就很高。这种方法比较适合测量频率较低的信号。M/T法具有以上两种方法的优点,它通过测量被测信号数个周期的时间然后换算得出被测信号的频率,可兼顾 低频与高频信号,提高了测量精度。 但是,M法、T法和M/T法都存在±1个字的计数误差问题:M法存在被测闸门内±1个被测信号的脉冲个数误差,T法或M/T法也存在±1个字的计时误差。这个问题成为限制测量精度提高的一个重要原因。本文在以上方法的基础上,提出了一种新的频率测量方法,该方法利用全同步方法消除限制测量精度提高的±1数字误差问题,从而使频率测量的精度和性能大为改善。 1 全同步数字频率测量方法的原理 M/T法是目前使用比较广泛的一种频率测量方法。其核心思想是通过闸门信号与被测信号同步,将闸门时间τ控制为被测信号周期的整数倍。测量时,先打开参考闸门,当检测到被测信号脉冲沿到达时开始计时,对标准时钟计数;参考闸门关闭时,计时器并不立即停止计时,而是待检测到被测信号脉冲沿到达时才停止计时,完成测量被测信号整数个周期的过程。测量的实际闸门时间与参考闸门时间可能不完全相符,但最大差值不超过被测信号的一个周期。M/T法测量原 理如图1所示。

实验二频率测量

实验二频率测量 一、实验的目的和要求 应用所学过的微波技术有关理论知识,理解和掌握微波频率的测量方法,了解晶体检波器的工作原理,掌握晶体检波器在微波测量中的应用。 二、实验内容 1?掌握微波频率计(PX16)和晶体检波器(BD20-4)的工作原理和使用方法。2?了解定向耦合器(BD20-5)、H面弯波导(BD20-14)等微波元器件的结构、原理和使用方法。 三、实验原理 在微波测量中,测量频率的方法很多,本实验所采用的是利用圆柱形谐振腔通过耦合吸收传输波导中的能量而使传输波导能量减少的方法。 本实验的微波测量系统的组成如图一所示 下面叙述有关部分的功能和工作原理 1.定向耦合器(BD20-5) 定向耦合器的外形成十字形,它的耦合元件是主副波导相对宽边之间的一对十字槽,能量通过这一对十字槽耦合到副波导中。当主波导的能量沿正方向传输时,副波导耦合所得能量在它的传输方向是迭加,而与此相反的方向则互相抵消。副波导中的这一端装有一匹配负载,以吸收未抵消尽的能量。 本实验是利用副线中传输的能量进行频率测量。 2.H面弯波导(BD20-14) H面弯波导采用平缓弧形转弯,改变波导宽边的轴线。由于波导之间的连接 是硬连接,因此根据传输方向的改变和微波元器件所放位置的需要,衔生出E 面、H面的各种弯波导、扭波导等器件以供测量传输中选用。 3.微波频率计(PX16) 微波频率计是由传输波导与圆柱形谐振腔和直读显示机构构成。它利用长方形孔磁耦合来激励,谐振腔的活塞为抗流形式。此频率计是吸收直读式频率计。

当频率计的腔体谐振频率与被测频率一致时,由指示器可明显看出传输功率有个明显的跌落4. 晶体检波器(BD20-4) 微波测量中常用经晶体检波器的感应电压来反映微波功率的大小。 晶体检波器由前置三螺钉调配器、晶体管座和调节活塞组成。螺钉调配器的原 理与支节匹配的原理相同。晶体管座是一节可以插入晶体管的波导。当晶体插入 时,相当于在波导中引入一个电的探针,感应电压经过晶体检波,它的输出接到指 示器上,可以得到微波功率的相对指示。调节活塞用来使晶体处于驻波的腹点以得 到最大指示。 四、实验步骤 1?将测量线上Q9电线接头拔下,接头连接到晶体检波器Q9插座上。本实验选频放 大器将指示晶体检波器输出的大小。 2?调节晶体检波器的短路活塞圆盘,使晶体检波管的位置处于波腹点,选频放大器指示最大。 3?分别仔细调节晶体检波器的三个螺钉。(上面二个,下面一个),使其匹配, 获得最大指示。可通过调节选频放大器“分贝”、“增益”使指示在表头12?23的位置左右。 4.重复2、3步骤 5?缓慢旋转频率计转盘,并观察选频放大器的表头指针的变化。当表头指针突然跌 落,细调指针到最小点。读取频率计二横红尺间与竖红线的交叉点的刻度值。此值 即为信号源的工作频率。例:信号源的工作频率置于10.00GHz,则可在频 率计10.00GHz附近寻找吸收峰。此时频率计刻度若为10.05GHz,则信号源的实际工 作频率为10.05GHz。 思考题: 1.吸收式频率计使用哪些微波工作原理? 2.本实验中晶体检波器起什么作用?

相关主题
文本预览
相关文档 最新文档