当前位置:文档之家› 雷达技术 第三章 雷达接收机8-11

雷达技术 第三章 雷达接收机8-11

侦察雷达数字中频接收机的设计与实现

文章编号:1001-893X(2009)02-0038-05 侦察雷达数字中频接收机的设计与实现? 杨春 (中国西南电子技术研究所,成都610036) 摘 要:针对传统模拟接收机在实现方式上的不足,提出了侦察雷达数字化接收机的性能改进方案。并对数字中频中多项关键技术进行原理分析,给出了雷达中频数字化具体实现方案,同时给出了一个比较全面的数字中频测试方法。 关键词:侦察雷达;数字化接收机;中频采样;数字本振;镜频抑制度 中图分类号:TN959.1 文献标识码:A Design and Implementation of the Digital Intermediate Frequency Receiver for a Reconnaissance Radar YANG Chun (Southwest China Institute of Electronic Technology,Chengdu 610036,China) Abstract:In allusion to the defect of analog receiver,performace improvement scheme of digital intermediate frequency(IF)receiver for a surveillance radar is proposed,and theory of several key technologies is analysed.The implementation scheme of IF digitization for reconnaissance radar is given. A comprehensive digital IF test method is provided. Key words:reconnaissance radar;digital receiver;intermediate frequency sample;digital local oscillator;image suppression 1 引言 传统雷达接收机正交解调在模拟域进行,I/Q 通道混频器要求同频率相位相差90°,两个通道通过滤波器后,信号增益也要求完全一致。如果在信号带宽上所有频点不能满足这个要求,则后端信号处理会因为I/Q通道的幅度不一致在脉压后产生距离旁瓣和相位正交性不好引入虚假目标,同时传统模拟接收机每个通道都需要一个A/D,两个A/D的差异会进一步降低系统性能。 随着集成电路的高速发展,尤其是高速A/D变换器的发展,使得直接中频采样成为可能,即直接将模拟中频信号通过A/D变换为数字信号,同时在数字域实现正交解调,生成数字I、Q基带信号。与传统模拟方法相比,直接中频采样具有更高的精度与稳定性。尤其是数字本振不受环境变化影响,没有温度漂移,同时数字本振的幅度一致和相位正交性比模拟本振高一个数量级。本文探讨了侦察雷达数字中频的实现方案,给出了一种基于多相滤波器结构的数字接收机实现方法,实现了对60 MHz 调制的中频信号(带宽5 MHz)数字下变频设计,并给出了最后试验结果。 ?收稿日期:2008-12-03;修回日期:2009-01-21

雷达原理复习

1、雷达的任务:测量目标的距离、方位、仰角、速度、形状、表面粗糙度、介电特性。 雷达是利用目标对电磁波的反射现象来发现目标并测定其位置。 当目标尺寸小于雷达分辨单元时,则可将其视为“点”目标,可对目标的距离和空间位置角度定位。目标不是一个点,可视为由多个散射点组成的,从而获得目标的尺寸和形状。采用不同的极化可以测定目标的对称性。 任一目标P所在的位置在球坐标系中可用三个目标确定:目标斜距R,方位角,仰角 在圆柱坐标系中表示为:水平距离D,方位角,高度H 目标斜距的测量:测距的精度和分辨力力与发射信号的带宽有关,脉冲越窄,性能越好。目标角位置的测量:天线尺寸增加,波束变窄,测角精度和角分辨力会提高。 相对速度的测量:观测时间越长,速度测量精度越高。 目标尺寸和形状:比较目标对不同极化波的散射场,就可以提供目标形状不对称性的量度。 2、雷达的基本组成:发射机、天线、接收机、信号处理机、终端设备 3、雷达的工作频率:220MHZ-35GHZ。L波段代表以22cm为中心,1-2GHZ;S波段代表10cm,2-4GHZ;C波段代表5cm,4-8GHZ;X波段代表3cm,8-12GHZ;Ku代表,12-18GHZ;Ka代表8mm,18-27GHZ。 第二章雷达发射机 1、雷达发射机的认为是为雷达系统提供一种满足特定要求的大功率发射信号,经过馈线和收发开关并由天线辐射到空间。 雷达发射机可分为脉冲调制发射机:单级振荡发射机、主振放大式发射机;连续波发射机。 2、单级振荡式发射机组成:大功率射频振荡器、脉冲调制器、电源 触发脉冲 脉冲调制器大功率射频振荡器收发开关 电源高压电源接收机 主要优点:结构简单,比较轻便,效率较高,成本低;缺点:频率稳定性差,难以产生复杂的波形,脉冲信号之间的相位不相等 3、主振放大式发射机:射频放大链、脉冲调制器、固态频率源、高压电源。射频放大链是发射机的核心,主要有前级放大器、中间射频功率放大器、输出射频功率放大器 射频输入前级放大器中间射频放大器输出射级放大器射频输出固态频率源脉冲调制器脉冲调制器 高压电源高压电源电源 脉冲调制器:软性开关调制器、刚性开关调制器、浮动板调制器 4、现代雷达对发射机的主要要求:发射全相参信号;具有很高的频域稳定度;能够产生复杂信号波形;适用于宽带的频率捷变雷达;全固态有源相控阵发射机 5、发射机的主要性能指标: 工作频率和瞬时带宽:雷达发射机的频率是按照雷达的用途确定的。瞬时带宽是指输出功率变化小于1bB的工作频带宽度。 输出功率:雷达发射机的输出功率直接影响雷达的威力范围以及抗干扰的能力。雷达发

雷达原理

一、绪论 雷达:无线电探测与测距。利用电磁波对目标检测、定位、跟踪、成像和识别。 雷达利用目标对电磁波的反射或散射现象来发现目标并测定其位置的。 组成框图 雷达测量原理 雷达发射信号: 雷达接收信号: 雷达利用收发信号之间的相关性获取目标信息 雷达组成: 天线:向确定的方向发射和接收特定频段的电磁波 收发开关: 发射状态将发射机输出功率接到天线,保护接收机输入端 接收状态将天线接收信号接到接收机,防止发射机旁路信号 发射机:在特定的时间、以特定的频率和相位产生大功率电磁波 接收机:放大微弱的回波信号,解调目标信息 雷达的工作频率: 工作频率范围:22mhz--35ghz 扩展范围:2mhz--94ghz 绝大部分雷达工作在:200mhz--10000ghz 雷达的威力范围:最大作用距离、最小作用距离、最大仰角、最小仰角、方位角范围 分辨力:区分点目标在位置上靠近的能力 距离分辨力:同一方向上两个目标之间最小可区别的距离 角度分辨力:在同一距离上的两个不同方向的点目标之间最小能区别的角度 数据率:雷达对整个威力范围内完成一次搜索所需要的时间倒数,也就是单位时间内雷达所能提供对一个目标数据的次数。 跟踪速度:自动跟踪雷达连续跟踪运动目标的最大可能速度 发射功率的和调制波形: 发射功率的大小直接影响雷达的作用距离

发射信号的调制波形: 早期简单脉冲波形,近代采用复杂波形 脉冲宽度:脉冲雷达发射信号所占的时间。影响探测能力和距离分辨力 重复频率:发射机每秒发射的脉冲个数,其倒数是重复周期。决定单值测距的范围,影响不模糊速区域大小 天线波束形状天线:一般用水平面和垂直面内的波束宽度来表示 天线的扫描方式:搜索和跟踪目标时,天线的主瓣按照一定规律在空间所作的反复运动。机械性扫描和电扫描 接收机的灵敏度:通常规定在保证50%、90%的发现概率条件下,接收机输入端回波信号的功率作为接收机的最小可检测信号功率。这个功率越小接收机的灵敏度越高,雷达的作用距离越远。 显示器的形式和数量:雷达显示器是向操纵人员提供雷达信息的一种终端设备,是人际联系的一个环节。 电子战对抗中的雷达: 电子战(EW ):敌我双方利用无线电电子装备或器材所进行的电磁信息斗争,包括电子对抗和电子反对抗。 电子对抗(ECM ):为了探测敌方无线电电子装备的电磁信息(电磁侦察),削弱或破坏其使用效能所采取的一切战术、技术措施(电子干扰、伪装、隐身和摧毁) 电子反对抗(ECCM ):在敌方实施电子对抗的条件下,保证我方有效采用电磁信息所采取的一切战术、技术措施(反侦察、抗干扰、反伪装、反隐身、反摧毁) 雷达反干扰 天线抗干扰:低旁瓣、旁瓣对消、波束控制、随机扫描 发射机抗干扰:提高有效辐射功率、频率捷变、频率编码、频率分集、脉冲压缩、波形隐蔽、窄脉冲、重频时变 接收机、信号处理机抗干扰:接收机抗饱和、重频、脉宽鉴别、MTI 、MTD 、积累检测 二、发射机 发射机任务:产生大功率高频振荡发射信号。脉冲雷达要求发射机产生一定宽度、一定重复频率、一定波形的大功率射频脉冲列 基本类型:连续波发射机、脉冲调制发射机(单极振荡式发射机、主振荡式发射机) 输出功率:发射机送到天线输入端的功率 峰值功率:脉冲期间发射机输出功率的平均值(不要过分增大法设计的峰值功率) 平均功率:脉冲重复周期内输出功率的平均值: 工作比D: 常规脉冲雷达工作比0.001 脉冲多普勒雷达工作比10-2 ~10-1量级 连续波雷达工作比100% 总功率:发射机输出功率与输入功率之比 主振放大式发射机特别注意改善输出级效率 信号形式: 信号形式由雷达体制决定 常规脉冲雷达为简单脉冲波形,特殊体制雷达为复杂调制波形 t r av P T P τ=r r T F D ττ= =

雷达工作原理

一、雷达工作原理、专业术语解释 雷达是军事电子对抗的尖端技术和设备,是作为21世纪反恐和安保的技术新标准(家庭安全警戒网) 幕帘技术同红外技术相似,只是它的防范区域与普通红外不同,顾名思义就是象一道帘子一样,适合于整个平面防范。 A)幕帘夹角 幕帘的两道之间的夹角。 B)幕帘张角 每道幕帘展开扇形的两条边之间的夹角。 C)探测范围

探测范围指雷达正常工作的感应范围,即雷达能够探测到在此范围以内的所有物体运 动从而产生报警状态。 D)探测距离 雷达在正常工作下所能探测到的最远距离,雷达分为四档;分别是2-3m、3-4m、5-6m、6-8m。 E)发射距离 报警系统中无线器件在被触发后将无线报警信号以电磁波的形式发射出去的最远距离,雷达在空旷地带为100M。 F)发射频率 电磁波发射的频率用HZ计算,国家电磁波管理委员会规定的公用波段频率是315/433MHZ G)关于护窗雷达的防宠物功能 护窗雷达发展到今天,在技术上已经比较成熟,防小宠物是护窗雷达的一种重要的功能,慑力护窗雷达对抗小宠物干扰的处理方式有两种: 一种是物理方式,即通过菲涅尔透镜的分割方式的改变来降低由于小宠物引起误报的概率,这种方式是表面的,效果也是有限的。第二种方式是采用对探测信号处理分析方式,主要是对探测的信号进行数据采集,然后分析其中的信号周期,幅度,极性。这些因素具体反应出移动物体的速度、热释红外能量的大小,以及单位时间内的位移。探测器中的微处理器将采集的数据进行分析比较,由此判断移动物体可能是人是小动物。 由此看来,我们要注意的是护窗雷达的防小宠物的功能是相对的。这种相对性包括两个方面,一个是防宠物是相对的,相对于没有防宠物功能的探测器其误报率是大大降低了,它对小宠物的数量和大小有一定限度的。第二方面是安装位置是要有一定要求的,并不是随意的安装就可以达到防小宠物功能。 效果 一旦整幢别墅设防,将形成无形的雷达警戒网,有效的将整幢别墅警戒起来,如果贼匪将在深夜靠近别墅时,男警立刻通通碟,紧接着高达95分贝的防恐警和国际反恐广播立刻炸响,十二束红眩捕俘灯和墙壁上太阳灯交替发射,同时雷达第一时间了射无线电信号给装在室内的主机,主机会告诉你哪个位置在报警,并第一时间拨打您

(完整版)雷达组成及原理.doc

雷达的组成及其原理 课程名称:现代阵列并行信号处理技术 姓名:杜凯洋 学号: 2015010904025 教师:王文钦教授

一.简介 雷达( Radar,即 radio detecting and ranging),意为无线电搜索和测距。它是运用各种无线电定位方法,探测、识别各种目标,测定目标坐标和其它情报的装置。在现代军事和生产中,雷达的作用越来越显示其重要性,特别是第二次世界大战,英国空军和纳粹德国空军的“不列颠”空战,使雷达的重要性显露的非常清楚。雷达由天线系统、发射装置、接收装置、防干扰设备、显示器、信号处理器、电源等组成。其中,天线是雷达实现大空域、多功能、多目标的技术关键 之一;信号处理器是雷达具有多功能能力的核心组件之雷达种类很多,可按多种方法分类: (1)按定位方法可分为:有源雷达、半有源雷达和无源雷达。 (2)按装设地点可分为;地面雷达、舰载雷达、航空雷达、卫星雷达等。 (3)按辐射种类可分为:脉冲雷达和连续波雷达。 (4)按工作被长波段可分:米波雷达、分米波雷达、厘米波雷达和其它波段 雷达。 (5)按用途可分为:目标探测雷达、侦察雷达、武器控制雷达、飞行保障雷达、气象雷达、导航雷达等。 二.雷达的组成 (一)概述 1、天线:辐射能量和接收回波(单基地脉冲雷达),(天线形状,波束形状,扫描方式)。 2、收发开关:收发隔离。 3、发射机:直接振荡式(如磁控管振荡器),功率放大式(如主振放大式),(稳定,产生复杂波形,可相参处理)。 4、接收机:超外差,高 频放大,混频,中频放大,检波,视频放大等。(接收机部分也进行一些信号处理,如匹配滤波等),接收机中的检波器通常是包络检波,对于多普勒处理则采用相位检波器。 5、信号处理:消除不需要的信号及干扰而通过或加强由目标产生的回波信号,通常在检测 判决之前完成( MTI,多普勒滤波器组,脉冲压缩),许多现代雷达也在检测判决之后完成。 6、显示器(终端):原始视频,或经过处理的信息。 7、同步设备(视频综合器):是雷达机的频率和时间标准(只有功率放大式(主振放大式) 才有)。 (二)雷达发射机 1、单级振荡式:大功率电磁振荡产生与调制同时完成(一个器件)

Ku波段雷达接收机设计

Ku 波段雷达接收机设计 摘要阐述了Ku 波段雷达接收机的工作原理进行了阐述,并对设计方案与 测试结果进行了分析。Ku 波段接收机由低噪声变频单元、中频放大、本振和 电源4 个独立单元组成。对各单元电路的设计进行了分析,给出了元器件选型以及仿真结果。试验结果表明,Ku 波段接收机的噪声系数≤1.0 dB、增益≥55 dB、输入输出驻波,相位噪声杂散,镜像抑制等指标均满足实用技术要求,并根据测试结果对Ku 波段接收机部分指标提出了进一步优化的方法。关 键词雷达接收机;噪声系数;增益随着现代调制体制的快速发展,无线频谱的利用率日益加剧,对接收机的线性度、动态范围、灵敏度、抗干扰能力、适应性等方面的性能和指标提出了越来越高的要求。这就要求现代通用接收机在保证信号检测能力的前提下:尽可能地提高接收机的线性度,使信号失真最小、误码率最低;尽可能地展宽接收机的动态范围,使接收机的适应度更大、抗干扰能力更强。1 工作原理Ku 波段雷达接收机主要由低噪声混频单元,中频放大单元,本振单元及电源部分组成,信号经天线接收后首先进入低噪声放大单元,对信号进行放大,选频以及混频。之后进入中频放大单元,对信号进行放大,滤波和输出。接收机电路原理框图如图1 所示。2 电路优化设计2.1 低噪声变频单元设计低噪声变频单元主要由低噪声放大器、微带带通滤波器、射频放大器和镜像抑制混频器组成。增益、噪声系数、带外抑制、镜像抑制度等是重要的指标,不仅是下变频技术,还有低噪声放大器LNA 的设计都是整个 通信系统的设计重点。(1)低噪声放大器。本接收机的最前端是LNA,它的噪声决定了整机噪声系数;考虑到噪声指标要求较高,为减小输入口的损耗,故接收机输入信号由波导口输入后不再加隔离器,这就要求第一级低噪声放大器在保证自身噪声系数低的情况下,还应注意其输入端和波导口的驻波匹配。为

雷达原理第三章

第三章雷达接收机 通过适当的滤波将天线上接收到的微弱高频信号从噪声和干扰中选择出来,并经放大和检波后,送至显示器、信号处理器或由计算机控制的雷达终端设备中。 第一节雷达接收机的组成和 主要质量指标 超外差接收机的组成 接收机保护器 低噪高放 混频器 中放 检波器 视放 本振 高频输入 至终端 高频部分 发射机工作时,使接收机输入端短路,并对大信号限幅保护 提高灵敏度,降低接收机噪声系数,热噪声增益 保证本振频率与 发射频率差频为中频,实现变频 视频部分 至质量指标部分 超外差技术 如上图所示,当接收的电波频率f RF 变化时,本振频率f L 和选频滤波器的中心频率f 0= f RF 能够同步改变,从而使输出的f IF 固定不变,这种技术称为外差技术,当f IF 低于f RF 而高于信号带宽B 时就称为超外差技术。超外差技术具有灵敏度高、选择性好、工作稳定、中频部分可标准化等优点。 选频滤波 混频器 本振滤波解调滤波 无线电波 解调输出f L f IF f RF 返回框图 高频部分: (1)T/R 及保护器:发射机工作时,使接收机输入端短路,并对大信号限幅保护。 (2)低噪声高放:提高灵敏度,降低接收机噪声系数,热噪声增益。 (3)Mixer ,LD ,AFC :保证本振频率与发射频率差频为中频,实现变频。 返回框图

中频部分及AGC: (1)匹配滤波: (2)AGC:auto gain control. 视频部分: (1)检波:包络检波,同步(频)检波(正交两路),相位检波。 (2)放大:线性放大,对数放大,动态范围。 返回框图 主要质量指标 1.灵敏度:S imin,用最小可检测信号功率S imin表示,检测灵敏度,给定虚警概率P fa,达到指定检测概率P d 时的输入端的信号功率: 通常所需接收机gain= 120 ~ 160 dB, S imin=-120~-140dbw 主要由中频完成。 2. 工作频带宽度:指瞬时工作频率范围,频率捷变雷达要求的接收机工作频带宽度为10~20% 。 3.动态范围:表示接收机能够正常工作所允许的输入信号强度的变化范围。 过载时的S i/S i min,80~120 dB 4. 中频的选择与滤波特性: 中频输出频率f o≥0.5?f R ,中频选择通常选择30M~500M。抑制镜频的效果,在实际工作中还与发射波形特性、接收机工作带宽有关。 经混频后进入中频信道的两个信号在射 频上对称地位于本振频率f L两边互为镜 像,因此将这种现象称为镜频干扰。当 射频选频滤波器的选频特性一定时,混 频器输出的中频频率越高,两个镜像频 率间相隔越远,镜频抑制的效果越好。5.工作稳定性和频率稳定度:指当环境变化时,接收机性能参数受到影响的程度,频率稳定度,信号处理,采取频率稳定度、相位稳定度较高的本振,“稳定本振”。 6.抗干扰能力:杂波干扰(MTI,MTD)、有源干扰、假目标干扰。 7.微电子化和模块化结构。MMIC 微波单片集成电路、IMIC 中频单片集成电路、ASIC 专用集成电路。

2015雷达原理课后作业 (1)

2015年雷达原理课程作业 2015年春季第2周(3月13日)作业 1.简述雷达系统为什么能够探测并定位远程运动目标。 2.简述雷达系统是如何探测并定位远程运动目标的。 3.某单基地雷达发射矩形脉冲信号,工作频率为f0,发射脉冲前沿的初相为?0,有1个目标位于 距离r处,请给出目标接收脉冲前沿的初相表达式(须有必要的推导过程) 4.请画出雷达发射脉冲串的射频信号波形示意图,并标明必要的雷达信号参数(如脉冲时宽等)。 5.cos(2πf0t +?0)与cos(2πf0t +12πf d t +?1)是否是相参信号?其中f d、?0与?1都是未知常数。 6.某目标雷达回波信号的信噪比SNR=71,请换算成dB值并给出笔算过程。 7.有人说“雷达系统是一种通信系统。”你是否认同此观点,并请给出2条以上理由。 8.解调后的雷达基带信号波形为什么可以用复数表示。请画出IQ正交解调的原理框图。 9.请列举至少2项可能影响雷达目标回波信号相位信息的实际因素。 10.为什么现代多功能雷达大都采用主振放大式发射机?举例说明何时可采用单级振荡式发射机。 2015年春季第3周(3月20日)作业 1.雷达信号带宽为B,请从有利于目标检测的角度简述雷达接收机带宽应如何选取。 2.简述噪声系数的定义。雷达接收机噪声系数的下限是多少dB? 3.简述接收机噪声带宽与接收机动态范围的定义。 4.某雷达固定在某地进行一整年的性能测试,一年内雷达架设地点、架设方式、软硬件等自身条 件没有发生任何变动,农舍及其与雷达之间的 周边地貌环境也没用任何变化。冬天时,它能 检测到对面山顶的农舍,但在夏天时,它却经 常检测不到该农舍,请解释原因。 5.某雷达发射矩形脉冲串信号,载频为f0,脉冲 宽度为τ,幅度恒定,没有频率调制和相位调 制。请问该雷达的目标回波通过匹配滤波后, 信噪比(SNR)能够提高多少dB? 6.硬件系统完全相同的两部雷达接收机的灵敏 度是否也一定相同?请根据雷达接收机灵敏 度公式简述理由。 7.简述离散傅里叶变换DFT与窄带带通滤波器 之间的联系?已知目标信号频率f t=1.5kHz, 信号序列采样率f s=10kHz,序列长度τ= 1.6ms,所有样点幅度为1,请写出该目标信 号匹配滤波器的系数序列h(n)或其表达式。 8.请对教材第64页图3.18(参见右图)进行简 要的物理解读,即图中显示哪些规律。 9.请画出超外差式雷达接收机的原理框图,并简述其中第1级高频放大器的指标要求及其作用。 10.请列举雷达接收信号中4种可能组成成分的名称及定义,并简述相参处理对各信号成分可能产 生的作用是什么?

《雷达原理》知识点总结

【雷达任务:测目标距离、方位、仰角、速度;从目标回波中获取信息 【雷达工作原理:发射机在定时器控制下,产生高频大功率的脉冲串,通过收发开关到达定向天线,以电磁波形式向外辐射。在天线控制设备的控制下,天线波束按照指定方向在空间扫描,当电磁波照射到目标上,二次散射电磁波的一部分到达雷达天线,经收发开关至接收机,进行放大、混频和检波处理后,送到雷达终端设备,能判断目标的存在、方位、距离、速度等。 【影响雷达性能指标:脉冲宽度(窄),天线尺寸(大),波束(窄),方向性。 【测角:根据接收回波最强时的天线波束指向 【雷达是如何获取目标信息的? 【雷达组成:天线,发射机,接收机,信号处理机,终端设备(电源,显示屏),收发转换开关 【发射机工作原理:为雷达提供一个载波受到调制的大功率射频信号,经馈线和收发开关由天线辐射出去。 【发射机基本组成:单级振荡式:脉冲调制器,大频率射频振荡器,电源。 主振放大式:脉冲调制器,中间和输出射频功放,电源,定时器,固体微波源(主控振荡器,用来产生射频信号) 工作过程:(1)单级振荡式:信号由振荡器产生,受调制 (2)主振放大式:信号由固体微波源经过倍频后产生,经射频放大链进行放大,各级都需调制(脉冲调制器),定时器协调工作。 优缺点:单击振荡式:简单经济轻便,频率稳定度差,无复杂波形; 主振放大式:频率稳定度高,相位相参信号,有复杂波形,适用频率捷变雷达【发射机质量指标:(1)工作频率(波段)(2)输出功率:影响威力和抗干扰能力。峰值功率(脉冲期间射频振荡的平均功率)和平均功率(脉冲重复周期内输出功率的平均值)。(3)总效率Pt/P。(4)调制形式:调制器的脉冲宽度,重复频率,波形。(5)信号稳定度/频谱纯度,即信号各项参数。 【调制器组成:电源,能量储存,脉冲形成 【调制器任务与作用:为发射机的射频各级提供合适脉冲,将一个信号载到一个比它高的信号上 【仿真线:由于雷达的工作脉冲宽度多半在微秒级别以上,用真实线长度太长,因此在实际中是用集总参数的网络代替长线,即仿真线 【刚/软性开关:刚性开关的电容储能部分放电式调制器,特点为部分放电,通电利索;软性开关的人工线性调制器,特点为完全放电,效率高,功率大。 【接收机指标:(1)灵敏度:表示接收机接受微弱信号的能力。提高灵敏度,减小噪声电平,提高接收机增益。(2)工作频率宽度:表示接收机瞬时工频范围,提高:高频部件性能(3)动态范围:表示正常工作时接收信号强度的范围,提高:用对数放大器增益控制电路抗干扰(4)中频滤波特性:减小噪声,带宽>回波时,噪声大。(5)工作稳定度(6)频率稳度(7)抗干扰能力(8)噪声系数 【收发软换开关工作原理:脉冲雷达天线收发共用,需要一个收发软换开关TR,发射时,TR使天线与发射机接通,与接收机断开,以免高功率发射信号进入接收机使之烧毁;接收时,天线与接收机接通,与发射机断开,以免因发射机旁路而使微弱接收信号受损。 【收发开关组成及类型:高频传输线,气体放电管。分为分支线型和平衡式。 【显示器分类:距离,平面,高度,情况和综合,光栅扫描。 【显示器列举:距离(A型J型A/R型)平面(PPI)高度(E式RHI) 【A型显示器组成:扫掠形成电路,视频放大电路,距标形成电路。

雷达原理复习

第一章绪论 1、雷达的任务:测量目标的距离、方位、仰角、速度、形状、表面粗糙度、介电特性。 雷达是利用目标对电磁波的反射现象来发现目标并测定其位置。 当目标尺寸小于雷达分辨单元时,则可将其视为“点”目标,可对目标的距离和空间位置角度定位。目标不是一个点,可视为由多个散射点组成的,从而获得目标的尺寸和形状。采用不同的极化可以测定目标的对称性。 β任一目标P所在的位置在球坐标系中可用三个目标确定:目标斜距R,方位角α,仰角 在圆柱坐标系中表示为:水平距离D,方位角α,高度H 目标斜距的测量:测距的精度和分辨力力与发射信号的带宽有关,脉冲越窄,性能越好。目标角位置的测量:天线尺寸增加,波束变窄,测角精度和角分辨力会提高。 相对速度的测量:观测时间越长,速度测量精度越高。 目标尺寸和形状:比较目标对不同极化波的散射场,就可以提供目标形状不对称性的量度。 2、雷达的基本组成:发射机、天线、接收机、信号处理机、终端设备 3、雷达的工作频率:220MHZ-35GHZ。L波段代表以22cm为中心,1-2GHZ;S波段代表10cm,2-4GHZ;C波段代表5cm,4-8GHZ;X波段代表3cm,8-12GHZ;Ku代表2.2cm,12-18GHZ;Ka代表8mm,18-27GHZ。 第二章雷达发射机 1、雷达发射机的认为是为雷达系统提供一种满足特定要求的大功率发射信号,经过馈线和收发开关并由天线辐射到空间。 雷达发射机可分为脉冲调制发射机:单级振荡发射机、主振放大式发射机;连续波发射机。 2、单级振荡式发射机组成:大功率射频振荡器、脉冲调制器、电源 触发脉冲 脉冲调制器大功率射频振荡器收发开关 电源高压电源接收机 主要优点:结构简单,比较轻便,效率较高,成本低;缺点:频率稳定性差,难以产生复杂的波形,脉冲信号之间的相位不相等 3、主振放大式发射机:射频放大链、脉冲调制器、固态频率源、高压电源。射频放大链是发射机的核心,主要有前级放大器、中间射频功率放大器、输出射频功率放大器 射频输入前级放大器中间射频放大器输出射级放大器射频输出固态频率源脉冲调制器脉冲调制器 高压电源高压电源电源 脉冲调制器:软性开关调制器、刚性开关调制器、浮动板调制器 4、现代雷达对发射机的主要要求:发射全相参信号;具有很高的频域稳定度;能够产生复杂信号波形;适用于宽带的频率捷变雷达;全固态有源相控阵发射机 5、发射机的主要性能指标:

雷达原理复习

雷达原理复习 第一章绪论 1、雷达的任务:测量目标的距离、方位、仰角、速度、形状、表面粗糙度、介电特性。雷达是利用目标对电磁波的反射现象来发现目标并测定其位置。 当目标尺寸小于雷达分辨单元时,则可将其视为“点”目标,可对目标的距离和空间位置角度定位。目标不是一个点,可视为由多个散射点组成的,从而获得目标的尺寸和形状。采用不同的极化可以测定目标的对称性。 ,,任一目标P所在的位置在球坐标系中可用三个目标确定:目标斜距R,方位角,仰角 ,在圆柱坐标系中表示为:水平距离D,方位角,高度H 目标斜距的测量:测距的精度和分辨力力与发射信号的带宽有关,脉冲越窄,性能越好。目标角位置的测量:天线尺寸增加,波束变窄,测角精度和角分辨力会提高。相对速度的测量:观测时间越长,速度测量精度越高。 目标尺寸和形状:比较目标对不同极化波的散射场,就可以提供目标形状不对称性的量度。 2、雷达的基本组成:发射机、天线、接收机、信号处理机、终端设备 3、雷达的工作频率:220MHZ-35GHZ。L波段代表以22cm为中心,1-2GHZ;S波段代表10cm,2-4GHZ;C波段代表5cm,4-8GHZ;X波段代表3cm,8-12GHZ;Ku代表2.2cm,12-18GHZ;Ka代表8mm,18-27GHZ。 第二章雷达发射机 1、雷达发射机的认为是为雷达系统提供一种满足特定要求的大功率发射信号,经过馈线和收发开关并由天线辐射到空间。

雷达发射机可分为脉冲调制发射机:单级振荡发射机、主振放大式发射机;连续波发射机。 2、单级振荡式发射机组成:大功率射频振荡器、脉冲调制器、电源触发脉冲 脉冲调制器大功率射频振荡器收发开关 电源高压电源接收机主要优点:结构简单,比较轻便,效率较高,成本低;缺点:频率稳定性差,难以产生复杂的波形,脉冲信号之间的相位不相等 3、主振放大式发射机:射频放大链、脉冲调制器、固态频率源、高压电源。射频放大链是发射机的核心,主要有前级放大器、中间射频功率放大器、输出射频功率放大器 射频输入前级放大器中间射频放大器输出射级放大器射频输出 固态频率源脉冲调制器脉冲调制器 高压电源高压电源电源脉冲调制器:软性开关调制器、刚性开关调制器、浮动板调制器 4、现代雷达对发射机的主要要求:发射全相参信号;具有很高的频域稳定度;能够产生复杂信号波形;适用于宽带的频率捷变雷达;全固态有源相控阵发射机 5、发射机的主要性能指标: , 工作频率和瞬时带宽:雷达发射机的频率是按照雷达的用途确定的。瞬时带宽是指输出 功率变化小于1bB的工作频带宽度。 , 输出功率:雷达发射机的输出功率直接影响雷达的威力范围以及抗干扰的能力。雷达发 PPPavtt射机的输出功率可分为峰值功率和平均功率。是指脉冲期间射频振荡的平均 Pav功率;是指脉冲重复周期内的输出功率的平均值。

雷达基本理论与基本原理

雷达基本理论与基本原理 一、雷达的基本理论 1、雷达工作的基本过程 发射机产生电磁信号,由天线辐射到空中,发射的信号一部分被目标拦截并向许多方向再辐射。向后再辐射回到雷达的信号被天线采集,并送到接受机,在接收机中,该信号被处理以检测目标的存在并确定其位置,最后在雷达终端上将处理结果显示出来。 2、雷达工作的基本原理 一般来说,会通过雷达信号到目标并从目标返回雷达的时间,得到目标的距离。目标的角度位置可以根据收到的回波信号幅度为最大时,窄波束宽度雷达天线所指的方向而获得。如果目标是运动的,由于多普勒效应,回波信号的频率会漂移。该频率的漂移与目标相对于雷达的速度成正比,根据2r d v f λ =,即可得到目 标的速度。 3、雷达的主要性能参数和技术参数 3.1 雷达的主要性能参数 3.1.1 雷达的探测范围 雷达对目标进行连续观测的空域,叫做探测范围,又称威力范围,取决于雷达的最小可测距离和最大作用距离,仰角和方位角的探测范围。 3.1.2 测量目标参数的精确度和误差 精确度高低用测量误差的大小来衡量,误差越小,精确度越高,雷达测量精确度的误差通常可以分为系统误差、随机误差和疏失误差。 3.1.3 分辨力 指雷达对两个相邻目标的分辨能力。可分为距离分辨力、角分辨力(方位分辨力和俯仰角分辨力)和速度分辨力。距离分辨力的定义:第一个目标回波脉冲的后沿与第二个目标回波脉冲的前沿相接近以致不能分辨出是两个目标时,作为可分辨的极限,这个极限距离就是距离分辨力:min ()2 c R τ ?=。因此,脉宽越小,距离分辨力越好

3.1.4数据率 雷达对整个威力范围完成一次探测所需时间的倒数。 3.1.5 抗干扰能力 指雷达在自然干扰和人为干扰(主要的是敌方干扰(有源和无源))条件下工作的能力。 3.1.6 雷达可靠性 分为硬件的可靠性(一般用平均无故障时间和平均修复时间衡量)、软件可靠性和战争条件下雷达的生存能力。 3.1.7 体积和重量 体积和重量决定于雷达的任务要求、所用的器件和材料。 3.1.8 功耗及展开时间 功耗指雷达的电源消耗总功率。展开时间指雷达在机动中的架设和撤收时间。 3.1.9 测量目标坐标或参数的数目 目标坐标是指目标的方位、斜距和仰角,此外,还指目标的速度和性质(机型、架数、敌我)。对于边扫描边跟踪雷达,还指跟踪目标批数,航迹建立的正确率。 3.2 雷达的主要技术参数 3.2.1 工作频率和工作带宽 雷达工作频率主要根据目标的特性、电波传播条件、天线尺寸、高频器件的性能以及雷达的测量精确度和功能等要求来决定 3.2.2 发射功率 分为脉冲功率和平均功率,雷达在发射脉冲信号期间所输出的功率称为脉冲功率,平均功率指一个重复周期内,发射机输出功率的平均值。 3.2.3 调制波形、脉冲宽度和重复频率 现代雷达则采用多种调制波形以供选择。脉冲宽度指发射脉冲信号的持续时间。脉冲重复频率指雷达每秒发射的射频脉冲个数,其倒数叫脉冲重复周期。 3.2.4 天线的波束形状、增益和扫描方式 天线的波束形状一般用水平和垂直面内的波束宽度来表示。天线增益用 24/G A πλ=表示。天线的主瓣在雷达的探测空域内以一定的规律运动,叫做扫

雷达的基本组成

雷达主要由天线、发射机、接收机、信号处理机和终端设备等组成。雷达发射机产生辐射所需强度的脉冲功率,其波形是脉冲宽度为K而重复周期为T的高频脉冲串。发射机现有两种类型:一种是直接震荡式(如磁控管振荡器),它在脉冲调制器控制下产 生的高频脉冲 功率被直接馈 送到天线;另一 种是功率放大 式(主振放大 式),它是由高 稳定度的频率 源(频率综合 器)作为频率基 准;在低功率电 平上形成所需波形的高频脉冲串作为激励信号,在发射机中予以放大并驱动末级功放而获得大的脉冲功率来馈给天线的。功率放大式发射机的优点是频率稳定度高且每次辐射式相参的,这便于对回波信号进行相参处理,同时也可以产生各种所需的复杂脉压波形。 发射机输出的功率馈送到天线,而后经天线辐射到空间。 脉冲雷达天线一般具有很强的方向性,以便集中辐射能量来获得较大的观测距离。同时,天线的方向性越强,天线波瓣宽度越窄,雷达测向得精度和分辨力就越高。常用的微波雷达天线是抛物面反射体,馈源放置在焦点上,天线反射体将高频能量聚成窄波束。天线波束在空间的扫描常采用机械转动天线来得到,由天线控制系统来控制天线在空间的扫描,控制系统同时将天线的转动数据送到终端设备,以便取得天线指向的角度数据。根据雷达用途的不同,波束形状可以是扇形波束,也可以是针状波束。天线波束的空间扫描也可以采用电子控制的办法,它比机械扫描的速度快,灵活性好,这就是20世纪末开始日益广泛使用的平面相控阵天线和电子扫描的阵列天线。前者在方位和仰角两个角度上均实行电扫描;后者是一位电扫描,另一维为机械扫描。 脉冲雷达的天线是收发共用的,这需要高速开关装置,在发射时,天线与发射机接通,并与接收机断开,以免强大的发射功率进入接收机把接收机高放混频部分烧毁;接收时,天线与接收机接通,并与发射机断开,以免微弱的接收功率因发射机旁路而减弱。这种装置称为天线收发开关。天线收发开关属于高频馈线中的一部分,通常由高频传输线和放电管组成,或由环行器及隔离器等来实现。 接收机多位超外差式,由高频放大(有些雷达接收机不用高频放大)、混频、中频放大、检波、视频放大等电路组成。接收机的首要任务是把微弱的回波信号放大到足以进行信号处理的电平,同时接收机内部的噪声应尽量小,以保证接收机的高灵敏度,因此接收机的第一级常采用低噪声高频放大器。一般在接收机中也进行一部分信号处理。例如,中频放大器的频率特性应设计为发射信号的匹配滤波器,这样就能在中放输出端获得最大的峰值信号噪声功率比。对于需要进行较复杂信号处理的雷达,如需分辨固定杂波和运动目标回波而将杂波滤去的雷达,则可以由典型接收机后接的信号处理机完成。 接收机中的检波器通常是包络检波器,它取出调制包络并送到视频放大器,如果后面要进行多普勒处理,则可用相位检波器替代包络检波器。

西南科技大学雷达原理试卷及答案

卷一 一、填空题(每空2分,共20分) 1、以典型单基地脉冲雷达为例,雷达主要由天线、发射机、接收机、信号处理机和终端设备等组成。 2、在满足直视距离条件下,如果保持其他条件不变(其中天线有效面积不变),将雷达发射信号的频率从1 GHz提高到4GHz,则雷达作用距离是原来的2倍。 3、雷达发射机按产生的射频信号的方式,分为单级振荡式发射机和主振放大式发射机两类。 4、某雷达脉冲宽度为1μs,脉冲重复周期为1ms,发射功率为100KW,平均功率为100 W. 5、脉冲多普勒雷达的脉冲重复频率为=1000Hz,对动目标进行检测。其多普勒频率为,能够出现盲速的多普勒频率等于1000Hz 。 6、雷达测角的方法分为两大类,即振幅法和相位法。 7、双基雷达是发射机和接收机分置在不同位置的雷达。 8、已知雷达波长为λ,目标的径向速度为v,那么回波信号的多普勒频移= 。 二、单选题(每题2分,共30分) 1、以下哪个部件最不可能属于雷达接收机(C) A、低噪声高频放大器 B、混频器 C、脉冲调制器 D、信号处理机 2、雷达测距原理是利用电波的以下特性(D) A、在空间介质中匀速传播 B、在空间介质中直线传播 C、碰到目标具有良好的反射性 D、以上都是 3、雷达之所以能够发射机和接收机共用一个雷达天线,是因为(C) A、雷达天线是定向天线 B、雷达天线是波导天线 C、首发转换开关的作用 D、雷达天线用波导传输能量 4、雷达射频脉冲与固定目标回波相比(D) A、二者功率相同,频率相同 B、二者功率不同,频率不同 A、二者功率相同,频率不同 B、二者功率不同,频率相同 5、雷达定时器产生的脉冲是发射机产生的脉冲是(A) A、触发脉冲,射频脉冲 B、发射脉冲,视频脉冲 C、触发脉冲,视频脉冲 D、发射脉冲,触发脉冲 6、雷达发射脉冲的持续时间取决于(C) A、延时线的调整 B、3分钟延时电路的调整 C、调制脉冲的宽度 D、方波宽度的调整

雷达原理实验报告

实验报告 实验课程名称:雷达原理实验姓名:班级:学号: 注:1、每个实验中各项成绩按照5分制评定,实验成绩为各项总和 2、平均成绩取各项实验平均成绩 3、折合成绩按照教学大纲要求的百分比进行折合 2014年 5 月

相位法与振幅法测角实验报告 一、实验目的要求 1. 了解雷达常用测角方法。 2. 学会用仿真软件验证测角算法。 3.能够设计并仿真测角解模糊程序。 二、实验原理 1. 利用了相位法测角的数学模型 2. 利用MATLAB软件编写单基线测向算法和比幅法解模糊程序 相位法测角利用了多哥天线所接收回波信号之间的相位差进行测角;振幅法测角利用了天线收到的回波信号幅值来做角度测量,该幅值的变化规律取决于天线方向图及天线扫描的方式。振幅测角法可以分为最大信号法和等信号法。 三、实验参数设置 (1)载频范围:4GHz (2)目标角度范围:-30°~30° (3)天线数量:3个 (4)天线间距离范围:0.05m~0.3m (5)回波信号DLVA输出幅度:1.5V (6)两两天线相位差测量范围:0.3p 短基线长度0.06 长基线长度0.5 四.实验仿真波形

目标角度/° 相位差/*π 理论相位差与目标角度关系 目标角度/° 相位差/*π 实际读取相位差与目标角度关系 目标角度/° 相位差/*π 相位差与目标角度关系

-60 -40-20 0204060 目标角度/° 相位差/* 相位差与角度关系 -60 -40 -200204060 -202 目标角度 误差/度 短基线测角精度误差 -60 -40-20 0204060 -0.500.5 目标角度 误差/度 长基线测角精度误差 四、 实验成果分析 实验利用三个天线的比对测量目标角度,通过选取天线的距离来比较得到数据的误差,五角星符号位插八度是对应的目标角度。偏差选取了较小天线距离带来的误差。 五、 教师评语 教师签字

雷达基本理论与基本原理

. 雷达基本理论与基本原理 一、雷达的基本理论 1、雷达工作的基本过程 发射机产生电磁信号,由天线辐射到空中,发射的信号一部分被目标拦截并 向许多方向再辐射。向后再辐射回到雷达的信号被天线采集,并送到接受机,在 接收机中,该信号被处理以检测目标的存在并确定其位置 ,最后在雷达终端上将处理结果显示出来。 2、雷达工作的基本原理 一般来说,会通过雷达信号到目标并从目标返回雷达的时间,得到目标的距离。目标的角度位置可以根据收到的回波信号幅度为最大时,窄波束宽度雷达天线所指的方向而获得。如果目标是运动的,由于多普勒效应,回波信号的频率会 漂移。该频率的漂移与目标相对于雷达的速度成正比,根据 f d 2v r,即可得到目 标的速度。 3、雷达的主要性能参数和技术参数 3.1 雷达的主要性能参数 3.1.1 雷达的探测范围 雷达对目标进行连续观测的空域,叫做探测范围,又称威力范围,取决于雷达的最小可测距离和最大作用距离,仰角和方位角的探测范围。 3.1.2 测量目标参数的精确度和误差 精确度高低用测量误差的大小来衡量,误差越小,精确度越高,雷达测量精确度的误差通常可以分为系统误差、随机误差和疏失误差。 3.1.3 分辨力 指雷达对两个相邻目标的分辨能力。可分为距离分辨力、角分辨力(方位分辨力和俯仰角分辨力)和速度分辨力。距离分辨力的定义:第一个目标回波脉冲的后沿与第二个目标回波脉冲的前沿相接近以致不能分辨出是两个目标时,作为 可分辨的极限,这个极限距离就是距离分辨力: ( R)min c 。因此,脉宽越小,2 距离分辨力越好

. 3.1.4 数据率 雷达对整个威力范围完成一次探测所需时间的倒数。 3.1.5 抗干扰能力 指雷达在自然干扰和人为干扰(主要的是敌方干扰(有源和无源))条件下工作的能力。 3.1.6 雷达可靠性 分为硬件的可靠性(一般用平均无故障时间和平均修复时间衡量)、软件可靠性和战争条件下雷达的生存能力。 3.1.7 体积和重量 体积和重量决定于雷达的任务要求、所用的器件和材料。 3.1.8 功耗及展开时间 功耗指雷达的电源消耗总功率。展开时间指雷达在机动中的架设和撤收时间。 3.1.9 测量目标坐标或参数的数目 目标坐标是指目标的方位、斜距和仰角,此外,还指目标的速度和性质(机型、架数、敌我)。对于边扫描边跟踪雷达,还指跟踪目标批数,航迹建立的正 确率。 3.2 雷达的主要技术参数 3.2.1 工作频率和工作带宽 雷达工作频率主要根据目标的特性、电波传播条件、天线尺寸、高频器件的性能以及雷达的测量精确度和功能等要求来决定 3.2.2 发射功率 分为脉冲功率和平均功率,雷达在发射脉冲信号期间所输出的功率称为脉冲 功率,平均功率指一个重复周期内,发射机输出功率的平均值。 3.2.3 调制波形、脉冲宽度和重复频率 现代雷达则采用多种调制波形以供选择。脉冲宽度指发射脉冲信号的持续时间。脉冲重复频率指雷达每秒发射的射频脉冲个数,其倒数叫脉冲重复周期。 3.2.4 天线的波束形状、增益和扫描方式 天线的波束形状一般用水平和垂直面内的波束宽度来表示。天线增益用 G 4 A / 2 表示。天线的主瓣在雷达的探测空域内以一定的规律运动,叫做扫

相关主题
文本预览
相关文档 最新文档