当前位置:文档之家› 杨辉三角形

杨辉三角形

杨辉三角形
杨辉三角形

有趣的杨辉三角形

【教学目的】

1.初步探索杨辉三角的基本性质及数字排列规律;

2.培养学生发现问题、提出问题、解决问题的能力,重点培养创新能力;

3.了解我国古今数学的伟大成就,增强爱国情感.

【教学手段】

课堂教学,以学生自学为主,教师引导探索。

【教学思路】

→学生自学教材,然后思考几个问题。

→分组探讨杨辉三角的性质。

→展示学生探究成果

→教学小结

【自学教材】;

1.什么是杨辉三角?

二项式(a+b)n展开式的二项式系数,当n依次取1,2,3...时,列出的一张表,叫做二项式系数表,因它形如三角形,南宋的杨辉对其有过深入研究,所以我们又称它为杨辉三角.(表1)

例如,它的兩項的係數是1和1;

,它的三項係數依次是1、2、1;

,它的四項係數依次1、3、3、1。

2.杨辉——古代数学家的杰出代表

杨辉,杭州钱塘人。中国南宋末年数学家,数学教育家.著作甚多,他编著的数学书共五种二十一卷,著有《详解九章算法》十二卷(1261年)、《日用算法》二卷、《乘除通变本末》三卷、《田亩比类乘除算法》二卷、《续古摘奇算法》二卷.其中后三种合称《杨辉算法》,朝鲜、日本等国均有译本出版,流传世界。

“杨辉三角”出现在杨辉编著的《详解九章算法》一书中,此书还说明表内除“一”以外的每一个数都等于它肩上两个数的和.杨辉指出这个方法出于《释锁》

算书,且我国北宋数学家贾宪(约公元11世纪)已经用过它,这表明

我国发现这个表不晚于11世纪.

在欧洲,这个表被认为是法国数学家物理学家帕斯卡首先发现的

(Blaise Pascal,1623年~1662年),他们把这个表叫做帕斯卡三角.这就

是说,杨辉三角的发现要比欧洲早500年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的.

3.观察杨辉三角所蕴含的数量关系(表2)

4.杨辉三角基本性质

▲教学意图介绍杨辉三角蕴含的基本规律

(1)表中每个数都是组合数,第n 行的第r+1个数是)!

(!!r n r n C r n -=.(2)三角形的两条斜边上都是数字1,而其余的数都等于它肩上的两个数字相加,也

就是r n r n r n C C C 111---+=.

(3)杨辉三角具有对称性(对称美),即r n n r n C C -=.

(4)杨辉三角的第n 行是二项式(a+b )n 展开式的二项式系数,即

n n n r r n r n n n n n n b

C b a C b a C a C b a +++++=+-- 1110)(【自学引导】

杨辉三角有趣的数字排列规律

注意观察方法:横看、竖看、斜看、连续看、隔行看,从多种角度观察(横看成岭侧成峰,远近高低各不同!)

(1)杨辉三角的第1,3,7,15,...行,即第2K

-1(k 是正整数)行的各个数字

有什么特点?第2K 行呢?

第2K -1(k 是正整数)行的各个数字均为奇数.第2K 行除两端的1之外都是偶数

(2)杨辉三角第5行中,除去两端的数字1以外,行数5整除其余所有的数.你

能再找出具有类似性质的三行吗?这时的行数P是什么数?

如2,3,7,11等行.行数P是质数(素数)(3)计算杨辉三角中各行数字的和,看有何规律:

第n 行n

n n n n r n n n n C C C C C C 21210=+++++++-

(4)从杨辉三角中一个确定的数的“左(右)肩”出发,向右(左)上方作一条和左斜边平行的射线,在这条射线上的各数的和等于这个数.

例如:10=1+2+3+4,

20=1+3+6+10,...

于是有一般性结论:

一般地,在第m 条斜线上(从右上到左下)前n 个数字

的和,等于第m+1条斜线上的第n 个数.

根据这一性质,猜想下列数列的前n 项和:

1+1+1+...+1=(第1条斜线)

1+2+3+...+11-n C =(第2条斜线)

1+3+6+...+21-n C =3条斜线)

1+4+10+...+31-n C =4条斜线)...

1121+-++=++++r n r n r

r r

r r r C C C C C (第r+1条斜线)

(5)如图,写出斜线上各行数字的和,有什么规律?

1,1,2,3,5,8,13,21,34,...

此数列{a n }满足,a 1=1,a 2=1,

且a n =a n-1+a n-2(n≥3)

这就是著名的斐波那契数列(斐波那契,中世纪意大利数学

家,传世之作《算术之法》).

结论:斜线上各行数字的和,正好组成斐波那契数列.

(6)杨辉三角与“纵横路线图”

“纵横路线图”是数学中的一类有趣的问题.图1是某城市的部分街道图,纵横各有五条路,如果从A 处走到B 处(只能由北到南,由西向东),

我们把图顺时针转45度,使A 在正上方,B 在正下

方,然后在交叉点标上相应的杨辉三角数.有什么

有趣的结论

一般地,

每个交点上的杨辉三角数,就是从A 到达

该点的方法数.

由此看来,杨辉三角与纵横路线图问题有

天然的联系.

(7)计算11的1、2、3、……次幂,看一看与杨辉三角有什么有趣的联系?(8)杨辉三角与“堆垛术”(三角垛,正方垛,...)我国古代数学的伟大成就——堆垛术,学生自行探究

将圆弹堆成三角垛:底层是每边n 的三角形,向上逐层每边少一个圆弹,顶层是一个圆

弹,求总数.

【课堂小结】

杨辉三角的规律以及推导公式

杨辉三角的规律以及定理 李博洋 摘要杨辉三角中的一些规律 关键词杨辉三角幂二项式 引言 杨辉是我国南宋末年的一位杰出的数学家。在他所着的《详解九章算法》一书 中,画了一张表示二项式展开后的系数构成的三角图形,称做“开方做法本源”,现 在简称为“杨辉三角”,它是世界的一大重要研究成果。我们则来对“杨辉三角”的 规律进行探讨和研究。 内容 1二项式定理与杨辉三角 与杨辉三角联系最紧密的是二项式乘方展开式的系数规律,即。 杨辉三角我们首先从一个二次多项式(a+b)2的展开式来探讨。 由上式得出:(a+b)2=a2+2ab+b2此代数式的系数为:121 则(a+b)3的展开式是什么呢?答案为:a3+3a2b+3ab2+b3由此可发现,此代数式的系数 为:1331但似乎没有什么规律,所以让我们再来看看(a+b)4的展开式。 展开式为:a4+4a3b+6a2b2+4ab3+b4由此又可发现,代数式的系数为: 14641似乎发现了一些规律,就可以发现以下呈三角形的数列: 1(110) 11(111) 121(112) 1331(113)

14641(114) 15101051(115) 1615201561(116) 因此可得出二项式定理的公式为: (a+b)n=C(n,0)a^n*b^0+C(n,1)a^(n-1)*b^1+...+C(n,r)a^(n-r)*b^r...+C(n,n)a^0*b^n 因此,二项式定理与杨辉三角形是一对天然的数形趣遇,它把带进了。求二项式展开式系数的问题,实际上是一种组合数的计算问题。用系数来计算,称为“式算”;用杨辉三角形来计算,称作“图算”。 2杨辉三角的幂的关系 首先我们把杨辉三角的每一行分别相加,如下: 1(1) 11(1+1=2) 121(1+2+1=4) 1331(1+3+3+1=8) 14641(1+4+6+4+1=16) 15101051(1+5+10+10+5+1=32) 1615201561(1+6+15+20+15+6+1=64) …… 相加得到的数是1,2,4,8,16,32,64,…刚好是2的0,1,2,3,4,5,6,…次幂,即杨辉三角第n行中n个数之和等于2的n-1次幂 3杨辉三角中斜行和水平行之间的关系 (1) 1(2)n=1 11(3)n=2 121(4)n=3 1331(5)n=4

杨辉三角形的生活运用和规律

杨辉三角形规律 每行数字两边对称每行数字左右对称,由1开始逐渐变大,然后变小,回到1。 第n行的数字个数为n个。 第n行数字和为2^(n-1)。(2的(n-1)次方) 每个数字等于上一行的左右两个数字之和。可用此性质写出整个帕斯卡三角形。 将第2n+1行第1个数,跟第2n+2行第3个数、第2n+3行第5个数……连成一线,这些数的和是第2n个斐波那契数。将第2n行第2个数,跟第2n+1行第4个数、第2n+2行第6个数……这些数之和是第2n-1个斐波那契数。 第n行的第1个数为1,第二个数为1×(n-1),第三个数为1×(n-1)×(n-2)/2,第四个数为1×(n-1)×(n-2)/2×(n-3)/3…依此类推。 两个未知数和的n次方运算后的各项系数依次为杨辉三角的第(n+1)行

杨辉三角在弹球游戏中的应用 如图1的弹球游戏,小球向容器内跌落,碰到第一层挡物后向两侧跌落碰到第二层阻挡物,再向两侧跌落第三层阻挡物,如此一直下跌最终小球落入底层。根据具体地区获的相应的奖品(。 图1 我们来分析一下为什么小球落到不同区域奖品会有如此大的差别?A 区的奖品价值高于D 区,说明小球落入A 区的可能性要比落入D 区的可能性小,转化为数学问题就是小球落入A 区和D 区的概率。小球要落入D 区的情况有两种,有概率知识得: D 1 D 2 就是说,小球落入D 区的概率是等于它肩上两区域概率之和的 2 1,据此小球落入各区的概率为可以按以上方法类推,如下: 2121 1 8381 3213232323232 1 64646641564206415646641 A B C D E F G 图2

杨辉三角考题赏析

杨辉三角考题赏析 “杨辉三角”是我国古代数学的瑰宝.利用杨辉三角不仅讨论了二项展开式的一些性质,杨辉三角本身还包含着许多有趣的规律和性质.正因为如此,以“杨辉三角”为背景的试题在近年的高考或各地模拟题中频频出现,有力地考查了同学们对数据的整理、分析、概括、处理能力和创新思维能力.现采撷几例,与同学们共赏析. 例1 (2004年上海春季高考卷)如图1,在由二项式系数所构成的杨辉三角中,第_____行中从左到右第14与第15个数的比为2:3. 解析:由图1我们能发现,第1行中的数是0111C C ,;第2行中的数是 012222C C C ,,;第3行中的数是01233333C C C C ,,,; ;则第n 行中的数是 012n n n n n C C C C ,,,,设第 n 行中从左到右第14与第15个数的比为2:3,则 13142:3n n C C =·,解得34n =. 点评:本题是关于“杨辉三角”的一道高考题.杨辉三角中蕴含着许多有趣的数量关系,与排列、组合和概率的关系非常密切.因此,理解和掌握杨辉三角的一些性质,对发现某些数学规律是很有帮 助的. 例2 (2006届全国100所名校示范卷)如图2所示,在杨辉三角中,斜线 AB 上方箭头所示的数组成一个锯齿形的数列:1,2,3,3,6,4,10, ,记 这个数列的前n 项的和为()S n ,则(16)S 等于( ).

A .144 B .146 C .164 D .461 解析:由图2知,数列中的首项是22C ,第2项是12C ,第3项是23C ,第4项 是13C ,,第15项是29C ,第16项是1 9C . 因此得121 21211 1223399239(16)()S C C C C C C C C C =++++++=+++2 22239()C C C ++++ 21 123 2223 33923391010()()1164C C C C C C C C C =+++-++++==+-=.故选C. 点评:本题是杨辉三角与数列结合的一道考题.将数列的各项还原为各二项展开式的二项式系数,并依次应用杨辉三角中数的规律Crn+1=Cr-1n+Crn (即组合数性质2),从而求得数列的和. 例3 (2004年江苏高考模拟卷)观察下列数表,问此表最后一个数是 什么,并说明理由. 解析:因为第一行有100个数,以后每一行都比前一行少一个数,因此共有100行. 通过观察可以得到: 第1行首尾两项之和为101; 第2行首尾两项之和为1012?; 第3行首尾两项之和为21012?, 第4行首尾两项之和为31012?,…… 第99行首尾两项之和为981012?. 因为从第2行开始每一个数字是它肩上两个数字之和,所以最后一个数字即第100行的数字是它肩上第99行首尾两个数字之和即为981012?. 点评:本题是一道以“杨辉三角”为背景的一道考题.通过观察找出每一行数据间的相互联系以及行与行间数据的相互联系.然后对数据间的这种联系用数学式子将它表达出来,使问题得解.

杨辉三角

杨辉三角 教学设计思想: 这节课是高三数学(选修II )的研究性课题,是在高二学过的“二项式定理”的基础上,进一步探讨和研究杨辉三角的性质,实质上就是二项展开式的二项式系数即组合数的性质。 (1)让学生在教师设计的问题情境中,自己根据已经学过的知识去发现问题→提出问题→解决问题,即观察、猜想、归纳杨辉三角横行、竖向、斜向的数字各数之间的大小关系、组合关系及各数字之间的联系等规律。 (2)在学生自主探究知识的发生发展过程中从中体会到数学世界的神奇和有趣,激发他们对数学的热爱之情。培养他们的交流与协作的能力。 (3)通过向他们介绍杨辉三角的有关历史,让他们了解中国古代数学的伟大成就,增强他们的民族自豪感。 教学 目标: 1 使学生了解杨辉及杨辉三角的有关历史,掌握杨辉三角的基本性质,并能认识到中国古代的数学的辉煌成就。 2 让学生在老师的启发下自己去探讨杨辉三角中行、列的数字的特点, 发现杨辉三角的有关的性质,培养学生由特殊到一般的归纳猜想能力。 3通过讨论,培养学生发现问题、提出问题、解决问题的能力。在交流中培养学生的协作能力,形成探究知识、建构知识的研究型学习习惯及合作化学习的团队精神,为进一步学习作好准备。 教学过程: 一 引入 今天我们在高二学过的杨辉三角的基础上,进一步探索杨辉三角数字中横 向、竖向、斜向…中蕴含的有趣的数量关系。(幻灯片:出示杨辉三角的前3行,余下的让学生补充完整) 二 杨辉简介 杨辉,中国南宋时期杰出的数学家 和数学教育家。在13世纪中叶活动于 苏杭一带,其著作甚多。其中《详解九章算术》 中的“开方作法本源图”,曾被称为“杨辉三角”, 杨辉指明次系贾宪(约11世纪)所用. 三 探讨杨辉三角的性质 ? ??++++++=++++++=+++++=++++=+++=++=+=+6 43223245665 432234554 3223443 22332 221061520156)(510105)(464)(33)(2)()(1)(b ab b a b a b a b a a b a b ab b a b a b a a b a b ab b a b a a b a b ab b a a b a b ab a b a b a b a b a

杨辉三角在日常生活中的有趣应用

杨辉三角在日常生活中的有趣应用 [摘要]中国古代数学史曾经有代写论 文自己光辉灿烂的篇章,而杨辉三角的发现就是十分精彩的一页。杨辉三角是中国古代数学家贾宪在公元11世纪发现,并被南宋 数学家杨辉在他的书中所引述,才使我们今天得以了解贾宪在数学上的重大贡献。 [关键词]杨辉三角趣味性日常生活 杨辉三角最本质的特征是,它的两条斜边都是由数字1组成的,而其余的数则是等于它肩上的两个数之和。杨辉三角形所蕴含的数字排列规律,让我们在感受数学美的同时,也体会到它的趣味性和实用性。下面就通过三个实例与读者共享。 例1.随着经济的快速发展,越来越多的人加入炒股大军。股票的涨停问题也成为人们的重要谈资。有一天,同事谈到股票涨停时,提出一个问题:要经过几次涨停,股资才能翻一倍?大家知道,股票涨停一次,股资增加了原来的百分之十。构建一个模型:

设原来股资为a元,一次涨停后,股资变成 a+10%a=(1+)a=;二次涨停后,股资变成 ; 如此递推,当次涨停后,股资变成元。要经过几次涨停,股资才能翻一倍呢?可以建立以下不等式:>2a,即>2。那么,最小正整数 n是多少? 简单推算:,,,……手边 没有计算器,再算下去就有一点复杂了。但观察结果的数字,惊奇的发现前三个的结果与杨辉三角相对应。如图1 是否呢?结果与计算相同。但当 n=5时,出现了两位数的情形,怎么解决? 能不能像加法运算一样进位加一变成呢? 经过验算猜想与答案完全一致。这样求最小正整数n的运算就可以通过观察得到。当 n=8时,>2。也就是经过8次涨停后, 股资翻倍。 例2.在游戏场所经常可以看到这样的 弹球游戏:一个小球向下跌落,碰到第一层阻挡物后等可能的向两侧跌落。碰到第二层阻挡物再等可能的向两侧的第三层跌落。如

杨辉三角的规律以及推导公式

精心整理 杨辉三角的规律以及定理 二项式定理与杨辉三角1与杨辉三角联系最紧密的是二项式乘方展开式的系数规律,即二项式定理。 2的展开式来探讨。杨辉三角我们首先从一个二次多项式(a+b)222此代数式的系数为:121 由上式得出:(a+b)+2ab+b=由此可发现,此代数式的系+3+b+3ab(a+b 的展开式是什么呢?答案为(a+b的展开式。为133但似乎没有什么规律,所以让我们再来看b2+4a展开式为由此又可发现,代数式的系数为+4+b+6464似乎发现了一些规律,就可以发现以下呈三角形的数列:1 ) 1(1)11(112) 121(113) 1331(114) 14641(115) 15101051(116) 1615201561(11)1,4,6,4,1,(,1,2,1)(1,3,3,1)1,杨辉三角形的系数分别为:(1,1),(:所以(),1,7,21,35,35,21,7,1) (1,5,10,10,5,1),(1,6,15,20,15,6,17642547765233 (a+b)=ab+7ab+21a+bb+35a+7abb+35a。b+21a n的次数依次上b-n,n-n 等于a的次数依次下降、n-1、2...n由上式可以看出,(a+b) (2) 方。系数是杨辉三角里的系数。、、升,01 杨辉三角的幂的关系2 精心整理.

精心整理 首先我们把杨辉三角的每一行分别相加,如下: 1(1) 11(1+1=2) 121(1+2+1=4) 1331(1+3+3+1=8) 14641(1+4+6+4+1=16) 15101051(1+5+10+10+5+1=32) 1615201561(1+6+15+20+15+6+1=64) … 相加得到的数136…刚好,6,…次幂,即杨辉三角行个数之和等n-次 杨辉三角中斜行和水平行之间的关 (1) 1(2)n=1 11(3)n=2 121(4)n=3 1331(5)n=4 14641(6)n=5 15101051n=6 1615201561 把斜行(1)中第7行之前的数字相加得1+1+1+1+1+1+1=6

杨辉三角的各种算法实现

/* Name: 杨辉三角算法集锦 Copyright: 始发于goal00001111的专栏;允许自由转载,但必须注明作者和出处Author: goal00001111 Date: 27-11-08 19:04 Description: 分别使用了二维数组,一维数组,队列,二项式公式,组合公式推论和递归方法等9种算法 算法思路详见代码注释——注释很详细,呵呵 */ #include #include using namespace std; const int MAXROW = 40; void PrintBlank(int n); int Com(int n, int m); int Try(int row, int cel); void Fun_1(int row); void Fun_2(int row); void Fun_3(int row); void Fun_4(int row); void Fun_5(int row); void Fun_6(int row); void Fun_7(int row); void Fun_8(int row); void Fun_9(int row); int main() { int row; cin >> row; Fun_1(row); cout << endl; Fun_2(row); cout << endl; Fun_3(row); cout << endl; Fun_4(row); cout << endl; Fun_5(row);

cout << endl; Fun_6(row); cout << endl; Fun_7(row); cout << endl; Fun_8(row); cout << endl; Fun_9(row); system("pause"); return 0; } //输出n个空格 void PrintBlank(int n) { for (int i=0; i

杨辉三角及其空间拓展

杨辉三角及其空间拓展 株洲市二中G0216 刘子儒郭时伟 摘要 本文首先对杨辉三角中特有的数学规律作了初步探索,发现了其奇偶排列的等边三角形现象。然后,在研究中,我们在空间杨辉三角的问题上迈出了第一步——由平面杨辉三角走向三维杨辉三角。我们在研究过程中推导出了三维杨辉三角数坐标公式,并总结出其与三项式系数的关系。在三维杨辉三角模型的基础上我们又续而导出四维杨辉三角和N维杨辉三角。经过努力的研究,最后归纳出了四维及N维杨辉三角数坐标公式。由此得出了N 项式展开项系数定理。在研究过程中我们还有机地结合现代计算机技术协助公式的推导,并将其付之实用,进一步完善了课题的研究。对此,还有几名著名的数学教授提出了宝贵的意见。 这些都是前人从未涉足过的领域,而这篇论文把这次研究的新颖性给淋漓尽致地体现出来了。 关键词:杨辉三角空间公式系数 杨辉三角,作为中国古代数学中的奇迹。在数学计算中,日常生活中,无时不刻地展示着自己的魅力。从古至今,从中国到外国,有无数的学者为之着迷。 但是,以往的学者们的研究只限于平面内的杨辉三角。如果考虑到空间上的拓展,那在学术上是突破性的。所以我们决定对杨辉三角进行全面、深刻地分析,将其拓展到三维、四维乃至N维。 研究杨辉三角,是在偶然中想到的。对于多次出现在数学课本上的“杨辉三角”,不对其有些想法才是奇怪了。而恰好我的母亲又叫“杨辉”。所以,小时候第一次在《十万个为什么》中看到时就留下了深刻的印象。再加上多次、再次地在高中数学课本中“相遇”,愈发觉得亲切。 一.杨辉三角的相关信息 看似简单的一个数字列表,却蕴藏着很深的奥秘。这无疑是我国古代劳动人民智慧的结晶,也集中地体现了数学的奥妙无穷。有了它,我们可以轻易地计算两个数的和的几次方,甚至用来开一个数的几次方。 杨辉(约十三世纪)字谦光,钱塘(今浙江杭州)人,是我国南宋时的数学家,杨辉的数学著作有《讲解九章算法》十二卷,流传至今的只是其中的一部分,其中“开方作法本源”载有二项式系数三角形,后人称为杨辉三角形,此外,他还著有《日用算法》二卷,《乘除通变算宝》三卷,《田亩比类乘除捷法》二卷、《续古摘奇算法》二卷等。

杨辉三角在二项式中的应用

杨辉三角在二项是中的应用 一、课题:二项式系数的性质(1) 二、教学目标:1.理解和掌握二项式系数的性质,并会简单的应用; 2.初步了解用赋值法是解决二项式系数问题; 3.能用函数的观点分析处理二项式系数的性质,提高分析问题和解决问题的能力。 三、教学重点、难点:二项式系数的性质及其对性质的理解和应用。 四、教学过程: (一)复习: 1.二项式定理,二项展开式的通项及二项式系数. (二)新课讲解: 1.二项式系数表(杨辉三角) ()n a b +展开式的二项式系数,当n 依次取1,2,3…时,如下表所示: 1()a b +……………………1 1 2()a b +…………………1 2 1 3()a b +………………1 3 3 1 4()a b +……………1 4 6 4 1 5()a b +…………1 5 10 10 5 1 6()a b +………1 6 15 20 15 6 1 ……………………………… 上表叫二项式系数表,表中每行两端都是1,除1以外的每一个数都等于它肩上两个数的和(为什么?) 这个表早在我国南宋数学家杨辉1261年所著的《详解九章算法》就已经出现,这个表叫杨辉三角。利用这一性质,可根据相应于n 的各项二项式系数写出相应于1n +的各项二项式系数。 2.二项式系数的性质: ()n a b +展开式的二项式系数是0n C ,1n C ,2n C ,…,n n C .r n C 可以看成以r 为自变量的函数()f r 定义域是{0,1,2,,}n ,例当6n =时, 其图象是7个孤立的点(如图) (1)对称性.与首末两端“等距离” 的两个二项式系数相等(∵m n m n n C C -=). 直线2 n r =是图象的对称轴. (2)增减性与最大值.∵1(1)(2)(1)1!k k n n n n n n k n k C C k k ----+-+= =?, ∴k n C 相对于1k n C -的增减情况由1n k k -+决定,1112 n k n k k -++>?<, 当12n k +<时,二项式系数逐渐增大.由对称性知它的后半部分是逐渐减小的,且在中间取得最大值; 当n 是偶数时,中间一项2n n C 取得最大值;当n 是奇数时,中间两项12n n C -,12n n C +取得最大值. (3)各二项式系数和: ∵1(1)1n r r n n n x C x C x x +=++ +++,令1x =, 则0122n r n n n n n n C C C C C =++++++. 3.例题分析: 例1 在()n a b +的展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和。 证明:在展开式01()()n n n r n r r n n n n n n a b C a C a b C a b C b n N -*+=+++++∈中, 令1,1a b ==-,则0123(11)(1)n n n n n n n n C C C C C -=-+-+ +-, 即02130()()n n n n C C C C =++ -++, ∴0213n n n n C C C C ++=++,

杨辉三角形

有趣的杨辉三角形 【教学目的】 1.初步探索杨辉三角的基本性质及数字排列规律; 2.培养学生发现问题、提出问题、解决问题的能力,重点培养创新能力; 3.了解我国古今数学的伟大成就,增强爱国情感. 【教学手段】 课堂教学,以学生自学为主,教师引导探索。 【教学思路】 →学生自学教材,然后思考几个问题。 →分组探讨杨辉三角的性质。 →展示学生探究成果 →教学小结 【自学教材】; 1.什么是杨辉三角? 二项式(a+b)n展开式的二项式系数,当n依次取1,2,3...时,列出的一张表,叫做二项式系数表,因它形如三角形,南宋的杨辉对其有过深入研究,所以我们又称它为杨辉三角.(表1) 例如,它的兩項的係數是1和1; ,它的三項係數依次是1、2、1; ,它的四項係數依次1、3、3、1。 2.杨辉——古代数学家的杰出代表 杨辉,杭州钱塘人。中国南宋末年数学家,数学教育家.著作甚多,他编著的数学书共五种二十一卷,著有《详解九章算法》十二卷(1261年)、《日用算法》二卷、《乘除通变本末》三卷、《田亩比类乘除算法》二卷、《续古摘奇算法》二卷.其中后三种合称《杨辉算法》,朝鲜、日本等国均有译本出版,流传世界。 “杨辉三角”出现在杨辉编著的《详解九章算法》一书中,此书还说明表内除“一”以外的每一个数都等于它肩上两个数的和.杨辉指出这个方法出于《释锁》 算书,且我国北宋数学家贾宪(约公元11世纪)已经用过它,这表明 我国发现这个表不晚于11世纪. 在欧洲,这个表被认为是法国数学家物理学家帕斯卡首先发现的 (Blaise Pascal,1623年~1662年),他们把这个表叫做帕斯卡三角.这就

杨辉三角

研究性课题:杨辉三角 ●教学目标 (一)教学知识点 1.理解杨辉三角的性质 2.掌握有关杨辉三角的基本性质1 1 1C C C ,C C +++-=+=r n r n r n r n n r n . (二)能力训练要求 会应用杨辉三角的基本性质证明杨辉三角新的性质. (三)德育渗透目标 1.培养学生观察问题、分析问题、概括与归纳问题的能力.解决问题能力,让学生在探索过程体验数学活动,数学发现的成功的愉悦. 2.培养学生实际动手操作实践创新的能力,培养学生的创新精神,探索精神和应用能力,鼓励学生大胆猜想,相信科学. ●教学重点 杨辉三角新的性质的探索和发现是教学的重点.杨辉三角中蕴含着许多有趣的数量关系,研究和探索杨辉三角的一些性质,对于发现某些数学规律是大有裨益的.对于培养学生的创新思维能力也是不无帮助的. ●教学难点 杨辉三角新的性质的探索和发现是本节课教学难点。 ●教学方法 由于杨辉三角中的许多有趣的数量关系不是轻易发现的,而简单的告诉和求证又显得十分枯燥无味,学生的发现、探索精神和能力的培养受到了一定的限制,所以学生主动探索,发现和证明(失败时总结经验,另寻他路,重新启动,走向成功)的全程的尝试是最为主要的,这样不是被动的接受,而是主动的建构,学生的认知结构得到了较好的发展和培养,他们不仅学会了知识而且还学会了如何面对困难、克服困难,走向成功的高峰的非智力因素的调节作用,要求同学们不仅是个体参与,而且是集体参与,智力参与. ●教具准备 实物投影仪(多媒体课件) ●教学过程 Ⅰ.课题导入 上节课我们学习了杨辉三角中的有关性质,杨辉三角是我国古代数学的研究成果之一,它的发现远早于法国数学家帕斯卡,它和勾股定理,圆周率的计算等其他中国古代数学成就,显示了我国古代劳动人民的卓越智慧和才能。今天我们继续探索研究杨辉三角的有关性质. Ⅱ.讲授新课 一般的杨辉三角如下表.

杨辉三角应用

1杨辉三角概述 1.1 杨辉三角的产生 唐代以来一些数学著作的失传,大概是五代十国分裂战乱所造成的文化后果。到了宋代,雕版印数的发达特别是活字印刷的发明,则给数学著作的保存与流传带来了福音。事实上,整个宋元时期(公元960—1368),重新统一了的中国封建社会发生了一系列有利于数学发展的变化。商业的繁荣、手工业的兴盛以及由此引起的技术进步(四大发明中有三项——指南针、火药和活字印刷是在宋代完成并获得广泛应用),给数学的发展带来新的活力。这一时期涌现的优秀数学家中最卓越的代表,如通常称“宋元四大家”的杨辉、秦九韶、李治、朱世杰等,在世界数学史上占有光辉的地位;而这一时期印刷出版、记载着中国古典数学最高成就的宋元算书,也是世界文化的重要遗产。 北宋人贾宪约1050年首先使用“贾宪三角”进行高次开方运算,他的主要贡献是创造了'贾宪三角'和增乘开方法,增乘开方法即求高次幂的正根法。南宋数学家杨辉在《详解九章算法》(1261年)记载并保存了“贾宪三角”,故称杨辉三角。元朝数学家朱世杰在《四元玉鉴》(1303年)扩充了“贾宪三角”成“古法七乘方图”(如下图)。在欧洲直到1623年以后,法国数学家帕斯卡在13岁时发现了“帕斯卡三角”。

杨辉,字谦光,北宋时期杭州人。在他1261年所著的《详解九章算法》一书中,辑录了如上所示的三角形数表,称之为“开方作法本源”图。 同时,这也是多项式(a+b)n打开括号后的各个项的二次项系数的规律。因此,杨辉三角第x层第y项直接就是(y nCr x)。我们也不难得到,第x层的所有项的总和为2x-1 (即(a+b)x中a,b都为1的时候) 。上述(a nCr b) 指组合数。 而这样一个三角在我们的奥数竞赛中也是经常用到,最简单的就是要找规律。 简单的说,就是两个未知数和的幂次方运算后的系数问题,比如(x+y)的平方=x的平方+2xy+y的平方,这样系数就是1,2,1这就是杨辉三角的其中一行,立方,四次方,运算的结果看看各项的系数,你就明白其中的道理了。 这就是杨辉三角,也叫贾宪三角,在外国被称为帕斯卡三角。 杨辉三角于我们现在的学习联系最紧密的是2项式乘方展开式的系数规律。如图,在贾宪三角中,第3行的第三个数恰好对应着两数和的平方公式(在此就不做说明了)依次下去。 杨辉三角里面数字排列的规则里面数字排列的规则如下:

杨辉三角的规律以及推导公式

杨辉三角的规律以及定理 1二项式定理与杨辉三角 杨辉三角我们首先从一个二次多项式(a+b)2的展开式来探讨。 由上式得出:(a+b)2=a2+2ab+b2此代数式的系数为: 1 2 1 则(a+b)3的展开式是什么呢?答案为:a3+3a2b+3ab2+b3由此可发现,此代数式的系数为: 1 3 3 1 但似乎没有什么规律,所以让我们再来看看(a+b)4的展开式。 展开式为:a4+4a3b+6a2b2+4ab3+b4由此又可发现,代数式的系数为: 1 4 6 4 1 似乎发现了一些规律,就可以发现以下呈三角形的数列: 1 (110) 1 1 (111) 1 2 1 (112) 1 3 3 1 (113) 1 4 6 4 1 (114) 1 5 10 10 5 1 (115) 1 6 15 20 15 6 1 (116) 杨辉三角形的系数分别为:1,(1,1),(1,2,1),(1,3,3,1),(1,4,6,4,1)(1,5,10,10,5,1),(1,6,15,20,15,6,1),(1,7,21,35,35,21,7,1)所以:(a+b)7=a7+7a6b+21a5b2+35a4b3+35a3b4+21a2b5+7ab6+b7。 由上式可以看出,(a+b)n等于a的次数依次下降n、n-1、n-2…n-n,b的次数依次上升,0、1、2…n次方。系数是杨辉三角里的系数。 2杨辉三角的幂的关系 首先我们把杨辉三角的每一行分别相加,如下: 1 ( 1 ) 1 1 ( 1+1= 2 ) 1 2 1 (1+2+1=4 ) 1 3 3 1 (1+3+3+1=8 ) 1 4 6 4 1 (1+4+6+4+1=16 ) 1 5 10 10 5 1 (1+5+10+10+5+1=3 2 ) 1 6 15 20 15 6 1 (1+6+15+20+15+6+1=64 ) …… 相加得到的数是1,2,4,8,16,32,64,…刚好是2的0,1,2,3,4,5,6,…n次幂,即杨辉三角第n 行中n个数之和等于2的n-1次幂 3 杨辉三角中斜行和水平行之间的关系

杨辉三角在日常生活中的有趣应用(一)

杨辉三角在日常生活中的有趣应用(一) 摘要]中国古代数学史曾经有代写论文自己光辉灿烂的篇章,而杨辉三角的发现就是十分精彩的一页。杨辉三角是中国古代数学家贾宪在公元11世纪发现,并被南宋数学家杨辉在他的书中所引述,才使我们今天得以了解贾宪在数学上的重大贡献。 关键词]杨辉三角趣味性日常生活 杨辉三角最本质的特征是,它的两条斜边都是由数字1组成的,而其余的数则是等于它肩上的两个数之和。杨辉三角形所蕴含的数字排列规律,让我们在感受数学美的同时,也体会到它的趣味性和实用性。下面就通过三个实例与读者共享。 例1.随着经济的快速发展,越来越多的人加入炒股大军。股票的涨停问题也成为人们的重要谈资。有一天,同事谈到股票涨停时,提出一个问题:要经过几次涨停,股资才能翻一倍?大家知道,股票涨停一次,股资增加了原来的百分之十。构建一个模型:设原来股资为a 元,一次涨停后,股资变成a+10%a=(1+0.1)a=1.1a;二次涨停后,股资变成 ; 如此递推,当n(n∈次涨停后,股资变成元。要经过几次涨停,股资才能翻一倍呢?可以建立以下不等式:>2a,即1>2。那么,最小正整数n是多少?简单推算:,,,……手边没有计算器,再算下去就有一点复杂了。但观察结果的数字,惊奇的发现前三个的结果与杨辉三角相对应。如图1 是否呢?结果与计算相同。但当n=5时,出现了两位数的情形,怎么解决?能不能像加法运算一样进位加一变成1.61051呢?经过验算猜想与答案完全一致。这样求最小正整数n的运算就可以通过观察得到。当n=8时,>2。也就是经过8次涨停后,股资翻倍。 例2.在游戏场所经常可以看到这样的弹球游戏:一个小球向下跌落,碰到第一层阻挡物后等可能的向两侧跌落。碰到第二层阻挡物再等可能的向两侧的第三层跌落。如此下去,小球一直跌到容器底层,根据具体区域获得相应奖品。可以发现,在两端区域的奖品价值远远高于中间区域,怎样解释这一现象呢?下图是一个竖直平面内的弹球游戏,图中的竖直线段和斜线段都表示通道,并且在交点处相通,若竖直线段有一条的为第一层,有两层的为第二层……以此类推,现求有一颗小球从第一层的通道向下运动跌落到第n+1层第m个通道里的概率。通过观察可以发现,小球落入第1层第1个通道有1种可能,落入第2个通道也有1种可能。小球落入第2层第1个通道有1种可能,落入第2个通道有2种可能,落入第3个通道有1种可能。落入第3层第1个通道有1种可能,落入第2个通道有3种可能,落入第3个通道有3种可能,落入第4个通道有1种可能……各个通道上的数字如图2所示:

浅谈杨辉三角的奥秘及应用

浅谈杨辉三角的奥秘及应用 摘要文中阐述了杨辉三角中蕴涵的一些优美的规律及利用杨辉三角在以其为背景的一些现实生活问题中的应用来培养解决问题的思维能力。 关键词杨辉三角,最短路径,错位,幂 0 引言 杨辉是我国南宋末年的一位杰出的数学家。在他著的《详解九章算法》一书中,画了一张表示二项式展开后的系数构成的三角图形,称做“开方做法本源”,现在简称为“杨辉三角”,它是杨辉的一大重要研究成果。随着素质教育的提倡,新课程标准的颁布,生活中很多问题都与杨辉三角有着或多或少的联系,那如何解决这些以“杨辉三角”为背景的问题呢?这就需要我们对杨辉三角本身蕴涵着许多优美的规律进行探讨和研究。 1 杨辉三角与数字11的幂的关系 我们知道初中时老师要求我们背11的幂,11的1次幂、2次幂、3次幂还好背,后面就难起来了。后来我受到一位老师的启发,并且查看了这方面有关资料,发现杨辉三角与11的n次幂的关系非常密切。 假设y=11n 当n=0时: y=1; 当n=1时: y=11; 当n=2时:y=121; 当n=3时:y=1331; 当n=4时:y=14641; 以上是当n≤4时与扬辉三角的前5行多一致,接下来我们再来看一下当n≥5时的情况,如下: 当n=5时: 1 4 6 4 1 ? 1 1 1 4 6 4 1 1 4 6 4 1 1 5 10 10 5 1 当n=6时: 1 5 10 10 5 1 ? 1 1 1 5 10 10 5 1 1 5 10 10 5 1 1 6 15 20 15 6 1

…… 由上可知:11的n 次幂的各位数字(不含进位)与杨辉三角中的各数字完全相等(证 明还有待证明)即杨辉三角是11的幂按错位相加不进位的方法依次从小到大排列而成的图 形。如下图: 1 (110 ) 1 1 (111 ) 1 2 1 (112) 1 3 3 1 (113) 1 4 6 4 1 (114) 1 5 10 10 5 1 (115) 1 6 15 20 15 6 1 (116) …… 其实这个关系我们早就学习过了,只是用另一种方式表达而已。我们知道初中时老师教 我们记11的幂时,有一句口诀:头尾不变(即为1),左右相加放中间。其实是错位相加,而 扬辉三角中头尾为1,中间的数是其肩上的两数之和,也是错位相加得到的。 2 杨辉三角与2的幂的关系 首先我们把杨辉三角的每一行分别相加,如下: 1 ( 1 ) 1 1 ( 1+1= 2 ) 1 2 1 (1+2+1=4 ) 1 3 3 1 (1+3+3+1=8 ) 1 4 6 4 1 (1+4+6+4+1=16 ) 1 5 10 10 5 1 (1+5+10+10+5+1=3 2 ) 1 6 15 20 15 6 1 (1+6+15+20+15+6+1=64 ) …… 我们知道相加得到的数是1,2,4,8,16,32,64,…刚好是2的0,1,2,3,4,5, 6,…次幂,即杨辉三角第n 行中n 个数之和等于2的n-1次幂。 刚好与高中时学的杨辉三角的性质相符合,归纳如下: 1°与二项式定理的关系:杨辉三角的第n 行就是二项式n b a )(+展开式的系数列 }{R N C 。 2°对称性:杨辉三角中的数字左、右对称,对称轴是杨辉三角形底边上的“高”,即 r n n r n c C -=。

杨辉三角的规律以与推导公式-杨辉三角规律

杨辉三角的规律以及定理 1 二项式定理与杨辉三角 与杨辉三角联系最紧密的是二项式乘方展开式的系数规律,即二项式定理。 杨辉三角我们首先从一个二次多项式 (a+b) 2 的展开式来探讨。 由上式得出: (a+b) 2= a 2+2ab+b 2 此代数式的系数为: 1 2 1 则 (a+b) 3 的展开式是什么呢?答案为: a 3+3a 2b+3a b 2+b 3 由此可发现, 此代数式的系数为: 1 3 3 1 但 似乎没有什么规律,所以让我们再来看看 (a+b) 4 的展开式。 展开式为: a 4 +4a 3b+6a 2b2+4ab 3+b 4 由此又可发现,代数式的系数为: 1 4641 似乎发现了一些规律,就可以发现以下呈三角形的数列: 1 (11 ) 1 1 (11 1 ) 1 2 1 (11 2 ) 1 3 3 1 (11 3 ) 1 4 6 4 1 (11 4 ) 1 5 10 10 5 1 (11 5 ) 1 6 15 20 15 6 1 (11 6) 杨辉三角形的系数分别为: 1,(1,1 ),(1,2,1 ),( 1,3,3,1 ),( 1,4,6,4,1 )( 1,5,10,10,5,1 ),( 1,6,15,20,15,6,1 ), ( 1,7,21,35,35,21,7,1)所以: (a+b) 7=a 7+7a 6 b+21a 5b 2+35a 4b 3+35a 3b 4+21a 2b 5+7ab 6+b 7。 由上式可以看出, (a+b) n 等于 a 的次数依次下降 n 、n-1 、n- 2?n -n ,b 的次数依次上升, 0、1、2?n 次方。系数是 杨辉三角里的系数。 2 杨辉三角的幂的关系 首先我们把杨辉三角的每一行分别相加,如下: 1 ( 1 ) 1 1 ( 1+1=2 ) 1 2 1 (1+2+1=4 ) 1 3 3 1 (1+3+3+1=8 ) 1 4 6 4 1 (1+4+6+4+1=16 ) 1 5 10 10 5 1 (1+5+10+10+5+1=3 2 ) 1 6 15 20 15 6 1 (1+6+15+20+15+6+1=64 ) ?? 相加得到的数是 1, 2, 4, 8, 16, 32, 64,?刚好是 2 的 0, 1,2, 3, 4, 5, 6,? n 次幂,即杨辉三角第 n 行中 n 个数之和等于 2 的 n-1 次幂 3 杨辉三角中斜行和水平行之间的关系

杨辉三角的规律以及推导公式-杨辉三角规律

杨辉三角的规律以及定理 1 二项式定理与杨辉三角 与杨辉三角联系最紧密的是二项式乘方展开式的系数规律,即二项式定理。 杨辉三角我们首先从一个二次多项式 (a+b) 2 的展开式来探讨。 由上式得出: (a+b) 2 2+2ab+b 2 =a 此代数式的系数为: 1 2 1 则(a+b) 3 3+3a 2b+3ab 2+b 3 的展开式是什么呢?答案为: a 由此可发现, 此代数式的系数为: 1 3 3 1 但 4 似乎没有什么规律,所以让我们再来看看 (a+b) 的展开式。 展开式为: a 4+4a 3b+6a 2b2+4ab 3+b 4+4a 3b+6a 2b2+4ab 3+b 4 由此又可发现,代数式的系数为: 1 4 6 4 1 似乎发现了一些规律,就可以发现以下呈三角形的数列: 1 (11 0) 1 1 (11 1) 1 2 1 (11 2) 1 3 3 1 (11 3) 1 4 6 4 1 (11 4) 1 5 10 10 5 1 (11 5 ) 1 6 15 20 15 6 1 (11 6) 杨辉三角形的系数分别为: 1,(1,1 ),(1,2,1 ),(1,3,3,1 ),(1,4,6,4,1 )(1,5,10,10,5,1 ),(1,6,15,20,15,6,1 ), (1,7,21,35,35,21,7,1 )所以: (a+b) 7=a 7+7a 6 b+21a 5b 2+35a 4b 3+35a 3b 4+21a 2b 5+7ab 6+b 7。 由上式可以看出, (a+b) n 等于 a 的次数依次下降 n 、n-1 、n- 2? n -n ,b 的次数依次上升, 0、1、2? n 次方。系数是 杨辉三角里的系数。 2 杨辉三角的幂的关系 首先我们把杨辉三角的每一行分别相加,如下: 1 ( 1 ) 1 1 ( 1+1= 2 ) 1 2 1 (1+2+1=4 ) 1 3 3 1 (1+3+3+1=8 ) 1 4 6 4 1 (1+4+6+4+1=16 ) 1 5 10 10 5 1 (1+5+10+10+5+1=3 2 ) 1 6 15 20 15 6 1 (1+6+15+20+15+6+1=64 ) ? ? 相加得到的数是 1,2, 4,8,16,32, 64,? 刚好是 2 的 0,1,2,3,4,5, 6,? n 次幂,即杨辉三角第n 行中 n 个数之和等于 2 的 n-1 次幂 3 杨辉三角中斜行和水平行之间的关系

冀教版七年级数学下册 杨辉三角应用教案

《杨辉三角应用》教案 小明生活的城市规划得非常规则,街区都是矩形,他的家和学校相隔了好几个街道。 有一天,小明在回家的路上正在为走哪条路发愁。忽然,他想起这段时间数学课正在学“排列组合”这一章,“我何不用刚学到的知识来计算一下我回家可有多少条路供选择?”于是,他边走边思考这个问题,他发现这个问题还真不简单,需要静下心来好好想一想。 同学们,你们会算吗? 小明这样想:“我肯定不会走回头路的,所以我只能向右和向上走,一共应该向右走5条街道,向上走5条街道。” 小明想起老师经常告诉他:“在遇到困难的时候,要学会将问题转化!”。于是,小明用a表示横向的一条街道,用b表示纵向的一条街道,那么“abbaaabba”就表示如图的一条路线。这样,小明就可以用a,b的字符串来表示每一条路线了,而路线的条数就等于a,b的字符串个数。 问题就转化成为求“5个a和5个b组成多少个不同的字符串?”。这一问题的解答就很简单了:将10个位置种选出5个位置用来放置a,有C 10 5 种方法;余下的位置自然就用来放置。所以,一共有C 10 5=252个不同的字符串。 小明终于明白了,从家到学校竟然有252条路可以供选择,怪不得平时很少走重复的路线。 小明对自己的解法很是得意!他一到学校,就把这个题目告诉了好朋友小刚,却不告诉

小刚答案,他想考考小刚。 小刚也是一个爱思考的同学,但是一时还真没做上来。不过,小刚没有气馁,他觉得这个问题中由于街道太多,导致问题比较复杂,所以他决定将问题简化,先做几个数学实验,然后从中找规律,最后才解决这个问题。 小刚先假设小明家和学校只相隔一个街区,图中顶点处的数字“1”表示从这个顶点到达小明家只有一条路线。 小刚再假设小明家和学校只相隔四个街区,图中顶点处的数字表示从这个顶点到达学校的路线条数。 这时小刚发现了规律:若顶点位于最上面或最左面,则它到H的路线只有1条;若顶点位于其他位置,则它到H的路线条数等于它上面和左面的顶点到H的路线条数之和!小刚根据这个规律一口气将所有顶点的路线条数都写了出来,发现从学校S到家H的路线正好是252条。 小明对小刚的解法不得不佩服,同时对小刚得到的这个图形很是感兴趣,不由得多研究了一下,突然他叫了起来:“杨辉三角!”

相关主题
文本预览
相关文档 最新文档