当前位置:文档之家› 第五章 传热过程基础

第五章 传热过程基础

第五章  传热过程基础
第五章  传热过程基础

第五章 传热过程基础

1.用平板法测定固体的导热系数,在平板一侧用电热器加热,另一侧用冷却器冷却,同时在板两侧用热电偶测量其表面温度,若所测固体的表面积为0.02 m 2,厚度为0.02 m ,实验测得电流表读数为0.5 A ,伏特表读数为100 V ,两侧表面温度分别为200 ℃和50 ℃,试求该材料的导热系数。

解:传热达稳态后电热器的加热速率应与固体的散热(导热)速率相等,即

L

t t S

Q 2

1-=λ 式中 W 50W 1005.0=?==IV Q

m 02.0C 50C 200m 02.0212=?=?==L t t S ,,, 将上述数据代入,可得

()()

()()C m W 333.0C m W 5020002.002

.05021??=??-??=-=

t t S QL λ

2.某平壁燃烧炉由一层400 mm 厚的耐火砖和一层200 mm 厚的绝缘砖砌成,操作稳定后,测得炉的内表面温度为1500 ℃,外表面温度为100 ℃,试求导热的热通量及两砖间的界面温度。设两砖接触良好,已知耐火砖的导热系数为10.80.0006t λ=+,绝缘砖的导热系数为20.30.0003t λ=+,W /(m C)??。两式中的t 可分别取为各层材料的平均温度。 解:此为两层平壁的热传导问题,稳态导热时,通过各层平壁截面的传热速率相等,即 Q Q Q ==21 (5-32) 或 2

32212

11b t t S b t t S

Q -=-=λλ (5-32a ) 式中 115000.80.00060.80.0006 1.250.00032t t t λ+=+=+?=+

21000.30.00030.30.00030.3150.000152

t t t λ+=+=+?=+

代入λ1、λ2得

2.0100)00015.0315.0(4.01500)000

3.025.1(-+=-+t t t t

解之得

C 9772?==t t

()()()C m W 543.1C m W 9770003.025.10003.025.11??=???+=+=t λ

则 ()

221

11

m W 2017m W 4

.0977

1500543.1=-?

=-=b t t S Q λ

3.外径为159 mm 的钢管,其外依次包扎A 、B 两层保温材料,A 层保温材料的厚度为50 mm ,导热系数为0.1 W /(m·℃),B 层保温材料的厚度为100 mm ,导热系数为1.0 W /(m·℃),设A 的内层温度和B 的外层温度分别为170 ℃和40 ℃,试求每米管长的热损失;若将两层材料互换并假设温度不变,每米管长的热损失又为多少?

解:

()()m

W 150m W 100

159100502159ln 0.11159502159ln 1.014017014.32ln 21

ln 212

3

21212

1=++?++?+-??=

+-=

r r r r t t L Q πλπλ

A 、

B 两层互换位置后,热损失为

()()m

W 5.131m W 100

159100502159ln 1.01

159502159ln 0.114017014.32ln 21

ln 212

3

21212

1=++?++?+-??=

+-=

r r r r t t L Q πλπλ

4.直径为57mm 3.5φ?mm 的钢管用40 mm 厚的软木包扎,其外又包扎100 mm 厚的保温灰作为绝热层。现测得钢管外壁面温度为120-℃,绝热层外表面温度为10 ℃。软木和保温灰的导热系数分别为0.043?W/(m ℃)和0.07?W/(m ℃),试求每米管长的冷损失量。 解:此为两层圆筒壁的热传导问题,则 ()()m

W 53.24m

W 04.00285.01.004.00285.0ln 07.010285.004.00285.0ln 043

.011012014.32ln

1

ln 1π223212121-=+++++--??=+-=r r r r t t L Q λλ 5.在某管壳式换热器中用冷水冷却热空气。换热管为Φ25 mm×2.5

mm 的钢管,其导热系数为45 W/(m·℃)。冷却水在管程流动,其对流传热系数为2 600 W/(m 2·℃),热空气在壳程流动,其对流传热系数为52

W/(m 2

·℃)。试求基于管外表面积的总传热系数K ,以及各分热阻占总热阻的百分数。设污垢热阻可忽略。 解:由o o

o o m i i

1

1K d d b d d αλα=

++ 查得钢的导热系数 ()C m W 452??=λ

2.5b =mm o 25d =mm ()mm 20mm 5.2225i =?-=d mm 5.22mm 2

20

25m =+=d ()()C m W 6.50C m W 02

.02600025.00225.045025.00025.05211

22o ??=???+??+=

K

壳程对流传热热阻占总热阻的百分数为

o

o

o

o

1

50.6

100%100%100%97.3%1

52

K K αα?=

?=

?=

管程对流传热热阻占总热阻的百分数为

o

o o i i

i i o

50.60.025

100%100%100% 2.4%1

26000.02

d K d d d K αα??=

?=?=? 管壁热阻占总热阻的百分数为

o

o o m

m o

0.00250.02550.6

100%100%100%0.3%1

450.0225

bd bd K d d K λλ???=

?=?=? 6.在一传热面积为40

m 2的平板式换热器中,用水冷却某种溶液,两流体呈逆流流动。冷却水的流量为30 000kg/h ,其温度由22 ℃升高到36 ℃。溶液温度由115 ℃降至55 ℃。若换热器清洗后,在冷、热流体流量和进口温度不变的情况下,冷却水的出口温度升至40 ℃,试估算换热器在清洗前壁面两侧的总污垢热阻。假设:(1)两种情况下,冷、热流体的物性可视为不变,水的平均比热容为4.174 kJ/(kg·℃);(2)两种情况下,i o αα、分别相同;(3)忽略壁面热阻和热损失。 解:求清洗前总传热系数K

()()C 7.52C 225536115ln

225536115m ?=?-----=?t

()())C m W 231C m W 7

.52403600223610174.430000223m ??=????-???=?=

t S Q K 求清洗后传热系数K ' 由热量衡算

h p ,h 12

c p ,c 2()()W C T T W C t t -=- h p ,h 12

c p ,c 2()()W C T T W C t t ''-=- c p ,c

2121

h p ,h

()W C T T t t W C ''=-- ()()C 9.37C 22402236551151151212211?=???

?

???----=-'---

=t t t t T T T ()()C 1.38C 22

9.3740115ln

229.3740115m ?=?-----=

'?t ()()()C m W 8.410C m W 1

.38403600224010174.430000223??=????-???=K

清洗前两侧的总传热热阻

W C m 109.1W C m 8.41012311112

32S ???=????

? ??-='-=

-∑

K K R 7.在一传热面积为25

m 2的单程管壳式换热器中,用水冷却某种有机溶液。冷却水的流量为28

000kg/h ,其温度由25 ℃升至38 ℃,平均比热容为4.17 kJ/(kg·℃)。有机溶液的温度由110 ℃降至65 ℃,平均比热容为1.72 kJ/(kg·℃)。两流体在换热器中呈逆流流动。设换热器的热损失可忽略,试核算该换热器的总传热系数并计算该有机溶液的处理量。 解:p,c 4.17C = kJ/(kg·℃) c p ,c 21()Q W C t t =- ()W 1022.4W 25381017.43600

28000

53?=-???=

求m t ?

有机物 110 → 65 水 38 ← 25

———————————————— t ? 72 40 C 4.54C 40

72ln 4072m ?=?-=?t

()()C m W 3.310C m W 4

.54251022.4225

??=????=K

()()

h k g 10963.1s k g 452.5k g 651101072.11022.443

5

21h h ?==-???=-=K T T c Q W p 8.在一单程管壳式换热器中,用水冷却某种有机溶剂。冷却水的流量为10 000

kg/h ,其初始温度为30 ℃,平均比热容为4.174 kJ/(kg·℃)。有机溶剂的流量为14 000 kg/h ,温度由180 ℃降至120 ℃,平均比热容为1.72 kJ/(kg·℃)。设换热器的总传热系数为500

W/(m 2

·℃),试分别计算逆流和并流时换热器所需的传热面积,设换热器的热损失和污垢热阻可以忽略。

解: ()()kW 3.401h kJ 104448.1h kJ 12018072.114000621h =?=-??=-=T T Wc Q p 冷却水的出口温度为

C 61.64C 30174.410000104448.161c c 2?=????

? ??+??=+=t c W Q

t p 逆流时

()()C 102.2C 90

ln

39

.25C 30

120ln

3012061.64180m ?=?=

?----=

?t 223m m 854.7m 2

.102500103.401=??=?=t K Q S 逆

并流时

()()C 97.94C 150

39.55ln

61

.94C 30

18061.64120ln

3018061.64120m ?=?=

?-----=

?t 223m m 452.8m 97

.94500103.401=??=?=t K Q S 逆

9.在一单程管壳式换热器中,用冷水将常压下的纯苯蒸汽冷凝成饱和液体。已知苯蒸汽的体积流量为1 600 m 3/h ,常压下苯的沸点为80.1 ℃,气化热为394 kJ/kg 。冷却水的入口温度为20 ℃,流量为35 000 kg/h ,水的平均比热容为4.17 kJ/(kg·℃)。总传热系数为450

W/(m 2

·℃)。设换热器的热损失可忽略,试计算所需的传热面积。 解:苯蒸气的密度为 ()

33m kg 692.2m kg 1.8027308206.078

1=+??==

RT PM ρ h kg 2.4307h kg 692.21600h =?=W

W 1071.4h kJ 10697.1h kJ 3942.430756h ?=?=?==γW Q c p ,c 21()Q W C t t =- 23535000

4.1710(20) 4.71103600

t =

??-=? 解出 231.6t =℃

求m t ?

苯 80.1 → 80.1 水 31.6 20

———————————————— t ? 48.5 60.1

C 1.54C 5

.481.60ln

5

.481.60m ?=?-=

?t 2

25m m 3.19m 1

.544501071.4=??=?=t K Q S

10.在一单壳程、双管程的管壳式换热器中,水在壳程内流动,进口温度为30 ℃,出口温度为65 ℃。油在管程流动,进口温度为120 ℃。出口温度为75 ℃,试求其传热平均温度差。

解:先求逆流时平均温度差 油 120 → 75 水 65 30 t ? 55 45

C 8.49C 4555

ln 4555ln 12

12m

?=?-=???-?='?t t t t t

计算P 及R 21116530

0.38912030t t P T t --===-- 122112075

1.2866530

T T R t t --=

==-- 查图5-11(a )得 Δt 0.875?=

C 6.43C 8.49875.0m

Δt m ?=??='?=?t t ? 11.某生产过程中需用冷却水将油从105 ℃冷却至70 ℃。已知油的流量为6 000

kg/h ,水的初温为22 ℃,流量为2 000 kg/h 。现有一传热面积为10 m 2的套管式换热器,问在下列两种流动型式下,换热器能否满足要求: (1) 两流体呈逆流流动; (2) 两流体呈并流流动。

设换热器的总传热系数在两种情况下相同,为300 W/(m 2·℃);油的平均比热容为1.9 kJ/(kg·℃),水的平均比热容为4.17 kJ/(kg·℃)。热损失可忽略。 解:本题采用NTU -ε法计算 (1)逆流时 C W 7.3166C W 109.23600

6000

3h h ?=??=p c W C W 7.2316C W 1017.43600

2000

3c c ?=???=p c W m i n R m a x 2316.7

0.732

3166.7

C C C =

== m i n m i n 30010

() 1.295

2316.7

KS NTU C ?=

== 查图得 0.622ε= m i n 11()Q C T t ε=-

()W 10196.1W 221057.2316622.05?=-??=

C 70C 2.67C 7.316610196.11055h h 12?

?

????-=-=p c W Q T T 能满足要求 (2)并流时 R 0.732C =

m i n () 1.295NTU =

查图得 0.526ε=

()W 10011.1W 221057.2316526.05?=-??=Q

C 70C 1.73C 7.316610011.110552?

??-=T 不能满足要求 12.在一单程管壳式换热器中,管外热水被管内冷水所冷却。已知换热器的传热面积为5 m 2,总传热系数为1 400 W/(m 2·℃);热水的初温为100 ℃,流量为5 000 kg/h ;冷水的初温为20 ℃,流量为10 000 kg/h 。试计算热水和冷水的出口温度及传热量。设水的平均比热容为4.18 kJ/(kg·℃),热损失可忽略不计。 解: C W 5806C W 1018.43600

5000

3h h =??=p c W C W 11611C W 1018.43600

10000

3c c =???=p c W 5.011611

6

.5805m a x m i n R ===

C C C m i n m i n 14005

() 1.21

5805.6

KA NTU C ?=

== 查图得 0.575ε= 传热量 m i n 11()Q C T t ε=-

()W 1067.2W 201006.5805575.05?=-??= 122

111000.57510020

T T T T t ε--=

==-- 解出 254T =℃ 212R 1220

0.510054

t t t C T T --=

==--

解出 243t =℃

13.水以1.5 m/s 的流速在长为3 m 、直径为mm 5.2mm 25?φ的管内由20 ℃加热至40 ℃,试求水与管壁之间的对流传热系数。 解:水的定性温度为

C 30C 2

40

202b2b1f ?=?+=+=

t t t 由附录六查得30°

C 时水的物性为 ρ=995.7 kg/m 3,μ=80.07×10-5

Pa·s ,λ=0.6176W /(m C)??,Pr =5.42

则 4i b 5

0.02 1.5995.7

e 3.731080.0710

d u R ρ

μ

-??=

=

=??(湍流)

i 3150600.02L d ==>

Re 、Pr 及

i

d L

值均在式5-59a 的应用范围内,故可采用式5-76a 近似计算α。 水被加热,取n =0.4,于是得

())()

C m W 6345C m W 42.51073.302

.06176.0023.0Pr Re 023.0224.08

.044.08.0i ??=??????==d λα

14.温度为90 ℃的甲苯以1500 kg/h 的流量流过直径为57mm 3.5φ?mm ,弯曲半径为0.6 m 的蛇管换热器而被冷却至30 ℃,试求甲苯对蛇管的对流传热系数。

解:甲苯的定性温度为 C 60C 2

30

902b2b1f ?=?+=+=

t t t 由附录查得60C ?时甲苯的物性为

ρ=830 kg/m 3,C p =1840 J/(kg·℃),μ=0.4×10

-3

Pa·s ,λ=0.1205W /(m C)??,

r P =

3p 18400.410 6.110.1205

c μ

λ-??== 则 s m 256.0s m 05.04

π

83036001500

4π2

2i b =???==

d w u ρ 26539104.0830

256.005.03

b i =???=

=

ρ

u d Re (湍流)

流体在弯管内流动时,由于受离心力的作用,增大了流体的湍动程度,使对流传热系数较直管内的大,此时可用下式计算对流传热系数,即 i

(1 1.77

)d R

αα'=+ 式中 α'—弯管中的对流传热系数,2W C)??;

α—直管中的对流传热系数,2W (m C)??;

d i —管内径,m ;

R —管子的弯曲半径,m 。

)()C m W 5.395C m W 11.63.2653905.01205

.0023.0Pr Re 023

.0224.08.04

.08.0i

??=?????

==d λ

α

()()C m W 6.35C m W 6.005.077.115.39577.112

2i ??=????? ???+?=??? ?

?+='R d αα

15.压力为101.3 kPa ,温度为20 ℃的空气以60 m 3/h 的流量流过直径为57mm 3.5mm φ?,长度为3 m 的套管换热器管内而被加热至80 ℃,试求管壁对空气的对流传热系数。

解:空气的定性温度为

C 50C 2

80

202b2b1f ?=?+=+=

t t t 由附录五查得50 ?C 时空气的物性为 ρ=1.093 kg/m 3,C p =1005 J/(kg·℃),μ=1.96×10-5

Pa·s ,λ=0.0283W /(m C)??,Pr =0.698 则 m 50.8m 05.04

3.14360060

4π22i b =??==

d w u ρ i b 5

0.058.5 1.093

e 23679.51.9610d u R ρ

μ

-??=

=

=?(湍流)

()()()C m W 6.35C m W 698.03.2367905

.00283.0023.0Pr Re 023

.0224.08

.04

.08.0i

??=?????

==d λ

α

16.常压空气在装有圆缺形挡板的列管换热器壳程流过。已知管子尺寸为

38mm 3φ?mm ,正方形排列,中心距为51 mm ,挡板距离为1.45 m ,换热器外壳内径为8.2

m ,空气流量为43410m /h ?,平均温度为140 ℃,试求空气的对流传热系数。

解:由附录五查得140?C 时空气的物性为 ρ=0.854 kg/m 3,C p =1013 J/(kg·℃),μ=2.37×10-5 Pa·s ,λ=0.0349W /(m C)??,Pr =0.694 采用凯恩(Kern )法,即

0.5513w 0.36e r Nu R P ?= (5-63) 或 0.55130.14

e e w

0.36

()r ()d u P d ρλμαμμ= (5-63a )

传热当量直径e d '可根据管子排列情况进行计算。 管子为正方形排列,则 22o e o

4()

4πt d d d π

-

=

式中 t —相邻两管的中心距,m ; D o —管外径,m 。 代入t 和d o 得

m 049.0m 038

.0π038.04π0.0514π4π422o 2o 2e =??

?? ???-=??? ??-=d d t d 式5-63及式5-63a 中的流速u 可根据流体流过管间最大截面积A 计算,即

o

(1)d A zD t

=- 式中 z —两挡板间的距离,m ; D —换热器的外壳内径,m 。 代入z 、D 、t 和d o 得

2

2o

m 03.1m 051.0038.018.245.11=??? ??-??=??

? ?

?

-=t d zD A

s m 74.10s m 03

.136001044

=??==A V u

上述式中的w ?对气体可取为1.0。 0.55130.14e e w

0.36

()Pr ()d u d ρλμαμμ= )()C m W 8.50C m W 684.01037.2854.074.10049.0049.00349.036.0223155

.05??=????

?

?

???????=-

17.将长和宽均为0.4 m 的垂直平板置于常压的饱和水蒸气中,板面温度为98 ℃,试

计算平板与蒸汽之间的传热速率及蒸汽冷凝速率。 解:水的定性温度为

C 99C 2

100

982sat w f ?=?+=+=t t t

由附录六查得99 ?C 时水的物性为

ρ=958.5 kg/m 3,C p =4220 J/(kg·℃),μ=28.41×10-5

Pa·s ,λ=0.683W /(m ?o C),

Pr =1.762

由附录八查得100 ?C 时饱和蒸气的物性为 2258r =kJ/kg ,v 0.597ρ=kg/m

对于此类问题,由于流型未知,故需迭代求解。首先假定冷凝液膜为层流,由式5-135得

()()4

1w s a t 3m 13.1??

?

???--=t t L gr v μλρρρα

()()()

)

C m W 10468.1C m W 981004.01041.28683.010225881.9597.05.9585.95813.12424

15

33???=????

?

???-???????-?=-v

核算冷凝液流型,由对流传热速率方程计算传热速率,即

()()W 93952W 9810024.04.010468.14w sat =-?????=-=t t S Q α 冷凝液的质量流率为 kg 1016.4s kg 10

22589395223-?=?==

r Q w

单位长度润湿周边上的凝液质量流率为

()s m kg 102.5s kg 4

.021016.422

??=??=

=Γ--P w 则 18003.693103.0102.544Re 3

2

f <=???=Γ

=--μ 故假定冷凝液膜为层流是正确的。

18.常压水蒸气在一25mm 2.5φ?mm ,长为3 m ,水平放置的钢管外冷凝。钢管外壁的温度为96 ℃,试计算水蒸气冷凝时的对流传热系数。若此钢管改为垂直放置,其对流传热系数又为多少?由此说明工业上的冷凝器应如何放置? 解:由附录查得,常压水蒸气的温度为100 ℃。

定性温度C 98C 2

96

1002s w f ?=?+=+=t t t

由附录查得在98 ℃下,水的物性为:

()s

Pa 1003.29;kg kJ 08.2261C m W 6822.0m kg 78.960523??==??==-μλρr ;; 水平放置

()()

C m W 17530C m W 4025.01003.296822.081.978.9601008.2261725.0725.0225

3234

132??=?????

??????????=?

?

?????=-t L g r μλρα 垂直放置

()()

C m W 7427C m W 431003.296822.081.978.9601008.226113.113.1225

3234

132??=???????????????=?

?

?

????=-t L g r μλρα 通过上述计算可知,工业上的冷凝器应水平放置。

19.两平行的大平板,在空气中相距10 mm ,一平板的黑度为0.1,温度为400 K ;另一平板的黑度为0.05,温度为300 K 。若将第一板加涂层,使其黑度为0.025,试计算由此引起的传热通量改变的百分数。假设两板间对流传热可以忽略。 解:第一板加涂层前

因是两平行的大平板,则1?=;

()()42422

1

021K m W 196.0K m W 1201067

.51

11?=?-+=-+=

-εεC C ;

于是

2

2444241212

1m

W 22.34m W 1003001004001196.0100100=??????????? ??-??? ????=???

???????? ??-??? ??=--T T C S Q ?

第一板加涂层后

()()42422

1

021

K m W 096.0K m W 1204067

.51

11?=?-+=-+='-εεC C

()

224442412121m

W 82.16m W 1003001004001096.0100100=??????????? ??-??? ????=???

???????? ??-??? ??''='

--T T C S Q ?

空气导热的热通量C 77C 2

127

27221m ?=?+=+=

t t t ,查得C 77?时,空气的导热系数()C m W 03.0??=λ

()()()222121m W 300m W 30040001

.003.0=-=-="-t t b

S Q λ

加涂层前后传热通量减少的百分率为

()()

%2.5%10030022.3482

.1622.3421212121=?+-="+'

-----S Q S Q S Q S Q

20.用压力为300 kPa (绝对压力)的饱和水蒸气将20 ℃的水预热至80 ℃,水在

25mm 2.5φ?mm 水平放置的钢管内以0.6 m/s 的速度流过。设水蒸气冷凝的对流传热系数

为5 000 W/(m 2·℃),水侧的污垢热阻为6×10-4 m 2·℃/W ,蒸汽侧污垢热阻和管壁热阻可忽略不计,试求(1)换热器的总传热系数;(2)设操作半年后,由于水垢积累,换热能力下降,出口水温只能升至70 ℃,试求此时的总传热系数及水侧的污垢热阻。 解:查附录得,300 kPa 的饱和水蒸气温度为133.3 ℃

水的定性温度为

(1)12m 8020

50C 22t t t ++===?

在50 ℃下,水的物理性质如下:

))

2364.7810W m 988.1kg m Pa s 4.174kJ kg C p C C λρμ-=???=??=??-5;;=54.9410; 4

i 2

0.020.6988.1

e 21582104.1741000 3.54

64.7810p d u R c Pr ρ

μμλ-??=

==>????===?-5

-5

54.941054.9410

应用公式5-58a 进行计算

)()C m W 3627C m W 53.32158202

.06478

.0023.0Pr Re 023

.0224.08.04

.08.0i

??=?????

==d λ

α

()()

C m W 4.772C m W 20

25

10636272025500011

11

224i

o

Si i i o o

??=????+?+=

++

=

-d d

R d d K αα

(2)m c c 21()p Q KS t W C t t =?=- (a )

m

c c 21()p Q K S t W C t t ''''=?=- (b ) (b )式÷(a )式,得

m

21m 21

K t t t K t t t '''?-=

?- )()

C m W 2.596C m W 4.772803.133203.133ln 703.133203.133ln ln

ln ln

ln 22212

1

2112

21121212m m 1212??=???----=--'--='---'-----'='??--'=K t T t T t T t T K t T t T t t t T t T t t t t t t K t t t t t t K

()C m W 2.59620

25

36272025500011

1

1

2si i

o Si

i i o o

??=?+?+=

'++

=

R d d

R d d K αα

21.在一套管换热器中,用冷却水将4 500 kg/h 的苯由80 ℃冷却至35 ℃,;冷却水在5.2mm 25?φmm 的内管中流动,其进、出口温度分别为17 ℃和47 ℃。已知水和苯的对流

传热系数分别为850 W/(m 2·℃)和1 700 W/(m 2·℃),试求所需的管长和冷却水的消耗量。

解:苯的定性温度

C 5.57C 2

35

80221m1?=?+=+=

t t t 57.5C ?时苯的定压热容为1.824 kJ/(kg·℃) 水的定性温度

C 27C 2

3717221m2?=?+='+'=t t t

27C ?时水的定压热容为4.176 kJ/(kg·℃) 冷却水的消耗量

h h 12c c 21()()p p Q W C T T W C t t =-=-

32si

1.210m C W R -'=???

()()

()()h kg 2948h kg 17

47176.43580824.1450012c 21h h c =-?-??=

--=

t t c T T c W W p p

管长

()21h h m T T c W t KS Q p -=?=

))C m W 7.485C m W 850

2025

170011

1

122i

i o

o

??=???+

=

+

=

ααd d K

()()C 75.24C 17

354780ln 17354780m ?=?-----=

?t

()()223m

21h h m 535.8m 75

.247.4853600358010824.14500=??-???=?-=

t K T T c W S p

22.某炼油厂拟采用管壳式换热器将柴油从176℃冷却至65℃。柴油的流量为9800kg/h 。冷却介质采用35℃的循环水。要求换热器的管程和壳程压降不大于30kPa ,试选择适宜型号的管壳式换热器。 解:略

传质过程基础习题

第一章传质过程基础 一、选择与填空(30分,每空2分)https://www.doczj.com/doc/5514475079.html,/month.200807.html 1. 传质通量与_____相对应。 A. ; B. ; C. ; D. 。 2. 传质通量j A与_____相对应。 A.; B.; C.; D. 。 3. 传质通量与_____相对应。 A. ; B. ; C. ; D. 。 4. 等分子反方向扩散通常发生在_______单元操作过程中;一组分通过另一停滞组分的扩散通常发生在_______单元操作过程中。 5. 描述动量和质量传递类似律的一层模型是________________;两层模型是 _____________;三层模型是_______________。 6. 通常,气体的扩散系数与_____________有关,液体的扩散系数与_____________有关。 7. 表示_____________________对流传质系数,表示_______________________对流传质系数,它们之间的关系是__________________。 8. 对流传质系数与推动力_____相对应。 A. ; B. ; C. ; D. 。

9. 推动力与对流传质系数_____相对应。 A. ; B. ; C. ; D. 。 二、计算题(40分,每题20分) 1. 在一根管子中存在有由CH4(组分A)和He(组分B)组成的气体混合物,压力为1.013×105 Pa、温度为298K。已知管内的CH4通过停滞的He进行稳态一维扩散,在相距0.02m的两端,CH4 的分压分别为Pa及Pa,管内的总压维持恒定。扩散条件下,CH4 在He中的扩散系数为m2/s 。试求算CH4的传质通量。 2. 298 K的水以0.5 m/s的主体流速流过内径为25mm的萘管,已知萘溶于水时的施密特数为2330,试分别用雷诺、普兰德—泰勒、卡门和柯尔本类比关系式求算充分发展后的对流传质系数。 三、推导题(30分,每题15分) 1. 对于A、B 二组元物系,试采用欧拉(Euler)方法,推导沿x、y方向进行二维分子传 质时的传质微分方程。设系统内发生化学反应,组分A的质量生成速率为kg/(m3·s) 2. 试利用传质速率方程和扩散通量方程,将转换成。 一、选择与填空(30分) 1. 吸收操作的原理是__________________。 2. 对接近常压的低浓度溶质的气液平衡系统,当总压增大时,亨利系数将_____,相平 衡常数将_____,溶解度系数将_____。 A. 增大; B. 不变; C. 减小; D. 不确定。 3. 在吸收操作中,以液相浓度差表示的吸收塔某一截面上的总推动力为_____。

《化工传递过程》课程教学大纲

《化工传递过程》课程教学大纲 一、课程说明 课程编码4302026 课程类别专业主干课 修读学期第五学期学分 2 学时48 课程英文名称Transfer Processes in Chemical Engineering 适用专业化学工程与工艺 先修课程物理化学、化工原理、化工热力学 二、课程的地位及作用 《化工传递过程》是针对化学工程与工艺方向的必修课。是一门探讨自然现象和化工过程中动量、热量和质量传递速率的课程。化学工程中各个单元操作均被看成传热、传质及流体流动的特殊情况或特定的组合,对单元操作的任何进一步的研究,最终都是归结为这几种传递过程的研究。将化工单元操作(化工原理)的共性归纳为动量、热量和质量传递过程(三传)的原理系统地论述,将化学工程的研究方法由经验分析上升为理论分析方法。各传递过程既有独立性又有类似性,虽然课程中概念、定义和公式较多,基本方程又相当复杂,给学习带来一定的困难,但可运用三传的类似关系进行研究理解,使学生掌握化学工程专业中有关动量、热量和质量传递的共性问题。该课程的学习有助于学生深入了解各类传递过程的机理,为改进各种传递过程和设备的设计,操作和控制提供理论基础;为今后的科学研究提供各种的基础数学模型;为速度、温度、浓度分布及传递速率的确定提供必要的帮助,为分析和解决过程工程和强化设备性能等问题提供坚实的理论基础。 三、课程教学目标 1. 侧重于熟悉掌握传递过程的各种基本理论;正确的提供所求强度量的分布规律及传递速率表达式; 2. 掌握传递过程的微分方程并达到能够熟练地运用方程的水平;

3. 能够正确地分析、简化三传基本微分方程;对实际情况建立必要的数学模型; 4. 了解传递过程的发展趋势、方向和其在化学工程中的具体运用领域; 5. 通过学习加深对化学工程基本原理的理解,使学生能顺利学习后续的专业课,提高自学与更新本专业知识的能力。 四、课程学时学分、教学要求及主要教学内容 (一) 课程学时分配一览表 章节主要内容总学时 学时分配讲授实践 第1章传递过程概论 2 2 0 第2章动量传递概论与动量传递微分方程 6 6 0 第3章动量传递方程的若干解 6 6 0 第4章边界层流动 6 4 0 第5章湍流 6 4 0 第6章热量传递概论与能量方程 6 6 0 第7章热传导 2 2 0 第8章对流传热 2 2 0 第9章质量传递概论与传质微分方程 4 4 0 第10章分子传质 4 4 0 第11章对流传质 2 2 0 第12章多种传递同时进行的过程 2 2 0 (二) 课程教学要求及主要内容 第一章传递过程概论 教学目的和要求: 1.流体流动的基本概念; 2.掌握传递过程的类似性; 3.传递过程的衡算方法。 教学重点和难点:

传递过程原理论文样本

简谈化工传递原理中的类似性 摘要 在化工行业的生产过程中,有各种各样的单元操作,但是从原理上看就包括流体流动,质量交换,加热或冷却这三类过程。也就是我们所说的动量传递,质量传递与热量传递。本文通过分析化工过程中的传递现象, 总结了动量传递、热量传递和质量传递过程的一些类似性, 并且讨论了这些类似性的理论和应用价值。 关键词: 动量传递;热量传递;质量传递;类似性 一、分子传递的类似性 描述分子传递的三个定理分别是牛顿粘性定理、傅立叶热传导第一定理和费克扩散第一定理。其数学描述依次为: 方程(1)和(2)经过简单的推导可变为如下方程: 在(3)(4)(5)三个方程中,我们可以分析发现以下的类似性: 首先,v,和D 都被叫做扩散系数,单位均为m2/s。它们是物质的动力学物AB 性,且三者之间存在如下关系: 其中u 为分子平均速度,为分子平均自由程。 其次,,, 分别为动量浓度梯度、热量浓度和质量浓度梯度。表明了三种传递都是以浓度梯度作为传递的推动力。 最后,,,都表示了某一物理量的通量,分别为动量通量、热量通量和质量通量。 由以上分析可知这三种分子传递可以用统一的文字方程描述为: 通量扩散系数浓度梯度() 其中负号表示传递方向与浓度梯度方向相反。我们将上式称为现象方程, 表明三种分子传递过程具有同样的现象方程。

二、对流传递的类似性 我们分析在平板壁面的边界层中, 摩擦曳力系数,对流传热系数h和对流传质系的定义式分别为: (7),(8),(9)三式可以变换如下: 分析上述三式,便可以得出以下的类似性: 第一,对流传递的动量通量、热量通量和质量通量都相应地等于各自的对流传递系数乘以各自量的浓度差,可以用如下文字方程表示: 通量(对流传递系数)(浓度差) 其中负号同样表示方向的差异。 第二,上述三式中的浓度差其实就是表示传递的推动力。 为动量浓度差, 表示动量传递的推动力。由于壁面的动量为,而),所以用“0”表示壁面动量。 为热量浓度差, 表示对流传热的推动力。 为摩尔浓度差, 可以看做对流传质的推动力。 第三,,, 均表示对流传递的系数,且单位均为m/s 。 三、三传类比的概念 在无内热源,无均相化学反应,无辐射传热的影响,由于表面传递的质量速率足够低, 对速度分布、温度分布和浓度分布的影响可以忽略不计, 可视为无总体流动,无边界层分离,无形体阻力等条件下,许多学者从理论上和实验上对三传类比进行了研究。 雷诺通过理论分析,最早提出了三传类比的概念,得出单层模型。雷诺首先假定层流区(或湍流区)一直延伸到壁面,然后利用动量、热量和质量传递的相似性,导出了范宁摩擦因子与传热系数和传质系数之间的关系式,即广义雷诺类比式如下: 或

传递过程原理复习题最后报告

《传递工程基础》复习题 第一单元传递过程概论 本单元主要讲述动量、热量与质量传递的类似性以及传递过程课程的内容及研究方法。掌握化工过程中的动量传递、热量传递和质量传递的类似性,了解三种传递过程在化工中的应用,掌握牛顿粘性定律、付立叶定律和费克定律描述及其物理意义,理解其相关性。熟悉本课程的研究方法。 第二单元动量传递 本单元主要讲述连续性方程、运动方程。掌握动量传递的基本概念、基本方式;理解两种方程的推导过程,掌握不同条件下方程的分析和简化;熟悉平壁间的稳态层流、圆管内与套管环隙中的稳态层流流动情况下连续性方程和奈维-斯托克斯方程的简化,掌握流函数和势函数的定义及表达式;掌握边界层的基本概念;沿板、沿管流动边界层的发展趋势和规律;边界层微分和积分动量方程的建立。 第三单元热量传递 本单元主要讲述热量传递基本方式、微分能量方程。了解热量传递的一般过程和特点,进一步熟悉能量方程;掌握稳态、非稳态热传导两类问题的处理;对一维导热问题的数学分析方法求解;多维导热问题数值解法或其他处理方法;三类边界问题的识别转换;各类传热情况的正确判别;各情况下温度随时间、地点的分布规律及传热通量。结合实际情况,探讨一些导热理论在工程实践中的应用领域。 第四单元传量传递 本单元主要介绍传质的基本方式、传质方程、对流传质系数;稳定浓度边界层的层流近似解;三传类比;相际传质模型。掌握传质过程的分子扩散和对流传质的机理;固体中的分子扩散;对流相际传质模型;熟悉分子扩散微分方程和对流传质方程;传质边界层概念;沿板、沿管的浓度分布,传质系数的求取,各种传质通量的表达。

第一部分 传递过程概论 一、填空题: 1. 传递现象学科包括 动量 、 质量 和 热量 三个相互密切关联的主题。 2. 化学工程学科研究两个基本问题。一是过程的平衡、限度;二是过程的速率以及实现工程所需要的设备。 3. 非牛顿流体包括假塑性流体,胀塑性流体,宾汉塑性流体 (至少给出三种流体)。 4.分子扩散系数(ν ,α ,D AB )是物质的物理性质常数,它们仅与__温度__ , ___压力 ___和___组成__等因素有关。 5.涡流扩散系数(E )则与流体的__性质____无关、而与__湍动程度_____,流体在管道中的 ____所处位置____和___边壁糙度_____等因素有关。 6.依据流体有无粘性,可以将流体分为____粘性_______流体和理想_______流体。 7.用于描述涡流扩散过程传递通量计算的三个公式分别为:____ _、_______ 和 ________ __。 8.动量、热量及质量传递的两种基本方式是 对流 和 扩散 ,其中,前者是指由于 流 体宏观流动 导致的传递量的迁移,后者指由于传递量 浓度梯度 所致传递量的迁移。 9.分子传递的基本定律包括 牛顿粘性定律 , 傅立叶定律 和 费克定律 ,其数学定 义式分别为 dy du μτ-= , dy dt k A q -=?? ? ?? 和 dy dC D j A AB A -= 。 10. 依据守恒原理运用微分衡算方法所导出的变化方程包括连续性方程、能量方程、运动方 程和对流扩散方程。 11.描述分子传递的现象方程及牛顿粘性定律 、傅立叶定律和费克定律称为本构方程。 12. 依据质量守恒、能量守恒和动量守恒原理,对设备尺度范围进行的衡算称为总衡算或宏 观衡算;对流体微团尺度范围进行的衡算称为微分衡算或微观衡算。 13.通过微分衡算,导出微分衡算方程,然后在特定的边界和初始条件下通过梳理解析方法, 将微分方程求解,才能得到描述流体流动系统中每一点的有关物理量随空间位置和时间的变 化规律。 14. 传递现象所遵循的基本原理为一个过程传递的通量与描述该过程的强度性质物理量的 梯度成正比,传递的方向为该物理量下降的方向。 15.传递现象的基本研究方法主要有三种,即理论分析方法、实验研究方法和数值计算方法。 二、基本概念 1. 流体质点 2. 连续介质 3. 稳态流动、非稳态流动 三、名词解释 1.压力、黏度、通量 2 不可压缩流体,可压缩流体,粘性流体,理想流体,非牛顿流体,非牛顿流体的几种类型?

传热学基础试题及答案-传热学简答题及答案讲解学习

传热学基础试题及答案-传热学简答题及答 案

传热学基础试题 一、选择题 1.对于燃气加热炉:高温烟气→内炉壁→外炉壁→空气的传热过程次序为 A.复合换热、导热、对流换热 B.对流换热、复合换热、导热 C.导热、对流换热、复合换热 D.复合换热、对流换热、导热2.温度对辐射换热的影响()对对流换热的影响。 A.等于 B.大于 C.小于 D.可能大于、小于 3.对流换热系数为1000W/(m2·K)、温度为77℃的水流经27℃的壁面,其对流换热的热流密度为() A.8×104W/m2 B.6×104 W/m2 C.7×104 W/m2 D.5×104W/m2 4.在无内热源、物性为常数且温度只沿径向变化的一维圆筒壁 (t 1 >t 2 ,r 1 B. 2 1r r r r dr dt dr dt = = < C. 2 1r r r r dr dt dr dt = = = 5.黑体的有效辐射____其本身辐射,而灰体的有效辐射()其本身辐射。 A.等于等于 B.等于大于 C.大于大于 D.大于等于 仅供学习与交流,如有侵权请联系网站删除谢谢2

6.有一个由四个平面组成的四边形长通道,其内表面分别以1、2、3、4表示,已知角系数X1,2=0.4,X1,4=0.25,则X1,3为()。 A. 0.5 B. 0.65 C. 0.15 D. 0.35 7.准则方程式Nu=f(Gr,Pr)反映了( )的变化规律。 A.强制对流换热 B.凝结对流换热 C.自然对流换热 D.核态沸腾换热 8.当采用加肋片的方法增强传热时,将肋片加在()会最有效。 A. 换热系数较大一侧 B. 热流体一侧 C. 换热系数较小一侧 D. 冷流体一侧 9. 某热力管道采用两种导热系数不同的保温材料进行保温,为了达到较好的保温效果,应将( )材料放在内层。 A. 导热系数较大的材料 B. 导热系数较小的材料 C. 任选一种均可 D. 不能确定 10.下列各种方法中,属于削弱传热的方法是( ) A.增加流体流速 B.管内加插入物增加流体扰动 C. 设置肋片 D.采用导热系数较小的材料使导热热阻增加 11.由炉膛火焰向水冷壁传热的主要方式是( ) A.热辐射 B.热对流 C.导热 D.都不是 12.准则方程式Nu=f(Gr,Pr)反映了( )的变化规律。 A.强制对流换热 B.凝结对流换热 C.自然对流换热 D.核态沸腾换热 13.判断管内紊流强制对流是否需要进行入口效应修正的依据是( ) A.l/d≥70 B.Re≥104 C.l/d<50 D.l/d<104 14.下列各种方法中,属于削弱传热的方法是( ) A.增加流体流度 B.设置肋片 C.管内加插入物增加流体扰动 D.采用导热系数较小的材料使导热热阻增加 仅供学习与交流,如有侵权请联系网站删除谢谢3

化工传递过程过程性考核(一) - 答案

化工传递Array过程过程 性考核试 卷 (一) 一.填空题(每空1分,本大题共41分) 1. 流体静力学基本方程的应用包括压力压差的测量、液位的测量和液封高度的计算。 2. 甲地大气压为100 kPa,乙地大气压为80 kPa。某刚性设备在甲地,其内部的真空度为25 kpa,则其 内部的绝对压强为75 kpa;若将其移至乙地,则其内部的表压强为-0.5 mH2O。 3. 流体流动有两种基本形态,即层流和湍流。判断流体流动形态的无量纲数群为雷诺数, 其表达形式为Re=duρ/μ,物理意义为表示流体惯性力与与黏性力比值。 4. 复杂管路分为分支管路和并联管路。 5. 常用的流量计中,孔板流量计和文丘里属于差压流量计;转子流量计属于截面流量计; 测速管可测量点速度。 6. 流体在圆形直管内做层流流动,若流量不变,将管径变为原来的两倍,则平均流速变为原来的1/4 , 流动摩擦系数变为原来的2倍,直管阻力损失变为原来的1/16 。 7. 流体在一套管环隙内流动,若外管内径为50 mm,内管外径为25 mm,则其流动当量直径为 25 mm.

8. 流体在圆形直管内做稳态层流流动,若管截面上平均流速为0.05 m/s ,则最大流速为 1.0 m/s 。 9. 联系各单元操作的两条主线为 传递过程 和 研究工程问题的方法论 。 10. 湍流边界层可以分为 层流底层 、 过渡层 和 湍流主体 ,其中传热、传质阻力主要集中在 层流底层 。 11. 随体导数的表达形式为 z u y u x u θz y x ??+??+??+??=θD D 。 12. 不可压缩流体连续性方程的一般表达形式为0=??u 。 13. 量纲分析的基础是 量纲一致性原则 和 π 定理。 14. 在研究流体的运动时,常采用两种观点,即 欧拉 观点和 拉格朗日 观点。 15. 牛顿黏性定律的表达形式为y u x d d μ τ-=。 16. 流体质点的运动轨迹称为 迹线;在某一时刻,在流线上任一点的切线方向与流体在该点的速度方向 相同 。 17. 流体在管路中的流动总阻力应为 直管 阻力和局部阻力之和,其中局部阻力的计算方法有 局部 阻力系数 法和 当量长度 法。 18. 流体静力学基本方程适用于 连通着的 、 同一种连续的 、 不可压缩 的静止流体。 二、单项选择题:(每空1分,本大题共8分) 在每小题列出的四个备选项中选出一个正确答案的代号填写在题后的括号内。 19. 流体在并联的两支管内层流流动,两支管的长度之比l 1: l 2=2: 1,内径之比d 1: d 2=1: 2,则两支管内的 流量之比Q 1: Q 2为( D ) A. 1/4 B. 1/8 C. 1/16 D. 1/32 20. 黏度为1 cP ,密度为800 kg/m 3的流体以16 m 3/h 的流量在Ф89 mm×4.5 mm 的管内流动,其流动雷诺数为( B ) A. 4.3×104 B. 5.7×104 C. 3.3×104 D. 7.8×104 21. 一般说来,温度升高,液体的黏度( B ),气体的黏度( A ) A. 升高 B. 降低 C. 不变 D. 不确定 22. 在摩擦系数图中,在层流区,摩擦系数λ与平均流速的( A )成正比;在完全湍流区,摩擦系数λ

传热基本方程及传热计算

第三节传热基本方程及传热计算 可知,要强化传热过程主要应着眼于增加推动力和减少热阻, 也就是设法增大 t m 或者 增大传热面积A 和传热系数K 。 在生产上,无论是选用或设计一个新的换热器还是对已有的换热器进行查定,都是建 立在上述基本方程的基础上的, 传热计算则主要解决基本方程中的 Q ,A,K, tm 及有关量的 计算。传热基本方程是传热章中最主要的方程式。 、传热速率Q 的计算 冷、热流体进行热交换时,当热损失忽略,则根据能量守恒原理,热流体放出热 量Qh ,必等于冷流体所吸收的热量 Qc ,即Qn Qc ,称之热量衡算式。 i.i. 无相变化时热负荷的计算 (1) ( 1)比热法 Q m h c ph T 1 T 2 m c C pc t 2 11 式中 Q ――热负荷或传热速率, J .S 1或W ; mh , mc ――热、冷流体的质量流量, kg.s -1; Cpc,Cph ――冷、热流体的定压比热,取进出口流体温度的算术平均值下的比热, k J . (kg.k ) -1; T 1 ,T 2——热流体进、出口温度,K(° C ); t 1 ,t 2 —冷流体的进出口温度,K(° C )。 (2) 热焓法 Q m(l 1 I 2) (4 — 13) 式中 丨 1 ――物料始态的焓,k J .kg -1; I 2 ――物料终态的焓,k J .kg -1。 2 ?有相变化时热负荷计算 Q Gr (4—14) 式中 G ――发生相变化流体的质量流量, kg.s -1; r ---- 液体汽化(或蒸汽冷凝)潜热, k J .kg -1。 注意:在热负荷计算时,必须分清有相变化还是无相变化, 然后根据不同算式进行计算。 对蒸汽的冷凝、冷却过程的热负荷,要予以分别计算而后相加。 当要考虑热损失时,则有: 从传热基本方程 或 Q kA t m t Q m 1 kA 传热推动力 传热热阻 (4-11) (4-lla) (4-12)

最新05第五章传热过程基础

05第五章传热过程基 础

第五章 传热过程基础 1.用平板法测定固体的导热系数,在平板一侧用电热器加热,另一侧用冷却器冷却,同时在板两侧用热电偶测量其表面温度,若所测固体的表面积为0.02 m 2,厚度为0.02 m ,实验测得电流表读数为0.5 A ,伏特表读数为100 V ,两侧表面温度分别为200 ℃和50 ℃,试求该材料的导热系数。 解:传热达稳态后电热器的加热速率应与固体的散热(导热)速率相等,即 L t t S Q 21-=λ 式中 W 50W 1005.0=?==IV Q m 02.0C 50C 200m 02.0212=?=?==L t t S ,,, 将上述数据代入,可得 ()()()()C m W 333.0C m W 5020002.002.05021??=??-??=-=t t S QL λ 2.某平壁燃烧炉由一层400 mm 厚的耐火砖和一层200 mm 厚的绝缘砖砌成,操作稳定后,测得炉的内表面温度为1500 ℃,外表面温度为100 ℃,试求导热的热通量及两砖间的界面温度。设两砖接触良好,已知耐火砖的导热系数为10.80.0006t λ=+,绝缘砖的导热系数为20.30.0003t λ=+,W /(m C)??。两式中的t 可分别取为各层材料的平均温度。 解:此为两层平壁的热传导问题,稳态导热时,通过各层平壁截面的传热速率相等,即 Q Q Q ==21 (5-32) 或 2 3221211b t t S b t t S Q -=-=λλ (5-32a )

式中 115000.80.00060.80.0006 1.250.00032 t t t λ+=+=+?=+ 21000.30.00030.30.00030.3150.000152 t t t λ+=+=+?=+ 代入λ1、λ2得 2 .0100)00015.0315.0(4.01500)0003.025.1(-+=-+t t t t 解之得 C 9772?==t t ())()C m W 543.1C m W 9770003.025.10003.025.11??=???+=+=t λ 则 ()22111m W 2017m W 4 .0977*******.1=-?=-=b t t S Q λ 3.外径为159 mm 的钢管,其外依次包扎A 、B 两层保温材料,A 层保温材料的厚度为50 mm ,导热系数为0.1 W /(m·℃),B 层保温材料的厚度为100 mm ,导热系数为1.0 W /(m·℃),设A 的内层温度和B 的外层温度分别为170 ℃和 40 ℃,试求每米管长的热损失;若将两层材料互换并假设温度不变,每米管长的热损失又为多少? 解: ()()m W 150m W 100159100502159ln 0.11159502159ln 1.014017014.32ln 21ln 212 3 21212 1=++?++?+-??=+-=r r r r t t L Q πλπλ A 、 B 两层互换位置后,热损失为 ()()m W 5.131m W 100159100502159ln 1.01159502159ln 0.114017014.32ln 21ln 212 3 21212 1=++?++?+-??=+-=r r r r t t L Q πλπλ

传递过程原理作业题和答案(原稿)

《化工传递过程原理(Ⅱ)》作业题 1. 粘性流体在圆管内作一维稳态流动。设r 表示径向距离,y 表示自管壁算起的垂直距离,试分别写出沿r 方向和y 方向的、用(动量通量)=-(动量扩散系数)×(动量浓度梯度)表示的现象方程。 1.(1-1) 解:()d u dy ρτν = (y ,u ,du dy > 0) ()d u dr ρτν =- (r ,u , du dr < 0) 2. 试讨论层流下动量传递、热量传递和质量传递三者之间的类似性。 2. (1-3) 解:从式(1-3)、(1-4)、(1-6)可看出: A A A B d j D dy ρ =- (1-3) () d u dy ρτν =- (1-4) ()/p d c t q A dy ρα =- (1-6) 1. 它们可以共同表示为:通量 = -(扩散系数)×(浓度梯度); 2. 扩散系数 ν、α、AB D 具有相同的因次,单位为 2/m s ; 3. 传递方向与该量的梯度方向相反。 3. 试写出温度t 对时间θ的全导数和随体导数,并说明温度对时间的偏导数、全导数和随体导数的物理意义。 3.(3-1) 解:全导数: d t t t d x t d y t d z d x d y d z d θθθθθ????=+++ ???? 随体导数:x y z Dt t t t t u u u D x y z θθ????=+++???? 物理意义: t θ ??——表示空间某固定点处温度随时间的变化率;

dt d θ——表示测量流体温度时,测量点以任意速度dx d θ、dy d θ、dz d θ 运动所测得的温度随时间的变化率 Dt θ——表示测量点随流体一起运动且速度x u dx d θ=、y u dy d θ=、z u dz d θ =时,测得的温度随时间的变化率。 4. 有下列三种流场的速度向量表达式,试判断哪种流场为不可压缩流体的流动。 (1)j xy i x z y x u )2()2(),,(2θθ--+= (2)y x z x x z y x )22()(2),,(++++-= (3)xz yz xy y x 222),(++= 4.(3-3) 解:不可压缩流体流动的连续性方程为:0u ?= (判据) 1. 220u x x ?=-= ,不可压缩流体流动; 2. 2002u ?=-++=- ,不是不可压缩流体流动; 3. 002222()u y z x x y z =??≠??=++=++= ,不可压缩 ,不是不可压缩 5. 某流场可由下述速度向量式表达: (,,,)3u x y z xyzi y j z k θθ=+- 试求点(2,1,2,1)的加速度向量。 5. (3-6) 解: y x z i j k Du Du Du Du D D D D θθθθ =++ x x x x x x y z u u u D u u u u u D x y z θθ=+++???????? 0()()3()xyz yz y xz z xy θ=++- (13)x y z y z θ=+- y y Du D θ = 23(3)(3)3(31) z z z z Du D θθθθ =-+--=-

传热过程基础

第五章 传热过程基础 1.用平板法测定固体的导热系数,在平板一侧用电热器加热,另一侧用冷却器冷却,同时在板两侧用热电偶测量其表面温度,若所测固体的表面积为0.02 m 2,厚度为0.02 m ,实验测得电流表读数为0.5 A ,伏特表读数为100 V ,两侧表面温度分别为200 ℃和50 ℃,试求该材料的导热系数。 解:传热达稳态后电热器的加热速率应与固体的散热(导热)速率相等,即 L t t S Q 2 1-=λ 式中 W 50W 1005.0=?==IV Q m 02.0C 50C 200m 02.0212=?=?==L t t S ,,, 将上述数据代入,可得 ()() ()()C m W 333.0C m W 5020002.002 .05021??=??-??=-= t t S QL λ 2.某平壁燃烧炉由一层400 mm 厚的耐火砖和一层200 mm 厚的绝缘砖砌成,操作稳定后,测得炉的内表面温度为1500 ℃,外表面温度为100 ℃,试求导热的热通量及两砖间的界面温度。设两砖接触良好,已知耐火砖的导热系数为10.80.0006t λ=+,绝缘砖的导热系数为 20.30.0003t λ=+,W /(m C)??。两式中的t 可分别取为各层材料的平均温度。 解:此为两层平壁的热传导问题,稳态导热时,通过各层平壁截面的传热速率相等,即 Q Q Q ==21 (5-32) 或 2 32212 11b t t S b t t S Q -=-=λλ (5-32a ) 式中 115000.80.00060.80.0006 1.250.00032t t t λ+=+=+?=+ 21000.30.00030.30.00030.3150.000152t t t λ+=+=+?=+ 代入λ1、λ2得 2.0100)00015.0315.0(4.01500)000 3.025.1(-+=-+t t t t 解之得 C 9772?==t t ()()()C m W 543.1C m W 9770003.025.10003.025.11??=???+=+=t λ 则 () 221 11 m W 2017m W 4 .0977 1500543.1=-? =-=b t t S Q λ 3.外径为159 mm 的钢管,其外依次包扎A 、B 两层保温材料,A 层保温材料的厚度为50 mm ,导热系数为0.1 W /(m·℃),B 层保温材料的厚度为100 mm ,导热系数为1.0 W /(m·℃),设A 的内层温度和B 的外层温度分别为170 ℃和40 ℃,试求每米管长的热损失;若将两层材

反应工程课程教学大纲

《化工传递过程》课程教学大纲 第一部分:课程基本信息 一、课程名称:化工传递过程/TRANSPORT PROCESSES IN CHEMICAL ENGINEERING 二、课程性质:硕士研究生学位课(专业方向课) 三、适用专业:应用化学、化学工程、生物化工等专业 四、先修课程:化工原理、化工热力学、化工数值计算等课程 五、学时学分:36学时,2学分 六、教学方法:课堂讲授 七、考核方法:考试 第二部分:教学目标 本课程为技术基础课,是化学工程与工艺专业的骨干课程。通过该课程的学习,使学生掌握动量、热量传递和质量传递的基本原理、传递速率的计算、相关数学模型的建立及求解,掌握速度、浓度及温度分布规律,能针对具体问题对模型方程进行简化,了解解决实际传递问题的方法,为未来的科研和教学工作打下坚实的理论基础。 第三部分:教学内容 第一章传递过程概论 一、传递过程的基本概念 第二章动量传递的变化方程 一、动量传递的两种方式 二、对流传递系数的定义式 三、对流传递系数求解的一般途径 第三章动量传递方程的若干解 一、层流流动时的动量传递方程 二、层流流动时的动量传递方程的典型求解 第四章传热概论与能量方程 一、热量传递的基本方式 二、传热过程的机理

三、能量方程的推导 第五章热传导方程 一、热传导方程的推导 二、热传导方程的求解方法 第六章对流传热方程 一、对流传热方程的推导 二、对流传热方程的求解方法 第七章传质概论与传质微分方程 一、质量传递的基本方式 二、传质的速度与通量 三、传质微分方程的推导 第八章分子传质 一、气体、液体和固体内部的分子扩散速率与通量 二、稳态扩散与等分子反方向扩散 第九章对流传质 一、平壁对流传质方程的求解 二、管内对流传质方程的求解 三、动量、热量与质量传递的类似性 第四部分:教材及参考书目 一、推荐教材 《化工传递过程》,谢舜韶,谷和平,肖人卓,化学工业出版社,2008年 二、参考书目 1.《化工传递过程基础》,王绍亭,化学工业出版社,1987年 2.《动量、热量与质量传递》,王绍亭,天津科技出版社,1988年 3.《传递现象导论》,戴干策,化学工业出版社,1996年

传热过程的计算

1 总传热速率方程 如图所示,以冷热两流体通过圆管的间壁进行换热为例,热流体走管内,温度为T,冷流体走管外温度为t,管壁两侧温度分别为T W和t w,壁厚为,b,其热导率为λ,内外两侧流体与固体壁面间的表面传热系数分别为αi和α0。根据牛顿冷却定律及傅立叶定律分别列出对流传热及导热的速率方程: 对于管内侧: 对于管壁导热: 对于管外侧: 即 故有 令(4.6.1) 则(4.1.1) 该式称为总传热速率方程。 A为传热面积,可以是内外或平均面积,K与A是相对应的。 2 热流量衡算 热流量衡算式反映两流体在换热过程中温度变化的相互关系,在换热器保温良好,无热损失的情况下,对于稳态传热过程,其热流量衡算关系为:

(热流体放出的热流量)=(冷流体吸收的热流量) 在进行热衡算时,对有、无相变化的传热过程其表达式又有所区别。 (1)无相变化传热过程 式中 Q----冷流体吸收或热流体放出的热流量,W; m h,m c-----热、冷流体的质量流量,kg/s; C ph,C pc------热、冷流体的比定压热容,kJ/(kg·K); T1,t1 ------热、冷流体的进口温度,K; T2,t2------热、冷流体的出口温度,K。 (2)有相变化传热过程 两物流在换热过程中,其中一侧物流发生相变化,如蒸汽冷凝或液体沸腾,其热流量衡算式为:一侧有相变化 两侧物流均发生相变化,如一侧冷凝另一侧沸腾的传热过程 式中 r,r1,r2--------物流相变热,J/kg; D,D1,D2--------相变物流量,kg/s。 对于过冷或过热物流发生相变时的热流量衡算,则应按以上方法分段进行加和计算。 3 传热系数和传热面积 (1)传热系数K和传热面积A的计算 传热系数K是表示换热设备性能的极为重要的参数,是进行传热计算的依据。K的大小取决于流体的物性、传热过程的操作条件及换热器的类型等,K值通常可以由实验测定,或取生产实际的经验数据,也可以通过分析计算求得。 传热系数K可利用式(4.6.1)进行计算。但传热系数K应和所选的传热面积A相对应,假设和传热面积A i、A m和A0相对应的传热系数K分别为K i、K m和K0,则其相互关系为:

完整word版,传热学基础试题及答案

传热学基础试题 一、选择题 1.对于燃气加热炉:高温烟气→内炉壁→外炉壁→空气的传热过程次序为 A.复合换热、导热、对流换热 B.对流换热、复合换热、导热 C.导热、对流换热、复合换热 D.复合换热、对流换热、导热 2.温度对辐射换热的影响( )对对流换热的影响。 A.等于 B.大于 C.小于 D.可能大于、小于 3.对流换热系数为1000W/(m 2·K )、温度为77℃的水流经27℃的壁面,其对流换热的热流密度为( ) A.8×104W/m 2 B.6×104 W/m 2 C.7×104 W/m 2 D.5×104 W/m 2 4.在无内热源、物性为常数且温度只沿径向变化的一维圆筒壁(t 1 >t 2,r 1 B. 21r r r r dr dt dr dt ==< C. 2 1r r r r dr dt dr dt === 5.黑体的有效辐射____其本身辐射,而灰体的有效辐射( )其本身辐射。 A .等于 等于 B.等于 大于 C.大于 大于 D.大于 等于 6.有一个由四个平面组成的四边形长通道,其内表面分别以1、2、3、4表示,已知角系数X1,2=0.4,X1,4=0.25,则X1,3为( )。 A. 0.5 B. 0.65 C. 0.15 D. 0.35 7.准则方程式Nu=f(Gr,Pr)反映了( )的变化规律。 A.强制对流换热 B.凝结对流换热 C.自然对流换热 D.核态沸腾换热 8.当采用加肋片的方法增强传热时,将肋片加在( )会最有效。

A. 换热系数较大一侧 B. 热流体一侧 C. 换热系数较小一侧 D. 冷流体一侧 9. 某热力管道采用两种导热系数不同的保温材料进行保温,为了达到较好的保温效果,应将( )材料放在内层。 A. 导热系数较大的材料 B. 导热系数较小的材料 C. 任选一种均可 D. 不能确定 10.下列各种方法中,属于削弱传热的方法是( ) A.增加流体流速 B.管内加插入物增加流体扰动 C. 设置肋片 D.采用导热系数较小的材料使导热热阻增加 11.由炉膛火焰向水冷壁传热的主要方式是( ) A.热辐射 B.热对流 C.导热 D.都不是 12.准则方程式Nu=f(Gr,Pr)反映了( )的变化规律。 A.强制对流换热 B.凝结对流换热 C.自然对流换热 D.核态沸腾换热 13.判断管内紊流强制对流是否需要进行入口效应修正的依据是( ) A.l/d≥70 B.Re≥104 C.l/d<50 D.l/d<104 14.下列各种方法中,属于削弱传热的方法是( ) A.增加流体流度 B.设置肋片 C.管内加插入物增加流体扰动 D.采用导热系数较小的材料使导热热阻增加 15.冷热流体的温度给定,换热器热流体侧结垢会使传热壁面的温度( ) A.增加 B.减小 C.不变 D.有时增加,有时减小 16.将保温瓶的双层玻璃中间抽成真空,其目的是( ) A.减少导热 B.减小对流换热 C.减少对流与辐射换热 D.减少导热与对流换热 17.下列参数中属于物性参数的是( ) A.传热系数 B.导热系数 C.换热系数 D.角系数 18.已知一顺流布置换热器的热流体进出口温度分别为300°C和150°C,冷流体进 出口温度分别为50°C和100°C,则其对数平均温差约为( ) A.100°C B.124°C C.150°C D.225°C 19.有一个由四个平面组成的四边形长通道,其内表面分别以1、2、3、4表示,已知 角系数X1,2=0.4,X1,4=0.25,则X1,3为( ) A.0.5 B.0.65 C.0.15 D.0.35 20.一金属块的表面黑度为0.4,温度为227°C,它的辐射力是( );若表面氧化

4-4-传热过程计算

知识点4-4 传热过程计算 【学习指导】 1.学习目的 通过本知识点的学习,掌握换热器的能量衡算,总传热速率方程和总传热系数的计算。在传热计算的两种方法中,重点掌握平均温度差法,了解传热单元数法及应用场合。 2.本知识点的重点 换热器的能量衡算,总传热速率方程和总传热系数的计算,用平均温度差法进行传热计算。 3.本知识点的难点 传热单元数法。 4.应完成的习题 4-4 在某管壳式换热器中用冷水冷却热空气。换热管为φ25×2.5 mm的钢管,其导热系数为45 W/(m·℃)。冷却水在管程流动,其对流传热系数为2600 W/(m2·℃),热空气在壳程流动,其对流传热系数为52 W/(m2·℃)。试求基于管外表面积的总传热系数以及各分热阻占总热阻的百分数。设污垢热阻可忽略。 4-5 在一传热面积为40m2的平板式换热器中,用水冷却某种溶液,两流体呈逆流流动。冷却水的流量为30000kg/h,其温度由22℃升高到36℃。溶液温度由115℃降至55℃。若换热器清洗后,在冷、热流体量和进口温度不变的情况下,冷却水的出口温度升至40℃,试估算换热器在清洗前壁面两侧的总污垢热阻。假设: (1)两种情况下,冷、热流体的物性可视为不变,水的平均比热容为4.174 kJ/(kg·℃); (2)两种情况下,αi、αo分别相同;

(3)忽略壁面热阻和热损失。 4-6 在套管换热器中用水冷却油,油和水呈并流流动。已知油的进、出口温度分别为140℃和90℃,冷却水的进、出口温度分别为20℃和32℃。现因工艺条件变动,要求油的出口温度降至70℃,而油和水的流量、进口的温度均不变。若原换热器的管长为1m,试求将此换热器管长增至若干米后才能满足要求。设换热器的热损失可忽略,在本题所涉及的温度范围内油和水的比热容为常数。 4-7 冷、热流体在一管壳式换热器中呈并流流动,其初温分别为32℃和130℃,终温分别为48℃和65℃。若维持冷、热流体的初温和流量不变,而将流动改为逆流,试求此时平均温度差及冷、热流体的终温。设换热器的热损失可忽略,在本题所涉及的温度范围内冷、热流体的比热容为常数。 4-8 在一管壳式换热器中,用冷水将常压下的纯苯蒸汽冷凝成饱和液体。已知苯蒸汽的体积流量为1600 m3/h,常压下苯的沸点为80.1℃,气化潜热为394kJ/kg。冷却水的入口温度为20℃,流量为35000kg/h,水的平均比热容为4.17 kJ/(kg·℃)。总传热系数为450 W/(m2·℃)。设换热器的热损失可忽略,试计算所需的传热面积。 4-9 在一传热面积为25m2的单程管壳式换热器中,用水冷却某种有机物。冷却水的流量为28000kg/h,其温度由25℃升至38℃,平均比热容为4.17 kJ/(kg·℃)。有机物的温度由110℃降至65℃,平均比热容为1.72 kJ/(kg·℃)。两流体在换热器中呈逆流流动。设换热器的热损失可忽略,试核算该换热器的总传热系数并计算该有机物的处理量。 4-10 某生产过程中需用冷却水将油从105℃冷却至70℃。已知油的流量为6000kg/h,水的初温为22℃,流量为2000kg/h。现有一传热面积为10 m2的套管式换热器,问在下列两种流动型式下,换热器能否满足要求: (1)两流体呈逆流流动; (2)两流体呈并流流动。 设换热器的总传热系数在两种情况下相同,为300 W/(m2·℃);油的平均比热容为1.9 kJ/(kg·℃),水的平均比热容为4.17kJ/(kg·℃)。热损失可忽略。

传热过程的计算16页

第五节 传热过程的计算 化工生产中广泛采用间壁换热方法进行热量的传递。间壁换热过程由固体壁的导热和壁两侧流体的对流传热组合而成,导热和对流传热的规律前面已讨论过,本节在此基础上进一步讨论传热的计算问题。 化工原理中所涉及的传热过程计算主要有两类:一类是设计计算,即根据生产要求的热负荷,确定换热器的传热面积;另一类是校核计算,即计算给定换热器的传热量、流体的流量或温度等。两者都是以换热器的热量衡算和传热速率方程为计算基础。 4-5-1 热量衡算 流体在间壁两侧进行稳定传热时,在不考虑热损失的情况下,单位时间热流体放出的热量应等于冷流体吸收的热量,即: Q=Q c =Q h (4-59) 式中 Q ——换热器的热负荷,即单位时间热流体向冷流体传递的热量,W ; Q h ——单位时间热流体放出热量,W ; Q c ——单位时间冷流体吸收热量,W 。 若换热器间壁两侧流体无相变化,且流体的比热容不随温度而变或可取平均温度下的比热容时,式(4-59)可表示为 ()()1221t t c W T T c W Q pc c ph h -=-= (4-60) 式中 c p ——流体的平均比热容,kJ/(kg ·℃); t ——冷流体的温度,℃; T ——热流体的温度,℃; W ——流体的质量流量,kg/h 。 若换热器中的热流体有相变化,例如饱和蒸气冷凝,则 ()12t t c W r W Q pc c h -== (4-61) 式中 W h ——饱和蒸气(即热流体)的冷凝速率,kg/h ; r ——饱和蒸气的冷凝潜热,kJ/kg 。 式(4-61)的应用条件是冷凝液在饱和温度下离开换热器。若冷凝液的温度低于饱和温度时,则式(4-61)变为 ()[]()122t t c W T T c r W Q pc c s ph h -=-+= (4-62) 式中 c ph ——冷凝液的比热容,kJ/(kg ·℃); T s ——冷凝液的饱和温度,℃。 4-5-2 总传热速率微分方程 图4-20为一逆流操作的套管换热器的微元管段d L ,该管段的内、外表面积及平均传热面积分别为d S i 、d S o 和d S m 。热流依次经过热流体、管壁和

相关主题
文本预览
相关文档 最新文档