当前位置:文档之家› 线性代数向量组的极大线性无关组和秩

线性代数向量组的极大线性无关组和秩

向量组的线性相互与线性无关

向量组的线性相关与线性无关 1.线性组合 设12,,,n t a a a R ???∈,12,,,t k k k R ???∈,称1122t t k a k a k a ++???+为12,,,t a a a ???的一个线性组合。 【备注1】按分块矩阵的运算规则,12112212(,,,)t t t t k k k a k a k a a a a k ?? ? ?++???+=??? ? ???M 。这 样的表示是有好处的。 2.线性表示 设12,,,n t a a a R ???∈,n b R ∈,如果存在12,,,t k k k R ???∈,使得 1122t t b k a k a k a =++???+ 则称b 可由12,,,t a a a ???线性表示。 1122t t b k a k a k a =++???+,写成矩阵形式,即1212(,,,)t t k k b a a a k ?? ? ?=??? ? ???M 。因此,b 可由12,,,t a a a ???线性表示即线性方程组1212(,,,)t t k k a a a b k ?? ? ????= ? ???M 有解,而该方程组有解 当且仅当1212(,,,)(,,,,)t t r a a a r a a a b ???=???。 3.向量组等价 设1212,,,,,,,n t s a a a b b b R ??????∈,如果12,,,t a a a ???中每一个向量都可以由 12,,,s b b b ???线性表示,则称向量组12,,,t a a a ???可以由向量组12,,,s b b b ???线性表示。 如果向量组12,,,t a a a ???和向量组12,,,s b b b ???可以相互线性表示,则称这两个向量组是等价的。

向量组的线性有关性归纳

第四章 向量组的线性相关性 §1 n 维向量概念 一、向量的概念 定义1 n 个有次序的数12,, ,n a a a 所组成的数组称为n 维向量,这n 个数称为该向量的n 个分量,第i 个数 i a 称为第i 个分量. 注1分量全为实数的向量称为实向量.分量不全为实数的向量称为复向量. 注2 n 维向量可以写成一行的形式() 12,, ,n a a a a =,出可以写成一列的形式 12n a a a a ?? ? ? = ? ??? ,前者称为行向量,而后者称为列向量.行向量可看作是一个1n ?矩阵,故又称行矩阵;而列向量可看作一个1n ?矩阵,故又称作列矩阵.因此它们之间的运算就是矩阵之间的运算,从而符合矩阵运算的一切性质.向量之间的运算只涉及到线性运算和转置运算.为叙述方便,特别约定:在不特别声明时说到的向量均为列向量,行向量视为列向量的转置. 注3 用小写黑体字母,,,a b αβ 等表示列向量,用,,,T T T T a b αβ表示行向量. 例1 设123(1,1,0),(0,1,1),(3,4,0)T T T v v v ===,求12v v -及12332v v v +-. 解 12v v -(1,1, 0)(0,1,1)T T =-(10,11,01)T =---(1,0,1)T =- 12332v v v +-3(1,1,0)2(0,1,1)(3,4,0)T T T =+- (31203,31214,30210)T =?+?-?+?-?+?- (0,1,2)T = 定义 设v 为n 维向量的集合,如果集合v 非空,且集合v 对于加法与数乘两种运算封闭(即若α∈v,β∈v ,有α+β∈v ;若α∈v, k ∈R ,有k α∈v ),称v 为向量空间。 §2 向量组的线性相关性 一、向量组的线性组合 定义3 给定向量组A :12,, ,m a a a ,对于任何一组实数12,,,m k k k ,称向量 1122m m a a a k k k +++ 为向量组A 的一个线性组合,12,, ,m k k k 称为这个线性组合的系数. 定义4 给定向量组A :12,, ,m a a a 和向量b ,若存在一组实数12,, ,m λλλ,使得 1122m m a a a b λλλ=++ +

1求下列向量组的秩与一个极大线性无关组概要

习题4.3 1. (1) []12,1, 3,1T α=-, []23,1,2,0T α=-, []31,3,4,2T α=-,[]44,3,1,1T α=-. (2) []11,1,1,1T α=, []21,1, 1,1T α=--, []31,1,1,1T α=--,[]41,1,1,1T α=---. (3) []11, 1,2,4T α=-, []20,3,1,2T α=,[]33,0,7,14T α=, []41,1,2,0T α=-,[]52,1,5,6T α=. 分析 向量组的秩等于该向量组构成的矩阵的秩, 所以求向量组的秩可以转化为求矩阵的秩. 先把向量构成矩阵通过矩阵的初等行变换成阶梯形, 通过阶梯形便可得到矩阵的秩, 它也就是该向量组的秩, 而阶梯形的阶梯头所在的列对应的向量便构成该向量组的一个极大线性无关组. 解 (1) []1 23 423141133113301123241000010210000αααα--???????? ---??? ?=??→????????--???? , 所以该向量组的秩为2, 且1α, 2α为它的一个极大线性无关组. (2) []1 23 4111111 1111110 1011111001111110 01αααα--????????---??? ?=??→???? ---????--???? , 所以该向量组的秩为4, 且1α,2α,3α,4α为它的一个极大线性无关组. (3) []1 234 51 03121 312130110110121725000104 2140 60 000 0ααααα????????--? ???=??→???????????? , 所以该向量组的秩为3, 且1α,2α,4α为它的一个极大线性无关组. 2.计算下列向量组的秩,并判断该向量组是否线性相关. (1) []11, 1,2,3,4T α=-,[]23,7,8,9,13T α=-,

1、向量组线性无关的充要条件为( )

第四章复习题答案 一、选择题 1、向量组ααα1 23,,线性无关的充要条件为( C ) A 、ααα1 23,,均不是零向量 B 、ααα1 23,,中任意两个向量的分量不成比例 C 、ααα1 23,,中任意一个向量均不能由其余两个向量线性表出 D 、123,,ααα中一部分向量线性无关 解析:(1)线性相关?至少一个向量能由其余两个向量线性表出 (2)线性无关?任意一个向量均不能由其余两个向量线性表出 2、设A 为n 阶方阵,且A =0,则下列结论错误是( C ) A 、R(A)<n B 、A的n个列向量线性相关 C 、A的两行元素成比例 D 、A的一个行向量是其余n-1个行向量的线性组合 3、已知矩阵A 的秩为r ,则下列说法不正确的是( A ) A 、矩阵A 中任意r 阶子式不等于0 B 、矩阵A 列向量组的r 个列向量线性无关 C 、矩阵A 列向量组的任意r+1个列向量线性相关 D 、矩阵A 中所有高于r 阶的子式全等于0 解析:只是存在一个r 阶子式不等于0 4、设12,s ααα均为n 维向量,则下列结论中不正确的是( D ) A 、当维数n 小于向量个数s 时,则向量组12,s ααα线性相关 B 、若向量组12 ,s ααα线性无关,则其中任意一个向量都不能由其余s-1个向量线性表示 C 、若对任意一组不全为零的数12,s k k k 都有11220s s k k ααα+++≠k ,则向量组12 ,s ααα线性无关 D 、若向量组12 ,s ααα线性相关,则其中任意一个向量都可由其余s-1个向量线性表示 解析:(1)线性相关?至少一有个向量能由其余两个向量线性表出 不是任意 二、填空 1、设12311112010ααα===T T T (,-,),(,,),(,,a)线性无关(相关),则a 取值22 ()33 a a ≠ = 2、设A为35?的矩阵,且()3R A =,则齐次线性方程组Ax=0基础解系所含向量个数是 2 3、若12312αααββ,,,,都为四维向量,且四阶行列式1231m αααβ=,,,,1232n αααβ=,,,, 则四阶行列式12312αααββ+=,,,()m n + 4、n 维向量组1,2m ααα,当m n >时线性相关。 5、线性方程组Ax b =有解的充分必要条件是()(,)R A R A b = 三、判断 1、若向量组123 ,,n αααα线性相关,则1α可有23 n ααα,线性表示。 ( × ) 2、两个向量线性相关的充分必要条件是这两个向量成比例。 ( √ ) 3、线性无关的向量组中可以包含两个成比例的向量。 ( × ) 4、当向量组的维数小于向量个数时,向量组线性相关 ( √ ) 5、向量组12,,m ααα线性相关,则向量组12,,,m αααβ也线性相关。 (√ ) 6、一个向量组线性无关的充分必要条件是任何一个向量都不能由其余向量线性表示 (√ ) 7、齐次线性方程组的基础解系不唯一,但基础解系所含向量个数是唯一确定的 (√ ) 8、若12,ξξ为齐次线性方程组 0Ax =的解,则12ξξ-也是0Ax =的解 (√ ) 三、计算及证明 1、设向量组1(1,1,2,4)T α=-,2(0,3,1,2)T α=,3(3,0,7,4)T α=,4(1,1,2,0)T α=-,5(2,1,5,6)T α= 求向量组的秩及其一个最大无关组。 解:设12345(,,,,)A ααααα=

线性代数 向量组的线性相关性

第三节 向量组的线性相关性 分布图示 ★ 线性相关与线性无关 ★ 例1 ★ 例2 ★ 证明线性无关的一种方法 线性相关性的判定 ★ 定理1 ★ 定理2 ★ 例3 ★ 例4 ★ 例5 ★ 例6 ★ 定理3 ★ 定理4 ★ 定理5 ★ 例7 ★ 内容小结 ★ 课堂练习 ★ 习题3-3 内容要点 一、线性相关性概念 定义1 给定向量组,,,,:21s A ααα 如果存在不全为零的数,,,,21s k k k 使 ,02211=+++s s k k k ααα (1) 则称向量组A 线性相关, 否则称为线性无关. 注: ① 当且仅当021====s k k k 时,(1)式成立, 向量组s ααα,,,21 线性无关; ② 包含零向量的任何向量组是线性相关的; ③ 向量组只含有一个向量α时,则 (1)0≠α的充分必要条件是α是线性无关的; (2)0=α的充分必要条件是α是线性相关的; ④ 仅含两个向量的向量组线性相关的充分必要条件是这两个向量的对应分量成比例;反之,仅含两个向量的向量组线性无关的充分必要条件是这两个向量的对应分量不成比例. ⑤ 两个向量线性相关的几何意义是这两个向量共线, 三个向量线性相关的几何意义是这三个向量共面. 二、线性相关性的判定 定理1 向量组)2(,,,21≥s s ααα 线性相关的充必要条件是向量组中至少有一个向量可由其余1-s 个向量线性表示. 定理 2 设有列向量组),,,2,1(,21s j a a a nj j j j =???? ?? ? ??=α 则向量组s ααα,,,21 线性相关的充要条件是: 是矩阵),,,(21s A ααα =的秩小于向量的个数s .

向量组的线性相关性 线性代数习题集

线性代数练习题 第四章 向量组的线性相关性 系 专业 班 姓名 学号 第一节 向量组及其线性组合 第二节 向量组的线性相关性 一.选择题 1.n 维向量s ααα,,, 21)(01≠α线性相关的充分必要条件是 [ D ] (A )对于任何一组不全为零的数组都有02211=+++s s k k k ααα (B )s ααα,,, 21中任何)(s j j ≤个向量线性相关 (C )设),,,(s A ααα 21=,非齐次线性方程组B AX =有唯一解 (D )设),,,(s A ααα 21=,A 的行秩 < s . 2.若向量组γβα,,线性无关,向量组δβα,,线性相关,则 [ C ] (A )α必可由δγβ,,线性表示 (B )β必不可由δγα,,线性表示 (C )δ必可由γβα,,线性表示 (D )δ比不可由γβα,,线性表示 二.填空题: 1. 设T T T ),,(,),,(,),,(0431********===ααα 则=-21αα (1,0,1)T - =-+32123ααα (0,1,2)T 2. 设)()()(αααααα+=++-321523,其中T ),,,(31521=α,T )10,5,1,10(2=α T ),,,(11143-=α,则=α (1,2,3,4)T 3. 已知T T T k ),,,(,),,,(,),,,(84120011211321---===ααα线性相关,则=k 2 4. 设向量组),,(,),,(,),,(b a c b c a 000321===ααα线性无关,则c b a ,,满足关系式 0abc ≠ 三.计算题: 1. 设向量()11,1,1T αλ=+,2(1,1,1)T αλ=+,3(1,1,1)T αλ=+,2(1,,)T βλλ=,试问当λ为何值时 (1)β可由321ααα,,线性表示,且表示式是唯一? (2)β可由321ααα,,线性表示,且表示式不唯一? (3)β不能由321ααα,,线性表示? 线性代数练习题 第四章 向量组的线性相关性 系 专业 班 姓名 学号

求向量组的秩与极大无关组(修改整理)

求向量组的秩与最大无关组 一、对于具体给出的向量组,求秩与最大无关组 1、求向量组的秩(即矩阵的秩)的方法:为阶梯形矩阵 【定理】矩阵的行秩等于其列秩,且等于矩阵的秩.(三秩相等) ①把向量组的向量作为矩阵的列(或行)向量组成矩阵A; ②对矩阵A进行初等行变换化为阶梯形矩阵B; ③阶梯形B中非零行的个数即为所求向量组的秩. 【例1】求下列向量组a1=(1, 2, 3, 4),a2 =( 2, 3, 4, 5),a3 =(3, 4, 5, 6)的秩. 解1:以a1,a2,a3为列向量作成矩阵A,用初等行变换将A化为阶梯形矩阵后可求. 因为阶梯形矩阵的列秩为2,所以向量组的秩为2. 解2:以a1,a2,a3为行向量作成矩阵A,用初等行变换将A化为 阶梯形矩阵后可求. 因为阶梯形矩阵的行秩为2,所以向量组的秩为2. 2、求向量组的最大线性无关组的方法 方法1 逐个选录法 给定一个非零向量组A:α1, α2,…, αn ①设α1≠ 0,则α1线性相关,保留α1 ②加入α2,若α2与α1线性相关,去掉α2;若α2与α1线性无关,保留α1,α2; ③依次进行下去,最后求出的向量组就是所求的最大无关组

【例2】求向量组:()()()1231,2,12,3,14,1,1,,,T T T ααα=-=-=-的最大无关组 解:因为a 1非零,故保留a 1 取a 2,因为a 1与a 2线性无关,故保留a 1,a 2 取a 3,易得a 3=2a 1+a 2,故a 1,a 2 ,a 3线性相关。 所以最大无关组为a 1,a 2 方法2 初等变换法 【定理】 矩阵A 经初等行变换化为B ,则B 的列向量组与A 对应的列向量组有相同的线性相关性. 证明从略,下面通过例子验证结论成立. 向量组:α1=(1,2,3)T , α2=(-1,2,0)T , α3=(1,6,6)T 由上可得,求向量组的最大线性无关组的方法: (1)列向量行变换 ①把向量组的向量作为矩阵的列向量组成矩阵A ; ②对矩阵A 进行初等行变换化为阶梯形矩阵B ; ③A 中的与B 的每阶梯首列对应的向量组,即为最大无关组. 【例3】求向量组 :α1=(2,1,3,-1)T , α2=(3,-1,2,0)T , α3=(1,3,4,-2)T , α4=(4,-3,1,1)T 的秩和一个最大无关组, 并把不属于最大无关组的向量用最大无关组线性表示。 解 以α1,α2,α3,α4为列构造矩阵A , 并实施初等行变换化为行阶梯形矩阵求其秩: ()???? ? ?-- ? ?==→ ? ? ? ?--????123423141-13-3113305-510,,,324105-51010210-11-2A αααα---?? ? ?→ ? ? ?? 1133011200000000 知r (A )=2, 故向量组的最大无关组含2个向量

第四章向量组的线性相关性目标测试题(参考答案)

第四章 向量组的线性相关性目标测试题 (参考答案) 一、填空题. 1. 设向量组) , ,0( ),0 , ,( ), ,0 ,(321b a c b c a ===ααα线性无关,则c b a ,,必满足关系式0abc ≠. 2. 已知向量组)1 ,1 ,3 ,4( ),2 ,6 ,2 ,4( ),0 ,2 ,1 ,3( ),1 ,3 ,1 ,2(4321-=-=-=-=αααα,则该向量组的秩为___2__. 3. 设三阶矩阵122212304A -?? ?= ? ???,三维向量11a α?? ?= ? ??? ,若向量A α与α线性相关,则a = -1 . 4. 已知向量组123(1,2,1,1),(2,0,,0),(0,4,5,2)T T T t ααα=-==--的秩为2,则t = 3 . 5. 设321,,ααα线性无关,问=k __1_时,312312,,αααααα---k 线性相关. 6.设12,,s ηηηL 为非齐次线性方程组Ax b =的解,若1122s s k k k ηηη+++L 也是方程组Ax b =的解, 则12s k k k L ,,,应满足条件12s + 1k k k ++=L . 二、选择题. 1.设有向量组 ),0 ,2 ,2 ,1( ),14 ,7 ,0 ,3( ),2 ,1 ,3 ,0( ),4 ,2 ,1 ,1(4321-===-=αααα),10 ,5 ,1 ,2(5=α 则该向量组的最大线性无关组( B ). (A ) 321 , ,ααα, (B ) 421 , ,ααα, (C ) 521 , ,ααα, (D ) 5421 , , ,αααα. 2. 设向量组321,,ααα线性无关,则下列向量组线性相关的是(C ). (A ) 21αα+,,32αα+13αα+, (B ) ,1α21αα+,321a ++αα, (C ) 21αα-,,32αα-13αα-, (D ) 21αα+,,231αα+133αα+.

1求下列向量组的秩与一个极大线性无关组

习题4.3 1.求下列向量组的秩与一个极大线性无关组: (1) []12,1,3,1T α=-, []23,1,2,0T α=-, []31,3,4,2T α=-,[]44,3,1,1T α=-. (2) []11,1,1,1T α=, []21,1,1,1T α=--, []31,1,1,1T α=--,[]41,1,1,1T α=---. (3) []11,1,2,4T α=-, []20,3,1,2T α=,[]33,0,7,14T α=, []41,1,2,0T α=-,[]52,1,5,6T α=. 分析 向量组的秩等于该向量组构成的矩阵的秩, 所以求向量组的秩可以转化为求矩阵的秩. 先把向量构成矩阵通过矩阵的初等行变换成阶梯形, 通过阶梯形便可得到矩阵的秩, 它也就是该向量组的秩, 而阶梯形的阶梯头所在的列对应的向量便构成该向量组的一个极大线性无关组. 解 (1) []1 23 423141133113301123241000010210000αααα--???????? ---??? ?=??→????????--???? , 所以该向量组的秩为2, 且1α, 2α为它的一个极大线性无关组. (2) []1 23 41111111111110 1011111001111110001αααα--???? ????---??? ?=??→???? ---???? --???? , 所以该向量组的秩为4, 且1α,2α,3α,4α为它的一个极大线性无关组. (3) []1 234 51031 21 0312130110110121725000104214060 0000ααααα???? ????--? ???=??→???? ??? ? ???? , 所以该向量组的秩为3, 且1α,2α,4α为它的一个极大线性无关组. 2.计算下列向量组的秩,并判断该向量组是否线性相关. (1) []11,1,2,3,4T α=-,[]23,7,8,9,13T α=-,

向量组以及线性相关性

资料考点大提纲 请按照编号顺序阅读,方便建立知识点结构。 注:本资料只有技巧总结,不涉及概念性的基础类总结.若要复习基础性概念请查阅教材. 主要掌握: 1.向量的基本概念:(注意:不加说明的向量α是指列向量) 2.向量组的基本概念. 3.向量的基本运算:( 加减、数乘 ) 4.向量的线性相关性的概念: i. 线性组合的概念 ii. 线性表出的概念 iii. 线性相关和线性无关的概念. 5.矩阵秩的概念、向量组秩的概念. 4.向量的线性相关无关的基本判定方式: i. 向量β可以由向量组α1,α2,……,αn 线性表出 ? 非齐次线性方程组 []βαα=????? ?????????n n x x x a 2121,,,有解 ?.],,,,[],,,[2121βααααααn n r r ??=?? ii 向量组α1,α2,…,αn 线性相关?齐次线性方程组 0],,,[2121=???? ? ????????n n x x x ααα有解?n r n =n )必定相关. r(A)

向量组的等价及向量组的秩

向量组的等价及向量组的秩 一 基本概念 1 设T 是由若干个n 维向量构成的集合,向量12,,,r T ααα∈L ,若有 (1)12,,,r αααL 线性无关; (2)T 中任一向量都可由12,,,r αααL 线性表示。 那么,则称12,,,r αααL 是T 的一个极大无关组。称r 为T 的秩数,若T 无极大无关组,即T 不含非零向量时,称T 的秩数为0。T 的秩数记为()R T 。 2设有n 维向量组Ⅰ:12,,,s αααL 与n 维向量组Ⅱ:12,,,t βββL 。如果Ⅰ中任一向量都可由Ⅱ中向量线性表示,反之Ⅱ中任一向量都可由Ⅰ中向量线性表示,那么则称向量组Ⅰ与Ⅱ等价。 3 矩阵A 的行向量组的秩数称为A 的行秩数;A 的列向量组的秩数称为A 的列秩数。A 的行秩数记为行秩A ;A 的列秩数记为列秩A 。 二 主要结论 1 简化行阶梯形矩阵的性质 (1)主列构成的向量组线性无关; (2)每一非主列均可由前面的主列线性表示;从而若有非主列,则其列向量组必线性相关。 (3)主列构成的向量组即为列向量组的一个极大无关组;从而列秩数等于主列的个数。 2 对矩阵A 进行行的初等变换不改变A 的列向量组的线性关系。 3 个数大于维数的向量组必线性相关;特别有,n +1个n 维向量必线性相关。 4 设向量组12,,,s αααL 中任一向量都可由向量12,,,t βββL 线性表示。那么,如果s t >,则向量组12,,,s αααL 必线性相关。 等价陈述即其逆否命题为:设向量组12,,,s αααL 中任一向量都可由向量12,,,t βββL 线性表示。那么,如果向量组12,,,s αααL 线性无关,则必有s t ≤。 推论1:向量组T 的极大无关组中所含向量个数被T 所唯一确定。即T 的任意两个极大无关组中所含向量个数相等。 推论2:设向量组(Ⅰ)中任一向量都可由(Ⅱ)中向量线性表示,则R (Ⅰ)≤ R (Ⅱ)。 推论3:等价的向量组的秩数相等。 5 对任意矩阵A 均有,行秩A =列秩A =R (A )。

向量组线性相关性判定

安阳师范学院本科学生毕业论文向量组线性相关性的判定方法 作者 院(系)数学与统计学院 专业数学与应用数学 年级2011级 学号 指导教师郭亚梅 论文成绩 日期2015年月日

学生诚信承诺书 本人郑重承诺:所呈交的论文是我个人在导师指导下进行的研究工作及取得的研究成果。尽我所知,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写的研究成果,也不包含为获得安阳师范学院或其他教育机构的学位或证书所使用过的材料.所有合作者对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意. 作者签名:日期: 导师签名:日期: 院长签名:日期: 论文使用授权说明 本人完全了解安阳师范学院有关保留、使用学位论文的规定,即:学校有权保留送交论文的复印件,允许论文被查阅和借阅;学校可以公布论文的全部或部分内容,可以采用影印、缩印或其他复制手段保存论文. 作者签名:导师签名:日期:

向量组线性相关性的判定方法 (安阳师范学院 数学与统计学院 河南 安阳 455002) 摘要:向量组线性相关性在高等代数中是一块基石,在它的基础上我们推导和衍生出其他 许多理论。所以熟练地掌握向量组线性相关性的判定方法,可以让我们更好的理解其他理论知识.本文将向量组内向量之间的线性关系、齐次线性方程组的解、矩阵的秩、行列式的值及已知结论等知识运用于向量组线性相关性的判定,进而归纳出判定向量组线性相关性的若干方法. 关键词:向量组 线性相关 线性无关 判定方法 1 引言 线性相关性的内容是线性代数课程中的重点和难点,线性相关性的有关结论,对我们来说是很难理解的.本文总结出了判定向量组线性相关和线性无关的几种方法. 2.1 n 维向量的定义 (一维、二维、三维向量,推广到n 维向量) 定义: n 个有次序的数12,a ,,a n a 所组成的数组12(a ,a ,)n a 或12(a ,a ,)T n a 分别称为n 维行向量或列向量.这n 个数称为向量的n 个分量, 第i 个数i a 称为第i 个分量.显然,行向量即为行距阵,列向量即为列矩阵.向量通常用黑体小写希腊字母,αβ等表示.分量全为实数的向量称为实向量,分量全为复数的向量称为复向量. 2.2 向量的线性运算 行向量与列向量都按矩阵的运算规则进行运算. 特别地,向量的加法,向量的数乘,称为向量的线性运算.向量的线性运算满足8条运算律. 全体的n 维向量的集合关于线性运算是封闭的,我们将该集合称为n 维向量空间(或线性空间). 例如,全体3维向量的集合;闭区域上的连续函数的集合;一元n 次多项式的集合;实数域上可导函数的集合等,皆为向量空间. 3.向量组线性相关性的定义 3.1向量组 有限个或无限个同维数列向量(或同维数的行向量)所组成的集合称为一个向量组. 例如一个m n ?矩阵对应一个m 维列向量组, 也对应一个n 维行向量组

向量组的秩

第四节向量 定义1:设有两个向量组(A):s ααα,,,21 和(B):t βββ,,,21 ,如果向量组(A)中每一个向量都可由向量组(B)线性表示,则称向量组(A)可由向量组(B)线性表示。 定义2:设有两个向量组(A):s ααα,,,21 和(B):t βββ,,,21 ,如果向量组(A)可由向量组(B)线性表示,而且向量组(B)也可由向量组(A)线性表示,则称向量组(A)和向量组(B)等价。 等价向量组的性质: (1) 反身性:任一向量组和它自身等价。 (2) 对称性:如果向量组(A)与向量组(B)等价,则向量组(B)也与向量组(A)等价。 (3) 传递性:如果向量组(A)与向量组(B)等价,而向量组(B)与向量组(C)等价,则向量组(A)也与向量组(C)等价。 定理1:设有两个向量组(A):s ααα,,,21 和(B):t βββ,,,21 ,如果向量组(B)可由向量组(A)线性表示,且s

向量组线性相关性判定

向量组线性相关性判定 安阳师范学院本科学生毕业论文向量组线性相关性的判定方法作者院数学与统计学院专业数学与应用数学年级2011级学号指导教师郭亚梅论文成绩日期2015年月日学生诚信承诺书本人郑重承诺:所呈交的论文是我个人在导师指导下进行的研究工作及取得的研究成果。尽我所知,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写的研究成果,也不包含为获得安阳师范学院或其他教育机构的学位或证书所使用过的材料.所有合作者对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意. 作者签名:日期:导师签名:

日期:院长签名:日期:论文使用授权说明本人完全了解安阳师范学院有关保留、使用学位论文的规定,即:学校有权保留送交论文的复印件,允许论文被查阅和借阅;学校可以公布论文的全部或部分内容,可以采用影印、缩印或其他复制手段保存论文. 作者签名:导师签名:日期:向量组线性相关性的判定方法摘要:向量组线性相关性在高等代数中是一块基石,在它的基础上我们推导和衍生出其他许多理论。所以熟练地掌握向量组线性相关性的判定方法,可以让我们更好的理解其他理论知识.将向量组内向量之间的线性关系、齐次线性方程组的解、矩阵的秩、行列式的值及已知结论等知识运用于向量组线性相关性的判定,进而归纳出判定向量组线性相关性的若干方法. 关键词:向量组线性相关线性无关判定方法 1 引言线性相关性的内容是线性代数课程中的

重点和难点,线性相关性的有关结论,对我们来说是很难理解的.总结出了判定向量组线性相关和线性无关的几种方法. n维向量的定义定义:n个有次序的数a1,a2,?,an所组成的数组(a1,a2,?an)或(a1,a2,?an)T分别称为n维行向量或列向量.这n个数称为向量的n 个分量? 第i个数ai称为第i个分量?显然,行向量即为行距阵,列向量即为列矩阵.向量通常用黑体小写希腊字母?,?等表示.分量全为实数的向量称为实向量,分量全为复数的向量称为复向量. 向量的线性运算行向量与列向量都按矩阵的运算规则进行运算? 特别地,向量的加法,向量的数乘,称为向量的线性运算.向量的线性运算满足8条运算律. 全体的n维向量的集合关于线性运算是封闭的,我们将该集合称为n维向量空间. 例如,全体3维向量的集合;闭区域上的连续函数的集合;一元n次多项式的集合;实数域上可导函数的集合等,皆为向量空间. 3.向量组线性相关性

线性相关和线性无关的结论

§性质定理总结: 一、线性相关的判别: 1、m αααΛ,,21线性相关?存在不全为零的数m k k k ,,,21Λ,使得 1122m m k k k .ααα++=L 0 2、1α线性相关? 1α=0. 3、12,αα线性相关? 1α与2α的对应分量成比例. 4、m αααΛ,,21线性相关?其中至少有一个向量能用其余向量线性表示. 5、n 个n 维向量线性相关?它们构成的行列式等于零. 6、m αααΛ,,21线性相关 ?m αααΛ,,21的秩小于m . 7、对调坐标不改变向量组的线性相关性. 8、部分相关?整体相关. 9、m 个n 维 (m >n ) 向量线性相关. 二、线性无关的判别: 1、m αααΛ,,21线性无关?如果1122,m m k k k ααα++=L 0则有 .021====m k k k Λ 2、整体无关?部分无关. 3、无关则加长无关 三、线性相关的性质: m αααΛ,,21线性无关,12m ,,,αααβL 线性相关?β可由m αααΛ,,21线性表 示,且表示法唯一. 四、线性无关的性质: 1、若向量组Ⅰ能由向量组Ⅱ线性表示,且向量组Ⅰ线性无关,则Ⅰ的元素个数≤Ⅱ的元素个数. 2、等价线性无关向量组的向量个数相同.

五、向量组的秩的性质: 1、矩阵A的秩等于A的行(列)向量组的秩. A的不等于零的子式对应于A的行(列)向量组的线性无关组; A的行(列)向量组的线性无关组对应于A的不等于零的子式. 2、若向量组Ⅰ能由向量组Ⅱ线性表示,则Ⅰ的秩≤Ⅱ的秩. 3、等价向量组的秩相同. 六、矩阵的初等行(列)变换不改变列(行)向量组的线性关系.

向量组的线性相关性

线性相关性 一、填空题 例设向量组1234(1,2,1),(2,3,1),(,3,1),(2,,3),T T T T x y αααα====的秩为2,则x = 2 , y = 5 . 例已知向量组()11,2,1T α=-,()22,0,T t α=,()30,4,5T α=-线性相关,则t = 3 . 例若向量组123(1,2,3),(2,3,4),(3,4,)T T T t ααα===线性相关,则t =5. 二、 选择题 例设矩阵A 、B 、C 均为n 阶方阵,若AB C =,且B 可逆,以下正确的是【B】. (A) 矩阵C 的行向量组与矩阵A 的行向量组等价; (B )矩阵C 的列向量组与矩阵A 的列向量组等价; (C 矩阵C 的行向量组与矩阵B 的行向量组等价; (D )矩阵C 的列向量组与矩阵B 的列向量组等价. 例1234123400110,1,1,1C C C C αααα-???????? ? ? ? ? ===-= ? ? ? ? ? ? ? ????????? ,其中1234,,,C C C C 为任意常数,则下列向量组线性相 关的为( C ) (A ) 123,,ααα;(B )124,,ααα; (C) 134,,ααα; (D) 234,,ααα. 例设12,,,s a a a 均为n 维列向量,下列选项不正确的是【B 】. (A )对于任意一组不全为0的数12,,,s k k k 都有s s k a k a k a 1122,0+++≠ ,则12,,,s a a a 线性无关; (B )若12,,,s a a a 线性相关,则对于任意一组不全为0数12,,,s k k k 都有 s s k a k a k a 1122,0+++= ; (C )12,,,s a a a 线性无关的充分必要条件是此向量组的秩为s ; (D )若12,,,s a a a 线性无关的必要条件是其中任意两个向量线性无关. 例设12,,,s a a a 均为n 维列向量,A 是m n ?矩阵,下列选项正确的是【A 】. (A )若12,,,s a a a 线性相关,则12,,,s Aa Aa Aa 线性相关; (B )若12,,,s a a a 线性相关,则12,,,s Aa Aa Aa 线性无关;

求向量组的秩与极大无关组

求向量组的秩与极大无关组 对于具体给出的向量组,求秩与极大无关组的常用方法如下. 方法1 将向量组排成矩阵: (列向量组时)或(行向量组时) (*) 并求的秩,则即是该向量组的秩;再在原矩阵中找非零的阶子式, 则包含的个列(或行)向量即是的列(或行)向量组的一个极大无关组. 方法2 将列(或行)向量组排成矩阵如(*)式,并用初等行(或列)变换化为行(或列)阶梯形矩阵(或),则(或)中非零行(或列)的个数即等于向量组的秩,且是该向量组的一个极大无关组,其中是(或)中各非零行(或列)的第1个非零元素所在的列(或行). 方法3 当向量组中向量个数较少时,也可采用逐个选录法:即在向量组中任取一个非零向量作为,再取一个与的对应分量不成比例的向量作为, 又取一个不能由和线性表出的向量作为,继续进行下去便可求得向量组的极大无关组. 对于抽象的向量组,求秩与极大无关组常利用一些有关的结论,如“若向量组(Ⅰ)可由向量组(Ⅱ)线性表示,则(Ⅰ)的秩不超过(Ⅱ)的秩”,“等价向量组有相同的秩”,“秩为的向量组中任意个线性无关的向量都是该向量组的极大无关组”等. 例1 求向量组,,,, 的秩与一个极大无关组.

解法1 ,所以向量组的秩为3;又中位于1,2,4行及1,2,4列的3阶子式 故是向量组的一个极大无关组(可知;均可作为极大无关组). 法2 由于的第1,2,4个行向量构成的向量组线性无关,故是向量组的一个极大无关组. 例2 求向量组,,,的秩和一个极大无关组. 解

(1) 当且时,,故向量组的秩为3,且是一个极大无关组; (2) 当时,,故向量组的秩为3,且是一个极大无关组; (3) 当时,若,则,此时向量组的秩为2,且是 一个极大无关组.若,则,此时向量组的秩为3,且是一个极大无关组. 例3 设向量组的秩为.又设 ,, 求向量组的秩. 解法1 由于,且 所以 故向量组与等价,从而的秩为. 法2 将看做列向量,则有

向量组线性相关与线性无关

向量组线性相关与线性无关的判别方法 摘要 向量组的线性相关性与线性无关性是线性代数中最为抽象的概念之一,如何判别向量组的 线性相关与线性无关是正确理解向量的关键,本文介绍了它与行列式、矩阵、线性方程组的解之间的关系.总结了向量组线性相关和线性无关的判定方法. 关键词 向量组 线性相关 线性无关 矩阵 秩 1 引言 在高等代数中,向量组的线性相关和线性无关的判定这个课题有许多的研究成果,它与行列式,矩阵,线性方程组的解,二次型,线性变换以及欧式空间都有着重要的联系,然而向量的线性相关与线性无关的判别是比较抽象和难以理解的,实际上,向量组的线性相关与线性无关是相对的,我们只要掌握了线性相关的判别,那么线性无关的判别也就迎刃而解了,至今已给出了以下几种常见的方法:利用定义法判断,利用齐次线性方程组的解判断,利用矩阵的秩判断,利用行列式的值判断等.其中,利用齐次线性方程组,利用矩阵的秩,利用行列式的值这三种方法的出发点不同但实质是一样的. 2 向量组线性相关和线性无关的定义 定义 设向量组m ααα,,,21 都为n 维向量,如果数域P 中存在一组不全为零的数 12,m k k k ,使0332211=++++m m k k k k αααα 则称向量组是线性相关, 反之,若数域 P 中没有不全为零的数12 ,m k k k ,使 0332211=++++m m k k k k αααα , 称它是线性无关. 3 向量组线性相关和线性无关的判定方法 3.1 一个向量与两个向量线性相关的判定方法 由定义可以看出,零向量的任何一个线性组合为零,只要取系数不为零,即可以得出这个向量是线性相关的. 命题1 一个向量线性相关的充分条件是它是一个零向量. 关于两个向量的线性相关性判断可以转化为向量的成比例判断. 命题2 两个n 维向量()n a a a ,,,21 =α, ()n b b b 21,=β线性相关的充要条件是i a 与()n i b i 2,1=对应成比例.

向量组的线性关系

第十讲 向量组的线性关系 一、考试内容与考试要求 考试内容 向量的概念;向量的线性组合与线性表示;向量组线性相关与线性无关. 考试要求 (1)理解n 维向量的概念; (2)理解向量的线性组合与线性表示的概念; (3)理解向量组线性相关与线性无关的概念; (4)掌握向量组线性相关与线性无关的有关性质及判别法; 注 适合于第十讲和第十一讲. 二、知识要点 引入 学习向量组的线性相关和线性无关,直接的目的是为探讨当方程组Ax o =(Ax b =)有无穷解时,它的所有解能否用有限个解表示出来?且这些有限个解之间的关系是什么? 线性表示(线性组合):探讨消除线性方程组中的多余方程(即无效方程); 矩阵秩:探讨矩阵所对应的线性方程组中的有效方程个数; 线性相关:方程组Ax o =有无穷解时,能否用有限个解表示出来; 线性无关:这有限个解之间的关系,引出基础解系和最大线性无关向量组. 复习 (1)非齐次方程组Ax b =有解的条件:()(,)R A R A b m =≤ 其中A =(12,,,m αααL ),要特别注意m 是未知量个数,也是向量组12,,,m αααL 中向量的个数. (2)齐次方程组Ax o =?? ?唯一零解 无穷解(有非零解) ,o 是向量. 1.线性组合(线性表示) 定义1 线性组合(线性表示) 给定向量12,,,,m βαααL ,如果存在数12,,,m k k k L ,使关系式成立 1122m m k k k βααα=+++L

则称β是向量组12,,,m αααL 的线性组合,或称β可以由向量组12,,,m αααL 线性表示: 注意1 (1)线性组合(或线性表示)对12,,,m k k k L 没有要求,可以全为零; (2)零向量可由任一同维的向量组线性表示; (3)判断β是否可由向量组12,,,m αααL 线性表示转化为求Ax β=是否有解,一个具体表示就是Ax β=有一个特解. (4)表示式可以不惟一,但若12,,,m αααL 线性无关时,表示式惟一; (5)任一n 维向量可由同维的单位坐标向量组12,,,n e e e L 线性表示; (6)向量组12,,,m αααL 中每个向量都可由自身向量组线性表示: 11100100j j j j m αααααα-+=?++?+?+?+?L L 定义2 向量组的等价 向量组(I ):12,,,s αααL 中每个向量都可由向量组(II ):12,,,t βββL 线性表示,而向量组(II )中每个向量都可由向量组(I )线性表示,则称两个向量组的等价,记为(I ):(II ). 向量组的等价具有 ① 反身性:每个向量组都和自身等价,即(I ):(I ); ② 对称性:若(I ):(II ),则(II ):(I ); ③ 传递性:若(I ):(II ),(II ):(III ),则(I ):(III ). 注意 2 记()12,,,s A ααα=L ,()12,,t B βββ=L ,则 (1)向量组(II )可以由向量组(I )线性表示的充分必要条件是()(,)R A R A B = 这是单个向量β可由向量组12,,,s αααL 线性表示的推广. (2)向量组(I )与向量组(II )等价的充分必要条件是()()(,)R A R B R A B == (3)若向量组(I ):12r αααL ,,,(2)r ≥可由向量组(II ):s βββ,,, Λ21线性表示,则当r s >时,向量组(I )必线性相关; (4)若向量组(I ):12r αααL ,,,(2)r ≥可由向量组(II ):s βββ,,, Λ21线性表

相关主题
文本预览
相关文档 最新文档