当前位置:文档之家› Mastercam线割编程说明书

Mastercam线割编程说明书

Mastercam线割编程说明书
Mastercam线割编程说明书

第25章模具加工应用实例

在本章中通过对它在精密模具中的编程实例应用来说明此软件的用法。本章实例所用的机床为夏米尔290P慢走丝线切割机。

25.1 凹模镶块加工(部分斜度)

本例中使用图25.1所示的凹模镶块加工图形在夏米尔290P机床上加工一个级进模的凹模镶块,此镶块上有5个型腔,零件高13mm,要求在此凹模镶块的刀口处加工2mm高的直壁部分,其余部分为0.75°的落料斜度。根据加工要求确定斜度部分切割2次,直壁部分切割3次。外形一面留磨0.3~0.5mm,其余面3次切割加工到尺寸。型腔程序以C1型腔为例进行说明,型腔的进丝孔位置位于每个型腔的固定位置上,在C1型腔的坐标原点处,图形为凸模尺寸,间隙在加工时根据要求在CMD文件中进行调整。

图25.1

25.1.1 文件准备

(1) 从系统桌面单击Wire程序快捷方式启动软件。

(2) 从主菜单中选择File→Get(“文件”→“获取”)命令,从配书光盘中调入EX25-1.MC9文件。

(3) 从主菜单中选择Modify→Break→2 pieces(“修整”→“打断”→“两段”)命令,选择图25.1中的L1直线,再单击坐标原点作为打断点,将L1直线分段,此分段点将作为串连的起点,同时也是切割路径的进刀位置。

(4) 从主菜单中选择NC utils→Post Proc→Change(“NC实用”→“后处理”→“改变”)命令,弹出Specify File Name to Read(读取特定的文件名称)对话框,在其中选择MPWROBO.PST后处理程序,如图25.2所示,单击“打开”按钮返回,再单击MAIN MENU (主菜单)命令返回主菜单。

图25.2

25.1.2 生成切割路径

(1) 从主菜单中选择Wirepaths→Contour(“线切割路径”→“轮廓”)命令,进入切割路径的串连选择菜单中,从图25.1中单击L1直线的下半部分,串连方向按顺时针方向,完成图形串连,如图25.3所示。

图25.3

(2) 然后在提示选择第二串连时选择菜单中的Done(执行)命令,完成切割路径的选择,同时弹出切割设置的对话框,如图25.4所示。

(3) 由于采用机床控制器方式进行切割路径的偏置计算,电极丝的大小对切割路径的生成没有影响,为观察方便,在图25.4中的电极丝参数设置对话框中,取消对Associate to Library(关联到库)复选框的选择,然后设置电极线直径为0.5mm,如图25.4所示(由于起割点位于图形的坐标原点上,加工的STCW(位置点)默认即是在坐标原点,因此不需要再进行设置)。

(4) 单击Contour(轮廓)标签进入轮廓设置选项卡中,在其中选择锥度的形式,锥度角度值0.75°,同时设置UV平面及UV修剪面的高度值为(13-2),在补偿设置中设置控制器补偿方式,补偿方向为右偏移,如图25.5所示。

图25.4

图25.5

注意:此处的高度设置也可以在后置生成的NC文件中直接进行修改,因为熟练应用后对编程的处理也可以简化,直接修改NC文件更为方便。

(5) 单击Lead in/out(导入/导出)标签进入导入/导出设置选项卡中,设置进入方式为直线圆弧,圆弧半径为0.4mm,扫描角度为45°,退出方式为直线,导入/导出设置如图25.6所示。

图25.6

提示:设置导入/导出圆弧及过切值时需要根据加工零件的型腔大小来确定,读者可在实际切割编程时根据情况设置这些值。

(6) 单击Cuts(切割)标签进入切割方式设置选项卡,选中Perform rough cut(进行粗加工)复选框,然后设置精加工次数为两次,这时在右下角会看到一次粗加工、两次精加工的加工方法,切割次数设置如图25.7所示。

图25.7

(7) 单击General(通用)标签进入通用功能设置选项卡,设置切割方向为单一方向,保持其他设置不变,如图25.8所示,单击“确定”按钮结束设置。

(8) 系统将所有的端点显示出来,提示进行参数变更,选择菜单区中的Done(执行)命令,完成切割路径的创建,绘图区中的路径上出现切割路径的显示,如图25.9所示,从图中可以清楚地看到斜度产生的上下两条切割路径及圆弧进入、直线退出的情况。

图25.8 图25.9

25.1.3 实体模拟加工

(1) 从主菜单中选择Wirepaths→Job setup(“线切割路径”→“工件设置”)命令,进

入毛坯工件的设置对话框中,毛坯设定如图25.10所示,单击Select corners(选择拐点)按钮返回到绘图区中,在生成切割路径的图形左上和右下任意选取两点作为毛坯的边界,此两点数据返回到设置区中,在Z高度设置和毛坯原点的Z值设置框中均输入数值“11”,选中Display stock(显示毛坯)选项,单击OK按钮确定。

(2) 在绘图区中以线框方式显示出毛坯的外形,如图25.11所示。

(3) 从主菜单中选择Wirepaths→Operations(“线切割路径”→“操作”)命令,进入图25.12(a)所示的操作管理对话框中,单击Verify(校验)按钮,进入实体切削模拟对话框,同时弹出实体模拟工具栏,如图25.12(b)所示。

(4) 单击工具栏中的(切削设置)按钮,进入切削设置对话框中,选中Use Job Setup values(使用工件设置的值)选项,设置毛坯使用Job Setup(工件设置)中的设置大小,同时打开Use TrueSolid(使用真实实体)及Remove chips(除去片)方式,实体模拟设置如图25.13所示(本章实例均使用这样的设置)。

图25.10 图25.11

(a) (b)

图25.12

图25.13

(5) 单击工具栏中的(开始)按钮,开始实体模拟,实体模拟结果如图25.14所示,同时菜单区出现图25.15所示的废料显示子菜单,用于对切割后的废料进行去除以方便观察。

图25.14 图25.15

(6) 单击图25.15所示菜单中的Pick a chip(选择片),在绘图区中单击型腔中间产生的废料,得到如图25.16所示的型腔实体模型。

图25.16

注意:此处的Pick a chip操作需要执行两次,因为除型腔中间的整体废料外,在圆弧进入和直线退出中间还有一段小的废料也需要进行这种操作来去除显示,才能最终得到图25.15所示的效果。通常先去除进刀圆弧产生的小废料的显示,再去除型腔中大废料的显示。

最终的模拟图形模拟的是不带刀具补偿的切割路径,因为在切割参数设置中我们选择的是控制器补偿方式,读者需要注意这一点。

(7) 选择菜单区中的Done(执行)命令退出,再单击实体切割工具栏右上角的按钮退出实体切削模拟对话框,返回到图25.12所示的操作管理对话框中。

25.1.4 后置处理生成程序

(1) 从操作管理对话框中单击Post(后置)按钮,进入后处理设置界面中,确认当前的后处理程序为MWPROBO,保持其他设置值不变,如图25.17所示,单击OK按钮。

(2) 在弹出的文件写入对话框中输入产生的程序名称,单击“保存”按钮。系统创建并在程序文件编辑器中自动调出CMD文件,如图25.18所示,其中所用的ISO文件同时被创建。

图25.17 图25.18

注意:在图25.18所示的CMD文件中,GOH值的高度与工件高度HPA一样,通常在加工时上机头的高度根据实际工件高度及装夹情况来直接调整,因此这里不需要GOH 值,应该将其去掉。但是读者要清楚这里的值是由图25.5所示对话框中的UV高度和UV修剪面高度来确定的。

(3) 删除GOH代码行,根据零件的配合间隙加入CLE指令设定所需的偏移,将文件保存,CMD文件创建成功。

技巧:保存前,在REX E502代码行前加入一行指令“OSP,0”;它的含义为取消选项停止功能,这样在NC文件中就可以设置选择性停点,使切割加工在第一次完成时暂停以便取废料,在第二、三次切割中忽略停点。

(4) 在程序编辑器中调入创建的NC代码文件,如下所示:

%( EX25-1x )

N100 G92 G60 X0. Y0. W0. H11. R11.

N102 M20

N104 M06

N106 G29

N108 G01 X.94284 Y.28284

N110 G42 D0

N112 G28

N114 G02 X1.06 Y0. I.66 J0. A.75

N116 G01 Y-1.06

N118 G02 X.94 Y-1.18 I.94 J-1.06

N120 G01 X-.94

N122 G02 X-1.06 Y-1.06 I-.94 J-1.06

N124 G01 Y.82

N126 G02 X-.935 Y.9399 I-.94 J.82

N128 G03 X-.81 Y1.05979 I-.93 J1.05979

N130 G01 Y4.2

N132 G02 X-.69 Y4.32 I-.69 J4.2

N134 G01 X.69

N136 G02 X.81 Y4.2 I.69 J4.2

N138 G01 Y1.05979

N140 G03 X.935 Y.9399 I.93 J1.05979

N142 G02 X1.06 Y.82 I.94 J.82

N144 G01 Y0.

N146 G40

N148 G27

N150 X0. A0.

N152 /M12

N154 M02

在N100行中的3个参数含义如下。

●W:参考面到工件底面的高度,通常指编程平面到零平面的高度。

●H:切割高度,通常指工件厚度。

●R:参考面和第二平面的距离。

提示:在锥度切割中,通常在XY平面进行绘图,通过在NC代码修改W的高度来设置程序平面的高度。在本例中由于工件高度为13mm,同时要求的直壁部分为2mm,因此我们的程序平面高度为11。

在有些后处理器生成的程序中会在第1行出现G70代码,这是代表英制单位。如果有这类代码出现在机床上,做加工前绘图检查时就会产生错误,需要将其删除。

技巧:在N144的代码行后加入选择性暂停指令M01,可配合CMD文件中的OSP设置功能实现停点,在第一次切割时有效以便移除废料。

(5) 将NC文件的第一行代码改为:

N100 G92 G60 X0. Y0. W11

在第N144代码行后加入:

N145 M01

删除N152代码行(此代码为剪丝指令,在型腔切割中不需要)。

将修改后的NC文件保存。

至此斜度程序编制完毕。

(6) 直壁部分的切割按上述步骤进行,请读者自行编制,注意以下几点:

●在Contour选项卡中不再设置锥度切割。

●在Cuts选项中修改切割次数为所需的次数。

提示:直壁部分的切割可以不考虑编程平面的高度设置,加工厚度有关的工艺文件在机床中生成。

按照本例中斜度的切割方法生成程序并修改,完成直壁部分的切割。这样通过两个程序完成了对凹模型腔直壁和斜度部分的加工。

提示:在实际工作中,由于斜度和直壁部分的ISO代码中切割路径一样,区别仅在于高度

和斜度的设置,因此通过在斜度加工的程序代码中取消锥度设置,即可将锥度加工的ISO文件作为直壁加工的ISO程序,从而得到简化程序编制过程的效果。读者可自行对这种方法进行验证。

至此本实例的型腔程序完成,可依次使用其对5个型腔进行加工,型腔的斜度加工读者可参考配套光盘中的EX25-1X.mc9文件。

25.1.5 外形切割的程序编制

(1) 从操作管理对话框中右击型腔切割路径,按图25.19所示的菜单将切割路径的显示关闭,再返回到主菜单中。

图25.19

(2) 选择辅助菜单中的STCW命令,将Start position、Thread position、Cut position的位置设置到图25.1中的P1点上,STCW位置点设置对话框如图25.20所示,单击OK按钮确定。

(3) 从主菜单中选择Modify→Break→2 pieces(“修整”→“打断”→“两段”)命令,选择图25.1中指示的留磨面的直线,再单击P1点作为打断点,将此直线在P1点处分为两段,此分段点将作为外形串连的起点,同时也是外形切割路径的进刀位置。

(4) 从主菜单中选择Wirepaths→Contour(“线切割”→“轮廓”)命令,进入切割路径的串连选择菜单中,从图25.3中单击分段直线在P1点右侧的部分,串连方向按顺时针方向,完成图形串连,如图25.21所示。

图25.20

图25.21

(5) 然后在提示选择第二串连时单击主菜单中的Done(执行)命令,完成切割路径的选择,同时弹出切割设置的对话框,如图25.22所示。

图25.22

为方便观察,将电极丝直径设置为0.5mm。

(6) 单击Contour标签进入轮廓设置选项卡中,同时设置UV平面及UV修剪面的高度值为13.0mm,在补偿设置中设置控制器补偿方式,补偿方向为左偏移,如图25.23所示。

图25.23

(7) 单击Lead in/out(导入/导出)标签进入导入/导出设置选项卡中,设置进入退出方式均为直线,如图25.24所示。

图25.24

(8) 单击Cuts标签进入切割方式设置选项卡,选中Perform rough cut(进行粗加工)复选框,然后设置精加工次数为两次。接着选中Tab(分离)复选框,设置分离段宽度值为25.0mm,切割次数为一次,这时在右下角会看到一次粗加工、两次精加工的加工方法以及分离段的

分离切割。精加工设置如图25.25所示。

图25.25

(9) 单击General标签进入通用功能设置选项卡,设置切割方向为Reverse正逆切割,保持其他设置不变,如图25.26所示,单击“确定”按钮结束设置。

图25.26

(10) 绘图区中出现设置完成的切割路径,如图25.27所示,从中可以明显地看到在正逆切割中电极丝的偏移方向是否正确,可以使用操作管理对话框中的Backplot功能对运动情况进行模拟。

图25.27

25.1.6 实体模拟加工

(1) 接着进行实体切削模拟,这时需要重新设置毛坯的大小。从主菜单中选择Wirepaths→Job setup(“线切割路径”→“工件设置”)命令,进入图25.13所示毛坯工件的设置对话框中,单击Select corners按钮返回到绘图区中,在生成切割路径的图形左上和右下任意选取两点作为毛坯的边界,此两点数据返回到设置区中,在Z高度设置和毛坯原点的Z值文本框中均输入数值13,选中Display stock选项,单击OK按钮确定,毛坯显示如图25.28所示。

(2) 从主菜单中选择Wirepaths→Operations(“线切割”→“操作”)命令进入图25.12所示的操作管理对话框中,单击Select All按钮将型腔的斜度切割一起选择,然后单击Verify(校验)按钮,进入实体切削模拟对话框,同时弹出实体模拟工具栏。单击工具栏中的按钮,进入切削设置界面中,按照步骤(前面)所示的方法进行设置。

在模拟工具栏中单击(开始)按钮,开始实体模拟,同时菜单区出现图25.15所示的子菜单,将型腔和外形废料去除后得到模拟结果,如图25.29所示。

图25.28 图25.29

25.1.7 后置处理生成程序

(1) 从操作管理对话框中选择外形切割程序,然后单击Post(后处理)按钮,系统出现图25.30所示的提示信息,指出后处理不是对所有切割路径进行的,单击“否”按钮继续,仅对外形切割进行后处理操作,进入后处理设置选项卡中,确认当前的后处理程序为MWPROBO,保持其他设置值不变,如图25.17所示,单击OK按钮。

图25.30

(2) 生成的CMD程序如图25.31所示。

图25.31

(3) 现在对程序进行检查修改,在CMD程序中可以看出使用了3个ISO代码程序,

分别如下:

外形正切割:EX25-1x.iso

外形逆切割:EX25-1xAA.iso

分离段切割:EX25-1xAB.iso

其中在CMD文件中将GOH命令行取消,在ISO文件中将“G70,M12”代码取消,即完成程序编制。切割时执行过程为:先调用EX25-1x.iso程序进行第一次粗加工,偏移方向为左侧,然后使用EX25-1xAA.iso程序以右侧偏移反向加工回起点,再以EX25-1x.iso程序进行一次正向加工,然后以EX25-1xAB.iso程序将分离段切除。

注意:分离段的偏移值需要根据零件加工的留磨情况进行设置,具体方法为:在CMD文件中的分离切割前加入CLE命令行指定一个偏移值。

生成的CMD中的程序名称和ISO代码的名称根据绘图时的文件名而自动给定,因此读者在练习过程中,文件名可能会与图示中不一致,但是命名规律是一致的,即按照第一次正向加工为文件名,逆向加工加上后缀AA,分离段切割加上后缀AB。

技巧:为了尽量减小无用的加工路径,提高效率,可以采用以下方法对程序进行一些改进:

①在本例中可以看到,起始点与外形间的距离值为2mm,在CMD文件中对正向的切割路

径使用一个ISO代码程序,然后将ISO代码中正向切割的退出点设置到距离外形路径0.3mm处,将逆向切割的起始点也设置到距离外形切割0.3mm处的同一点上,可以最大程度地提高效率,减少无用加工。

②将CMD文件中的分离切割取消,在第三次切割完成后,直接用粗加工工艺参数以手工

方式加工到外形路径的起始位置,以达到切断并留磨的目的,可以提高一定的生产效率。

外形加工的程序读者可参考配书光盘中的EX25-1W.MC9文件。

25.2 凸模加工(留料策略)

本实例是由一个级进模中的凸模改编而成的,对其进行切割编程,主要是继续学习分离段在加工中的使用方法,根据图形形状,将分离段部分设置在图形上部,对图形进行往返5次切割,最后的分离段一次切下,再使用后续加工方法对其进行加工,由于图形较小,为观察方便设其高度为1mm。本节详细介绍分离段在异形凸模零件切割中的编程方法。在图25.32中L1直线为留磨边。

图25.32

25.2.1 文件准备

(1) 从系统桌面双击Wire程序快捷方式启动软件。

(2) 从主菜单中选择File→Get(“文件”→“获取”)命令,调入EX25-2.MC9文件。

(3) 从主菜单中选择NC utils→Post Proc→Change(“NC实用”→“后处理”→“改变”)命令,弹出Specify File Name to Read对话框,在其中选择MPWROBO.PST后处理程序,如图25.2所示,单击“打开”按钮返回,再单击MAIN MENU(主菜单)命令返回主菜单。

(4) 从主菜单中选择Create→Point→Position→Relative(“创建”→“点”→“位置”→“相对点”)命令,出现参考点的点输入菜单,从中以自动捕捉方式选择图形左上角的参考点,出现相对点的两种创建方法:直角坐标方式和极坐标方式,选择Rectang(直角坐标)命令,在弹出的坐标文本框中输入相对坐标值(0.5,1.5),创建P1点,位置点标识如图25.33所示。

图25.33

(5) 从主菜单中选择Modify→Break→2 pieces(“修整”→“打断”→“两段”)命令,选择图25.33中的L1直线,再单击刚创建的P1点将其作为打断点,将L1直线打断成两段,此分段点将作为串连的起点,同时也是切割路径的进刀位置。

25.2.2 生成切割路径

(1) 选择辅助菜单中的STCW命令,弹出如图25.20所示的STCW Parameters参数设置对话框,从中单击Select Start/Thread/Cut按钮,选取图25.33中的P1点,设置它同时作为起始点、穿丝点及剪丝点,STCW位置点设置如图25.34所示,单击OK按钮确定。

(2) 从主菜单中选择Wirepaths→Contour(“线切割路径”→“轮廓”)命令,进入切割路径的串连选择菜单中,单击绘图区中图25.33所示的图形中L1直线打断的左侧部分,按逆时针方向进行串连,结束后在图中出现代表串连的箭头标志,串连切割路径如图25.35所示。

图25.34 图25.35

(3)

(4) 单击Cuts标签进入切割方法设置选项卡中,打开Perform rough cut(进行粗加工)选项,并设置精加工次数为4次。选中Tab(分离)复选框,在Tab width(分离宽度)文本框中设置分离段的宽度为1.8mm,设置Number of tab cuts(分离切割次数)为1次,并确保在分离段加工时会输出停点选项,如图25.37所示。

图25.36

图25.37

(5) 单击General标签进入通用参数设置选项卡,在切割方式中设置反向切割Reverse 选项有效,保持其他设置值不变,如图25.38所示。

(6) 单击对话框下方的“确定”按钮,系统退出设置,提示对切割路径上的点进行修改,直接选择菜单区的Done(执行)按钮,完成编程,生成的路径如图25.39所示。

图25.38 图25.39

25.2.3 实体模拟加工

(1) 从主菜单中选择Wirepaths→Job setup(“线切割路径”→“工件设置”)命令,进入如图25.10所示的毛坯工件的设置对话框中,单击Select corners按钮返回到绘图区中,在图形的左上和右下任意选取两点作为毛坯的边界,此两点数据返回到设置区中,在Z高度设置和毛坯原点的Z值文本框中均输入数值5,选中Display stock复选框,单击OK按钮确定,如图25.40所示。

图25.40

(2) 从主菜单中选择Wirepaths→Operations(“线切割路径”→“操作”)命令,进入操作管理对话框中,单击其中的切割路径,然后再单击Verify(校验)按钮,进入实体切割模拟环境中。

(3) 直接单击实体切割模拟工具栏中的(开始)按钮,开始实体模拟,如图25.41所示,同时菜单区出现图25.15所示的子菜单,用于对切割后的废料进行去除以方便观察。

(4) 单击图25.15中的Pick a chip(选择片)命令,选取图24.41中的废料(注意是外面的部分),完成后实体模拟的结果如图24.42所示。

图25.41 图25.42

(5) 选择菜单区中的Done(执行)按钮,再关闭实体切割模拟工具,返回到操作管理对话框中。

25.2.4 后置处理生成程序

(1) 从操作管理对话框中单击Post(后处理)按钮,进入后处理设置对话框,按如图24.43所示进行设置,然后单击OK按钮确定。

图25.43

(2) 在弹出的文件写入对话框中输入文件名后单击“确定”按钮,系统调用NC文件编辑器,打开创建的CMD文件对话框,显示CMD文件如下所示。

MSG,PROG 1

SPA,X-2.055,Y3.43

TEC,1.TEC

ZCL

HPA,5.

OSP,1

GOH,H5.

BLD, 0

REX,E501

SPG,92sc-3

REX,E502

SPG,92sc-3AA

REX,E503

SPG,92sc-3

REX,E504

SPG,92sc-3AA

REX,E505

SPG,92sc-3

REX,E501

SPG,92sc-3AB

MSG, END OF PROGRAM1

提示:①将其中的GOH值根据工件实际高度确定或取消。

②为加工方便,通常将分离段的切割程序取消,而以手动切割来使零件脱落,这样可按需

要将分离段的切割部分加大偏移,以免伤及工件表面。

③HPA高度设置可以取消,在机床中根据零件材料和高度等条件生成工艺参数文件代入。

(3) 在NC文件编辑器中可以打开系统生成的ISO代码进行检查,其中正向切割的代码显示如下:

%( 92sc-3 )

N100 G92 G60 X-2.055 Y3.43 W0.

N102 M20

N104 M06

N106 G29

N108 G01 Y1.93

N110 G42 D0

N112 X-2.555

N114 G28

N116 G03 X-2.675 Y1.81 I-2.555 J1.81

N118 G01 Y1.59

N120 G03 X-2.555 Y1.47 I-2.555 J1.59

N122 G01 X-.295

N124 G02 X-.175 Y1.35 I-.295 J1.35

N126 G01 Y1.06

N128 G02 X-.295 Y.94 I-.295 J1.06

N130 G01 X-.305

N132 G03 X-.425 Y.82 I-.305 J.82

N134 G01 Y-1.06

N136 G03 X-.305 Y-1.18 I-.305 J-1.06

N138 G01 X.305

N140 G03 X.425 Y-1.06 I.305 J-1.06

N142 G01 Y0.

N144 Y1.81

N146 G03 X.305 Y1.93 I.305 J1.81

N148 G01 X-.255

N150 G40

N152 G27

N154 Y3.43

N156 /M12(可以取消)

N158 M02

从正反切割的程序中可以看到系统会对正反切割的偏置方向进行自动处理。

注意:①在某些后处理系统中会同时生成G70的指令,此为英制单位的指令,在使用公制单位的程序中需要取消这个指令。

②通常情况下为提高效率,在加工零件的分离段时,因为零件还有后续加工(如平磨),可

以直接将分离段一次性切除,这时可以手工将分离段切割前的间隙值进行修改,加大偏移。

至此本切割程序编制完毕,完成后的文件可参考配套光盘中的EX25-2F.mc9文件。

25.3 多型腔模板加工(自动化功能)

在模具零件的线切割加工中有大量的模板需要加工,它们经常用于放置各种镶块,本例中学习一种多型腔切割时的程序编制方法。因为是直壁切割,为便于观察,设置零件加工厚度为5mm。各个型腔的进丝孔位置均已标出,所有型腔进行两次切割,原始切割图如图25.44所示。

图25.44

25.3.1 文件准备

(1) 从桌面双击Wire程序快捷方式启动软件。然后选择File→Get(“文件”→“获取”)命令,调入EX25-3.MC9文件,如图25.44所示。

(2) 放大图25.44中C1所示型腔,从主菜单中选择Modify→Break→2 pieces(“修整”→“打断”→“两段”)命令,选择图25.45所示的矩形下边直线,再单击进丝孔位置点将其作为打断点,将此直线打断成两段,此分段点将作为串连的起点,同时也是切割路径的进刀位置。

图25.45

依此方法将所有待加工型腔的轮廓上切割路径起始的边线进行打断处理。

注意:虽然可以在多型腔切割的切割路径选取时使用窗选方式一次选择所有的图形作为切割路径,但是这种方法系统会自动将某一图素的端点作为进入轮廓切割的位置。为单独确定进入位置,建议读者都采用断点串连的方式来将图形进行串连,因此首先需要将所有的加工轮廓图形的边线进行打断以确定进刀位置。

25.3.2 生成切割路径

(1) 选择辅助菜单中的STCW命令,弹出STCW Parameters参数设置对话框,从中单击Select Start/Thread/Cut按钮,选取图25.44中的第一个型腔的进丝孔位置,设置它同时作为起始点、穿丝点及剪丝点,STCW参数设置如图25.46所示,单击OK按钮确定。

图25.46

注意:在进行此项设置后,代表穿剪丝点的两个标志将由坐标原点移到第一个型腔的中心点上,可参照图25.47。

(2) 从主菜单中选择NC utils→Post Proc→Change(“NC实用”→“后处理”→“改变”)命令,在弹出的后处理选择对话框中选择MPWROBO.PST后处理程序。

(3) 从主菜单中选择Wirepaths→Contour(“线切割路径”→“轮廓切割”)命令,进入切割路径的串连选择菜单中,单击绘图区中图25.44所示的型腔1中打断的直线左侧部分,按顺时针方向进行串连,在图中出现代表串连的箭头标志,串连切割路径如图25.47所示。

(4) 选择菜单区中的Done(执行)命令完成选择过程,同时进入切割设置对话框中。在切割设置对话框中,保持Wire Parameters选项卡中的设置内容不变,在Contour选项卡中将UV Trim Plane和UV Height的值设为5mm,以便利于观察,如图25.48所示。

图25.47 图25.48

在Lead in/out选项卡中设置切割路径的进入退出方式为“直线+圆弧“方式,设置Arc radius选项为0.5,Arc sweep选项为45,如图25.49所示。

图25.49

(5) 在Cuts(切割次数)选项卡中设置粗加工有效,精加工次数为1次,注意到在右下角的加工顺序列表中显示出了型腔的粗精加工,切割次数如图25.50所示。

图25.50

(6) 在General(通用参数)选项卡中选中Subprogram复选框,取消All Contours use Same Subprogram复选框的选择,进行子程序的设置,如图25.51所示。单击“确定”按钮,退出设置界面。

图25.51

(7) 系统提示对型腔的加工图形进行端点切割参数设置,主菜单区出现串连图形的选择菜单,如图25.52所示。

(8) 选择菜单区的Done(执行)命令完成切割路径的创建,如图25.53所示。

图25.52 图25.53

(9) 再次选择辅助菜单中的STCW命令,将起始点、穿剪丝点设置到图25.44中第二个型腔的进丝孔位置上。然后从主菜单中选择Wirepaths→Contour(“线切割路径”→“轮廓”)命令,按照图25.47所示的方向对第二个型腔进行串连,如图25.54所示。

(10) 按照第一个型腔的设置方法进行相关参数的设置,完成后创建切割路径,如图25.55所示。

图25.54 图25.55

依此类推,通过先设定STCW位置点再进行串连,然后设置加工参数的方式对所有的型腔进行切割路径的创建。完成后切割路径显示为图25.56所示的形式。

图25.56

提示:也可以在每次选择切割路径时通过先选择STCW点然后选择串连图形的方式将所有的串连图形均选取,这样操作上会更快捷,读者可自行试验这种方法。

(11) 选择主菜单中的Wirepaths→Operations(“线切割路径”→“操作”)命令,进入操作管理对话框中,可以看到其中包括了6个加工路径,如图25.57所示,单击其中每个切割路径的Geometry选项可以察看绘图区中的串连图形,在每个串连路径上显示出了串连的起点和方向。

各个串连路径的串连方向显示如图25.58所示的形式。

图25.57 图25.58

(12) 在操作管理对话框中选择Select All(选择所有)按钮,然后再单击Backplot(模拟)按钮,对切割路径进行模拟,完成后显示的切割路径,如图25.59所示,从中可以清楚地看到圆弧进入退出的设置效果。

图25.59

25.3.3 实体模拟加工

(1) 从主菜单中选择Wirepaths→Job setup(“线切割路径”→“工件设置”)命令,进入如图25.10所示的毛坯工件的设置对话框中,单击Select corners按钮返回到绘图区中,在图形的左上和右下任意选取两点作为毛坯的边界,此两点数据返回到设置区中,在Z高度设置和毛坯原点的Z值文本框中均输入数值1,选中Display stock单选框,单击OK按钮确定,如图25.60所示。

(2) 再次进入操作管理对话框中,单击Select All(选择所有)按钮,然后再单击Verify(校验)按钮,进入实体切割模拟环境中。

(3) 直接单击工具栏中的(开始)按钮,开始实体模拟,如图25.61所示,同时菜单区出现图25.15所示的子菜单,用于对切割后的废料进行去除,以方便观察。

图25.60

(4) 选择图25.15中的Pick a chip(选择片)命令,依次选取图25.61中的废料,注意由于采用了圆弧进退刀的设置,在每个型腔中有一大一小两块废料,完成后实体模拟的结果如图25.62所示。

图25.61 图25.62

注意:每个型腔中的两个废料需要先去除小的废料,再去除大的。

25.3.4 后置处理生成程序

(1) 再次进入图25.57所示的操作管理对话框中,单击Select All(选择所有)按钮,然后单击Post(后处理)按钮,进入后置处理对话框中,如图25.63所示,按图25.17中的设置,

单击OK按钮,在弹出的保存文件对话框中取名,单击“保存”按钮。

(2) 系统生成的CMD程序如下:

MSG,PROG 0

SPA,X47.5,Y72.05

TEC,0.TEC

ZCL

HPA,5.

OSP,1

GOH,H5.

BLD, 0

REX,E501

SPG,EX24-4

REX,E502

SPG,EX24-4

SPA,X47.5,Y72.05

MPA,X81.5,Y76.75

BLD, 1

REX,E501

SPG,EX24-4AA

BLD, 0

REX,E502

SPG,EX24-4AA

SPA,X192.,Y92.

MPA,X234.5,Y64.95

REX,E501

SPG,EX24-4AE

REX,E502

SPG,EX24-4AE

MSG, END OF PROGRAM0

图25.63

程序修改:从程序中可以看出系统将每个型腔自动进行编号,按EX24-4、EX24-4AA、EX24-4AB的顺利依次排下来。在这个CMD文件中可以删除GOH等指令。另外为达到简化程序的目的,可以将其中型腔之间的代码行语句SPA,MPA合并为MOV语句。修改后的型腔间转移代码如下。

原代码:

REX,E502

SPG,EX24-4

SPA,X47.5,Y72.05

MPA,X81.5,Y76.75

BLD, 1

REX,E501

SPG,EX24-4AA

修改后的代码:

REX,E502

SPG,EX24-4

MOV,X81.5,Y76.75

BLD, 1

REX,E501

SPG,EX24-4AA

系统生成的某个ISO代码如下:

%( EX24-4 )

N100 G92 G60 X47.5 Y72.05 W0. H5. R5.

N102 M20

N104 M06

N106 G29

N108 G01 X47.85355 Y70.19645

N110 G42 D0

N112 G28

N114 G02 X47.5 Y70.05 I47.5 J70.55

N116 G01 X35.5

N118 Y72.05

N120 X37.5

N122 Y77.25

N124 X57.5

N126 Y72.05

N128 X59.5

N130 Y70.05

N132 X47.5

N134 G02 X47.14645 Y70.19645 I47.5 J70.55

N136 G40

N138 G27

N140 G01 X47.5 Y72.05

N142 /M12

N144 M02

注意:①其中有关高度等设置项均不需处理,也可以删除,根据CMD的指令,机床在每个型腔的最后一次切割时剪丝指令有效,完成剪丝动作后即可移动至下一型腔进行加工。也可以取消程序带的BLD方式的剪丝指令,改用OSP选项定义的M00、M01方式进行。

②程序中如果出现G70代码,需将其删除,这是英制单位。

至此切割编程过程全部完成,完成后文件可参考配套光盘中EX25-3F.mc9文件。

25.4 变锥度加工(拐角)

本例中使用变锥度的方法加工一个局部锥度的镶块,本例由一个凹模镶块改编而成,

其中在P1、P2点之间的粗实线部分要求锥度为2°,在L1直线上留磨,零件高8mm,如图25.64所示。根据要求确定使用分离段进行正逆切割3次。

图25.64

25.4.1 文件准备

(1) 从系统桌面双击Wire程序快捷方式启动软件。

(2) 从主菜单中选择File→Get(“文件”→“获取”)命令,调入EX25-4.MC9文件。

(3) 从主菜单中选择NC utils→Post Proc→Change(“NC实用”→“后处理”→“改变”)命令,弹出Specify File Name to Read对话框,在其中选择MPWROBO.PST作为本例使用的后处理程序,然后返回主菜单。

(4) 从主菜单中选择Create→Point→Position→Relative(“创建”→“点”→“位置”→“相对点”)命令,出现参考点的点输入菜单,从中以自动捕捉方式选择图形左下角的参考点,出现相对点的两种创建方法:直角坐标方式和极坐标方式,选择Rectang(直角坐标)命令,在弹出的坐标文本框中输入相对坐标值(2,-2),创建进丝点,如图25.65所示。

图25.65

(5) 从主菜单中选择Modify→Break→2 pieces(“修整”→“打断”→“两段”)命令,选择图25.65中的L1直线,再单击进丝点作为打断点,将L1直线分段,此分段点将作为串连的起点,同时也是切割路径的进刀位置。

25.4.2 生成切割路径

(1) 单击辅助菜单中的STCW按钮,弹出图25.66所示的STCW Parameters参数设置对话框,从中单击Select Start/Thread/Cut按钮,选取图25.65中的进丝点,设置它同时作为起始点、穿丝点及剪丝点,STCW位置点设置如图25.66所示,单击OK按钮确定。

(2) 从主菜单中选择Wirepaths→Contour(“线切割路径”→“轮廓”)命令,进入切割路径的串连选择菜单中,从图25.67中单击分段直线的左半部分,串连方向按顺时针方向,完成图形串连,如图25.67所示。

图25.66 图25.67

(3) 然后在提示选择第二串连时选择菜单中的Done(执行)命令,完成切割路径的选择,同时弹出切割设置对话框,如图25.68所示。

图25.68

(4) 保持图中的参数设置不变,单击Contour标签进入轮廓设置选项卡中,在其中同时设置UV Trim Plane及UV Height的高度值为8mm,在补偿设置中设置控制器补偿方式,补偿方向为Left偏移,如图25.69所示。

图25.69

(5) 保持Lead in/out选项卡中的设置不变,单击Cuts标签进入切割方式设置选项卡,选中Perform rough cut(进行粗加工)复选框,然后设置精加工次数为两次,同时选中Tab(分离)选项,设置分离段宽度为20mm,分离段切割次数设为0,在型面加工完后使用手动切割功能按留磨量大小切除分离段。这时在右下角会看到一次粗加工、两次精加工的加工方法,没有分离段的切割生成,如图25.70所示。

图25.70

(6) 单击General(通用)标签进入通用功能设置选项卡,设置切割方向为Reverse方式,保持其他设置不变,如图25.71所示,单击“确定”按钮结束设置。

图25.71

(7) 系统将所有的端点显示出来,提示进行参数变更,单击图中的P1点,弹出Change At Point对话框,在其中设置角度变更为Immediate方式,方向为Right,如图25.72所示,然后单击OK按钮确定。

图25.72

接着再单击图25.64中的P2点,在弹出的Change At Point对话框中选中Restore选项,如图25.73所示,再单击OK按钮退出。

(8) 选择菜单区中的Done(执行)命令,完成切割路径的创建,绘图区中的路径上出现切割路径的显示,如图25.74所示,从图中可以清楚地看到斜度产生的上下两条切割路径

及分离段的设置情况。

图25.73 图25.74

25.4.3 实体模拟加工

(1) 从主菜单中选择Wirepaths→Job setup(“线切割路径”→“工件设置”)命令,进入毛坯工件的设置对话框中,单击Select corners按钮返回到绘图区中,在生成切割路径的图形左上和右下任意选取两点作为毛坯的边界(注意由于没有进行分离段的切割,右下的边界点可选在进丝点上方,以便进行实体模拟时可以去除外部的废料),此两点数据返回到设置区中,在Z高度设置和毛坯原点的Z值设置框中均输入数值8,选中Display stock选项,如图25.75所示,单击OK按钮确定。

图25.75

(2) 在绘图区中以线框方式显示出毛坯的外形,如图25.76所示。

(3) 从主菜单中选择Wirepaths→Operations(“线切割路径”→“操作”)命令,进入操作管理对话框中,如图25.77所示。

(4) 单击Verify(校验)按钮,进入实体切削模拟对话框,同时弹出实体模拟工具栏。单击工具栏中的按钮,进入切削设置界面中,选中Use Job Setup values选项,设置毛坯使用Job Setup中的设置大小,同时打开Use TrueSolid及Remove chips方式,实体模拟参数设置如图25.78所示,然后单击OK按钮退出。

图25.76 图25.77

图25.78

(5) 单击工具栏中的按钮,开始实体模拟,如图25.79所示,同时菜单区出现图25.80所示的子菜单,用于对切割后的废料进行去除以方便观察。

图25.79 图25.80

(6) 选择图25.80所示菜单中的Pick a chip(选择片)按钮,在绘图区中单击外侧的废料,得到如图25.81所示的镶块实体模型。

图25.81

(7) 选择菜单区中的Done(执行)命令退出,再单击实体切割工具栏右上角的按钮退出实体切削模拟界面,返回到图25.77所示的操作管理对话框中。

25.4.4 后置处理生成程序

(1) 从操作管理对话框中单击Post(后处理)按钮,进入后处理设置对话框,按如图25.82

相关主题
文本预览
相关文档 最新文档