当前位置:文档之家› 汽车空调系统噪声与车内噪声研究与解决

汽车空调系统噪声与车内噪声研究与解决

汽车空调系统噪声与车内噪声研究与解决
汽车空调系统噪声与车内噪声研究与解决

汽车空调系统拍频现象

引起的车内噪声研究与解决

朱卫兵(1),李宏庚(2)

上汽通用五菱汽车股份有限公司

【摘要】 汽车室内噪声是汽车NVH的主要内容。引起车内噪声的因素很多,主要有发动机噪声、进排气噪声、传动系噪声以及高速行驶时的风噪声等等;汽车空调系统在工作时也会产生非常明显的车内噪

声,而且其产生的噪声相对容易被乘员辨识。空调系统压缩机、蒸发器、鼓风机及管路系统有轻微噪声是

正常的,但是如果噪声过大或存在异响,就说明空调系统有故障,需要及时处理。本文针对国内某款微型

面包车在开发过程中出现空调系统拍频异响问题,采用分别运转法、频谱分析法等将存在的异响问题解决,从而降低汽车车内噪声,同时也为汽车工程技术人员NVH开发提供借鉴。

【关键词】:汽车NVH,速比,压缩机,发电机,拍频

The Analysis and Solution on the Automobile Interior Noise

Caused by Air Conditioning Beat-frequency

ZHU Weibing(1),LI Honggeng(2)

SAIC-GM-Wuling Automobile Co,.Ltd

Abstract: The interior noise is one of key performances of vehicle NVH. There are many factors for vehicle interior noise, include engine noise, intake noise, exhaust noise, transmission noise and wind noise on high speed. The vehicle air condition will bring visible interior noise while it working. And it’s easy to distinguish it on relatively. In air condition system, it’s normal for a little noise in compressor, evaporator, fan and pipeline. But if it exist too big noise, there may be exist some problems in air condition system. This passage explains how to resolve the problem according to the air condition noise with the method of separate working and frequency analysis. At the same time it’s a reference to the carmaker’s vehicle NVH develop.

Key words:Vehicle NVH, Speed ratio, Compressor, Dynamotor, Beat-frequency

1 前言

汽车空调系统在工作时也会产生非常明显的车内噪声,而且其产生的噪声相对容易被乘员辨识。空调系统压缩机、蒸发器、鼓风机及管路系统有轻微噪声是正常的,但是如果噪声过大或存在异响,就说明空调系统有故障,需要及时治理。

本文针对国内某款微车在开发过程中,由于空调系统拍频现象导致的车内噪声过大问题,采用分别运转法、频谱分析法等方法来确定汽车产生拍频现象的源头,并运用适当的方法来解决此问题,同时也为汽车工程技术人员NVH开发提供借鉴。

2空调系统噪声分析

图1 汽车空调系统工作原理图2.1 汽车空调系统工作原理

目前的车载空调系统,绝大部分都是基于压缩机制冷的原理进行工作的。由于空调系统在工作时,内部同时存在气体和液体,使得空调系统工作时气体噪声、固体噪声以及液体噪声同时存在。通常,用于制冷的小型高速压缩机是空调系统噪声的最主要噪声源之一,如果当汽车空调系统开启时存在比较大的振动声,主要来源于压缩机和压缩机支架,如果支架松动或压缩机漏油,通常可以通过加固压缩机支架、更换压缩机密封件、增加润滑油使噪声问题得以解决。汽车空调制冷系统基本工作原理见图1:

压缩机使制冷剂从气态转变液态,达到制冷剂散热凝露的目的;同时在整个空调系统,压缩机还是管路内介质运转的压力源,压缩机往往是安装在发动机上,并用皮带驱动(也有直接驱动的),冷凝器安装在汽车散热器的前方,而蒸发器在车里面,工作时从蒸发器出来的低压气态致冷剂流经压缩机变成高压高温气体,经过冷凝器散热管降温冷却变成高压低温的液体,再经过贮液干燥器除湿与缓冲,然后以较稳定的压力和流量流向膨胀阀,经节流和降压最后流向蒸发器。致冷剂一遇低压环境即蒸发,吸收大量热能。车厢内的空气不断流经蒸发器,车厢内温度也就因此降低。液态致冷剂流经蒸发器后再次变成低压气体,又重新被吸入压缩机进行下一次的循环工作。

2.2 车辆状态描述

某型微车的主要配置参数如下表1;开发阶段:中期样车;

怠速开空调时,车内存在非常明显的异响声,声音为有节奏(时间间隔为1-2秒)的时断时续的

周期性轰鸣声,主观感觉非常不舒服;加速情况下,在3700rpm-5700rpm 处存在着同样的时断时续的周期性轰鸣问题;严重影响了驾乘舒适性。该车可能涉及到空调系统噪声的主要配置如下:

表1 车辆主要配置及参数

类 别 型 式 类 别

型 式

发动机

四缸四冲程汽油机

空调压缩机 10缸斜板型往复活塞式发动机与压缩机传动比 1:1.14 鼓风机 分别工作 发动机与发电机传动比

1:2.1

蒸发器

前蒸+顶蒸

3 噪声源识别

采用以下方法,初步判断分析问题产生源头, 3.1 怠速情况

定置状态下,车辆保持怠速; (1) 关闭空调系统,无异响;

(2) 打开鼓风机,让空调系统处于停止状态,噪声增大但无异响; (3) 开启空调系统,有周期性轰鸣异响,时间间隔为1.2s 左右;

20.00

50.00

Hz

driver:S (CH22)

0.00

9.90s

-30.00

50.00

d B (A )

33.00

34.55

31.96AutoPow er driver:S (A) WF 100 [0-9.9 s]

图3 怠速开空调驾驶员耳旁噪声colormap

周期性 轰鸣异响

在开关空调系统两种状态下,按照GB/T 18697-2002《声学 汽车车内噪声测量方法》布置驾驶员测量点,分别测量驾驶员右耳处的噪声阶次front/back 图和colormap 图。见图2,图3;(图2中蓝色线为关空调状态时的驾驶员耳旁2阶噪声图,绿色线为开空调状态时的驾驶员耳旁2阶噪声图)

从图2可以发现,关空调时,出现有轻微的2阶周期性轰鸣声,造成的影响基本可以忽略;开空调状态明显增加了有节奏的周期性轰鸣噪声,主

要为2阶噪声,由图3可以看出,周期性轰鸣声的频率主要为33Hz 左右;时间间隔约为1.2秒,与主观感觉异响状态相吻合。 从主观声音评估是来自于压缩机与发电机连接处;安装1个三向加速度传感器并将其布置

于压缩机总成支架处

(4) 在相同的工况下测量压缩机总成支架的

振动情况,如图4; 测量显示压缩机总成支架振动频率在33Hz

左右,振动图象与噪声图象一致;时间间隔1.4s 左右,与异响声音频率和状态较为吻合。

(5) 初步判断异响来自于发动机和压缩机的转动传递过程。 3.2 加速情况

按照GB/T 18697-2002《声学 汽车车内噪声测量方法》布置驾驶员测量点, (1) 测量三档全油门加速时驾驶员右耳处的噪声阶次front/back 图和colormap 图

由图5.1可以看出在加速情况下,在2阶噪声附近,出现有2.1阶的谐频噪声,主要的问题集中在3700rpm 与5700rpmz 之间,二者阶次较近,为引起驾驶员耳旁周期性轰鸣异响的主要原因。

(2) 拆除发动机与发电机的连接皮带,3700rpm-5700rpm 处周期性轰鸣声异响消失,重新测试驾

驶员右耳处的噪声,如下图5.2

20.00

400.00

Hz 1014.195992.29r p m

-10.00

85.00

2.002.10

3769.09

5747.81

20.00400.00H z 995.165676.04r p m

-10.00

85.00

2.00

3821.13

5676.04图5.1 三挡加速时驾驶员耳旁噪声colormap图

图5.2 拆除发电机皮带后三挡加速时驾驶员耳旁噪

声colormap图

从图5.1、图5.2可以看出,拆除发电机皮带后,驾驶员耳旁噪声中2.1阶的谐频消失,由此可以断定3700rpm-5700rpm 处噪声是由该2.1阶谐频引起的。

4 原因分析

4.1 拍频现象理论分析

拍频是由于两个或多个频率相近(一般

2~10Hz)的振动/噪声信号于特定波长叠加、消

减,产生周期性忽大忽小的振动/噪声变化信号,它往往给人以极其不舒适的感觉。

无论是声波或地面波,单纯的正弦波几乎是不存在的,绝大多数都是复合波。即起码由两个以上的波形叠加而成。最简单的例子也是一个倍音关系的两个波形,根据相互之间的不同的相位改变其波形;相同频率的正弦波,尽管由几个波合成,其波形仍然是相同频率的正弦波合成,然而只要是频率稍有不同,就会出现如图6所示的

拍频现象;

它的变化是在1个周期内,在原有正弦波下

进行等次数的振动,只不过是其振幅大小有大有小而已。实际上,具有周期性的,形成基波和倍数振动的波形情况是极少的,而实际存在的普通波,它也是一个相互的没有倍数关系的周期波形的集合。作为一个整体很难找到一个周期性的重复,通常是一个波形上再加上一个非周期性的波动,而且随着时间的变化,它所形成的冲击波也急剧地变化。 4.2 分析结果

由拍频理论分析我们可知,车辆在怠速时车内周期性轰鸣异响以及加速时3700rpm-5700rpm 处周期性轰鸣异响的现象为拍频现象。

对导致拍频现象产生的原因进行分析,同时对比图2、图3,我们发现发动机与压缩机传动比1:1.14是导致车辆在怠速时产生拍频现象的主要原因。由于发动机与压缩机速比过于接近,怠速开空调时,由于发动机转速在950rpm 左右,由此可以得出发动机点火基频是32Hz 左右,压缩机转动时产生1.14

幅值图6 拍频现象(频率稍有不同的正弦波合成)

20.00

50.00

H z

driver:S (C H 1)

0.00

9.90s

-30.00

50.00

d B (A )

33.47AutoP ower driver:S (A) W F 100 [0-9.9 s]

8 更改压缩机与发动机速比后驾驶员耳旁噪声colormap

倍于发动机转速的振动频率,频率约为35Hz 左右,两个接近的频率,波形相互叠加、消减,互相影响,耦合,产生了严重的拍频现象,表现在频率33Hz 附近,最后通过悬置系统传递到车身,最终通过车身的声学响应导致驾驶员耳旁周期性轰鸣异响。

而由图5.1、图5.2的分析中我们可以知道,加速时3700rpm-5700rpm 处周期性轰鸣异响是由发动机与发电机皮带的传动所引起,测量所得数据2.1阶谐频同发电机与发动机的传动比2.1吻合,由于发动机在运转时会产生相应的2、4、6阶的振动和噪声,由图5.1中可以看出,在3700rpm-5700rpm 处,发动机2阶噪声与2.1阶噪声相距较近,为共同影响区域;而从图5.2可以看到,拆除发动机与发电机皮带后,2.1阶噪声消失,同时周期性轰鸣异响声也消失;由于发动机皮带轮至发电机皮带轮传动比1:2.1,在高速时发电机的1阶不平衡振动会产生发动机2.1阶的振动,与发动机2阶振动相互影响、耦合形成强烈的拍频现象,该振动拍频通过发动机悬置传递给车身,再通过车身的结构声学响应传递到车内,从而导致车内周期性的轰鸣异响;因此可以判定加速时3700rpm-5700rpm 处周期性轰鸣异响为发动机引起的2阶振动与发电机皮带引起的2.1阶振动相互影响、耦合产生的拍频现象所导致。

5 解决措施

5.1 怠速工况

怠速开空调情况下,发动机点火基频为32Hz 左右,此时的拍频现象比较严重,根据在2Hz-10Hz 内容易发生拍频现象的原理,应该控制发动机与压缩机速比,使其频率差保持在10Hz 以上。根据2Hz 的最小频率间隔,发动机与压缩机的速比在相差2/32≈6.3%,即压缩机与发动机速比在达到1.06时就可能会出现拍频现象;按相差10Hz 的最大频率间隔设计原则需要转速相差10/32≈30%,才能完全避免该问题;因此应将压缩机与发动机的速比限制在1.30以上才能完全避免拍频现象的产生,即可能发生拍频现象的速比区间为1.06~1.30之间。由此可见,目前的压缩机与发动机速比1.14,刚好位于此区间且发生了严重的拍频现象,不符合要求,因此需要更改该速比。

由于压缩机与发动机速比调整至1.30,使速比更改过大会导致压缩机功率消耗增加过大,油耗和相关整车性能都会发生较大改变;又由于在拍频现象中,频率相差越大,拍频现象越轻,因此,调整发动机与压缩机速比至1:1.23,一来可以降低发动机与压缩机转动传递过程中的拍频现象,二来又不至于因发动机与压缩机速比增加较大而改变了整车油耗和相关整车性能。

将更改速比后的压缩机装车重新进行试验,数据如下图7、图8;(图7中蓝色线为更改发动机与压缩机速比为1:1.23后的状态,绿色线为原速比状态)

从图7可以看到,将压缩机与发动机速比更改为1.23后,2阶拍频现象大为减少,造成的影响基本可以忽略,噪声峰值由49dB(A)降到39 dB(A),降幅达10 dB(A),主要的噪声贡献源基本消失。从图8可以看到,拍频现象基本消失,噪声幅值大幅减小;同时主观感觉周期性轰鸣异响也基本消失,影响可以忽略不计,说明更改了压缩机与发动机速比后,效果显著。

5.2 加速工况

加速工况下,3700rpm-5700rpm 处周期性轰鸣异响确认为发动机2阶振动与发电机皮带2.1阶振动拍频现象所致,由于发电机1阶不平衡导致发动机2.1阶的振动与发动机本体2阶振动存在0.1/2=5%的频率差,而发动机在3700rpm-5700rpm 时的点火频率约为3700/60*2=123Hz 和5700/60*2=190Hz 左右,这时发电机与发动机的频率间隔为123*5%=6Hz 到190*5%=9Hz ,正好位于拍频现象的频率间隔区间(2-10Hz )之间,为避免发电机产生的2.1阶振动与发动机的2阶振动产生拍频现象,需要调整发动机与发电机的速比,将其频率差调至拍频现象的间隔区间以下,已知发动机的最高转速为6000 rpm ,可以知道发动机最高点火频率6000/60*2=200Hz ,按照2Hz 的最小频率间隔,应保证发动机2阶振动与发电机皮带2.1阶振动有2/200=1%的间距,因此应将发电机与发动机的速比调整到2.01以下,才能保证发电机与发动机不发生共振拍频现象。

因此,将发动机与发电机的速比调整为1:2,这样,发电机转动时产生对发动机的2阶振动谐频可与发动机振动所产生的2阶振动相重合,从而避免拍频现象的发生。

将更改速比后的发电机装车重新进行加速试验,数据如下图9;

20.00

400.00

Hz

driver:S (CH1)

1000.00

5500.00r p m

2.00

3723.26

5500.00

AutoP ow er driver:S (A) WF 181 [1002.8-5491.7 rpm ]

从图9我们可以看到,2.1阶谐频消失,拍频现象也消失;同时主观感觉在加速过程中不存在周期性轰鸣异响,表明更改到新的发电机速比后效果良好。

从而也证明更改速比能很好解决发动机皮带轮与发电机皮带轮的拍频现象问题。

6 结论

将发动机与压缩机速比调整为1:1.23后,能够很好地解决怠速时空调系统出现拍频异响现象,避免车内周期性轰鸣异响,同时对整车性能和油耗没有大的改变。将发动机与发电机速比调整为1:2后,也能够很好地解决加速时发电机与发动机之间的振动拍频现象,消除了汽车在加速情况下3700rpm-5700rpm 处的周期性轰鸣异响。

从上面的分析,我们知道发动机总成在运转过程中,由于发动机转速与其它轮系传递会出现各种问题,包括拍频和共振问题;当出现拍频问题时,要搞清楚拍频现象出现的原因,设计合理的轮系速比,保证它们的频率差在2-10Hz 以外,尽量避免拍频现象的产生。怠速和加速时的车内噪声来源很多,在噪声源识别中,如果出现周期性的轰鸣异响,我们可以判断和评估是否为拍频现象,针对出现的拍频现象,运用分别运转法及频谱分析法等方法,从产生拍频的主要源头入手,采用合理的设计手段,尽量减小和消除拍频现象产生的可能;同时也为汽车开发减少不必要的损失。

图9 更改发电机与发动机速比后驾驶员耳旁噪声colormap图

参考文献

[1] 马大猷. 声学名词术语 [M]. 北京:海洋出版社,1983

[2] 方贵银,李辉. 汽车空调技术[M].北京:机械工业出版社,2002.1

[3] 顾灿松,邓国勇,何森东.汽车空调系统异响引起的车内噪声研究与解决 [J].汽车技术 2008,11(21):21-23

涡旋式汽车空调压缩机简介讲解

涡旋式汽车空调压缩机简介 涡旋式压缩机是自上世纪八十年代发展起来的一种高效率、低噪音、高可靠性压缩机。凭借着这些优点,涡旋式压缩机在制冷行业得到了迅猛的发展。目前已经广泛的应用于家用空调,中央空调、汽车空调,空气压缩等各个领域。在汽车空调领域中,涡旋式压缩机被称为第三代压缩机,正在以其独特的性能优势逐渐代替传统的斜盘式压缩机和旋转式压缩机。 涡旋式压缩机在制冷系统中的卓越性能表现,使得时隔20年的今天,它依然是专家学者研究的热点。 从家用空调认识涡旋式压缩机 1、认识涡旋式压缩机 国内大部分用户对涡旋式压缩机的认识,可能首先是从家用空调开始的。家用空调压缩机经历了活塞式、旋转式、涡旋式等几个发展阶段。活塞式、旋转式压缩机目前多用于窗机、分体机等匹数较低的机型。而柜机由于其系数较高,活塞式、旋转式压缩机已不能充分满足其整机匹配的需要,只有采用涡旋式压缩机才能保持较高的热效率和能效比。 2、涡旋式压缩机的优点 涡旋式压缩机的能效比高(高效率),意味着与其他压缩机相比,在提供相同制冷量的情况下,涡旋式压缩机耗功要小得多,也就是节能,对于家用空调而言就是省电。 涡旋式压缩机的另一个优点就是噪音低,一般比活塞式压缩机低3~5dB (A),是家用静音空调的基础。 涡旋式压缩机的再一个优点就是可靠性高。设计原理和较少的零部件为其高可靠性提供了充分的保证。 功耗、噪音、可靠性是用户对家用空调选择的重要依据。由于涡旋式压缩机具有的高能效比、低噪音和高可靠性等诸多优点,涡旋式压缩机已经越来越多的被用于家用空调系统和中央空调系统。

在中、大型中央空调机组上,一个明显的趋势就是应用螺杆和涡旋技术。活塞机在3年前还处于主导地位,现在的市场份额却急剧下降到10%左右。 世界上第一台涡旋式压缩机于1983年由日立发明制造,在世界上被公认为涡旋式压缩机的“鼻祖”。其专利变频涡旋式压缩机及其一直领先的制造技术在日本被公认为该领域的标志。 家用空调的节能技术主要有变频系统和数码涡旋系统。例如日立采用的变频涡旋系统和美国谷轮公司拥有的数码涡旋系统。如果将我国的空调全部换成变频空调,则空调的平均年效率至少提高30%,每年可为国家节约480亿元。而数码涡旋技术每年又可比变频系统节能40%,其节能的效果可想而知。 3、发展和趋势 通过以上介绍可以知道,涡旋式压缩机及其控制技术已经被越来越多的使用在家用或中央空调系统中。 正是由于市场的这种发展趋势,美国谷轮公司已在苏州投资兴建年产100万台的柔性涡旋压缩机厂,已正式投产。该厂与谷轮在美国本土上的几家工厂规模相当,同属于全世界最大的涡旋压缩机制造厂。其产品将供应中国和亚太地区几乎所有的主要家用空调制造商。 汽车空调压缩机的发展 汽车空调压缩机的几个发展阶段: ①.活塞式压缩机 在汽车空调上使用的主要是斜盘式(活塞)压缩机,主要分为5缸机、7缸机和10缸机。 代表产品有: 日本电装的10(S)P系列(10缸机),如10P20C(南京IVECO)、10S11C(原夏利威乐轿车)。 上海三电贝洱的5H14(5缸机)、7H15(7缸机)、BX11(10缸机)、7V16(变排量7缸机)、6V12(变排量6缸机)。

汽车空调系统的检修

项目七汽车空调系统的检修 任务一汽车空调制冷系统零部件的检修 任务目标 任务描述 一辆桑塔纳2000GSI型轿车行驶85000Km后,发现打开空调制冷系统时,送风口有自然风送出,但是不制冷。经技术人员详细检测,很快发现造成制冷系统不制冷的故障原因,并排除了故障,恢复了空调制冷系统的制冷功能。 知识准备 一、空调制冷系统 汽车空调有以下四个功能:汽车空调的第一功能:调节车空气的温度;汽车空调的第二功能:调节车空气的湿度;汽车空调的第三功能:提供合适的气流速度与气流方向;汽车空调的第四功能:过滤净化车空气,保证车空气的质量。汽车空调系统大大改善了乘客在乘车时的舒适性和安全性。 空调制冷系统主要由压缩机、冷凝器、储液罐、膨胀阀、蒸发器、风机及管路与控制部件等组成。其布置如图7-1-1所示。

图7-1-1 (一)压缩机 压缩机是制冷回路的心脏,起到输送和压缩气态制冷剂,保证制冷循环正常工作的作用。其外形结构如图7-1-2所示。 图7-1-2 压缩机 汽车空调压缩机采用容积型压缩机,大多是斜盘式压缩机和立式往复式压缩机,利用活塞在汽缸中作往复运动来改变压缩室的容积吸入制冷剂和增压。 1.斜盘式压缩机的结构如图7-1-3所示。

图7-1-3 斜盘式压缩机的结构 1-曲轴2-活塞3-钢球4-支承盘5-外壳6-旋转斜盘7-吸簧8-外放泄阀板9-轴封10-离合板及毂11-密封座12-滑动轴承13-带滑轮14-离合器线圈及外壳15-前端盖16-气缸的前半部17-推力座圈18-推力轴承19-推力座圈20-气缸后半部21-油池22-吸油管23-后端盖24-油泵齿轮 斜盘式压缩机的工作原理如图7-1-4所示。 图7-1-4 斜盘式压缩机的工作原理 2.变容量压缩机 由于空调压缩机转速随发动机转速而变化,从节约能源等方面考虑,出现了变容量压缩机,能够根据蒸发器制冷负荷的变化自动调节排量。 变容量压缩机的种类有容量固定变化式和连续变化式两种。 (1)两级变容量空调压缩机 日本丰田佳美20系列轿车采用的变容量压缩机,是在10缸旋转斜盘压缩机的基

汽车空调出风管道气动噪声分析与控制

龙源期刊网 https://www.doczj.com/doc/541111629.html, 汽车空调出风管道气动噪声分析与控制 作者:汪怡平谷正气杨雪李伟平林肖辉芦克龙 来源:《湖南大学学报·自然科学版》2010年第03期 摘要:通过耦合CFD(Computational Fluid Dynamic)与专业声学代码SYSNOISE求解汽车空调管道气动噪声,即利用LES(Large Eddy Simulation)湍流模型对空调管道的瞬态流场进行求解获得噪声源项,然后将噪声源项作为边界条件导入SYSNOISE来计算噪声的传播。根据流场分析与声场分析结果对空调管道的结构提出了两种改型方案,并对改型前后的空调系统噪声进行了测试。测试结果表明相比原始空调系统,两种方案都能有效降低噪声且方案二效果更好,尤其大大降低了驾驶员附近的噪声,最大降幅达4.5 dB。 关键词:气动噪声;计算流体力学;大涡模拟;FW-H声学模型;直接边界元 中图分类号:U461.1 文献标识码:A Numerical Analysis and Control of the Aerodynamic Noise for Automotive HVAC Duct WANG Yi-ping1, GUZheng-qi1?, YANG-Xue2, LI Wei-ping1, LIN Xiao-hui1, LU Ke-long1 (1.State Key Laboratory of Advanced Design and Manufacture for Vehicle Body, Hunan Univ, Changsha, Hunan 410082, China; 2. Wuhan Ordnance Noncommissioned Officers School, Wuhan, Hubei 430075, China) Abstract: The aerodynamic noise of automotive HVAC duct is predicted by CFD coupled with specialized acoustics codes SYSNOISE, namely the transient flow field in the automotive HVAC duct is computed based on large eddy simulation(LES) and the noise source term is get. Then the noise source term is imported into the acoustic software called SYSNOISE as boundary condition to compute the spread of noise. According to the analysis result of flow field and acoustic field, tow improvement schemes are proposed, and air-conditioning system noise was tested based on prototype and improvement model. The test results show the tow schemes are effective to reduce the air-conditioning system compare with the prototype model. In particular, the noise is significantly reduced nearby driver’s ear, and the largest decline up to 4.5dB. Key words: Aerodynamic Noise; CFD; Large Eddy Simulation (LES); FW-H model; Direct BEM (Boundary Element Method)

汽车空调压缩机故障与维修

汽车空调压缩机故障与维修 组员、刘志坚张勇蔡文钊梁景財梁文峰何梓杰 论文负责人:刘志坚张勇蔡文钊 刘志坚:(七八)张勇:(四、五、六)蔡文钊:(一、二、三) PPT负责人:梁景財何梓杰梁文峰 演讲:何梓杰 图片负责人:梁文峰 一、汽车空调压缩机的功能与分类 二、按照按工作排量能否自动调节分(定排量、变排量) 三、按运动形式分 1. 往复活塞式(曲轴连杆式、轴向活塞式、………) 2. 旋转式(旋叶式、转子式………) 一、1. 汽车空调功能与分类 汽车空调功能的分类只有两种,一是制冷,压缩机经发动机带动使冷媒(雪种)经蒸发器产生冷源,通过

风机不断的吹出冷风,使车厢内达到降温的效果。二是制暖,能过转换开关,利用冷却水的热源,通过风机不断的吹出暖风,使车厢内达到升温的效果。 一、2. 汽车空调压缩机的功能 压缩机的作用只是将制冷剂压缩,使其温度升高、压力升高,此时制冷剂温度高于环境温度,利用风冷的方式,对制冷剂进行冷却,之后,通过减温减压装置,制冷剂的温度降低、压力下降,此时制冷剂的温度低于环境温度,空气通过换热器与制冷剂进行热交换,空气温度降低,吹到车里。 一、3.汽车空调压缩机的分类 1.独立式空调:有专门的动力源(如第二台内燃机)驱动整个空调系统的运行。一般用于长途货运、高地板大中巴等车上。独立式空调由于需要两台发动机,燃油消耗高,同时造成较高的成本,并且其维修及维护十分困难,需要十分熟练的发动机维修人员,而且发动机配件不易获得,尤其是进口发动机;另外设计和安装更容易导致系统质量问题的发生,而额外的驱动发动机更增加了发生故障的概率。 2.非独立式空调:直接利用汽车的行驶动力(发

汽车空调系统

毕业论文 学院名称:烟台职业学院系别:汽车工程系 专业:汽车电子技术 论题:汽车空调系统 姓名:闫茂更 班级:08汽车电子 学号:2008104003 指导老师:孙春燕

汽车空调系统 摘要:其实汽车空调和我们熟悉的家用空调制冷原理是一样的。都是利用R12或是R134a压缩释放的瞬间体积急剧膨胀就要吸收大量热能的原理制冷。(由于R12对大气臭氧层的破坏,出于环保的要求发达国家从1996年开始改用R134a 做制冷剂汽车空调的构造和家用的分体空调类似) 【关键词】空调系统工作原理特点日常维护 汽车空调的组成 汽车空调一般主要由压缩机(compressor)、电控离合器、冷凝器(condenser)、蒸发器(evaporator)、膨胀阀(expansion valve)、贮液干燥器(receiver drier)、管道(hoses)、冷凝风扇、真空电磁阀(vacuum solenoid)、怠速器和控制系统等组成。汽车空调分高压管路和低压管路。高压侧包括压缩机输出侧、高压管路、冷凝器、贮液干燥器和液体管路;低压侧包括蒸发器、积累器、回气管路、压缩机输入侧和压缩机机油池。 贮液干燥器——实际上是一个贮存制冷剂及吸收制冷剂水分、杂质的装置。一方面,它相当于汽车的油箱,为泄露制冷剂多出的空间补充制冷剂。另一方面,它又像空气滤清器那样,过滤掉制冷剂中掺杂的杂质。贮液干燥器中还装有一定的硅胶物质,起到吸收水分的作用。

冷凝器和蒸发器——它们虽然叫法不一样,但结构类似。它们都是在一排弯绕的管道上布满散热用的金属薄片,以此实现外界空气与管道内物质的热交换的装置。冷凝器的冷凝指的是其管道内的制冷剂散热从气态凝成液态。其原理与发动机的散热水箱相近(区别只在于水箱的水一直是液态而已),所以它经常被安装在车头,与水箱一起,共同享受来自前方的习习凉风。总之冷凝器是哪里凉快哪里去,以便其散热冷凝。蒸发器与冷凝器正好相反,它是制冷剂由液态变成气态(即蒸发)吸收热量的场所。 压缩机——是空调制冷系统的心脏,它是一种使制冷剂在系统内 循环的动力源。 管道——由于要注入一定压力的制冷剂,所以必须采用金属管道。特别是从压缩机到冷凝器到制冷剂瓶到膨胀阀这段,由于属系统的高压段,所以比其它管道有更高的耐高压要求。 压缩机——顾名思义,压缩机就是起压缩的作用,它的作用是使制冷剂完成从气态到液态的转变过程,达到制冷剂散热凝露的目的。同时在整个空调系统,压缩机还是管路内介质运转的压力源,没有它,系统不仅不制冷而且还失去了运行的动力。 压缩机的分类: 活塞式:活塞式压缩机的结构酷似发动机,有曲轴、连杆、活塞、气缸等,但因为它并不产生能量,所以喷油咀、火花塞等就没有了。

汽车空调鼓风机控制模块

一鼓风机转速控制 鼓风机转速控制由鼓风机转速控制开关电路和水温控制开关电路构成。鼓风机转速控制开关包括:自动空调放大器、鼓风机电阻器和功率晶体管。功率晶体管根据来自空调器放大器的BLW端子的鼓风机驱动信号,改变流至鼓风机电机的电流,从而改变鼓风机转速。功率晶体管有一个熔点为114℃的温控保险丝,以保护晶体管不致因过热而损坏。水温控制开关电路是由水温传感器感知发动机冷却液温度,进行发动机预热控制。鼓风机转速控制运行过程如下 鼓风机控制电路图 1鼓风机转速的自动控制 鼓风机转速的自动控制过程与温度控制相似,是根据TAO值自动控制鼓风机转速。AUTO(自动)开关位于暖风装置控制板上。当这个开关接通时,自动空调器放大器根据TAO 的电流强度控制鼓风机转速。

鼓风机转速与TAO值的关系图 (1)低速运转 AUTO开关位于暖风装置控制板上。当这个开关接通时,安装在自动空调器放大器内的微电脑接通TR1,起动暖风装置继电器。这使电流从蓄电池流至暖风装置继电器,然后流至鼓风机电机,再流至鼓风机电阻器,后接地。这样,就使鼓风机电机低速运转。同时AUTO (自动)和Lo(低速)指示灯亮。 鼓风机低速运转电路运作图 (2)中速运转

当AUTO开关接通时,与低速控制时一样,起动暖风装置继电器。安装在自动空调器放大器内的微电脑(ECU),将从TAO值计算所得的鼓风机驱动信号,经BLW端子输出至功率晶体管。于是,电流从蓄电池流至暖风装置继电器,然后至鼓风机电机,再流至功率晶体管和鼓风机电阻后接地。这样,就使鼓风机电机以相应于鼓风机驱动信号的转速运转。同时AUTO(自动)指示灯点亮,Lo(低)、M1(中1)、M2(中2)、Hi(高)指示灯也根据情况可能发亮。 从功率晶体管进入自动空调器放大器的VM端子的信号,是反映鼓风机实际转速的信号。微电脑(ECU)参考这个信号校正鼓风机驱动信号。 (3)特高速度运转。 当AUTO开关接通时,允许安装在自动空调器放大器内的微电脑(ECU)接通TRl和TR2,驱动暖风装置继电器和鼓风机继电器。于是,电流从蓄电池流至暖风装置继电器,然后至鼓风机电机,再至鼓风机风扇继电器后至接地。这样,就使鼓风机电机以特高速度运转。同时,AUTO和Hi指示灯亮。

压力表检查汽车空调系统说课讲解

压力表检查汽车空调 系统

空调维修:压力表检查汽车空调系统 压力表检查汽车空调制冷系统故障,一般分压缩机停止和运转两种状态。 在压缩机停止运转10h以上后,压缩机的高、低压侧应为同一数值,如果高、低表所显示的数值不相等,说明系统内部有堵塞,应对膨胀阀、贮液筒及管路部分进行检查。 当压缩机处于运转状态时,将发动机转速控制在1500/min 左右 ,启动空调使压缩机工作,一般情况下,低压侧压力约为150~250kPa,高压侧压力约为1400~1600kPa。如果压力表指示与正常值不符,则可按照如下方法进行故障诊断。 1.高、低压表的指示同时比正常值低。这可能是因为制冷剂不足,检查时,可发现高压管微热,低压管微冷,但温差不大,从视镜中可以观察到每隔1~2s就有气泡出现。这时应先检查有无泄漏点,补漏后再补足制冷剂。 2.低压表比正常值低很多。这时,视镜内可见模糊雾流,高、低压管无温差,冷气不冷,说明制冷剂严重泄漏。 3.低压表指示接近零,高压表指示比正常值低。这时,空调系统常表现为出风不冷、膨胀阀前后的管路上结霜。其原因,一方面可能是膨胀阀结霜堵塞,使得制冷剂在系统中无法循环,此时应反复抽真空,重新添加制冷剂;另一方面可能是膨胀阀感温包损坏,造成膨胀阀未开启,此时应检查感温包。 4.高、低压表指示都过低。这可能是压缩机的内部故障,如阀板垫、阀片损坏,需要更换压缩机。

5.高、低压表都比正常要高。压缩机吸气管表面温度比正常情况下低,出现潮湿冰冷现象(俗称出汗)。由于膨胀阀开度过大,蒸发器内制冷剂“供过于求”,影响蒸发,相应的吸热量减少,造成空调凉度不够。此时,如果膨胀阀开度可以调节,应将开度调小;如不可调,则更换膨胀阀。 6.高、低压两侧的压力均过高。这表明制冷剂过多,两手分别触模压缩机进气管和排气管,而且高压侧有烫手感,低压侧能看到冰霜,空调系统压缩机关掉电源停止运行后,其余部分继续工作时,在超过45s以后,视液镜内仍然清晰无气泡流过,可以断定制冷剂过多,应排出多余的制冷剂。 7.低压表指示过高,高压表指示稍高。这可能是冷凝器冷却不足,如果用冷水对冷凝器进行冷却,压力表压力变为正常,则可断定是冷凝器冷却不足。如果有这种故障,则在刚开空调时,制冷效果好,工作时间长了,制冷效果较差。如果冷凝器的散热片阻塞、发动机水温过高、冷凝器风量不够,则有可能是冷凝器的风扇或风扇皮带出现问题。 8.低压表指示为零或负压,高压表指示正常或偏高。冷风时而欠凉,时而正常,这种现象说明制冷系统中有水分或干燥剂吸湿能力达到饱和,水分进入制冷循环系统,在膨胀阀小孔处冻结,溶化后恢复正常状态,此时应更换干燥瓶或反复抽真空以排除系统内水分。 9.低压表指示较低,高压表指示过高。这种现象一般是制冷系统堵塞,堵塞经常在制冷系统有通道截面较小的位置发生,易于堵塞的部件绝大部分处于制冷系统的高压侧,例如干燥过滤器、膨胀阀滤网等,而且堵塞现象一般是由制冷剂所含有的水分、尘埃等脏物造成的,堵塞部位经常有结霜现象。找到堵

汽车变排量空调压缩机工作原理

汽车变排量空调压缩机工作原理 一、摘要:变排量空调在现代汽车上得到越来越广泛的使用" 本文介绍汽车变排量空调的优点" 重点阐述具有代表性的9种汽车变排量空调压缩机的结构和工作原理。(注:新式可变排量压缩机参考相关资料)。 轿车空调用变排量压缩机按照结构形式分为摇板式、斜盘式、滚动活塞式、螺杆式、旋片 式、涡旋式等机型,其中斜盘式变排量压缩机目前使用最多,按控制方式分为内部控制式变排 量压缩机和外部控制式变排量压缩机。其生产厂家及其对应生产的变排量压缩机型号如表1所 示。 变排量空调在奥迪、波罗、大宇、标志、别克、中华、奥拓等轿车上得到了广泛的使用, 如表2所示。和传统的定量空调相比,变排量空调有如下的优点:①排气压力和工作转矩的波动 减小,避免了对发动机的冲击;②保持了温度的稳定性;③保持了蒸发器低压的稳定性,而且 蒸发器不会结霜;④$提高了压缩机的使用寿命;⑤减少了功率消耗。

1、V5变排量压缩机 V5变排量压缩机由一个可变角度的摇板和5个轴向定位的气缸组成,其外形如图1所示,控制阀结构如图2所示。压缩机容积控制中心是一个波纹管式操纵控制阀,装在压缩机的后端,可检测压缩机吸气腔的压力,锥阀控制摇板箱和吸气腔(波纹管室) 之间的通道,球阀控制排气腔和摇板箱之间的通道,排量的改变是依靠摇板箱压力的改变来实现。摇板箱压力降低,作用在活塞上的反作用力就使摇板倾斜一定角度,这就增加了活塞行程(即增加了压缩机排量);反之,摇板箱压力增加,就增加了作用在活塞背面的作用力,使摇板往回移动,减少了倾角,即减小了活塞行程(也就减少了压缩机排量)排气压力影响控制阀的控制点的变化,排气压力升高,控制点降低。当空调容量要求大时,吸气压力将高于控制点,控制阀的锥阀打开并保持从摇板箱吸入气体至吸气腔&如果没有摇板箱——吸气腔间压力差,压缩机将有最大的容积。通常压缩机的排气压力比曲轴箱的压力大得多,曲轴压力高于或等于压缩机的吸气压力。在最大排量时,摇板箱的压力才等于吸气压力,在其它情况下,摇板箱的压力大于吸气压力。

汽车整车气动声学风洞风噪试验——泄漏噪声测量方法

ICS号 中国标准文献分类号 团体标准 T/CSAEXXX-2020 汽车整车气动-声学风洞风噪试验 —泄漏噪声测量方法 Wind noise test for full-scale automobile in aero-acoustical wind tunnel — the measurement method of leakage noise (征求意见稿) 在提交反馈意见时,请将您知道的该标准所涉必要专利信息连同支持性文件一并附上。

目次 前言 (3) 1 范围 (4) 2 规范性引用文件 (4) 3 术语和定义 (4) 4 基本条件 (5) 4.1概述 (5) 4.2测试环境-声学风洞 (5) 4.3测试仪器 (5) 4.4被测车辆 (6) 4.5密封材料 (6) 4.5.1 胶带 (6) 4.5.2 胶泥或胶条 (6) 5测量与密封方法 (6) 5.1 概述 (6) 5.2 测量方法 (6) 5.3 车外密封 (7) 5.3 车内密封 (7) 6工况制定 (7) 6.1 概述 (7) 6.2 密封位置 (7) 6.3 整车泄漏噪声 (7) 6.4 局部泄漏噪声 (7) 6.4.1基准状态 (7) 6.4.2 测试顺序方法 (8) 6.5 工况制定基本原则 (8) 7测量流程 (8) 7.1 前期准备工作 (8) 7.2 正式测量过程 (8) 8 评价参数 (9) 8. 1概述 (9) 8.2A计权声压级 (9) 8.3累计声压差分值 (9) 8.4语言清晰度指数 (9) 8.5总响度 (9) 8.6 尖锐度 (9) 9记录 (10) 10数据处理和测量报告 (10) 附录 A (11) 附录 B (12) 附录 C (14)

qct708-2004汽车空调风机技术条件

QC/T 708-2004 (2004-03-12 发布,2004-08-01 实施) 冃U 言 随着汽车空调行业的蓬勃发展,人们对汽车空调风机(蒸发风机、冷凝风机)的需求高速增长,虽然我 国汽车空调风机生产厂家众多,但至今尚无成文的行业标准。为了规范市场、统一行业标准,形成规模经济效应,特制定本标准。 本标准由中国汽车工业协会提岀。 本标准由全国汽车标准化技术委员会归口。 本标准由中汽长电股份有限公司空调电器厂、长沙汽车电器研究所、浙江瑞安台兴车辆附件厂等负责起草。 本标准主要起草人:易辉根、闵跃进、皮红莲、张维仁等。 QC/T 708-2004 汽车空调风机技术条件 1范围 本标准规定了汽车空调风机(蒸发风机、冷凝风机)的术语和定义、要求、试验方法、检验规则、标志、包装、贮存和保管。 本标准适用于汽车空调装置上驱动负载排岀热量或送岀冷气的风机。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准。然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GR;'「1??6工业通风机用标准化风道进行性能试验 Gl}:' | 2423,17电工电子产品基本环境试验规程试验Ka:盐雾试验方法(eqv IEC 68-2-11 : 1988)G1VI'4942.1旋转电机外壳防护分级(IP代码) GB比宓用于保护车载接收机的无线电骚扰特性的限值和测量方法 QCT4B-2002汽车电气设备基本技术条件 QUT I %汽车低压电线束技术条件 3术语和定义 本标准采用下列术语和定义。 3.1 额定电流rated current 蒸发风机或冷凝风机在额定电压、额定负载、自由通风状态下的电流。

汽车空调故障以及排除

1.电磁离合器不能吸合 车型:宝来1.6。 故障现象:打开空调开关,压缩机电磁离合器不吸合,并且散热风扇不转。 故障诊断:对风扇控制器到压缩机的线路进行检查,未发现异常,于是怀疑冷却风扇控制单元J293(兼有空调控制作用)问题,试更换,故障依旧。又对相关部件及线路进行检测,检查到压缩机切断温度传感器G346时发现导线断路。 压缩机切断温度传感器G346,空调控制器将以温度低于5℃对待,限制压缩机工作.所以压缩机不吸合,同时散热风扇电机不转动。 故障排除:将G346的导线连接好,故障排除 2.水温升高电磁离合器不能吸合 车型:宝来1.6。 故障现象:打开空调开关,空调压缩机可以吸合,当水温升高后,冷却风扇只以低速运转而无高速,此后运转一定时间,空调压缩机自行停机。 故障诊断:用V.A.G1551查询发动机控制单元无故障存储。分析空调压缩机停机的原因是由于冷却风扇无高速,致使冷却液温度过高,又导致制冷系统压力过高.冷却风扇控制单元J293(兼有空调控制作用)强制压缩机断开进行保护。 故障排除:经检查发现位于蓄电池上方保护冷却风扇高

速的熔丝熔断,经更换熔丝,故障排除。 3.电磁离合器有时不吸合 车型:高尔夫1.8.手动空调。 行驶里程:16000km。 故障现象:打开空调制冷,空调压缩机有时吸合,有时不吸合。 故障诊断:测量压缩机高、低压侧的压力,正常。因为压缩机是偶尔不吸合,怀疑冷却风扇控制单元(亦称空调控制器)』293存在偶发性故障,试更换J293,故障依旧。拆开驾驶员侧的下护板.检查保险丝盒,发现连接卸荷线到保险丝S225的螺栓松动。 由于该螺栓松动,使得鼓风机开关的供电中断,那么通过鼓风机开关闭合才能得到电的空调(A/C)开关也失去供电.这样J293因收不到A/C开关信号而使得压缩机电磁离合器断开。 故障排除:重新紧固与S225连接的卸荷线螺栓,用户使用后,经电话跟踪,空调工作一切正常。 4.空调伺服电机故障 车型:宝来1.8,自动空调。 行驶里程:5000km。 故障现象:打开点火开关后.仪表板内有一个部件发出像时钟一样的声音。

汽车空调压缩机工作原理

汽车空调压缩机工作原理 汽车空调压缩机工作原理(1)空调管路—由铝制硬管和橡胶软管扣压而成,连接制冷系统各部件。 (2)冷媒—冷媒在蒸发器中的汽化吸收车舱内空气的热量,实现制冷,在冷凝器中的凝结向车外空气放热 (3)蒸发器—低温低压冷媒液体持续蒸发汽化,吸收流过蒸发器空气的热量,冷却车舱内的空气。蒸发器布置在车室内,通常由离心风机送风。 (4)膨胀阀—将来自储液干燥器的高压冷媒液体节流降压降温,形成低温低压的雾状冷媒,喷入蒸发器。喷入蒸发器的冷媒流量可根据蒸发器的出口冷媒蒸汽温度自动调整。 (5)储液干燥器—当制冷系统运行时,对液态冷媒进行过滤、干燥吸湿和临时储存。其上方常装有视液镜,用以观察所充冷媒是否足够以及流动是否正常(冷媒应无泡沫且平稳流动)。 (6)压缩机—在发动机的驱动下,持续吸入蒸发器中吸热汽化产生的低温低压制冷剂蒸汽,压缩后形成高温高压冷媒蒸汽,排至冷凝器,为冷媒在冷凝器中持续凝结放热创造高压条件。同时,克服冷媒在制冷回路中的循环流动阻力。 (7)冷凝器—将压缩机排出的高温高压冷媒蒸汽所含热量释放给流过冷凝器的车外空气,并将冷媒蒸汽凝结成带一定过冷度的冷媒液体。冷凝器大多布置在车头散热水箱前,由冷却风扇和

汽车行驶产生的迎风气流进行冷却。 汽车空调压缩机维修方法汽车空调压缩机它对汽车压缩和输送制冷剂蒸汽起着非常大作用,汽车制冷系统能正常的运转,也离不开它的作用。汽车空调压缩机的故障有很多原因,空调压缩机作为高速旋转的工作部件,出现故障的几率比较高。接下来会为您介绍几种常见的故障,让您轻松解决。 1、最常见的故障有异响 当汽车空调压缩机在工作当中出现异样的声音时,您就需要注意了,不要粗心大意,这可是出现故障最直接的地方,因此,您一定要留意,出现异样的声音是由于压缩机的电磁离合器安装位置一般离地面较近,而且经常在高负荷下从低速到高速变速运转,难免就会接触到雨水和泥土,当电磁离合器内的轴承损坏时就会产生异响。 先检查空调皮带,安装螺丝是否松动,皮带是否有油,皮带是否磨损。若电磁离合器有问题,只要更换电磁离合器,而不必更换离合器总成。若仍无法解决,需要继续深入判断。 2、工作中出现卡住 空调压缩机在工作过程中,压缩机卡住是时有的现象,卡住的原因主要是润滑不良,当常出现缺少润滑油时,就需要重视了,因为可能会压缩机内部就会产生严重异响,甚至造成压缩机的磨损报废。 出现这种情况时,您应该检查是否是离合器出现打滑现象,或者传送带的问题。 3、压缩机泄漏

汽车空调压缩机维修视频

闪电家修专业上门维修空调师傅讲,空调是家庭中常用的常用电器,今天就带您去了解下空调的常见故障,下面,快益修专业空调维修师傅为你一一道来: 1、出风量小、制冷效果差? 有多种原因: A、外界环境温度高,室内人员又比较多空调器全负荷工作。 B、电源电压过低,引起空调器不易启动,起动后又停机或保险丝熔断现象,建议用户加装电源稳压器。 C、开在强冷挡房间温度降不下来出风口的出风量不大,这是空气过滤网积灰太多,清洗过滤网。 D、温控器调节不当。 E、空调安装位置不佳,出会导致室内温度不均匀或制冷效果差。 2、变频空调停机是否正常: 当用户使用空调的环境保温性非常好,房间的温度已非常接近于设定温度,此时变频空调是会停机的。因为即使变

频空调以最低频率运行,也会产生一定的冷量,但此时房间已无能量损耗根据能量守恒定律,此时空调是会停机的。 3、用户咨询空调设定17度,但空调降到25度时,就不会再下降了,是不是空调制冷不正常。 用户设定17度是用户预期想要达到的一个温度,用户空调使用环境与外界始终存在冷热量交换,刚开始制冷时,由于室内与室外温差不大,房间温度能迅速下降,但降到一定温度时,此时空调产生的冷量正好与房间与外界能量损失相等时,房间的温度就不会再下降,此时空调制冷产生的冷量只足于维持房间的能量损失。用户需要提高制冷效果,最好建议用户将房间的密封性能提高避免过多的室内与外界的能量损耗。 4、用户反应去年使用正常,但今年使用时就经常出现电压不足的情况,是不是空调使用一年后就容易老化。 先向用户咨询空调使用是不是电源电压不正常,如果确属于电源电压不正常,可向用户说明用户所住小区电源电压

QCT708汽车空调风机技术条件

QCT708汽车空调风机技术条件 前言 QC/T 708-2004 汽车空调风机技术条件 1 范畴 本标准规定了汽车空调风机(蒸发风机、冷凝风机)的术语和定义、要求、试验方法、检验规则、标志、包装、贮存和保管。 本标准适用于汽车空调装置上驱动负载排出热量或送出冷气的风机。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准。然而,鼓舞按照本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 1236 工业通风机用标准化风道进行性能试验 GB/T 2423.17 电工电子产品差不多环境试验规程试验Ka:盐雾试验方法(eqv IEC 68-2-11:1988) GB/T 4942.1 旋转电机外壳防护分级(IP代码) GB 18655 用于爱护车载接收机的无线电扰乱特性的限值和测量方法QC/T 413-2002 汽车电气设备差不多技术条件 QC/T 29106 汽车低压电线束技术条件 3 术语和定义 本标准采纳下列术语和定义。 3.1 额定电流rated current 蒸发风机或冷凝风机在额定电压、额定负载、自由通风状态下的电流。

3.2 额定转速rated speed 蒸发风机或冷凝风机在额定电压、额定负载、自由通风状态下的转速。 3.3 压差pressure difference 蒸发风机或冷凝风机进风口静压与出风口的全压之差。 3.4 风量flowrate 蒸发风机或冷凝风机在规定压差下单位时刻内的空气体积的流量。 3.5 风机compressor blower and fan 由电机、风叶和外壳组成的空气驱动组件。 3.6 蒸发风机evaporator blower 汽车空调装置上驱动风轮送出蒸发器冷气的风机。 3.7 冷凝风机condenser blower 汽车空调装置上驱动风叶排出冷凝器热量的风机。 4 要求 4.1 风机的通用规定 4.1.1 风机的通用要求: 风机应符合本标准要求,并应按照经规定程序批准的图样及技术文件制造。风机的外形、安装尺寸和标志应符合产品图纸的规定。 4.1.2 风机的常态工作环境条件: 风机的常态工作环境条件按QC/T 413-2002中3.1.2的规定。 4.1.3 风机的工作环境温度范畴: 4.1.3.1 蒸发风机的工作环境温度范畴:-40~70℃。 4.1.3.2 冷凝风机的工作环境温度范畴:-40~85℃。 4.2 风机的差不多性能参数 4.2.1 风机的产品技术条件中应规定: a) 额定电流与额定转速; b) 在压差为l00Pa时风机的风量或按照用户指定的压差时风机的风量。 4.2.2 风机采纳的低压电线束、插接器的接触电阻、电压降及插拔力等应符合QC/T 29106的规定。 4.2.3 风机上机械紧固件的拧紧力矩要求应在产品技术文件中规定。

汽车空调案例分析[1]

案例分析 一、28五十铃空调开机后,离合器打滑。 一辆2.8五十铃(NKR)系列 故障现象:在开空调时,压缩机电磁离合器一直吸不上,打滑,停车后检查压缩机皮带松紧度,正常。然后起动发动机,打开空调(此款五十铃,不起动发动机,鼓风机及空调不工作)此时怠速在900r/min左右,用数字万用表测量压缩机电磁线圈,电压12V电流3.3-3.5A 之间正常。 故障分析与排除:可以断定,电磁线圈无故障,故障是电磁离合器。因为引起离合器打滑的原因是电磁线圈吸力不够,压缩机松紧度,离合器压板与皮带轮之间间隙调整不对,压板与离合器皮带轮之间的间隙应为0.4-0.8mm之间,而用专用塞尺测量其间隙明显偏大,因此车压缩机安装于发动机上部,停机后,用工具很快将压缩机压板拆下,而此时不需要排空制冷剂,拆下压板后,发现其后部三个垫片,其中一个厚度过厚,用千分尺一量,其中一厚度在0.8mm以上,而另外两个为正规的0.1mm,0.3mm,很明显此垫片为以后装配,因间隙不对导致电磁线圈对压板产生吸力不够,压缩机打滑。重新更换垫片,按要求装好,打开空调,故障排除。 二、桑塔纳开空调后制冷效果不佳。 故障现象:普通桑塔纳,LX型,打开空调后,在怠速下出现啪嗒声,同时空调制冷效果不佳,接上歧管压力表,开启空调,怠速在900r/min以上,压力表显示低压侧压力高,而高压侧的压力则低。 故障分析与排除:此种情况出现在空调皮带不打滑的情况下,只有压缩机损坏,此时用于手感检查,压缩机外壳高低压侧温差不大,而我们现在要确定压缩机损坏只有用泵吸性能检测法检测。 当我们用手钳夹住高压管时,高压侧压力在1360kpa左右,压力明显过低,这说明压缩机已经坏掉,需要修理或更换压缩机。更换压缩机后空调系统一切正常,噪音消失,制冷效果正常。 三、丰田轿车空调开机后有噪音 故障现象:有一2.8皇冠轿车,在起步时或路上加速时,会引起压缩机“吱吱”的噪音,空调关闭后,噪音消除。 故障分析与排除:因此断定噪音为空调系统所致,而造成空调噪音过大的可能有多种:第一种为皮带张力过大,或离合器松旷或制冷剂灌充过量或皮带轮安装不当。发动机停机后,打开机仓盖检查,发现压缩机皮带过于松驰,重新调整后,试车,故障排除。 四、捷达轿车传动带不平衡引发故障 故障现象:一辆捷达轿车,在开空调时,发动机噪音大,经检查为皮带张力过大,重新调整后,用了没几天,皮带张力又过大。 故障分析与排除:上述现象为皮带固定不住或皮带磨损,后更换新皮带,以为故障排除,不久,噪音又出现,停车后,打开机仓盖,用目测法检查,空调皮带磨损严重,拆下后发现皮带只磨一边,经仔细检查,原是压缩机皮带轮与发动机皮带轮不在一条线上,发动机运转时,皮带会偏向一边造成皮带磨损,因在开空调时,压缩机电磁离合器吸合,压缩机开始工作,皮带受力增大,噪音增大。 调整压缩机安装位置,让压缩机皮带轮与发动机皮带轮在同一平面上,更换皮带,路试故障排除。 五、尼桑轿车制冷效果不稳 故障现象:在怠速时空调不制冷,而在高速或中速时制冷效果不稳定

机械毕业设计1182平动转子式汽车空调压缩机设计

摘要 21世纪,随着全球经济的发展,汽车业得到了蓬勃发展。作为小型汽车使用的空调,由于受到空间尺寸的苛刻限制,以及发动机功率相对较小,因此非常注意压缩机 的效率、外形尺寸以及功耗等的影响。针对传统压缩机存在的一些不足,本设计研究 了一种平动转子式压缩机,该压缩机的最大特点是转子采用平动转动的运转方式,因 此主要运动件之间的相对速度较小,故其摩擦损失很小。本设计主要完成以下方面的 工作: (1)简单介绍了汽车空调制冷系统的构成和工作原理,阐述了汽车空调压缩机的 发展历程,并对其特殊要求进行了说明,进而重点介绍了现有的滑片式和涡旋式这两 种两种类型压缩机的结构形式与特点。 (2)重点详细介绍了平动转子式压缩机的设计思想,工作原理,并进行总体设计。(3)对平动转子式压缩机的几个重要零件如气缸、转子、转轴、平动滑片、转轴 轴承座和后端盖进行了结构设计,并在工艺和选材上进行了详细的分析。 (4)对平动转子式压缩机的吸排气系统和润滑系统进行了系统的设计和分析。 (5)对平动转子式压缩机进行了热力学方面的分析与计算,并推导了平动转子和 滑片的运动学和动力学公式,同时还对转子进行了动平衡方面的分析。 与传统滑片式压缩机相比,本设计中的压缩机的主要运动副如转子与气缸、转子 与端盖、滑片与缸孔之间的相对运动速度要小很多,因此它具有较少的摩擦和磨损。 同时他还与涡旋压缩机的平动机构有机融合在一起,取其之长,因此等效制冷能力比 现存的压缩机高。而且结构紧凑、外形尺寸小、重量轻,特别适宜小型汽车使用。 在设计过程中运用了AutoCAD,Pro/E及Word,不但把所学的专业知识联系起来,而且还提高了计算机应用能力,拓宽了知识面。 关键词汽车空调;压缩机;平动转子;结构设计

汽车空调鼓风机振动和噪声分析

汽车空调鼓风电机振动和噪声分析 摘要:随着汽车工业的发展,人们对汽车质量及舒适性要求的不断提高,车内噪声控制问题日益显得突出起来。永磁直流电动机是目前汽车空调用鼓风电机的主要类型之一。其噪声类型主要是电磁噪声和机械噪声,本文简单介绍了汽车空调用永磁直流电动机生产过程中引起振动和噪声产生的主要原因及基本解决措施。 关键词:鼓风电机; 振动; 噪声 Vibration and Noise Analysis of Blower Motor for Vehicle Air-condition Abstract: Along with the development of automobile industry, people has increased requirement for quality and comfort of automobile, noise issue inside vehicle become important. Permanent magnetic DC motor is one of the main types of blower motor that be used in vehicle air-condition. Its noise includes electromagnetic noise and mechanical noise. This paper simply presents the reason and basic solution of vibration and noise during manufacture. Key words: blower motor; vibration; noise 0.前言 对于电动机振动与噪声的研究,起源于上世纪40年代,电动机振动与噪声一直是困扰人们的难题. 引起电动机振动和噪声的原因很多,大致可归结为两个方面: (1)电磁因素;

汽车空调压缩机常见故障分析诊断

依维柯空调压缩机常见故障分析 现装配于依维柯(IVECO)柴油汽车的空调压缩机,在使用过程中经常发生电磁线圈、轴承及离合器钢片烧坏的故障。 故障原因 根据长期修理这种压缩机的经验,发现主要有以下3种原因: (1)由于空调压缩机控制线路的插头产生松动,造成接触不良,使供给电磁线圈的电压下降、电流不稳,导致空调压缩机的电磁离合器有时接合有时分离,如此长时间工作,必将烧坏离合器和电磁线圈。 (2)空调压缩机电磁离合器的间隙一般设计为0.35-0.50mm,如果离合器间隙小于规定值,同时受到发动机温度的影响,安装在发动机旁的空调压缩机离合器钢片会产生热膨胀,导致离合器间隙过小,使关闭空调后离合器分离不开或者打滑,这样也易烧坏电磁线圈、轴承、离合器和制冷系统中的零部件。 (3)由于电磁离合器轴承中的套圈是塑料制成的,如果轴承中缺少润滑油,轴承在高速旋转时,就会产生摩擦而使温度急剧升高,这样就易烧坏塑料套圈,使轴承旋转不畅,同时还会烧坏电磁线圈、轴承及离合器。 使用注意事项 为了减少依维柯空调压缩机的故障,在使用空调时应注意以下三点: (1)应经常检查空调控制线路中各接插器的连接情况,若有问题应及时排除。 (2)若发现空调压缩机电磁离合器的间隙过小或者分离不开,应加上垫片使其达到规定的标准值或能够分离自如为止。 (3)定期保养空调压缩机,并对其电磁离合器轴承注入润滑油。 尼桑德胜C280空调压缩机不工作 故障现象:一辆尼桑德胜C280汽车发动机运转时,闭合空调开关,压缩机电磁离合器不工作,压缩机不运行。 故障分析与排除:尼桑德胜C280汽车采用单风口空调,空调压缩机是通过电磁离合器,由发动机带动运行的。 首先,观察蒸发器鼓风机能否运转,结果正常。这说明空调主继电器、鼓风机变速开关等均无毛病。

汽车空调压缩机详解

汽车空调压缩机分类与构造 空调压缩机是空调系统的核心部件。随着人们对汽车舒适性的要求越来越高,各种新式空调系统不断出现,这也推动了空调压缩机制造技术的不断进步。从目前空调压缩机的发展趋势来看,结构紧凑、高效节能以及微振低噪等特点是空调压缩机制造技术不断追求的目标。 功能 空调压缩机的功能是借助外力(例如发动机动力)维持制冷剂在制冷系统内的循环,吸入来自蒸发器的低温、低压的制冷剂蒸气,压缩制冷剂蒸气使其温度和压力升高,并将制冷剂蒸气送往冷凝器,在热量吸收和释放的过程中,就实现了热交换。 分类和特点 根据工作原理的不同,空调压缩机可以分为定排量压缩机和变排量压缩机。 (1)定排量压缩机定排量压缩机的排气量是随着发动机的转速的提高而成比例的提高,它不能根据制冷的需求而自动改变功率输出,而且对发动机油耗的影响比较大。它的控制一般通过采集蒸发器出风口的温度信号,当温度达到设定的温度,压缩机电磁离合器松开,压缩机停止工作。当温度升高后,电磁离合器结合,压缩机开始工作。定排量压缩机也受空调系统压力的控制,当管路内压力过高时,压缩机停止工作。 (2)变排量空调压缩机变排量压缩机可以根据设定的温度自动调节功率输出。空调控制系统不采集蒸发器出风口的温度信号,而是根据空调管路内压力的变化信号控制压缩机的压缩比来自动调节出风口温度。在制冷的全过程中,压缩机始终是工作的,制冷强度的调节完全依赖装在压缩机内部的压力调节阀来控制。当空调管路内高压端的压力过高时,压力调节阀缩短压缩机内活塞行程以减小压缩比,这样就会降低制冷强度。当高压端压力下降到一定程度,低压端压力上升到一定程度时,压力调节阀则增大活塞行程以提高制冷强度。 根据工作方式的不同,压缩机一般可以分为往复式和旋转式,常见的往复式压缩机有曲轴连杆式和轴向活塞式,常见的旋转式压缩机有旋转叶片式和涡旋式。

相关主题
文本预览
相关文档 最新文档