当前位置:文档之家› 数字集成电路及其应用实例

数字集成电路及其应用实例

数字集成电路及其应用实例

数字集成电路及其应用实例

数字集成电路设计_笔记归纳..

第三章、器件 一、超深亚微米工艺条件下MOS 管主要二阶效应: 1、速度饱和效应:主要出现在短沟道NMOS 管,PMOS 速度饱和效应不显著。主要原因是 TH G S V V -太大。在沟道电场强度不高时载流子速度正比于电场强度(μξν=) ,即载流子迁移率是常数。但在电场强度很高时载流子的速度将由于散射效应而趋于饱和,不再随电场 强度的增加而线性增加。此时近似表达式为:μξυ=(c ξξ<),c s a t μξυυ==(c ξξ≥) ,出现饱和速度时的漏源电压D SAT V 是一个常数。线性区的电流公式不变,但一旦达到DSAT V ,电流即可饱和,此时DS I 与GS V 成线性关系(不再是低压时的平方关系)。 2、Latch-up 效应:由于单阱工艺的NPNP 结构,可能会出现VDD 到VSS 的短路大电流。 正反馈机制:PNP 微正向导通,射集电流反馈入NPN 的基极,电流放大后又反馈到PNP 的基极,再次放大加剧导通。 克服的方法:1、减少阱/衬底的寄生电阻,从而减少馈入基极的电流,于是削弱了正反馈。 2、保护环。 3、短沟道效应:在沟道较长时,沟道耗尽区主要来自MOS 场效应,而当沟道较短时,漏衬结(反偏)、源衬结的耗尽区将不可忽略,即栅下的一部分区域已被耗尽,只需要一个较小的阈值电压就足以引起强反型。所以短沟时VT 随L 的减小而减小。 此外,提高漏源电压可以得到类似的效应,短沟时VT 随VDS 增加而减小,因为这增加了反偏漏衬结耗尽区的宽度。这一效应被称为漏端感应源端势垒降低。

4、漏端感应源端势垒降低(DIBL): VDS增加会使源端势垒下降,沟道长度缩短会使源端势垒下降。VDS很大时反偏漏衬结击穿,漏源穿通,将不受栅压控制。 5、亚阈值效应(弱反型导通):当电压低于阈值电压时MOS管已部分导通。不存在导电沟道时源(n+)体(p)漏(n+)三端实际上形成了一个寄生的双极性晶体管。一般希望该效应越小越好,尤其在依靠电荷在电容上存储的动态电路,因为其工作会受亚阈值漏电的严重影响。 绝缘体上硅(SOI) 6、沟长调制:长沟器件:沟道夹断饱和;短沟器件:载流子速度饱和。 7、热载流子效应:由于器件发展过程中,电压降低的幅度不及器件尺寸,导致电场强度提高,使得电子速度增加。漏端强电场一方面引起高能热电子与晶格碰撞产生电子空穴对,从而形成衬底电流,另一方面使电子隧穿到栅氧中,形成栅电流并改变阈值电压。 影响:1、使器件参数变差,引起长期的可靠性问题,可能导致器件失效。2、衬底电流会引入噪声、Latch-up、和动态节点漏电。 解决:LDD(轻掺杂漏):在漏源区和沟道间加一段电阻率较高的轻掺杂n-区。缺点是使器件跨导和IDS减小。 8、体效应:衬底偏置体效应、衬底电流感应体效应(衬底电流在衬底电阻上的压降造成衬偏电压)。 二、MOSFET器件模型 1、目的、意义:减少设计时间和制造成本。 2、要求:精确;有物理基础;可扩展性,能预测不同尺寸器件性能;高效率性,减少迭代次数和模拟时间 3、结构电阻:沟道等效电阻、寄生电阻 4、结构电容: 三、特征尺寸缩小 目的:1、尺寸更小;2、速度更快;3、功耗更低;4、成本更低、 方式: 1、恒场律(全比例缩小),理想模型,尺寸和电压按统一比例缩小。 优点:提高了集成密度 未改善:功率密度。 问题:1、电流密度增加;2、VTH小使得抗干扰能力差;3、电源电压标准改变带来不便;4、漏源耗尽层宽度不按比例缩小。 2、恒压律,目前最普遍,仅尺寸缩小,电压保持不变。 优点:1、电源电压不变;2、提高了集成密度 问题:1、电流密度、功率密度极大增加;2、功耗增加;3、沟道电场增加,将产生热载流子效应、速度饱和效应等负面效应;4、衬底浓度的增加使PN结寄生电容增加,速度下降。 3、一般化缩小,对今天最实用,尺寸和电压按不同比例缩小。 限制因素:长期使用的可靠性、载流子的极限速度、功耗。

数字集成电路的分类

数字集成电路的分类 数字集成电路有多种分类方法,以下是几种常用的分类方法。 1.按结构工艺分 按结构工艺分类,数字集成电路可以分为厚膜集成电路、薄膜集成电路、混合集成电路、半导体集成电路四大类。图如下所示。 世界上生产最多、使用最多的为半导体集成电路。半导体数字集成电路(以下简称数字集成电路)主要分为TTL、CMOS、ECL三大类。 ECL、TTL为双极型集成电路,构成的基本元器件为双极型半导体器件,其主要特点是速度快、负载能力强,但功耗较大、集成度较低。双极型集成电路主要有 TTL(Transistor-Transistor Logic)电路、ECL(Emitter Coupled Logic)电路和I2L(Integrated Injection Logic)电路等类型。其中TTL电路的性能价格比最佳,故应用最广泛。

ECL,即发射极耦合逻辑电路,也称电流开关型逻辑电路。它是利用运放原理通过晶体管射极耦合实现的门电路。在所有数字电路中,它工作速度最高,其平均延迟时间tpd可小至1ns。这种门电路输出阻抗低,负载能力强。它的主要缺点是抗干扰能力差,电路功耗大。 MOS电路为单极型集成电路,又称为MOS集成电路,它采用金属-氧化物半导体场效应管(Metal Oxide Semi-conductor Field Effect Transistor,缩写为MOSFET)制造,其主要特点是结构简单、制造方便、集成度高、功耗低,但速度较慢。 MOS集成电路又分为PMOS(P-channel Metal Oxide Semiconductor,P沟道金属氧化物半导体)、NMOS(N-channel Metal Oxide Semiconductor,N沟道金属氧化物半导体)和CMOS(Complement Metal Oxide Semiconductor,复合互补金属氧化物半导体)等类型。 MOS电路中应用最广泛的为CMOS电路,CMOS数字电路中,应用最广泛的为4000、4500系列,它不但适用于通用逻辑电路的设计,而且综合性能也很好,它与TTL电路一起成为数字集成电路中两大主流产品。CMOS数字集成电路电路主要分为4000(4500系列)系列、54HC/74HC系列、54HCT/74HCT系列等,实际上这三大系列之间的引脚功能、排列顺序是相同的,只是某些参数不同而已。例如,74HC4017与CD4017为功能相同、引脚排列相同的电路,前者的工作速度高,工作电源电压低。4000系列中目前最常用的是B系列,它采用了硅栅工艺和双缓冲输出结构。 Bi-CMOS是双极型CMOS(Bipolar-CMOS)电路的简称,这种门电路的特点是逻辑部分采用CMOS结构,输出级采用双极型三极管,因此兼有CMOS电路的低功耗和双极型电路输出阻抗低的优点。 (1)TTL类型 这类集成电路是以双极型晶体管(即通常所说的晶体管)为开关元件,输入级采用多发射极晶体管形式,开关放大电路也都是由晶体管构成,所以称为晶体管-晶体管-逻辑,即Transistor-Transistor-Logic,缩写为TTL。TTL电路在速度和功耗方面,都处于现代数字集成电路的中等水平。它的品种丰富、互换性强,一般均以74(民用)或54(军用)为型号前缀。 ① 74LS系列(简称LS,LSTTL等)。这是现代TTL类型的主要应用产品系列,也是逻辑集成电路的重要产品之一。其主要特点是功耗低、品种多、价格便宜。 ② 74S系列(简称S,STTL等)。这是TTL的高速型,也是目前应用较多的产品之一。其特点是速度较高,但功耗比LSTTL大得多。

数字集成电路复习指南..

1. 集成电路是指通过一系列特定的加工工艺,将晶体管、二极管、MOS管等有源器件和阻、电容、电感等无源器件,按一定电路互连,“集成”在一块半导体晶片(硅或砷化镓)上,封装在一个外壳内,执行特定电路或系统功能的一种器件。 2.集成电路的规模大小是以它所包含的晶体管数目或等效的逻辑门数目来衡量。等效逻辑门通常是指两输入与非门,对于CMOS集成电路来说,一个两输入与非门由四个晶体管组成,因此一个CMOS电路的晶体管数除以四,就可以得到该电路的等效逻辑门的数目,以此确定一个集成电路的集成度。 3.摩尔定律”其主要内容如下: 集成电路的集成度每18个月翻一番/每三年翻两番。 摩尔分析了集成电路迅速发展的原因, 他指出集成度的提高主要是三方面的贡献: (1)特征尺寸不断缩小,大约每3年缩小1.41倍; (2)芯片面积不断增大,大约每3年增大1.5倍; (3)器件和电路结构的改进。 4.反标注是指将版图参数提取得到的分布电阻和分布电容迭加到相对应节点的参数上去,实际上是修改了对应节点的参数值。 5.CMOS反相器的直流噪声容限:为了反映逻辑电路的抗干扰能力,引入了直流噪声容限作为电路性能参数。直流噪声容限反映了电流能承受的实际输入电平与理想逻辑电平的偏离范围。 6. 根据实际工作确定所允许的最低输出高电平,它所对应的输入电平定义为关门电平;给定允许的最高输出低电平,它所对应的输入电平为开门电平 7. 单位增益点. 在增益为0和增益很大的输入电平的区域之间必然存在单位增益点,即dV out/dVin=1的点 8. “闩锁”现象 在正常工作状态下,PNPN四层结构之间的电压不会超过Vtg,因 此它处于截止状态。但在一定的外界因素触发下,例如由电源或 输出端引入一个大的脉冲干扰,或受r射线的瞬态辐照,使 PNPN四层结构之间的电压瞬间超过Vtg,这时,该寄生结构中就 会出现很大的导通电流。只要外部信号源或者Vdd和Vss能够提供 大于维持电流Ih的输出,即使外界干扰信号已经消失,在PNPN四 层结构之间的导通电流仍然会维持,这就是所谓的“闩锁”现象 9. 延迟时间: T pdo ——晶体管本征延迟时间; UL ——最大逻辑摆幅,即最大电源电压; Cg ——扇出栅电容(负载电容); Cw ——内连线电容; Ip ——晶体管峰值电流。

数字集成电路总结

数字集成电路基础学习总结

第一章数字电子技术概念 1.1 数字电子技术和模拟电子技术的区别 模拟信号:在时间上和数值上均作连续变化的电路信号。 数字信号:表示数字量的信号,一般来说数字信号是在两个稳定状态之间作阶跃式变化的信号,它有电位型和脉冲型两种表达形式:用高低不同的电位信号表示数字“1”和“0”是电位型表示法;拥有无脉冲表示数字“1”和“0”是脉冲型表示法。 数字电路包括:脉冲电路、数字逻辑电路。数字电路的特点:1)小、轻、功耗低2)抗干扰力强3)精度高 按电路组成的结构可分立元件电路 集成电路 数数字电路分类 小规模 按集成度的大小来分中规模 大规模 超大规模 双极型电路 按构成电路的半导体器件来分 单极型电路 组合逻辑电路 按电路有记忆功能来分 1.2 1.3 三极管:是一种三极(发射极E、基极B(发射结、集电结)半导体器件,他有NPN和PNP两种,可工作在截止、放大、饱和三种工作状态。 电流公式:I(E)=I(B)+I(C) 放大状态:I(C)=βI(B) 饱和状态:I(C)< βI(B) 1.4 数制,两要素基数 权 二进制,十进制,十六进制之间的转换: 二进制转换成十进制:二进制可按权相加法转化成十进制。 十进制转换成二进制:任何十进制数正数的整数部分均可用除2取余法转换成二进制数。 二进制转化成八进制:三位一组分组转换。 二进制转换成十六进制:四位一组分组转换。 八进制转换成十六进制:以二进制为桥梁进行转换。 1.5 码制 十进制数的代码表示法常用以下几种:8421BCD码、5421BCD码、余3BCD码。 8421BCD码+0011=5421BCD码 第二章逻辑代数基础及基本逻辑门电路

数字集成电路教学大纲

《数字集成电路》课程教学大纲 课程代码:060341001 课程英文名称:digital integrated circuits 课程总学时:48 讲课:44 实验:4 上机:0 适用专业:电子科学与技术 大纲编写(修订)时间:2017.05 一、大纲使用说明 (一)课程的地位及教学目标 数字集成电路是为电子科学与技术专业开设的学位课,该课程为必修专业课。课程主要讲授CMOS数字集成电路基本单元的结构、电气特性、时序和功耗特性,以及数字集成电路的设计与验证方法、EDA前端流程等。在讲授基本理论的同时,重在培养学生的设计思维以及解决实际问题的能力。通过本课程的学习,学生将达到以下要求: 1.掌握CMOS工艺下数字集成电路基本单元的功能、结构、特性; 2.掌握基于HDL设计建模与仿真、逻辑综合、时序分析;熟悉Spice模型; 3.具备将自然语言描述的问题转换为逻辑描述的能力; 4. 具有解决实际应用问题的能力。 (二)知识、能力及技能方面的基本要求 1.基本知识:CMOS数字集成电路设计方法与流程;CMOS逻辑器件的静态、动态特性和Spice 模型;数字集成电路的时序以及互连线问题;半导体存储器的种类与性能;数字集成电路低功耗解决方法以及输入输出电路;数字集成电路的仿真与逻辑综合。 2.基本理论和方法:在掌握静态和动态CMOS逻辑器件特性基础上,理解CMOS数字集成电路的特性和工作原理;掌握真值表、流程图/状态机、时序图的分析方法和逻辑设计的基本思想。 3.基本技能:掌握器件与系统的建模仿真方法;具备逻辑描述、逻辑与时序电路设计能力;熟悉电路验证与综合软件工具。 (三)实施说明 1.教学方法:课堂讲授中要重点对基础概念、基本方法和设计思路的讲解;采用启发式教学,培养学生思考问题、分析问题和解决问题的能力;引导和鼓励学生通过实践和自学获取知识,培养学生的自学能力;增加习题和讨论课,并在一定范围内学生讲解,调动学生学习的主观能动性;注意培养学生提高利用网络资源、参照设计规范及芯片手册等技术资料的能力。讲课要联系实际并注重培养学生的创新能力。 2.教学手段:本课程属于技术基础课,在教学中采用电子教案、CAI课件及多媒体教学系统等先进教学手段,以确保在有限的学时内,全面、高质量地完成课程教学任务。 3.计算机辅助设计:要求学生采用电路建模语言(SPICE/HDL)和仿真模拟工具软件进行电路分析与设计验证;采用逻辑综合工具软件进行电路综合;采用时序分析工具进行时序验证。(四)对先修课的要求 本课程主要的先修课程有:大学物理、电路、线性电子线路、脉冲与逻辑电路、EDA技术与FPGA应用、微机原理及应用,以及相关的课程实验、课程设计。 (五)对习题课、实践环节的要求 1.对重点、难点章节(如:MOS反相器静态特性/开关特性和体效应、组合与时序MOS电路、动态逻辑电路、数字集成电路建模与仿真验证、数字集成电路逻辑综合)应安排习题课,例题的选择以培养学生消化和巩固所学知识,用以解决实际问题为目的。 2.课后作业要少而精,内容要多样化,作业题内容必须包括基本概念、基本理论及分析设

常用数字集成电路管脚排列及逻辑符号

常用数字集成电路管脚排列及逻辑符号
图 D-1 74LS00 四 2 输入与非门
图 D-2 74LS01 四 2 输入与非门(OC)
图 D-3 74LS02 四 2 输入或非门
图 D-4 74LS04 六反相器
图 D-5 74LS08 四 2 输入与门
图 D-6 74LS10 三 3 输入与非门
图 D-7 74LS20 双 4 输入与非门
图 D-8
R
74LS32 四 2 输入或门
S
Q
S R Q
R Q S
R
S
Q
图 D-9 74LS54 4 路 2-2-2-2 输入与或非门
图 D-10 74LS74 双上升沿 D 型触发器
图 D-11 74LS86 四 2 输入异或门
图 D-12
74LS112 双下降沿 J-K 触发器

图 D-13 74LS126 四总线缓冲器
图 D-14
74LS138 3 线-8 线译码器
图 D-15 74LS148 8 线-3 线优先编码器
图 D-16 74LS151 8 选 1 数据选择器
图 D-17 74LS153 双 4 选 1 数据选择器
图 D-18 74LS161 4 位二进制同步计数器
图 D-19 74LS194 4 位双向移位寄存器
图 D-20 74LS196 二-五-十进制计数器
图 D-21 74LS283 4 位二进制超前进位全加器
图 D-22
74LS290 二-五-十进制计数器
图 D-23
CD4011B 四 2 输入与非门
图 D-24 CD4081 四 2 输入与门

数字集成电路复习资料

第一章 数字集成电路介绍 第一个晶体管,Bell 实验室,1947 第一个集成电路,Jack Kilby ,德州仪器,1958 摩尔定律:1965年,Gordon Moore 预言单个芯片上晶体管的数目每18到24个月翻一番。(随时间呈指数增长) 抽象层次:器件、电路、门、功能模块和系统 抽象即在每一个设计层次上,一个复杂模块的内部细节可以被抽象化并用一个黑匣子或模型来代替。这一模型含有用来在下一层次上处理这一模块所需要的所有信息。 固定成本(非重复性费用)与销售量无关;设计所花费的时间和人工;受设计复杂性、设计技术难度以及设计人员产出率的影响;对于小批量产品,起主导作用。 可变成本 (重复性费用)与产品的产量成正比;直接用于制造产品的费用;包括产品所用部件的成本、组装费用以及测试费用。每个集成电路的成本=每个集成电路的可变成本+固定成本/产量。可变成本=(芯片成本+芯片测试成本+封装成本)/最终测试的成品率。 一个门对噪声的灵敏度是由噪声容限NM L (低电平噪声容限)和NM H (高电平噪声容限)来度量的。为使一个数字电路能工作,噪声容限应当大于零,并且越大越好。NM H = V OH - V IH NM L = V IL - V OL 再生性保证一个受干扰的信号在通过若干逻辑级后逐渐收敛回到额定电平中的一个。 一个门的VTC 应当具有一个增益绝对值大于1的过渡区(即不确定区),该过渡区以两个有效的区域为界,合法区域的增益应当小于1。 理想数字门 特性:在过渡区有无限大的增益;门的阈值位于逻辑摆幅的中点;高电平和低电平噪声容限均等于这一摆幅的一半;输入和输出阻抗分别为无穷大和零。 传播延时、上升和下降时间的定义 传播延时tp 定义了它对输入端信号变化的响应有多快。它表示一个信号通过一个门时所经历的延时,定义为输入和输出波形的50%翻转点之间的时间。 上升和下降时间定义为在波形的10%和90%之间。 对于给定的工艺和门的拓扑结构,功耗和延时的乘积一般为一常数。功耗-延时积(PDP)----门的每次开关事件所消耗的能量。 一个理想的门应当快速且几乎不消耗能量,所以最后的质量评价为。能量-延时积(EDP) = 功耗-延时积2 。 第三章、第四章CMOS 器件 手工分析模型 ()0 12' 2 min min ≥???? ??=GT DS GT D V V V V V L W K I 若+-λ ()DSAT DS GT V V V V ,,m in min = 寄生简化:当导线很短,导线的截面很大时或当所采用的互连材料电阻率很低时,电感的影响可 以忽略:如果导线的电阻很大(例如截面很小的长 铝导线的情形);外加信号的上升和下降时间很 慢。 当导线很短,导线的截面很大时或当所采用的互 连材料电阻率很低时,采用只含电容的模型。 当相邻导线间的间距很大时或当导线只在一段很 短的距离上靠近在一起时:导线相互间的电容可 以被忽略,并且所有的寄生电容都可以模拟成接 地电容。 平行板电容:导线的宽度明显大于绝缘材料的厚度。 边缘场电容:这一模型把导线电容分成两部分:一个平板电容以及一个边缘电容,后者模拟成一条圆柱形导线,其直径等于该导线的厚度。 多层互连结构:每条导线并不只是与接地的衬底耦合(接地电容),而且也与处在同一层及处在相 邻层上的邻近导线耦合(连线间电容)。总之,再 多层互连结构中导线间的电容已成为主要因素。这一效应对于在较高互连层中的导线尤为显著, 因为这些导线离衬底更远。 例4.5与4.8表格 电压范围 集总RC 网络 分布RC 网络 0 → 50%(t p ) 0.69 RC 0.38 RC 0 → 63%(τ) RC 0.5 RC 10% → 90%(t r ) 2.2 RC 0.9 RC 0 → 90% 2.3 RC 1.0 RC 例4.1 金属导线电容 考虑一条布置在第一层铝上的10cm 长,1μm 宽的铝线,计算总的电容值。 平面(平行板)电容: ( 0.1×106 μm2 )×30aF/μm2 = 3pF 边缘电容: 2×( 0.1×106 μm )×40aF/μm = 8pF 总电容: 11pF 现假设第二条导线布置在第一条旁边,它们之间只相隔最小允许的距离,计算其耦合电 容。 耦合电容: C inter = ( 0.1×106 μm )×95 aF/μm2 = 9.5pF 材料选择:对于长互连线,铝是优先考虑的材料;多晶应当只用于局部互连;避免采用扩散导线;先进的工艺也提供硅化的多晶和扩散层 接触电阻:布线层之间的转接将给导线带来额外的电阻。 布线策略:尽可能地使信号线保持在同一层上并避免过多的接触或通孔;使接触孔较大可以降低接触电阻(电流集聚在实际中将限制接触孔的最大尺寸)。 采电流集聚限制R C , (最小尺寸):金属或多晶至n+、p+以及金属至多晶为 5 ~ 20 Ω ;通孔(金属至金属接触)为1 ~ 5 Ω 。 例4.2 金属线的电阻 考虑一条布置在第一层铝上的10cm 长,1μm 宽的铝线。假设铝层的薄层电阻为0.075Ω/□,计算导线的总电阻: R wire =0.075Ω/□′(0.1′106 μm)/(1μm)=7.5k Ω 例4.5 导线的集总电容模型 假设电源内阻为10k Ω的一个驱动器,用来驱动一条10cm 长,1μm 宽的Al1导线。 电压范围 集总RC 网络 分布RC 网络 0 → 50%(t p ) 0.69 RC 0.38 RC 0 → 63%(τ) RC 0.5 RC 10% → 90%(t r ) 2.2 RC 0.9 RC 0 → 90% 2.3 RC 1.0 RC 使用集总电容模型,源电阻R Driver =10 k Ω,总的集总电容C lumped =11 pF t 50% = 0.69 ′ 10 k Ω ′ 11pF = 76 ns t 90% = 2.2 ′ 10 k Ω ′ 11pF = 242 ns 例4.6 树结构网络的RC 延时 节点i 的Elmore 延时: τDi = R 1C 1 + R 1C 2 + (R 1+R 3) C 3 + (R 1+R 3) C 4 + (R 1+R 3+R i ) C i 例4.7 电阻-电容导线的时间常数 总长为L 的导线被分隔成完全相同的N 段,每段的长度为L/N 。因此每段的电阻和电容分别为rL/N 和cL/N R (= rL) 和C (= cL) 是这条导线总的集总电阻 和电容()()()N N RC N N N rcL Nrc rc rc N L DN 2121 (2222) +=+=+++??? ??=τ 结论:当N 值很大时,该模型趋于分布式rc 线;一条导线的延时是它长度L 的二次函数;分布rc 线的延时是按集总RC 模型预测的延时的一半. 2 rcL 22=RC DN =τ 例4.8 铝线的RC 延时.考虑长10cm 宽、1μm 的 Al1导线,使用分布RC 模型,c = 110 aF/μm 和r = 0.075 Ω/μm t p = 0.38′RC = 0.38 ′ (0.075 Ω/μm) ′ (110 aF/μm) ′ (105 μm)2 = 31.4 ns Poly :t p = 0.38 ′ (150 Ω/μm) ′ (88+2′54 aF/μm) ′ (105 μm)2 = 112 μs Al5: t p = 0.38 ′ (0.0375 Ω/μm) ′ (5.2+2′12 aF/μm) ′ (105 μm)2 = 4.2 ns 例4.9 RC 与集总C 假设驱动门被模拟成一个电压源,它具有一定大小的电源内阻R s 。 应用Elmore 公式,总传播延时: τD = R s C w + (R w C w )/2 = R s C w + 0.5r w c w L 2 及 t p = 0.69 R s C w + 0.38 R w C w 其中,R w = r w L ,C w = c w L 假设一个电源内阻为1k Ω的驱动器驱动一条1μm 宽的Al1导线,此时L crit 为 2.67cm 第五章CMOS 反相器 静态CMOS 的重要特性:电压摆幅等于电源电压 à 高噪声容限。逻辑电平与器件的相对尺寸无关 à 晶体管可以采用最小尺寸 à 无比逻辑。稳态时在输出和V dd 或GND 之间总存在一条具有有限电阻的通路 à 低输出阻抗 (k Ω) 。输入阻抗较高 (MOS 管的栅实际上是一个完全的绝缘体) à 稳态输入电流几乎为0。在稳态工作情况下电源线和地线之间没有直接的通路(即此时输入和输出保持不变) à 没有静态功率。传播延时是晶体管负载电容和电阻的函数。 门的响应时间是由通过电阻R p 充电电容C L (电阻R n 放电电容C L )所需要的时间决定的 。 开关阈值V M 定义为V in = V out 的点(在此区域由于V DS = V GS ,PMOS 和NMOS 总是饱和的) r 是什么:开关阈值取决于比值r ,它是PMOS 和NMOS 管相对驱动强度的比 DSATn n DSATp p DD M V k V k V V = ,r r 1r +≈ 一般希望V M = V DD /2 (可以使高低噪声容限具有相近的值),为此要求 r ≈ 1 例5.1 CMOS 反相器的开关阈值 通用0.25μm CMOS 工艺实现的一个CMOS 反相器的开关阈值处于电源电压的中点处。 所用工艺参数见表3.2。假设V DD = 2.5V ,最小尺寸器件的宽长比(W/L)n 为1.5 ()()()() ()()()() V V L W V V V V k V V V V k L W L W M p DSATp Tp M DSATp p DSATn Tn M DSATn n n p 25.125.55.15.35 .320.14.025.1263.043.025.10.163.01030101152266 ==?==----?-???----=---= 分析: V M 对于器件比值的变化相对来说是不敏感的。将比值设为3、2.5和2,产生的V M 分别为1.22V 、1.18V 和 1.13V ,因此使PMOS 管的宽度小于完全对称所要求的值是可以接受的。 增加PMOS 或NMOS 宽度使V M 移向V DD 或GND 。不对称的传输特性实际上在某些设计中是所希望的。 噪声容限:根据定义,V IH 和V IL 是dV out /dV in = -1(= 增益)时反相器的工作点 逐段线性近似V IH = V M - V M /g V IL = V M + (V DD - V M )/g 过渡区可以近似为一段直线,其增益等于在开关阈值V M 处的增益g 。它与V OH 及V OL 线的交点用来定义V IH 和V IL 。点。

常用基本数字集成电路应用设计

课程设计题目:常用基本数字集成电路应用设计 学生姓名: 学号: 院系: 专业班级: 指导教师姓名及职称: 起止时间: 课程设计评分: 常用基本数字集成电路应用设计 1.多谐振荡器概述 多谐振荡器是一种自激振荡器,它不需要输入触发信号,接通电源后就可自动输出矩形脉冲。由于矩形脉冲含有丰富的谐波分量,因此,常将矩形脉冲产生电路称为多谐振荡器。 1.1非门电路构成的多谐振荡器设计

1.1.1基本原理 门电路构成多谐振荡器 非门作为一个开关倒相器件,可用以构成各种脉冲波形的产生电路。电路的基本工作 原理是利用电容器的充放电,当输入电压达到与非门的阈值电压VT 时,门的输出状态即发生变化。因此,电路输出的脉冲波形参数直接取决于电路中阻容元件的数值。 (1)不对称多谐振荡器 非对称型多谐振荡器的输出波形是不对称的,当用TTL与非门组成时,输出脉冲宽度 tw1=RC, tw2=1.2RC, T=2.2RC 调节 R和C值,可改变输出信号的振荡频率,通常用改变C实现输出频率的粗调,改 变电位器R实现输出频率的细调。 图1为不对称多谐振荡器,为了使电路产生振荡,要求U1A和U1B两个反向器都工作在电压传输特性的转折区,即工作在放大区。 (2)对称型多谐振荡器 电路完全对称,电容器的充放电时间常数相同, 故输出为对称的方波。改变R和C的值, 可以改变输出振荡频率。非门3用于输出波形整形。 一般取R≤1KΩ?,当R1=R2=1KΩ,C1=C2=100pf~100μf时,f可在几Hz~MHz 变化。

脉冲宽度tw1=tw2=0.7RC,T=1.4RC. 图2中,U1A和U1B两个反向器之间经电容C1和C2耦合形成正反馈回路。 (3) 石英晶体稳频的多谐振荡器 当要求多谐振荡器的工作频率稳定性很高时,上述几种多谐振荡器的精度已不能满足要 求。为此常用石英晶体作为信号频率的基准。用石英晶体与门电路构成的多谐振荡器常用来 为微型计算机等提供时钟信号。 图3所示为常用的晶体稳频多谐振荡器。(a)、 (b)为TTL器件组成的晶体振荡电路;(c)、 (d)为CMOS器件组成的晶体振荡电路,一般用于电子表中,其中晶体的f0=32768Hz。 图3(c)中,门1用于振荡,门2用于缓冲整形。Rf是反馈电阻,通常在几十兆欧之 间选取,一般选22MΩ。R起稳定振荡作用,通常取十至几百千欧。C1是频率微调电容器, C2用于温度特性校正。

各种集成电路介绍

第一节三端稳压IC 电子产品中常见到的三端稳压集成电路有正电压输出的78××系列和负电压输出的79××系列。故名思义,三端IC是指这种稳压用的集成电路只有三条引脚输出,分别是输入端、接地端和输出端。它的样子象是普通的三极管,TO-220的标准封装,也有9013样子的TO-92封装。 用78/79系列三端稳压IC来组成稳压电源所需的外围元件极少,电路内部还有过流、过热及调整管的保护电路,使用起来可靠、方便,而且价格便宜。该系列集成稳压IC型号中的78或79后面的数字代表该三端集成稳压电路的输出电压,如7806表示输出电压为正6V,7909表示输出电压为负9V。 78/79系列三端稳压IC有很多电子厂家生产,80年代就有了,通常前缀为生产厂家的代号,如TA7805是东芝的产品,AN7909是松下的产品。(点击这里,查看有关看前缀识别集成电路的知识) 有时在数字78或79后面还有一个M或L,如78M12或79L24,用来区别输出电流和封装形式等,其中78L调系列的最大输出电流为100mA,78M系列最大输出电流为1A,78系列最大输出电流为1.5A。它的封装也有多种,详见图。塑料封装的稳压电路具有安装容易、价格低廉等优点,因此用得比较多。79系列除了输出电压为负。引出脚排列不同以外,命名方法、外形等均与78系列的相同。 因为三端固定集成稳压电路的使用方便,电子制作中经常采用,可以用来改装分立元件的稳压电源,也经常用作电子设备的工作电源。电路图如图所示。 注意三端集成稳压电路的输入、输出和接地端绝不能接错,不然容易烧坏。一般三端集成稳压电路的最小输入、输出电压差约为2V,否则不能输出稳定的电压,一般应使电压差保持在4-5V,即经变压器变压,二极管整流,电容器滤波后的电压应比稳压值高一些。 在实际应用中,应在三端集成稳压电路上安装足够大的散热器(当然小功率的条件下不用)。当稳压管温度过高时,稳压性能将变差,甚至损坏。 当制作中需要一个能输出1.5A以上电流的稳压电源,通常采用几块三端稳压电路并联起来,使其最大输出电流为N个1.5A,但应用时需注意:并联使用的集成稳压电路应采用同一厂家、同一批号的产品,以保证参数的一致。另外在输出电流上留有一定的余量,以避免个别集成稳压电路失效时导致其他电路的连锁烧毁。 第二节语音集成电路 电子制作中经常用到音乐集成电路和语言集成电路,一般称为语言片和音乐片。它们一般都是软包封,即芯片直接用黑胶封装在一小块电路板上。语音IC一般还需要少量外围元件才能工作,它们可直接焊到这块电路板上。

数字集成电路设计实验报告

哈尔滨理工大学数字集成电路设计实验报告 学院:应用科学学院 专业班级:电科12 - 1班 学号:32 姓名:周龙 指导教师:刘倩 2015年5月20日

实验一、反相器版图设计 1.实验目的 1)、熟悉mos晶体管版图结构及绘制步骤; 2)、熟悉反相器版图结构及版图仿真; 2. 实验内容 1)绘制PMOS布局图; 2)绘制NMOS布局图; 3)绘制反相器布局图并仿真; 3. 实验步骤 1、绘制PMOS布局图: (1) 绘制N Well图层;(2) 绘制Active图层; (3) 绘制P Select图层; (4) 绘制Poly图层; (5) 绘制Active Contact图层;(6) 绘制Metal1图层; (7) 设计规则检查;(8) 检查错误; (9) 修改错误; (10)截面观察; 2、绘制NMOS布局图: (1) 新增NMOS组件;(2) 编辑NMOS组件;(3) 设计导览; 3、绘制反相器布局图: (1) 取代设定;(2) 编辑组件;(3) 坐标设定;(4) 复制组件;(5) 引用nmos组件;(6) 引用pmos组件;(7) 设计规则检查;(8) 新增PMOS基板节点组件;(9) 编辑PMOS基板节点组件;(10) 新增NMOS基板接触点; (11) 编辑NMOS基板节点组件;(12) 引用Basecontactp组件;(13) 引用Basecontactn 组件;(14) 连接闸极Poly;(15) 连接汲极;(16) 绘制电源线;(17) 标出Vdd 与GND节点;(18) 连接电源与接触点;(19) 加入输入端口;(20) 加入输出端口;(21) 更改组件名称;(22) 将布局图转化成T-Spice文件;(23) T-Spice 模拟; 4. 实验结果 nmos版图

数字集成电路

数字集成电路专题研究 摘要:现在的电路可以分为两个方向,一个是数字,还有一个是模拟,在此更加偏重对数字方面的研究!全文一共可以分为两部分,一部分是基本的数字电路,还有一部分为较大型的集成电路。前一部分(基本数字电路)从认识数字电路开始,其间涉及到数字电路的分析方法---函数分析方法;在数字电路中分TTL 和COMS两种电路,在此报告中提到了这两种电路的电平比较关系。因COMS电路功耗低、工作电压范围宽、扇出能力强和售价低等优点,所以着重介绍一下CMOS 电路的常用特性,以及由它构成的一些常见的数字电路!而在后半部方介绍的是集成电路,从集成电路的分类到如何做好集成电路的设计;集成电路的设计分为前端和后端设计前端是指逻辑部分,后端是指物理层的设计.前端是设计内部的逻辑.后端是指假设逻辑设计已经完成,如何做出最后的芯片,涉及到芯片内部如何分区,如何布线,模拟部分,寄生效应等等.而由于专业方向这里又着重去讨论前端设计:系统集成芯片(SoC)的IC设计。同时收集了一些集成电路的设计工具。 关键字:数字电路函数表示 COMS集成电路常

见的数字电路集成电路分类 IC前端设计工具系统集成芯片SOC IC设计软件 VHDL/ Veriolg HDL 正文: 一.数字电路简介: 在电子设备中,通常把电路分为模拟电路和数字电路两类,前者涉及模拟信号,即连续变化的物理量,例如在24小时内某室内温度的变化量;后者涉及数字信号,即断续变化的物理量,开关K 快速通、断时,在电阻R 上就产生一连串的脉冲(电压),这就是数字信号。人们把用来传输、控制或变换数字信号的电子电路称为数字电路。数字电路工作时通常只有两种状态:高电位(又称高电平)或低电位(又称低电平)。通常把高电位用代码“1 ”表示,称为逻辑“1 ”;低电位用代码“0 ”表示,称为逻辑“0 ”(按正逻辑定义的)。注意:有关产品手册中常用“H ”代表“1 ”、“L ”代表“0 ”。实际的数字电路中,到底要求多高或多低的电位才能表示“1 ”或“0 ”,这要由具体的数字电路来定。例如一些TTL 数字电路的输出电压等于或小于0.2V,均可认为是逻辑“0 ”,等于或者大于3V,均可认为是逻辑“1 ”(即电路技术指标)。CMOS数字电路的逻辑“0 ”或“1 ”的电位值是与工作电压有关的。讨论数字电路

数字集成电路设计与分析

问答: Point out design objects in the figure such as :design, cell, reference, port, pin, net, then write a command to set 5 to net A Design: top Reference: ADD DFF Cell: U1 U2 Port: A B clk sum Pin: A B D Q Net: A B SIN Set_load 5 [get_nets A] why do we not choose to operate all our digital circuits at these low supply voltages? 答:1)不加区分地降低电源电压虽然对减少能耗能正面影响,但它绝对会使门的延时加大 2)一旦电源电压和本征电压(阈值电压)变得可比拟,DC特性对器件参数(如晶体管 阈值)的变化就变得越来越敏感 3)降低电源电压意味着减少信号摆幅。虽然这通常可以帮助减少系统的内部噪声(如串扰引起的噪声),但它也使设计对并不减少的外部噪声源更加敏感) 问道题: 1.CMOS静态电路中,上拉网络为什么用PMOS,下拉网络为什么用NMOS管 2.什么是亚阈值电流,当减少VT时,V GS =0时的亚阈值电流是增加还是减少? 3.什么是速度饱和效应 4.CMOS电压越低,功耗就越少?是不是数字电路电源电压越低越好,为什么? 5.如何减少门的传输延迟? P203 6.CMOS电路中有哪些类型的功耗? 7.什么是衬垫偏置效应。 8.gate-to-channel capacitance C GC,包括哪些部分 VirSim有哪几类窗口 3-6. Given the data in Table 0.1 for a short channel NMOS transistor with V DSAT = 0.6 V and k′=100 μA/V2, calculate V T0, γ, λ, 2|φf|, and W / L:

常用数字集成电路资料.

CD4000 双3输入端或非门+单非门TI CD4001 四2输入端或非门 HIT/NSC/TI/GOL CD4002 双4输入端或非门NSC CD4006 18位串入/串出移位寄存 器NSC CD4007 双互补对加反相器NSC CD4008 4位超前进位全加器NSC CD4009 六反相缓冲/变换器NSC CD4010 六同相缓冲/变换器NSC CD4011 四2输入端与非 门HIT/TI CD4012双4输入端与非门NSC CD4013双主-从D型触发器 FSC/NSC/TOS CD4014 8位串入/并入-串出移位寄存器NSC CD4015 双4位串入/并 出移位寄存器TI CD4016 四传输门FSC/TI CD4017 十进制计数/分配器 FSC/TI/MOT CD4018可预希9 1/N计数器NSC/MOT CD4019四与或选择器PHI CD4020 1 4级串行二进制计数/分频器FSC CD4021 08位串入/并入-串出移位寄存器 PHI/NSC CD4022 八进9计数/分配器NSC/MOT 型号器件名称厂牌备注CD4023 三3输入端与非门NSC/MOT/TI CD4024 7级二进制串行计数/分频器NSC/MOT/TI CD4025 三3输入端或非门NSC/MOT/TI CD4026 十进9计数/7段译码器 NSC/MOT/TI CD4027 双J-K 触发器NSC/MOT/TI CD4028 BCD 码十进制译码器 NSC/MOT/TI CD4029 可预置可逆计数器NSC/MOT/TI CD4030 四异或门 NSC/MOT/TI/GOL CD4031 64 位串入/串出移位存储器NSC/MOT/TI CD4032 三串行加法器NSC/TI CD4033 十进制计数/7段译码器NSC/TI CD4034 8位通用总线寄 存器NSC/MOT/TI CD4035 4 位并入/串入-并出/串出移位寄存NSC/MOT/TI CD4038 三串行加法器NSC/TI CD4040 12级二进制串行计数/分频器NSC/MOT/TI CD4041 四同相/反相缓冲器NSC/MOT/TI CD4042四锁存D型触发器NSC/MOT/TI CD4043 4三态R-S锁存触发器("1"触发NSC/MOT/TI CD4044四三态R-S锁存触发器("0"触 发NSC/MOT/TI CD4046 锁相环NSC/MOT/TI/PHI CD4047 无稳态/单稳态多谐振荡器NSC/MOT/TI 型号器件名称厂牌备注CD4048 4输入端可扩展多功能门 NSC/HIT/TI CD4049 六反相缓冲/变换器NSC/HIT/TI CD4050 六同相缓冲/变换器 NSC/MOT/TI CD4051 八选一模拟开关NSC/MOT/TI CD4052 双4选1模拟开关 NSC/MOT/TI CD4053 三组二路模拟开关NSC/MOT/TI CD4054 液晶显示驱动器 NSC/HIT/TI CD4055 BCD-7 段译码/液晶驱动器NSC/HIT/TI CD4056 液晶显示驱动器NSC/HIT/TI CD4059 “N分频计数器NSC/TI CD4060 14级二进制串行计数/分频 器NSC/TI/MOT CD4063 四位数字比较器NSC/HIT/TI CD4066 四传输门 NSC/TI/MOT CD4067 16 选1模拟开关NSC/TI CD4068 八输入端与非门/与门

数字ic设计实验报告

数字集成电路设计 实验报告 实验名称二输入与非门的设计 一.实验目的 a)学习掌握版图设计过程中所需要的仿真软件

b)初步熟悉使用Linux系统 二.实验设备与软件 PC机,RedHat,Candence 三.实验过程 Ⅰ电路原理图设计 1.打开虚拟机VMware Workstation,进入Linux操作系统RedHat。 2.数据准备,将相应的数据文件拷贝至工作环境下,准备开始实验。 3.创建设计库,在设计库里建立一个schematic view,命名为,然后进入电路 图的编辑界面。 4.电路设计 设计一个二输入与非门,插入元器件,选择PDK库(xxxx35dg_XxXx)中的nmos_3p3、 pmos_3p3等器件。形成如下电路图,然后check and save,如下图。 图1.二输入与非门的电路图 5.制作二输入与非门的外观symbol Design->Create Cellview -> From Cellview,在弹出的界面,按ok后出现symbol Generation options,选择端口排放顺序和外观,然后按ok出现symbol编辑界面。按照需 要编辑成想要的符号外观,如下图。保存退出。

图2.与非门外观 6.建立仿真电路图 方法和前面的“建立schemtic view”的方法一样,但在调用单元时除了调用analogL 库中的电压源、(正弦)信号源等之外,将之前完成的二输入与非门调用到电路图中,如下图。 图3.仿真电路图 然后设置激励源电压输出信号为高电平为3.5v,低电平为0的方波信号。 7.启动仿真环境 在ADE中设置仿真器、仿真数据存放路径和工艺库,设置好后选择好要检测的信号在电路中的节点,添加到输出栏中,运行仿真得到仿真结果图。

相关主题
文本预览
相关文档 最新文档