当前位置:文档之家› 中性点直接接地系统的零序电流保护汇总

中性点直接接地系统的零序电流保护汇总

中性点直接接地系统的零序电流保护汇总
中性点直接接地系统的零序电流保护汇总

第三章 中性点直接接地系统的零序电流保护

一、零序电流保护及其在系统中的作用

不对称短路的计算相当于在短路点增加了一个额外附加阻抗的三相短路如下:

可见零序电流的大小与系统运行方式有关。但零序电流在零序网罗中的分布只与零序网络的结构以及变压器中性点接地的数目和位置有关。

图3-31( b )为其短路计算的零序等效网络。

在零序等效网络中,零序电流看成是故障点F 出现一个零序电压U F0产生的,其方向取由母线流向故障点为正。零序电压的方向采用线路高于大地的电压为正。这样,A 母线的零序是电压表示为。

11)(oT o oA Z I U ??-= (3-48)

该处零序电压与零序电流之间的相位差是由Z 0T1的阻抗角决定的,与线路的零序阻抗无关,线路两端零序功率方向实际上都是由线路流向母线,与正序功率的方向相反

利用零序分量构成线路接地短路的继电保护装置,由于工作原理与结构简单,不受负荷电流影响,保护范围比较稳定,正确动作率高达97%等优点,在我国大接地电流系统的不同电压等级电网的线路上,广泛装设带方向性和不带方向性的多段式零序电流保护,作为反应接地短路的基本保护。

二、中性点直接接地系统变压器中性点接地原则

中性点直接接地系统发生接地短路时,线路上零序电流的大小和分布,主要决定于电网中线路的零序阻抗和中性点接地变压器的零序阻抗以及中性点接地变压器的数目和位置,对于变压器中性点接地的原则:

(1)发电厂及变电站低压侧有电源的变压器,若变电站中只有单台变压器运行,其中性点应接地运行,以防止出现不接地系统的工频过电压。

(2)自耦变压器和有绝缘要求的其它变压器其中性点必须接地运行;

(3)T接于线路上的变压器,以不接地运行为宜。当T接变压器低压侧有电源时,则应采取防止接地故障时产生工频过电压的措施,最好故障时将小电源解裂;

(4)为防止操作过电压,在操作时应临时将变压器中性点接地,操作完毕后再将其断开。

(5)从保护的整定运行出发,还应做如下考虑:变压器中性点接地运行方式的安排,应尽量保持同一厂(站)内零序阻抗基本不变,如:有两台及以上变压器时,一般只将一台变压器中性点接地运行,当该变压器停运时,将另一台中性点不接地变压器中性点直接接地

运行,并把它们分别接于不同的母线上,当其中的一台中性点直接接地变压器停运时,将另

一台中性点不接地的变压器直接接地。

如图3-32所示的系统发生接地短路时,可以清楚看出零序电流的数值和分布与变压器中性点接地有很大关系。只有变压器T1的中性点直接接地,当F 点发生单相接地短路时,由于变压器T2的中性点不接地,所以零序电流只流经T1而不流向T2。T1的△侧绕组中虽然感应有零序电流,但它只在△侧绕组中环流而不能流向△侧的引出线。在图3-32(b )中,变压器T1、T2的中性点都直接接地。所以在F 点发生单相接地时,零序电流经由T1、T2两条路径形成回路。在图3-32(c )中,变压器T1和T2的三个中性点都直接接地,当T2的低压侧F 点发生单相接地时,不仅T2低压侧线路有零序电流,而且T1与T2之间的线路上也有零序电流。

三、三段式零序电流保护的整定

采用三相完全星形接线方式的相间电流保护,由于其动作电流较大,用来反应单相接地短路,灵敏性可能不满足要求。为了反应接地短路,必须装设专用的接地保护。

1. 零序电流速断保护

零序电流速断保护为了保证选择性,其保护范围不超过本线路末端,启动电流应按以下原则整定。

(1)躲过被保护线路末端接地短路时的最大零序电流3I 0max ,即

m ax ''1.3o rel ost I K I ?= (3-49)

式中rel

K '——可靠系数,取1.2~1.3。 在接地短路中,应以常见的故障类型和故障方式为依据。

1)只考虑单一设备故障。对两个或两个以上设备的重叠故障,可视为稀有故障,不作为整定保护的依据。

2)只考虑常见的,在同一点发生单相接地或两相短路接地简单故障,不考虑多点同时短路的复杂故障。

当网络的正序阻抗等于负序阻抗时,即Z 1=Z 2,则在同一地点发生单相接地或两相接地短路的短路电流分别为:

011

)1(233Z Z E I o +=; 011)1.1(233Z Z E I o +=

如果Z 0>Z 1时,(1)(1.1)00

33I I >,启动电流应采用单相接地短路时的零序电流(1)03I 来整定;而当Z 1> Z 0时,(1.1)(1)00

33I I >,启动电流应采用两相接地短路时的零序电流来整定。 (2)躲过断路器三相触头不同时接通时所引起的最大零序电流。

1)断路器先接通一相,相当两相断线时,零序电流为

∑∑??+-=012

102Z Z E E I (3-50)

2)断路器先接通两相,相当一相断线时,零序电流为

∑∑??+-=012

102Z Z E E I (3-51)

上两式1E 、E 2——断线点两端系统的等值电势,考虑最严重情况,1E 与2E 的相位差为 180°。1Z ∑、0Z ∑——从断线点看进去网络正序、零序综合阻抗。对于(3-50)、(3-51)两式,取其中的较大者进行整定计算。

(3)在装有综合重合闸的线路上,应躲过非全相状态下又发生振荡所出现的最大零序电流。

保护装置的灵敏性是以保护范围的长度来衡量。零序电流速断保护的长度不小于被保护线路全长的(15~20)%。如果按这一条件整定,在正常情况下发生接地故障时,其保护范围太小,不满足要求,通常可以设置两个零序I 段保护,一个按条件(1)、(2)整定的零序I 段(称灵敏I 段),其主要任务是对全相运行状态下的接地故障起保护作用,在单相重合闸启动时,将其闭锁,另一个是按条件(3)整定的I 段(称不灵敏I 段)装设的目的是在单

相重合闸过程中,又发生接地故障时起保护作用。

2.零序电流限时速断保护

零序电流限时速断保护的动作范围应包括线路的全长,启动电流按以下原则整定。

(1)启动电流应与下一线路零序电流速断保护配合,即躲过下一线路零序I 段保护范围末端接地短路时,通过本保护的最大零序电流。 '2''''1ost ob

rel ost I K K I = (3-52) 相邻线路有多条出线时,上式的2ost

I '应选择其中的最大者。rel K ''为可靠系灵敏,取1.1;K ob 为最小分支系数,其值等于下一线路零序I 段保护范围末端接地短路时,流经故障线路与本线路的零序电流之比的最小值。动作时限为0.5秒。

用被保护线路末端接地短路时,流过保护的最小零序电流进行灵敏度校验,灵敏系灵敏5.1~3.1≥sen K 。若灵敏度校验不合格,改用下面两种方法整定。

(2)与下一段线路零序电流限时速断保护相配合进行整定,即, ''2''''1ost ob

rel ost I K K I = (3-53) 时限再抬高一级,取1~1.2秒。

(3)保留灵敏度校验不满足要求,时限为0.5秒的零序Ⅱ段。一人定值较大,能在正常运行方式或最大运行方式下,以较短的延时切除本线路的接地短路,另一个则具有较长的延时,保护各种运行方式下线路末端接地短路时,具有足够的灵敏系数。

3、零序过电流保护

零序过电流保护主要作为本线路零序I 段和零序Ⅱ段的近后备和相邻线路、母线、变压器接地短路的远后备保护。在终端线路上可以作为主保护使用。

启动电流以下面原则进行整定。

(1)躲过相邻线路出口处三相短路时所出现的最大不平衡电流,

max '''?=ub rel ost I K I (3-54)

(2)启动电流按逐渐配合的原则整定,即本线路零序过电流保护的保护范围不能超出相邻线路上零序过电流的保护范围。逐级配合的原则是保证电网保护有选择性动作的重要原则,不遵守这条原则就难免出现保护越级跳闸。

例如:假定图3-33中三段式零序电流保护A 没有按上述原则严格地与相邻线三段式零序电流保护B 相配合。尽管保护B 的第二段对线路B 末端故障有足够灵敏度,保护A 的第三段在动作时间上大于保护B 的第二段动作时间,但是保护A 第三段在灵敏度上与保护B 的二、三段不配合,其动作特性如图3-33所示,出现相互交错的情况,如图中打叉部分。此时,虽然在线路B 上发生的金属性接地故障,仍可以由保护B 的第一段或第二段动作,有选择地切除故障,但在下述许多情况下,如果保护B 第二段不能可靠动作,则可以导致保护A 越级跳闸。

1)在线路B 末端发生经大过渡电阻的接地故障(如对树放电,对竹子放电等)时,保护B 第二段不一定能动作,但第三段可以动作。然而保护A 第三段因为其动作特性与保护B 第三段重迭,也可能同时动作,后果是造成线路A 不必要地被切断。

2)线路B的始端断路器因故断开一相,但负荷较轻,其两相运行零序电流较小,不足以起动保护B第三段。这本来完全可以由运行人员手动处理,或依靠断路器非全相保护动作,跳开三相断路器,但由于保护A第三段的灵敏度与保护B第三段不配合,它反而可能动作而越级跳开A断路器。

3)在线路C发生金属性接地故障而其断路器因故拒绝动作时,本来可以靠保护B作为后备,跳开B断路器,但由于保护A与保护B动作特性重迭,因而可能导致断路器A 越级跳闸。

上述配合原则,不仅适用于第一次故障的情况,还应该同样适用于重合闸过程中又发生故障(单相重合过程中健全相又故障)和重合于永久性故障的情况。

当零序电流保护作近后备时,校验接地短路点在被保护线路的末端,要求灵敏系数≥

K;而作为远后备时,校验接地短路点在相邻线路的末端,要求灵敏系数

3.1

~

5.1

sen

K≥。

1.2

sen

按上述原则整定的零序过电流保护,起动电流一般较小,因此,当本电压级电网内发生接地短路时,凡零序电流流过的各个保护都能起动,为了保证各保护之间动作的选择性,它们的动作时限应按阶梯原则来选择,与相同故障电流保护时限特性一样,所不同的时是接地故障零序电流保护的动作时限不须从离电源最远处的保护开始逐级增大,而相间故障的电流保护的动作时限则必须从离电源最远处的保护开始逐级增大,如图3-34所示(其中时间阶梯特性1代表零序电流保护的时限特性,2代表相同短路电流保护的时限特性)。这是因为变压器T1的△侧以后无零序电流流通之故。

四、零序电流滤过器

线路零序电流保护的零序电流,除了单台Y ,d 变压顺单回出线的变电所,可以取自变压器中性点电流互感器之外,一般都取自线路三相电流互感器组成的零序电流滤过器。微机保护用的0I ,一般由软件构成03A B C I I I I =++。

一般变压器的零序电流保护,可以自变压器中性点电流互感器取得零序电流。但对自耦变压器,由于不是所有接地故障都能在变压器中性点产生具有一定方向、并且幅值足够的零序电流,所以它的零序电流保护,一般不是从变压器中性点取得零序电流,而是从变压器出口零序电流滤过器取得零序电流。例如:当在图3-35中所示的自耦变压器的高压侧发生接地故障时,高压绕组通过零序电流0I I ,并产生零序安匝00I I I N 。它的一部分为三次△

绕组产生的零序安匝I III0N III 所抵销,剩下部分才分为二次绕组产生的安匝I III0N II 所抵销。而一、二次安匝的比例关系又决定于二次绕组所在电网零序综合阻抗0Z ∑的值,当0Z ∑为某一值时,一、二次安匝比可能等于一、二次匝数比,即

II I II II I I N N N I N I =--?

?

此时,一、二次电流大小相等,但方向相反,即

II I I I ?

?-=

一、二次电流将在共用的绕组中完全抵销,因而在中性点不出现电流;当0Z ∑大于此值时,中性点零序电流将与高压侧故障电流同相;当0Z ∑小于此值时,中性点零序电流又将与高压侧故障电流反相。

采用零序电流滤过器方式时,由于三个电流互感器的变比误差不一致以及励磁电流有差异等原因,正常时就存在不平衡电流。当发生相间故障时,一次电流增大,不平衡电流也将随之增大,在整定灵敏的零序电流保护时,必须考虑这个因素。

用三相电流互感器构成的零序电流滤过器的原理图如图3-36所示。由图可知

c b a k I I I I ????++= (3-55)

对于三相对称的正序电流或负序电流,其输出电流为零,即0K I =,对于零序电流,则03K I I =。由此可知,这种零序电流滤过器的输出电流实际上就是电流互感器星形接线方式的中线电流。因此,在继电保护的具体接线中并不需要专设一组电流互感器来构成零序电流滤过器,只要把零序保护的电流线圈直接串接在相间短路保护用电流互感器的中线上即 可。

图3-37示出了一个电流互感器的等效电路,若考虑励磁电流f I 的影响,则二次电流与一次电流的关系为 )(112f TA

I I K I ???-= (3-56) 于是,这种零序电流滤过器的等效电路可用图3-38表示,其输出电流为

c b a k I I I I ?

???++==TA

K 1[)(A f A I I ???-+)(B f B I I ???-+)(C f C I I ???-] =TA K 1[(C B A I I I ???++)—(C f B f A f I I I ??????++)] (3-57) 在电网正常运行或发生非接地相间短路故障时,C 0A B I I I ++=,滤过器的输出电流

k I ?=TA

K 1-(C f B f A f I I I ??????++)=?ub I (3-58) 式中ub I 称为零序电流滤过器的不平衡电流,它是由于三个电流互感器励磁电流不完全相等和三相不完全对称而产生的。电流互感器铁芯饱和特性的差异和制造过程中的其它差异,都会引起励磁电流的变化。当系统发生相间短路时,电流互感器的一次电流很大,且含有大量的非周期分量,使铁芯饱和程度加剧,不平衡电流也较大。

五、方向性零序电流保护

1.零序功率向方向继电器的动作特性及其接线。

在大接地电流系统中,如果线路两端的变压器中性点都接地,当线路上发生接地短路时,在故障点与各变压器中性点之间都有零序电流流过,其情况和两侧电源供电的辐射形电网中的相间故障电流保护一样。为了保证各零序电流保护有选择性动作和降低定值,就必须加装方向继电器,构成零序方向电流保护,使得零序方向电流保护在母线向线路输送零序功率时退出,而线路向母线输送零序功率时投入。

正确的零序功率方向继电器的动作特性和接线,应在被保护线路正方向接地故障时,使零序电流与零序电压的相位关系进入继电器动作区的较灵敏部分。

当电流自母线流向线路为正,电压以线路高于大地为正时,线路正方向故障,零序电

流越前零序电压180°-θ,θ为变电所变压器零序阻抗的阻抗角。如果θ为85°,则零序

电流越前零序电压95°。

目前常用的零序功率方向继电器动作特性,根据制造厂习惯不同,有最灵敏角为电流越前电压100°~110°和最灵敏角为电流滞后电压70°两种,见图3-39(a )和图3-39(b )。前一种与正方向故障情况相一致,其电流和电压回路的极性应分别与零序电流互感器和零序电压互感器的同极性相连接,如图3-40中的继电器A ;后一种的零序功率方向继电器,应将其电流线圈套中标有“·”号的端子与零序电流滤过器标有“·”号的端子相联接,以输入03I ;而继电器电压线圈标有“·”号的端子与零序电压滤过器未标“·”号的端子联系,以取得03U ,这一点在实际工作中应予注意。

2. 利用一次负荷电流和运行电压检查零序功率方向继电器

零序功率方向继电器是比较零序电压与零序电流之间的相位关系来判别方向的。在运行中,很大一部分零序电流方向保护的误动作,是由于零序功率方向继电器交流回路接线不正确所致。为了防止接线不正确引起的误动作,对于新安装的保护在运行前除了必须查明零序功率方向继电器的动作特性和端子极性以及正确连接由互感器端子箱到继电器的电流和电压回路的接线之外;还可以利用一次负荷电流和正常运行电压,用试验的方法证明继电器接线是否正确。

在线路带负荷情况下,检查零序电流方向保护向量的步骤如下:

(1)首先用一组TV 专供零序电流方向保护做相量检查用,其它线路运行设备,由另一组TV 供电。

(2)在TV 端子箱处,将开口三角绕组的接线进行改接,使方向元件有电压。由于各站TV 接线方式不同,可根据现场情况模拟A 相或B 相或C 相接地(见表3-1)。

表3-1 带负荷后零序电流方向保护相量的分析

(3)在保护盘处,测量开口三角的L 对星形端A 、B 、C 的电压,以确定方向元件所加电压相位是否正确。

(4)零序方向元件依次通入A B C I I I 、

、电流。 (5)测三相负荷电流相位,与盘表核对。确定功率因数角及功率送受情况。

(6)开口三角绕组改线后,方向元件端子上电压,应符合表3-1所列数值。

(7)分析判断。模拟哪相接地,即应以该相电压为基准,根据功率继电顺的动作特性,

画出继电器动作区。

通入哪些电流,即应以该电流同相之相电压为基准,画出四个象限。纵坐标表示有功线,横坐标表示无功线。电流相量确定后,即可明显看出继电器动作状态,见表3-2。

表3-2 测量结果

应为动作或不动。改接开口三角绕组接线时,零序电压回路出现100V,应采取措施,防止零序过压继电器烧毁。L端对星形接线绕组电压值,按开口三角绕组TV电压=100V,TV

为基准进行计算的,基准值变化时,交影响L点对星形

星形侧线电压=100V,相电压

侧各点的电压值。

3.零序功率方向继电器的使用原则

电力系统事故统计材料表明,大接地电流系统电力网中,线路接地故障占线路故障总数的80%~90%,零序电流方向保护的正确动作率约97%,是高压线路保护中正确动作率最高的一种。零序电流方向保护具有原理简单、动作可靠,设备投资小,运行维护方便,正确动作率高等一系列优点。因此,在我国大接地电流系统不同电压等级电力网的线路上,都装设了这种保护作为基本保护。

然而,在运行实践中,零序功率方向继电器误动作时有发生。为了提高零序电流保护动作可靠性,简化其回路,零序功率方向继电器的使用原则如下:

(1)除了采用方向元件后,能使保护性能有较显著改善的情况外,对于动作机率最多的零序电流保护的瞬时段,特别是“躲非全相I段”,以及起后备作用的最末一段,应不经方向元件动作跳闸。

(2)其它各段,如实际选用的定值,可以不经方向元件能保证选择性并有一定灵敏度时,也不宜经方向元件动作跳闸。

(3)对于平行双回线,特别是对采用单相重合闸的平行双回线,如果互感较大,零序电流保护的有关延时段,必要时也包括灵敏I段,一般以经过零序方向元件控制为宜,因为这样要以不必考虑非全相运行情况下双回线路保护之间的配合关系,可以改善保护工作性能。

(4)方向继电器的动作功率,应以不限制保护动作灵敏度为原则,一般要求在发生接地故障且当零序电流为保护启动值时,应有2以上的灵敏度。

六、对零序电流保护的评价

在大接地电流系统中,采用零序电流保护与采用三相完全是形接线的电流保来反应接地故障相比较,前者具有较突出优点:

(1)相间短路的过电流保护,其动作电流按躲过最大负荷电流来整定,一般为5~7A,而零序过电流保护则是按躲过最大不平衡电流整定的,其动作电流一般为2~4A。由于发生

3I相等。因此,零序过电流是保护有较高的灵敏单相接地短路时,故障相电流与零序电流0

度。

(2)零序过电流保护的动作时限,不必与y,d接线变压器的d侧线路保护的动作时限相配合,故动作时限比相间保护的动作时限小。

(3)线路零序阻抗较正序阻抗大,X0=(2-3.5)X1,故线路始端与末端接地短路,零序电流变化显著,系统运行方式改变时,零序电流变化较小,因此零序速断保护的保护范围较大,对于一般的中、长线路可以达到线路全长的70%~80%,性能与距离保护相近,并且保护范围比较稳定,零序II段的灵敏系数也易于满足要求。

(4)保护安装地点正方向附近接地短路,零序功率方向继电器没有电压死区,而相间短路保护功率方向继电器有死区。

(5)保护不受负荷和系统振荡的影响,而相间短路电流保护则受系统振荡、短时过负荷的影响而可能误动作,必须采取防止措施。零序电流保护反应于零序电流的绝对值,受故障过渡电阻的影响较小。

零序电流保护也存在一些缺点,有:

(1)当电流回路断线时,可能造成保护误动作,这是一般较灵敏的保护的共同弱点,需要在运行中注意防止。就断线机率而言,它比距离保护电压回路断线的机率要小得多,如果确有必要,还可以利用相邻电流互感器零序电流闭锁的方法防止这种误动作。

(2)当电力系统出现不对称运行时,也要出现零序电流,例如变压器三相参数不同所引起的不对称运行,单相重合闸过程中的两相运行,三相重合闸和手动合闸时的三相断路器不同期,母线倒闸操作时断路器与隔离开关并联过程或断路器正常环并运行情况下,由于隔离开关或者说断路器接触电阻三相不一致而出现零序环流(图3-41),以及空投变压器时产生的不平衡励磁涌流,特别是在空投变压器所在母线有中性点接地变压器在运行中的情况下,可能出现较长时间的不平衡励磁涌流和直流分量等等,都可能使零序电流保护起动。

(3)地理位置靠近的平行线路,当其中一条线路故障时,可能引起另一条线路出现感应零序电流,造成反方向侧零序方向继电器误动作。对于此种情况,可以改用负序方向继电器,来防止上述方向继电器误判断。

七、零序电流保护与重合闸配合使用

1.在采用单相重合闸的线路上,零序电流保护最末一段的时间要躲过线路的重合闸周期,其原因是:

1)零序电流保护最末一段通常都要求作相邻线路的远后备保护以及保证本线经较大的过渡电阻(220KV为100 )接地仍有足够的灵敏度,其定值一般整定得较小。线路重合过程中非全相运行时,在较大负荷电流的影响下,非全相零序电流有可能超过其整定值而引起保护动作。

2)为了保证本线路重合过程中健全相发生接地故障能有保护可靠动和切降故障,零序电流保护最末一段在重合闸启动后不能被闭锁而退出运行。

综合上述两点,零序电流保护最末一段只有靠延长时间来躲过重合闸周期,在重合过程

3I时,中既可不退出运行,又可避免误动。当其定值躲不过相邻线非全相运行时流过本线的0

其整定时间还应躲过相邻线的重合闸周期。

2.与三相重合闸配合使用的零序电流方向保护

(1)零序电流一段保护

阶段式零序电流方向保护的一段,在整定时要避越正常运行和正常检修方式下线路末端(不带方向时应为两端母线)单相及两相接地故障时流经被保护线路的最大零序电流。

当零序电流保护与三相重合闸配合使用时,由于线路后重合侧断路器合闸不同期造成瞬时性(断路器三相合闸不同期时间,实际可能达到40~60ms)非全相运行,也产生零序电流。当躲不过这种非全相的最大零序电流时,不带时限的一段保护将发生误动作。

避越线路末端故障整定是绝对必须的。如果该定值又大于避越断路器不同期引起的非全相零序电流整定值,那么,只需要设置一个不带时限的一段电流保护。如果断路器不同期引起的非全相零序电流大于末端故障的零序电流时,或者按躲非全相情况整定;或者在三相重合闸时给躲不开非全相运行零序电流的第一段带0.1s的时限;或者按两个第一段,一个按躲非全相情况整定不带时限,另一个按躲末端故障整定,但在重合闸后加0.1s时限或退出工作。

综上所述,在三相重合闸配合作用时,零序电流方向保护装置必须具备实现两个第一段(灵敏一段与不灵敏一段)保护的可能性和无时限的一段保护在重合闸时带0.1s时限的可能性。

(2)零序电流方向保护装置中带时限的后备保护段数

根据规程规定,多段式零序电流方向保护之间必须按逐极配合原则整定,即要求灵敏度和时间两方面的配合。为了适应不同电压等级的电力网对后备作用以及特殊用途的保护(例如旁路断路器的保护)对保护段数的要求,按现在系统实际的配置,要求零序电流方向保护除有两个第一段外,还应有三个时间后备段。

3、与综合重合闸配合使用时的零序电流方向保护装置

(1)零序电流一段保护

1)避越正常及正常检修运行方式下线路末端(或两端母线)发生单相及两相接地故障时流过本线路的最大零序电流。

2)避越单相重合闸周期内非全相运行时的最大零序电流。

如果要求在线路非全相运行时有不带时限的零序电流保护,而非全相运行时的最大零序电流又大于末端(或两端)接地故障时的零序电流时,则必须设置两个无时限的第一段零序电流保护,分别是灵敏一段保护(按躲末端故障整定)和不灵敏一段保护(按躲非全相运行情况整定)。因为躲不过非全相运行的零序电流,在单相重合闸周期内灵敏一段必须退出运行,只保留不灵敏一段保护在非全相运行时继续工作。

必须指出,在非全相运行期间,保留能躲过非全相零序电流的无时限第一段保护是必要的,它是相邻线路后备保护逐级配合整定的基础段,并以它在非全相运行期间不退出工作来保证相邻线路与其配合的二段保护在整定上不失配,而不发生无选择性的越级跳闸。在此前提下,设置灵敏一段是为了在第一次故障时加大无时限保护段的保护范围。

因此,与综合重合闸配合作用的零序电流方向保护装置也必须有实现两个一段的可能性。

(2)零序电流二段保护

1)为了提高末端故障时的灵敏度,并降低整定时间,在整定上可只考虑与相邻线路的不灵敏一段保护配合。

如此整定的二段电流保护,如果在本线路单相重合闸周期内其电流整定值和整定时限上都躲不过非全相运行情况的话,就必须退出运行。

2)在有的系统中,个别短线路上安装了所谓的不灵敏二段保护,它的启动电流值按躲过非全相运行的最大零序电流整定,但因为躲不过末端故障,所以要带一个时限段。在本线路单相重合闸期间,不灵敏二段不退出工作。设置不灵敏二段保护,主要是为了改善相邻后备段的整定配合条件。

在没有不灵敏二段的条件下,相邻线路的二段只能同本线路的不灵敏一段配合,而相邻线路的三段保护则需与本线路的重合闸后的三段配合。如果设有不灵敏二段时,相邻线路的二段或三段的整定都可以与它配合,从而改善了相邻线路的保护性能。在某些情况下这种改善的效果还是相当明显的。

因此,零序电流保护装置要考虑实现两个二段的可能性。但是,对装置来说,虽然要求

既可以设置两个第一段,又可以设置两个第二段,但不灵敏一段和不灵敏二段不可能同时出现在一个保护装置中。

(3)序电流后备保护

零序电流方向保护装置各段是按逐级配合原则整定的,设置四段保护是的必要的,虽然有的电力系统采用三段式保护也可满足整定要求,但对于旁路断路器上的保护而言,由于它要代替的线路保护较多,为了运行方便,一般要多设几段,为此,在保护装置内还设置了一个附加电流元件和时间元件,在必要时,可以再增设一段保护。

中性点直接接地系统零序电流保护

第三章 中性点直接接地系统的零序电流保护 一、零序电流保护及其在系统中的作用 不对称短路的计算相当于在短路点增加了一个额外附加阻抗的三相短路如下: 可见零序电流的大小与系统运行方式有关。但零序电流在零序网罗中的分布只与零序网络的结构以及变压器中性点接地的数目和位置有关。 图3-31( b )为其短路计算的零序等效网络。 在零序等效网络中,零序电流看成是故障点F 出现一个零序电压U F0产生的,其方向取由母线流向故障点为正。零序电压的方向采用线路高于大地的电压为正。这样,A 母线的零序是电压表示为。 11)(oT o oA Z I U ? ?-= (3-48) 该处零序电压与零序电流之间的相位差是由Z 0T1的阻抗角决定的,与线路的零序阻抗无关,线路两端零序功率方向实际上都是由线路流向母线,与正序功率的方向相反

利用零序分量构成线路接地短路的继电保护装置,由于工作原理与结构简单,不受负荷电流影响,保护范围比较稳定,正确动作率高达97%等优点,在我国大接地电流系统的不同电压等级电网的线路上,广泛装设带方向性和不带方向性的多段式零序电流保护,作为反应接地短路的基本保护。 二、中性点直接接地系统变压器中性点接地原则 中性点直接接地系统发生接地短路时,线路上零序电流的大小和分布,主要决定于电网中线路的零序阻抗和中性点接地变压器的零序阻抗以及中性点接地变压器的数目和位置,对于变压器中性点接地的原则: (1)发电厂及变电站低压侧有电源的变压器,若变电站中只有单台变压器运行,其中性点应接地运行,以防止出现不接地系统的工频过电压。 (2)自耦变压器和有绝缘要求的其它变压器其中性点必须接地运行; (3)T接于线路上的变压器,以不接地运行为宜。当T接变压器低压侧有电源时,则应采取防止接地故障时产生工频过电压的措施,最好故障时将小电源解裂; (4)为防止操作过电压,在操作时应临时将变压器中性点接地,操作完毕后再将其断开。 (5)从保护的整定运行出发,还应做如下考虑:变压器中性点接地运行方式的安排,应尽量保持同一厂(站)内零序阻抗基本不变,如:有两台及以上变压器时,一般只将一台变压器中性点接地运行,当该变压器停运时,将另一台中性点不接地变压器中性点直接接地 运行,并把它们分别接于不同的母线上,当其中的一台中性点直接接地变压器停运时,将另

小电流接地系统原因与分析

小电流接地系统接地的原因分析及对策 小电流接地系统特别是35KV及以下的小接地系统,由于线路分支多,走向复杂,电压等级较低,在设计施工中质量不易保证,运行中发生接地故障的几率很高。为了便于电网值班人员准确判断接地类别,及时处理故障,保证电网的安全可靠运行,提高用户电能质量。本文通过对兴义市地方电网的运行实践,从小接地系统绝缘监察装置的构成及动作原理,历年接地故障情况的统计、接地原因、故障判别及预防接地的措施等几个方面进行分析,对运行值班人员和工程技术人员有一定的借鉴作用。 1.问题提出 目前,小电流接地系统特别是35KV及以下的小接地系统,由于其线路分支多,走向复杂,电压等级较低,在设计施工中线路质量不易保证,运行中发生接地故障的几率是很高的。从我市地方电网历年来的运行统计资料来看,在小电流接地系统的接地故障中,35KV电网占8.2%,10KV电网占91.8%。本文通过笔者在实践中对电网运行工况的了解以及运行经验的总结,分析了小电流接地系统在实际运行中易引起误判的几类接地故障,在给出其原因分析的基础上着重阐述了接地故障的判别方法、处理措施及对策。相信对同行有一定的借鉴作用。 2.易引起误判的几类接地故障及其原因分析 为了便于展开下文,我们有必要首先对电网发生接地的原因作一个简单的分析。如图1,当中性点电压Uo不为0且Uo大于绝缘监察系统定值时,便有接地信号发出,而Uo 反映的是零序电压,其计算公式为: Uo=(ùa+ùb+ùc)/3 从上式可以看出,当电网各相电压ùa、ùb、ùc不平衡时,便有中性点电压Uo产生,而电网电压的不平衡度是接地信号发生与否的关键,本文下面的论述将紧紧围绕接地故障发生的原因作具体分析。根据兴义市地方电网历年来的运行资料,我们统计了如下几类经常发生接地的情况:

保护接地和保护接零的区别

以保护人身安全为目的,把电气设备不带电的金属外壳接地或接零,叫做保护接地及保护接零。 1、保护接地 在中性点不接地的三相电源系统中,当接到这个系统上的某电气设备因绝缘损坏而使外壳带电时,如果人站在地上用手触及外壳,由于输电线与地之间有分布电容存在,将有电流通过人体及分布电容回到电源,使人触电,如图6-7-13所示。在一般情况下这个电流是不大的。但是,如果电网分布很广,或者电网绝缘强度显著下降,这个电流可能达到危险程度,这就必须采取安全措施。 没有保护接地的电动机一相碰壳情况 保护接地就是把电气设备的金属外壳用足够粗的金属导线与大地可靠地连接起来。电气设备采用保护接地措施后,设备外壳已通过导线与大地有良好的接触,则当人体触及带电的外壳时,人体相当于接地电阻的一条并联支路,如图6-7-14所示。由于人体电阻远远大于接地电阻,所以通过人体的电流很小,避免了触电事故。

装有保护接地的电动机一相碰壳情况 保护接地应用于中性点不接地的配电系统中。 2、保护接零 2.1. 保护接零的概念 为了防止电气设备因绝缘损坏而使人身遭受触电危险,将电气设备的金属外壳与供电变压器的中性点相连接者称为保护接零。保护接零(又称接零保护)也就是在中性点接地的系统中,将电气设备在正常情况下不带电的金属部分与零线作良好的金属连接。图6-7-15是采用保护接零情况下故障电流的示意图。当某一相绝缘损坏使相线碰壳,外壳带电时,由于外壳采用了保护接零措施,因此该相线和零线构成回路,单相短路电流很大,足以使线路上的保护装置(如熔断器)迅速熔断,从而将漏电设备与电源断开,从而避免人身触电的可能性。

保护接零 保护接零用于380/220V、三相四线制、电源的中性点直接接地的配电系统。 在电源的中性点接地的配电系统中,只能采用保护接零,如果采用保护接地则不能有效地防止人身触电事故。如图6-7-16所示,若采用保护接地,电源中性点接地电阻与电气设备的接地电阻均按4Ω考虑,而电源电压为220V,那么当电气设备的绝缘损坏使电气设备外壳带电时,则两接地电阻间的电流将为: 中性点接地系统采用保护接地的后果 熔断器熔体的额定电流是根据被保护设备的要求选定的,如果设备的额定电

电缆的接地线为什么要穿过零序电流互感器

电缆的接地线为什么要穿过零序电流互感器零序电流互感器与接地线的关系应掌握一个原则:电缆两端端部接地线与电缆金属保护层、大地形成的闭合回路不得与零序电流互感器匝链(穿过)。即当电缆接地点在零序电流互感器以下时,接地线应直接接地;接地点在零序电流互感器以上时,接地线应穿过零序电流互感器接地。同时,由电缆头至零序电流互感器的一段电缆金属护层和接地线应对地绝缘,对地绝缘电阻值应不低于50kΩ。以上做法是为了防止电缆接地时的零序电流在零序电流互感器前面泄漏,造成误判断;经电缆金属护层流动的杂散电流由接地线流入大地,也不与零序电流互感器匝链,杂散电流也不会影响正确判断。 零序电流互感器与接地线的关系应掌握一个原则:电缆两端端部接地线与电缆金属保护层、大地形成的闭合回路不得与零序电流互感器匝链(穿过)。即当电缆接地点在零序电流互感器以下时,接地线应直接接地;接地点在零序电流互感器以上时,接地线应穿过零序电流互感器接地。同时,由电缆头至零序电流互感器的一段电缆金属护层和接地线应对地绝缘,对地绝缘电阻值应不低于50kΩ。以上做法是为了防止电缆接地时的零序电流在零序电流互感器前面泄漏,造成误判断;经电缆金属护层流动的杂散电流由接地线流入大地,也不与零序电流互感器匝链,杂散电流也不会影响正确判断。 1、如果单纯用于电缆接地,电缆的接地线是可以不经过电流互感器,而直接接地的。

2、如果该路出线(进线)设有零序保护,则要求取零序电流信号,该信号源就是这个电流互感器,为了准确测量这个零序电流,就要求被测的电流导体通过这个电流互感器,于是就出现了电缆的接地线通过零序电流互感器的情况。

大电流接地系统与小电流接地系统

大电流接地系统与小电流接地系统(不接地系统)发生故障的区别,对系统设备运行的影响,处理原则和注意事项。 中性点直接接地(包括经小阻抗接地)得系统,当发生单相接地故障时,接地电流一般都比较大,所以称为大电流接地系统.一般110kv及以上的系统采用大电流接地系统。 中性点不接地或经消弧线圈接地的系统,发生单相接地故障时,由于不构成短路回路,接地短路电流比负荷电流小很多,这种系统称为小电流接地系统。一般66kv及以下系统常采用这种系统 1 中性点不接地电网的接地保护 中性点不接地系统的接地保护、接地选线装置 (1) 系统接地绝缘监视装置:(陡电6.0KV厂用电系统) 绝缘监视装置是利用零序电压的有无来实现对不接地系统的监视。 将变电所母线电压互感器其中一个绕组接成星形,利用电压表监视各相对地电压,另一绕组接成开口三角形,接入过电压继电器,反应接地故障时出现的零序电压。 当发生单相接地故障时,开口三角形出现零序电压,过电压继电器动作,发出接地信号。 该保护只能实现监测出接地故障,并能通过三只电压表判别出接地的相别,但不能判别出是哪条线路的接地。要想判断故障线路,必须经拉线路试验。且若发生两条线路以上接地故障时,将更难判别。 装置可能会因电压互感器的铁磁谐振、熔断器的接触不良、直流的接地、回路的接触不良而误发或拒发接地信号。(2) 零序电流保护:零序电流保护是利用故障线路的零序电流比非故障线路零序电流大的特点来实现选择性的保护,如DD-11接地电流继电器和南自厂的RCS-955系列保护。 该保护一般安装在零序电流互感器的线路上,且出线较多的电网中更能保证它的灵敏度和选择性。但由于零序电流互感器的误差,线路接线复杂,单相接地电容的大小、装置的误差、定值的误差、电缆的导电外皮等的漏电流等影响,发生单相接地故障线路零序电流二次反映不一定比非故障线路大,易发生误判断、误动。 (3) 零序功率保护: 零序功率方向保护是利用非故障线路与故障线路的零序电流相差180°来实现有选择性的保护。如传统的零序功率方向继电器,无人值守综自所应用的如南瑞DSA113、119系列零序功率方向保护。 零序功率方向保护没有死区,但对零序电压零序电流回路接线等要求比较高,对系统中有消弧线圈的需用五次谐波功率原理。 (4) 小电流接地选线综合装置:

保护接地和保护接零有什么区别

低压配电系统的供电方式 低压配电系统按保护接地的形式不同 可分为:IT系统、TT系统和TN系统。 其中IT系统和TT系统的设备外露可导 电部分经各自的保护线直接接地(过去 称为保护接地);TN系统的设备外露可 导电部分经公共的保护线与电源中性点 直接电气连接(过去称为接零保护)。 国际电工委员会(IEC)对系统接地的 文字符号的意义规定如下: 第一个字母表示电力系统的对地关系: T--一点直接接地; I--所有带电部分与地绝缘,或一点经阻抗接地。 第二个字母表示装置的外露可导电部 分的对地关系: T--外露可导电部分对地直接电气连接,与电力系统的任何接地点无关;

N--外露可导电部分与电力系统的接 地点直接电气连接(在交流系统中,接地点通常就是中性点)。 后面还有字母时,这些字母表示中性线与保护线的组合: S--中性线和保护线是分开的; O--中性线和保护线是合一的。 (1)IT系统: IT系统的电源中性点是对地绝缘的或经高阻抗接地,而用电设备的金属外壳直接接地。即:过去称三相三线制供电系统的保护接地。 其工作原理是:若设备外壳没有接地,在发生单相碰壳故障时,设备外壳带上了相电压,若此时人触摸外壳,就会有相当危险的电流流经人身与电网和大地之间的分布电容所构成的回路。而设备的金属外壳有了保护接地后,由于人体电阻远比接地装置的接地电阻大,在发

生单相碰壳时,大部分的接地电流被接地装置分流,流经人体的电流很小,从而对人身安全起了保护作用。 IT系统适用于环境条件不良,易发生单相接地故障的场所,以及易燃、易爆的场所。 (2)TT系统: TT系统的电源中性点直接接地;用电设备的金属外壳亦直接接地,且与电源中性点的接地无关。即:过去称三相四线制供电系统中的保护接地。 其工作原理是:当发生单相碰壳故障时,接地电流经保护接地装置和电源的工作接地装置所构成的回路流过。此时如有人触带电的外壳,则由于保护接地装置的电阻小于人体的电阻,大部分的接地电流被接地装置分流,从而对人身起保护作用。 TT系统在确保安全用电方面还存在有不足之处,主要表现在:

接地距离保护与零序电流保护配合才能构成完整的接地保护

接地距离保护须与零序电流保护共同配合才能构成完整的接地保护 一、在大短路电流接地系统中发生接地故障后,就有零序电流、零序电压和零序功率出现,利用这些电气量构成保护接地短路的继电保护装置统称为零序保护。三相星形接线的过电流保护虽然也能保护接地短路,但其灵敏度较低,保护时限较长。采用零序保护就可克服此不足,这是因为:正常运行和发生相间短路时,不会出现零序电流和零序电压,因此零序保护的动作电流可以整定得较小,这有利于提高其灵敏度;Y/△接线降压变压器,△侧以后的故障不会在Y侧反映出零序电流,所以零序保护的动作时限可以不必与该种变压器以后的线路保护相配合而取较短的动作时限。1.当电流回路断线时,可能造成保护误动作。这是一般较灵敏的保护的共同弱点,需要在运行中注意防止。就断线机率而言,它比距离保护电压回路断线的机率要小得多。如果确有必要,还可以利用相邻电流互感器零序电流闭锁的方法防止这种误动作2.当电力系统出现不对称运行时,也要出现零序电流,例如变压器三相参数不同所引起的不对称运行,单相重合闸过程中的两相运行,三相重合闸和手动合闸时的三相断路器不同期,母线倒闸操作时断路器与隔离开关并联过程或断路器正常环并运行情况下,由于隔离开关或断路器接触电阻三相不一致而出现零序环流,以及空投变压器时产生的不平衡励磁涌流,特别是在空投变压器所在母线有中性点接地变压器在运行中的情况下,可能出现较长时间的不平衡励磁涌流和直流分量等等,都可能使零序电流保护启动.另外,零序保护一般分为三段或四段。零序保护的II 段是与保护安装处相邻线路零序保护的I 段相配合整定的,它不仅能保护本线路的全长,而且可以延伸至相邻线路 二、距离保护是反映短路点至保护安装处距离长度的,动作时限是随短路点距离而变的阶段特性,当短路电流大于精工电流时,保护范围与通过保护的电流大小无关。距离保护测量的是阻抗值。距离保护一段不受系统运行方式变化影响。其余各段受运行方式变化影响也较小,躲开负荷电流的能力较大,因而它对运行方式的适应能力较强。当电流电压保护不能满足要求时,可采用距离保护,通常距离保护都是成套使用的,其中一、二段担任主保护段,三段担任后备保护段。也有四段式的保护或二段式的保护。其实零序保护和距离保护只能从定义上区分,零序保护的灵敏度高一些。假如相间短路零序保护就不会动作,这时距离保护会动作,但是在三相电流不平衡时距离保护就不会动作,零序保护动作,只能说零序保护和距离保护互相配合,使线路保护更完善。也就是说零序保护和距离保护的动作方式不一样,零序保护动作于电流(零序方向保护、和零序功率保护需要与零序电压相配合),距离保护动作与线路的阻抗大小,与电压和电流共同影响阻抗的大小,也就是说电流大但是阻抗只不一定小,距离保护和安装保护的距离有关。零序保护只反映电流的大小。 三、接地距离和相间距离是距离保护的两种分类,前者保护的是接地短路,后者保护的是相间短路。两者的区别在于故障环的选取不同,也就是测量阻抗的计算方法(计算表达式)上不同。 两者的区别主要在于采用的电气量不同,接地距离保护是利用短路电压和电流的比值,即测量阻抗的变化来区分系统的故障与正常运行状态。而零序保护利用的是接地故障时产生的零序电流分量。这是两者在原理上的最主要区别。但是,两者从保护的配合上来看,都是属于阶段式的保护,即都需要各保护区的上下级配合。再一点,从保护的性能来分析。应该说,在不发生单相接地时,零序电流分量是不会出现的,所以零序电流保护具有较高的灵敏性。但在上下级的配合时,限时零序电流速断保护(零序II段)的灵敏性可能不满足要求,这时可采用接地距离保护。这也就是说接地零序保护的灵敏性高于电流保护(可以看到,距离保护利用了短路时的两个电气量,自然比单一的电流保护要灵敏)。所以保护的配备上,一般距离保护作为了主保护,那么电流保护都是作为后备保护的,即在线路发生故障时,首先

保护接地与保护接零的基本原理和不能混用的原因

团队的补充2011-04-14 22:24 以下内容也许对你有帮助 一、保护接地的基本原理和适用范围 在中性点不接地的三相三线制供电系统中,当电气设备的绝缘损坏使外壳带电时,接地短路电流经接地体和人体同时流过。由于人体的电阻RR(1700Ω)要比接地电阻RD(4Ω)大数百倍,流经人体的电流也比流过接地体的电流小数百倍。当接地电阻极小(小于4Ω)时,流过人体电流几乎等于零。另外,由于接地电阻很小,接地短路电流流过时,所产生的压降也很小,故外壳对大地的电压是很低,人站在大地上去碰触外壳时,人体所承受的电压很低,不会有危险。显然,在中性点不接地的系统中,采用保护接地可以有效地防止或减轻间接触电的危险。 在中性点直接接地系统中采用保护接地措施后,一旦电气设备发生碰壳故障,此时故障电流的流经路径为:电源(如U相)——故障设备的外壳——保护接地体RR——大地——中性点接地体RR——回到电源中性点。若此时恰好有人触及故障设备的外壳,就相当于人体电阻RR并联在保护接地电阻RD两端,此时,可求得接地故障电流IG为: 应注意的是,在大多数情况下,27.5A的故障电流是不足以使电路的过流保护装置(如熔断器、自动开关的脱扣器等)动作的,这将使得用电设备外壳上长期存在110V的对地电压,对人体是很不安全的。 二、保护接零的基本原理和适用范围 在广泛使用的三相四线制系统中采用保护接地是不安全的。如上述在大型超市的冷藏柜中采用保护接地,一旦发生漏电事故,冷藏柜上就会长期带有110V的对地电压,形成事故隐患,危及顾客的安全。那么,这种情况下应该采用哪种保护措施才是正确的呢?实际上,我国的低压配电网大多采用中性点直接接地的三相四线制380/220V系统。在这种系统中,应该采

漏电电流和零序电流区别

漏电流和零序电流两种的区别以下讲解均在三相四线制接线模式下。 一.零序电流检测三种方法 方法一:三相电流之和计算方法: 方法二: 直接用零序互感器穿心N相测量。 加入接线图 方法三: 互感器器穿心三相电流。

二.漏电电流检测二种方法 方法一:用漏电互感器穿芯 A B C N 方法二: A B C N均穿芯互感器 通过A+ B + C +N 矢量计算出漏电流。 加入接线图 三.漏电电流和零序电流区别 零序电流产生条件:三相负载不平衡、接地故障、相间短路电流均会产生零序电流。 漏电流产生条件:接地故障。 根据保护三个特性: 选择性、快速性、可靠性。 零序电流保护,零序电流接地和相间短路情况下保护动作,但是三相负载不平衡情况下也能跳闸,误跳情况。漏电流保护,出现接地故障可靠动作。 综上所述,针对接地故障情况,只有漏电保护才能可靠动作。 四.漏电保护两种检测方法优缺点 方法一:穿芯漏电互感器检测方法, 这种方法是主流设计方案,广泛引用建筑电气防火,市场大部分采用500mA和1000mA 规格,这种设计一般很少设计过载倍数,通过AD数字采集范围窄,测量精度比较高,10mA 电流准确可靠计算出来,符合人身安全标准,适合民用建筑。 优点很明显,但是缺点也很明显,因为检测漏电范围比较窄,漏电流最大1A多。在工业电气应用会明显不适应,工业设备均是大负荷,一般漏电流都是几十安、几百安,甚至上

千安也会出现,小范围漏电互感器出现铁芯饱和情况,穿芯互感器是检测不出来或者互感器坏。工业使用环境有完备保护功能(过流保护等),对供电可靠性和连续性要求较高,用电设备环境复杂,对于mA的漏电流可以不必理会,采用穿芯互感器测量方案,感觉容易误跳。 工业负荷比较大,线缆也比较粗,穿芯互感器要穿过A B C N四根线,制造出大孔径漏电互感器,成本比较高,工程施工难穿心,所以工业环境中很少装设具备电气防火设备。 方法二:矢量漏电计算方,A B C N均穿芯互感器,通过A+B+C+N 矢量计算出漏电流。 三相电流 + 零序互感器,通过四相电流矢量和计算出漏电。三相电流和零序电流互感器均采用5P10互感器,有10倍过载,具备较大过载能力。出现上千安漏电流,铁芯不会饱和,并且计算准确可靠。 这种方式优点,监测大电流漏电,并且安全可靠,每个穿芯只是一项电流,因此孔径要求不会太大。 缺点也是很明显,电流测量范围宽,特别是针对mA级别小电流计算误差也就大。 森尼瑞电气采用“保护和测量”二者合一技术,即保证过载大倍数电流测量准确,又保证额定范围值小电流计算准确,针对10mA小电流计算效果与穿芯互感器模式是一致的。 所以,采用矢量和计算模式电气防火装置,即适合工业应用,也适合建筑应用。

小电阻小电流接地糸统

小电阻小电流接地糸统的区别 1、应用不同场合: 电力接地系统按接地处理方式可分为大电流接地系统和小电流接地系统,大电流接地系统包括直接接地、电抗接地、和低阻接地,小电流接地系统包括不接地、经高阻接地、经消弧线圈接地、和经配电变压器接地。 在以架空线为主体的配电网中,外力或雷电造成的瞬时单相接地故障占很大比例,因此,在这类配电网中采用中性点经消弧线圈接地方式的优越性是明显的;在城市中心区,配电网以电缆线路为主,为解决经消弧线圈接地方式出现的诸多问题,配电系统中性点采用小电阻接地方式。 一般对于郊区变电站10kV侧带出线的变电站采用的是消弧线圈接地方式,对于核心城区变电站采用的是小电阻的接地方式,小电阻接地方式在某些方面弥补了消弧线圈运行方式带来的不足。 我国3~66kV中低压配电网大多数采用中性点非有效接地运行方式,接地系统的单相接地故障是常见的故障形式,占全网故障的80%以上。 2、运行的各自优缺点 随着我国城市电网的发展,城市居民的增多,10kV出线中电缆所占的比重越来越大,中性点经消弧线圈接地运行方式的缺点日渐暴露,主要原因为: (1)消弧线圈各分接头的标称电流和实际电流误差较大,有些甚

至可达15%,运行中就发生过由于实际电流值与铭牌数据差别而导致谐振的现象。 (2)计算电容电流和实际电容电流误差较大,对于电缆和架空线混合的出线,单位长度的电容电流也不尽相同,消弧线圈补偿的正确性难以保证。 (3)出线电缆的单相接地故障多为永久性故障。由于中性点经消弧线圈接地的系统为小电流接地系统,发生单相接地永久性故障后,在接地故障点的检出过程中,这对城市中人口密集的现状而言,事故的后果会非常严重。 (4)中性点经消弧线圈接地系统仅能降低弧光接地过电压发生的概率,并不能降低弧光接地过电压的幅值,将使系统设备长时间承受过电压作用,对设备绝缘造成威胁。 然而在中性点接入消弧线圈接地后,发生单相接地时,非故障线路电容电流的大小和方向与中性点不接地系统是一样的。发生单相接地后,故障相对地电压降低,非故障两相的相电压升高,但线电压的大小和相位不变(依然对称),不影响对用户的连续供电,所以不需要立即切除故障,系统可运行1~2小时,这也是小电流接地系统的最大优点。若发生单相接地故障时电网长期运行,因非故障的两相对地电压升高,可能引起绝缘的薄弱环节被击穿,发展成为相间短路,使事故扩大,影响用户的正常用电。还可能使电压互感器铁心严重饱和,导致电压互感器严重过负荷而烧毁。同时弧光接地还会引起全系统过电压,进而损坏设备,破坏系统安全运行。

白话说电气_工作接地与保护接地的区别与详解(有图)

首先明确两个概念,工作接地和保护接地。 1什么是工作接地,什么是保护接地? 工作接地,在正常或故障情况下为了保证电气设备的可靠运行,而将电力系统中某一点接地称为工作接地。例如电源(发电机或变压器)的中性点直接(或经消弧线圈)接地,能维持非故障相对地电压不变,电压互感器一次侧线圈的中性点接地,能保证一次系统中相对低电压测量的准确度,防雷设备的接地是为雷击时对地泄放雷电流。 保护接地,将在故障情况下可能呈现危险的对地电压的设备外露可导电部分进行接地称为保护接地。电气设备上与带点部分相绝缘的金属外壳,通常因绝缘损坏或其他原因而导致意外带电,容易造成人身触电事故。为保障人身安全,避免或减小事故的危害性,电气工程中常采用保护接地。 接地保护与接零保护统称保护接地,是为了防止人身触电事故、保证电气设备正常运行所采取的一项重要技术措施。这两种保护的不同点主要表现在三个方面:一是保护原理不同。接地保护的基本原理

是限制漏电设备对地的泄露电流,使其不超过某一安全范围,一旦超过某一整定值保护器就能自动切断电源;接零保护的原理是借助接零线路,使设备在绝缘损坏后碰壳形成单相金属性短路时,利用短路电流促使线路上的保护装置迅速动作。二是适用范围不同。根据负荷分布、负荷密度和负荷性质等相关因素,《农村低压电力技术规程》将上述两种电力网的运行系统的使用范围进行了划分。TT系统通常适用于农村公用低压电力网,该系统属于保护接地中的接地保护方式;TN系统(TN系统又可分为TN-C、TN-C-S、TN-S三种)主要适用于城镇公用低压电力网和厂矿企业等电力客户的专用低压电力网,该系统属于保护接地中的接零保护方式。当前我国现行的低压公用配电网络,通常采用的是TT或TN-C系统,实行单相、三相混合供电方式。即三相四线制380/220V配电,同时向照明负载和动力负载供电。三是线路结构不同。接地保护系统只有相线和中性线,三相动力负荷可以不需要中性线,只要确保设备良好接地就行了,系统中的中性线除电源中性点接地外,不得再有接地连接;接零保护系统要求无论什么情况,都必须确保保护中性线的存在,必要时还可以将保护中性线与接零保护线分开架设,同时系统中的保护中性线必须具有多处重复接地。 低压配电系统中,按保护接地的形式,分为TN系统,TT系统,IT系统。

中性点接地方式

1 中性点直接接地 中性点直接接地方式,即是将中性点直接接入大地。该系统运行中若发生一相接地时,就形成单相短路,其接地电流很大,使断路器跳闸切除故障。这种大电流接地系统,不装设绝缘监察装置。 中性点直接接地系统产生的内过电压最低,而过电压是电网绝缘配合的基础,电网选用的绝缘水平高低,反映的是风险率不同,绝缘配合归根到底是个经济问题。 中性点直接接地系统产生的接地电流大,故对通讯系统的干扰影响也大。当电力线路与通讯线路平行走向时,由于耦合产生感应电压,对通讯造成干扰。 中性点直接接地系统在运行中若发生单相接地故障时,其接地点还会产生较大的跨步电压与接触电压。此时,若工作人员误登杆或误碰带电导体,容易发生触电伤害事故。对此只有加强安全教育和正确配置继电保护及严格的安全措施,事故也是可以避免的。其办法是:①尽量使电杆接地电阻降至最小;②对电杆的拉线或附装在电杆上的接地引下线的裸露部分加护套;③倒闸操作人员应严格执行电业安全工作规程。 2 中性点不接地 中性点不接地方式,即是中性点对地绝缘,结构简单,运行方便,不需任何附加设备,投资省。适用于农村10kV架空线路为主的辐射形或树状形的供电网络。该接地方式在运行中,若发生单相接地故障,其流过故障点电流仅为电网对地的电容电流,其值很小称为小电流接地系统,需装设绝缘监察装置,以便及时发现单相接地故障,迅速处理,以免故障发展为两相短路,而造成停电事故。 中性点不接地系统发生单相接地故障时,其接地电流很小,若是瞬时故障,一般能自动熄弧,非故障相电压升高不大,不会破坏系统的对称性,故可带故障连续供电2h,从而获得排除故障时间,相对地提高了供电的可靠性。 中性点不接地方式因其中性点是绝缘的,电网对地电容中储存的能量没有释放通路。在发生弧光接地时,电弧的反复熄灭与重燃,也是向电容反复充电过程。由于对地电容中的能量不能释放,造成电压升高,从而产生弧光接地过电压或谐振过电压,其值可达很高的倍数,对设备绝缘造成威胁。 此外,由于电网存在电容和电感元件,在一定条件下,因倒闸操作或故障,容易引发线性谐振或铁磁谐振,这时馈线较短的电网会激发高频谐振,产生较高谐振过电压,导致电压互感器击穿。对馈线较长的电网却易激发起分频铁磁谐振,在分频谐振时,电压互感器呈较小阻抗,其通过电流将成倍增加,引起熔丝熔断或电压互感器过

小电流接地系统接地故障分析知识讲解

小电流接地系统 单相接地故障分析与检测 为了提高供电可靠性,配电网中一般采取变压器中性点不接地或经消弧线圈和高阻抗接地方式,这样当某一相发生接地故障时,由于不能构成短路回路,接地故障电流往往比负荷电流小得多,因而这种系统被称为小电流接地系统。 小电流接地系统中单相接地故障是一种常见的临时性故障,当该故障发生时,由于故障点的电流很小,且三相之间的线电压仍保持对称,对负荷设备的供电没有影响,所以允许系统内的设备短时运行,一般情况下可运行1-2个小时而不必跳闸,从而提高了供电的可靠性。但一相发生接地,导致其他两相的对地电压升高为相电压的倍,这样会对设备的绝缘造成威胁,若不及时处理可能会发展为绝缘破坏、两相短路,弧光放电,引起去系统过压。然而当系统发生单相接地故障时,由于构不成回路,接地电流是分布电容电流,数值比负荷电流小得多,故障特征不明显,因此接地故障检测仍是一项世界难题,很多技术有待克服。 单相接地故障分析 当任意两个导体之间隔着绝缘介质时会形成电容,因此在简单电网中,中性 ,在相电压作用下,点不接地系统正常运行时,各相线路对地有相同的对地电容C 每相都有一个超前于相电压900的对地电容电流流入地中,然而由于电容的大小与电容极板面积成正比而与极板距离成反比,所以线路的对地电容,特别是架空线路对地电容很小,容抗很大,对地电容电流很小。 系统正常运行时,如图1,由于三相相电压U A、U B、U C是对称的,三相对地电容电流I co.A、I co.B、I co.C也是平衡的,因此,三相的对地电容电流矢量和为0,没有电流流向大地,每相对地电压就等于相电压。

图1中性点不接地电力系统电路图与矢量图 当系统中某一相出现接地故障后,假设C相接地,如图2所示,相当于在C 相的对地电容中并联了一个大电阻,由于故障电流I C没有返回电源的通路,只能通过另外两项非故障A、B相线路的对地电容返回电源。此时C相线路的对地电压为U C’ = U CD = 0,而A相对地线电压即U A’ = U AD = U AC = -U CA = -U C∠-300 = U B∠-900,而B相对地线电压即U B’ = U BC = U B∠-300,则U A’和U B’相差600。非故障相中流向故障点的电容电流I AC= U A’jwC0,I BC= U B’jwC0,且I AC、I BC超前U A’和U B’ 900,I AC、I BC大小相等为I co.A之间相差600。 图2中性点不接地电力系统发生C相接地故障电路图与矢量图由此可见,C相接地时,不接地的A、B两相对地电压U A’和U B’由原来的相电压升高到线电压,即值升高到原来的倍,相位由原来的相差1200变为相差600。此时,从接地点流回的电流I C应为A、B两相的对地电容电流之和,即I C = I AC + I BC。

电器设备保护接地和保护接零规定(通用版)

电器设备保护接地和保护接零 规定(通用版) Safety management is an important part of enterprise production management. The object is the state management and control of all people, objects and environments in production. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0027

电器设备保护接地和保护接零规定(通用 版) 1.所有电器设备的金属外壳以及和电气设备连接的金属构架等,必须采取有效的接地或接零保护。 2.中性点不接地系统中的电气装置应采用保护接地。接地体、接地线及其连接必须严格按《上海地区低压用户电气装置规程》的要求选材和安装。接地网应定期检查、测试,其接地电阻不得超过4Ω。 3.中性点直接接地系统中的电气装置应采用保护接零。接零保护装置应严格按规范进行安装。低压架空线路的干线和分支线始端和终端以及沿线每一公里处应有重复接地,配电箱及起重机道轨也应有重复接地,其接地电阻不超过10Ω。

4.同一供电系统中,不准将一部分电气设备接地,而将另一部分电气设备接零。 5.所有电气设备的保护零线应以并联方式与零干线连接。零线的断面不应小于相线载流量的一半。零线上不准装设开关和熔断器。单相电气设备必须设置单独的保护零线,不得利用设备自身的工作零线兼做接零保护。 6.塔吊的接地极应在轨道的两端各设一组,每超过25m,应增设一组,其接地电阻不大于4Ω。 7.金属脚手架、井架、塔吊和长度超过10m的建筑物,应按规定设置防雷装置和接地装置,接地电阻不得大于10Ω。 XXX图文设计 本文档文字均可以自由修改

小电流接地系统

什么是小电流接地系统?什么又是大电流接地系统? 我国现在的10KV 110KV 220KV 500KV (国网已经有1000KV)高压输电线路都是没有零线的,因为这些电压等级都是不可以直接被设备(少数超高压设备除外)所接受的。而我们平时用电最多的是3相4线制(TN—C系统),3根火线+1零线。而零线的作用是:1.中性线(N线),和火线一起接成相电压。2.充当某些运行设备的中性点接地(工作接地)。3.和设备外壳相接充当保护(P线)。而这些在10KV以上电压等级是不需要的,110KV以上的输电线路上方有2条架空零线(或称架空避雷线、架空地线),其作用是起避雷作用(防止雷电波)。所以日常见到的高压进线没零线。 9 r5 _/ w1 P$ d: C 问到1相接地的问题,高压输电线都是需要保护的(禁止在无保护的条件下运行),110KV一般有一套保护,220KV以上则需要2套原理不同、且来自不同厂家的保护,运用比较广泛的是光纤纵差和高频保护。当发生一相接地的时候会发生跳闸,因为线路都有重合闸(分单重、3重、综重),在判定为永久性故障后不进行重合。所以:短路——重合——跳闸。 , _" b" p+ V& h' x" A3 p 关于大、小电流接地系统的问题,大电流接地系统是指中性点直接接地系统,像我们的3相4 线制就属于,因为在发生故障的时候接地电流会比较大。小电流接地系统包括:中性点不接地系统、中性点经消弧线圈接地系统、中性点经大电阻接地系统。发生故障的时候接地电流比较小。电力的变压器为什么需要装有瓦斯保护?在电网的变压器中,差动保护和瓦斯保护一起构成变压器的主保护,差动保护是用首末两端电流的对比判断故障然后动作的,保护的是变压器的绕组、套管、到CT侧,差动保护属于电气量保护。瓦斯保护是属于非电气量的保护,装在油箱和油枕之间,分过气流和过油流,如果变压器内部发生短路,那么短路电流会分解变压器油而产生气体,让瓦斯继电器发出告警信号(轻瓦斯保护),短路严重的时候,气温很高,会让油面上升,冲到瓦斯继电器的动作位置,发生跳闸信号(重瓦斯保护)。由于瓦斯保护可以保护到差动保护所保护不到的位置——铁心。所以瓦斯和差动一起构成变压器的主保护。 我国现在的10KV 110KV 220KV 500KV (国网已经有1000KV)高压输电线路都是没有零线的,因为这些电压等级都是不可以直接被设备(少数超高压设备除外)所接受的。而我们平时用电最多的是3相4线制(TN—C系统),3根火线+1零线。而零线的作用是:1.中性线(N线),和火线一起接成相电压。2.充当某些运行设备的中性点接地(工作接地)。3.和设备外壳相接充当保护(P线)。而这些在10KV以上电压等级是不需要的,110KV以上的输电线路上方有2条架空零线(或称架空避雷线、架空地线),其作用是起避雷作用(防止雷电波)。所以日常见到的高压进线没零线。 9 r5 _/ w1 P$ d: C 问到1相接地的问题,高压输电线都是需要保护的(禁止在无保护的条件下运行),110KV一般有一套保护,220KV以上则需要2套原理不同、且来自不同厂家的保护,运用比较广泛的是光纤纵差和高频保护。当发生一相接地的时候会发生跳闸,因为线路都有重合闸(分单重、3重、综重),在判定为永久性故障后不进行重合。所以:短路——重合——跳闸。 , _" b" p+ V& h' x" A3 p 关于大、小电流接地系统的问题,大电流接地系统是指中性点直接接地系统,像我们的3相4 线制就属于,因为在发生故障的时候接地电流会比较大。小电流接地系统包括:中性点不接地系统、中性点经消弧线圈接地系统、中性点经大电阻接地系统。发生故障的时候接地电流比较小。电力的变压器为什么需要装有瓦斯保护?在电网的变压器中,差动保护和瓦斯保护一起构成变压器的主保护,差动保护是用首末两端电流的对比判断故障然后动作的,保护的是变压器的绕组、套管、到CT侧,差动保护属于电气量保护。瓦斯保护是属于非电气量的保护,装在油箱和油枕之间,分过气流和过油流,如果变压器内部发生短路,那么短路电流会分解变压器油而产生气体,

保护接地与保护接零知识图文解析(附注意事项)

保护接地与保护接零知识图文解析 (附注意事项) 概念 (1)保护接地: 电气设备的导体部分或者外壳用足够容量的金属导线或导体可靠的与大地连接,当人体触及带电外壳时,人体相当于接地电阻的一条并联支路,由于人体电阻远远大于接地电阻,所以通过人体的电流将会很小,避免了人身触电事故。 (2)保护接零: 电气设备在正常情况下,不带电的金属部分与零线做良好的金属或者导体连接。当某一相绝缘损坏致使电源相线碰壳,电气设备的外壳及导体部分带电时,因为外壳及导体部分采取了接零措施,该相线和零线构成回路。由于单相短路电流很大,使线路

保护的熔断器熔断。从而使设备与电源断开,避免了人身触电伤害的可能性。 适用范围 (1)保护接地:适用于中性点不接地的三相电源系统中。 (2)保护接零:适用于中性点接地的三相电源系统中(一些民用三相四线中性点接地系统也采用保护接地,但必须是配合带有漏电保护的开关使用)。 保护原理及危害分析 (1)在中性点不接地系统中:当人体触及电气设备的导体部分或者外壳时,人体相当于一个与接地电阻并联支路的一个大电阻。若按人体电阻值1000Ω(通常人体电阻值为1000~2000Ω)计算,设备外壳所带电压为220V时,那么无保护接地时流经人体的电流为:Ir=220/Rr=220mA(人体可以承受的最大交流电

流/交流摆脱电流为10mA)。 (2)在中性点接地系统中:在380V/220V三相四线制电源中性点直接接地的配电系统中,只能采用保护接零,采用保护接地则不能有效地防止人身触电事故的发生。 若采用保护接地,电流中性点接地电阻按4Ω考虑,而电源电压为220V,那么当电气设备的绝缘损坏使电气设备的外壳带

大电流接地系统与小电流接地系统故障判断分析

大电流接地系统与小电流接地系统故障判断分析大电流接地系统与小电流接地系统故障判断、分析 我国电压等级在110kV 及其以上的系统均为大电流接地系统,在大电流接地系统中,线路单相接地故障在电力系统故障中占有很大的比例,造成单相故障的原因有很多,如雷击、瓷瓶闪落、导线断线引起接地、导线对树枝放电、山火等。线路单相接地故障分为瞬时性故障和永久性故障两种,对于架空线路一般配有重合闸,正常情况下如果是瞬时性故障,则重合闸会启动重合成功;如果是永久性故障将会出现重合于永久性故障再次跳闸而不再重合。为帮助运行人员正确判断和分析大电流接地系统线路单相瞬时性故障,本案例选取了某地区一典型的220kV 线路单相瞬时接地故障,并对相关的知识点进行分析。说明,此案例分析以FHS 变电站为主。本案例分析的知识点:(1)大电流接地系统与小电流接地系统的概念。(2)单相瞬时性接地故障的判断与分析。(3)单相瞬时性接地故障的处理方法。 (4)保护动作信号分析。(5)单相重合闸分析。(6)单相重合闸动作时限选择分析。(7)录波图信息分析。(8)微机打印报告信息分析。一、大电流接地系统、小电流接地系统的概念在我国,电力系统中性点接地方式有三种:(1)中性点直接接地方式。(2)中性点经消弧线圈接地方式。(3)中性点不接地方式。 110kV 及以上电网的中性点均采用中性点直接接地方式。中性点直接接地系统(包括经小阻抗接地的系统)发生单相接地故障时,接地短路电流很大,所以这种系统称为大电流接地系统。采用中性点不接地或经消弧线圈接地的系统,当某一相发生接地故障时,由于不能构成短路回 路,接地故障电流往往比负荷电流小得多,所以这种系统称为小电流接地系统。大电流接地系统与小电流接地系统的划分标准是依据系统的零序电抗X 0与正序电抗X 1的比值X 0/X 1。我国规定:凡是X 0/X 1≤4~5的系统属于大接地电流系统,X 0/X 1>4~5的系统则属于小接地电流系统。事故涉及的线路及保护配置图事故涉及的线路和保护配置如图1所示,两变电站之间为双回线,线路长度为66.76km 。 FT 线路及保护配置三、事故基本情况 2001年5月24日16时42分,FHS 变电站FT 一回线C 相瞬时性故障,C 相重合闸重合成功,负荷在正常范围内,系统无其他异常,FT 一回线(FT为双回线) 线路全长66.76km 四、微机监控系统主要信号 FT 一回SF-500收发信机动作 FT 一回SF-600收发信机动作 FT 一回WXH-11X 保护动作 FT 一回LEP-902A 保护动作 FT 一回C 相断路器跳闸 FT 一回WXH-11X 重合闸动作 FT 一回LEP-902A 重合闸动作 FT 一回WXH-11X 保护呼唤值班员 FT 一回LEP-902A 保护呼唤值班员3号录波器动作 5号录波器动作 1号主变压器中性点过流保护掉牌 2号主变压器中性点过流保护掉牌 220kV 母线电压低本站220kV 其他相关线路高频收发信机动作五、继电保护屏保护信号 WXH-11X 型微机保护:跳C 、重合闸、高频收发信、呼唤灯亮。 LFP-902A 型微机保护:TC 、

零序电流(零序保护)与剩余电流(漏电保护)的区别

接地故障保护与漏电故障保护的区别 为了防止人身间接触电以及配电线路由于各种原因而遭损坏,引起火灾等事故,保证设备和线路的热稳定性,我国现行的电气设计、施工等有关规范都提出了在低压配电线路中需设置接地故障保护。在国家标准GB50054-95《低压配电设计规范》第4.4.10条明确指出了采用接地故障保护的两种方法,零序电流保护与剩余电流保护(亦称漏电电流保护)。这两种电流保护的基本工作原理相同,但使用范围、安装等要求却有所不同)。 零序电流保护具体应用可在三相线路上各装一个电流互感器(C.T),或让三相导线一起穿过一零序C.T,也可在中性线N上安装一个零序C.T,利用这些C.T来检测三相的电流矢量和,即零序电流Io,IA+IB+IC=IO,当线路上所接的三相负荷完全平衡时(无接地故障,且不考虑线路、电器设备的泄漏电流),IO=0;当线路上所接的三相负荷不平衡,则IO=IN,此时的零序电流为不平衡电流IN;当某一相发生接地故障时,必然产生一个单相接地故障电流Id,此时检测到的零序电流IO=IN+Id,是三相不平衡电流与单相接地电流的矢量和。 剩余电流保护的具体做法是在被测的三相导线路上与中性N上各装一个C.T,或让三相导线与N线一起穿过一个零序C.T,得到三相导线与中性线N的电流矢量和IA+IB+IC+IN,当设有发生单相接地故障时,无论三相负荷平衡与否,则此矢量和为零(严格讲为线路与设备的正常泄漏电流);当发生某一相接地故障时,故障电流中会通过保护线PE及与地相关连的金属构件,即IA+IB +IC+IN≠0,此时数值为接地故障电流Id加正常泄漏电流。 从以上分析可看出,零序电流保护和剩余电流保护两者的基本原理都是基于基尔霍夫电流定律:流入电路中任一节点的复电流的代数和等于零,即ΣI=0,并且都用零序C.T作为取样元件。在线路与电器设备正常情况下,各相电流的矢量和等于零(对零序电流保护假定不考虑不平衡电流),因此,零序C.T的二次侧绕组无信号输出(零序电流保护时躲过不平衡电流),执行元件不动作。当发生接地故障是地,各相电流的矢量和不为零,故障电流的零序C.T的环形铁芯中产生磁通,零序C.T的二次侧感应电压使执行元件动作,带动脱扣装置,切换供电网络,达到接地故障保护的目的。 零序电流保护一般适合使用于TN接地系统。因为当发生一相接地时,对TN-S 系统Id回路阻抗包括相线阻抗Z1,PE线阻抗ZPE和接触阻抗Zf,即Zs=Z1+ZPE+Zf;对于TN-C系统,Id回路阻抗包括相线阻抗Z1,PEN线阻抗ZPEN 和接触电阻Zf,即ZS=Z1+ZPEN+Zf;对于TN-C-S系统,Id回路阻抗包括相线阻抗Z1,PEN线阻抗ZPEN,PE线阻抗ZPE和接触电阻Zf,即ZS=Z1+ZPEN+ZPE+Zf,产生的单相接地故障电流Id=220/ZS,明显大于无故障时的三相不平衡电流,只要整定合适,就可检测出发生接地故障时的零序电流,以切断故障回路。而对IT系统,一般均是使用对供电可靠性要求较高、对单相接地不必要立即切断供电回路、但需发出绝缘破坏监察信号、以维持继续供电一段时间的工矿企业内的不配出中性线的三相三线配电线路。当单相接地时,该故障线

相关主题
文本预览
相关文档 最新文档