当前位置:文档之家› 射频功率放大器的主要技术指标

射频功率放大器的主要技术指标

射频功率放大器的主要技术指标
射频功率放大器的主要技术指标

射频功率放大器是各种无线发射机的主要组成部分。在发射机的前级电路中,调制振荡电路所产生的射频信号功率很小,需要经过一系列的放大如缓冲级、中间放大级、末级功率放大级,获得足够的射频功率后,才能馈送到天线上辐射出去。为了获得足够大的射频输出功率,必须采用射频功率放大器。

射频功率放大器电路设计需要对输出功率、激励电平、功耗、失真、效率、尺寸和重量等问题进行综合考虑。

射频功率放大器的主要技术指标是输出功率与效率,是研究射频功率放大器的关键。而对功率晶体管的要求,主要是考虑击穿电压、最大集电极电流和最大管耗等参数。

为了实现有效的能量传输,天线和放大器之间需要采用阻抗匹配网络。

3.1.1输出功率

在发射系统中,射频末级功率放大器输出功率的范围可小到毫瓦级(便携式移动通信设备)、大至数千瓦级(发射广播电台)。

为了要实现大功率输出,末级功率放大器的前级放大器单路必须要有足够高的激励功率电平。显然大功率发射系统中,往往由二到三级甚至由四级以上功率放大器组成射频功率放大器,而各级的工作状态也往往不同。

根据对工作频率、输出功率、用途等的不同要求,可以用晶体管、FET 、射频功率集成电路或电子管作为射频功率放大器。

在射频功率方面,目前无论是在输出功率或在最高工作频率方面,电子管仍然占优势。现在已有单管输出功率达2000kW 的巨型电子管,千瓦级以上的发射机大多数还是采用电子管。 当然,晶体管、FET 也在射频大功率方面不断取得新的突破。例如,目前单管的功率输出已超过100W ,若采用功率合成技术,输出功率可以达到3000W 。

3.1.2效率

效率是射频功率放大器极为重要的指标,特别是对于移动通信设备。定义功率放大器的效率,通常采用集电极效率?c 和功率增加效率PAE 两种方法。

1. 集电极效率?c

集电极效率?c 定义为输出功率P out 与电源供给功率P dc 之比,即

dc out p P =c η (3.1.1)

2.功率增加效率(PAE ,power added efficiency )

功率增加效率定义为输出功率P out 与输入功率P in 的差于电源供给功率P dc 之比,即

c p dc in out PAE A P P P PAE ηη)11(-=-== (3.1.2)

功率增加效率PAE 的定义中包含了功率增益的因素,当有比较大的功率增益。

如何提高输出功率和保证高的效率,是射频功率放大器设计目标的核心。

3.1.3线性

?

衡量射频功率放大器线性度的指标有三阶互调截点(IP3)、1dB 压缩点、谐波、邻道功率比等。邻道功率比衡量由放大器的非线性引起的频谱再生对邻道的干扰程度。 ?

由于非线性放大器的效率高于现行放大器的效率,射频功率放大器通常采用非线性放大器。但是分线性放大器在放大输入信号的放大的同时会产生一系列的有害影响。 ? 从频谱的角度看,由于非线性的作用,输出信号中会产生新的频率分量,如三阶互调分

量、五阶互调分量等,它干扰了有用信号并使被放大的信号频谱发生变化,即频带展宽了。

?从时域的角度,对于波形为非恒定包络的已调信号,由于非线性放大器的增益与信号幅

度有关,因此使输出信号的包络发生了变化,引起了波形失真,同时频谱也发生了变化并引起了频谱再生现象。对于包含非线性电抗元件(如晶体管的极间电容)的非线性放大器,还存在使幅度变化转变为相位变化的影响,干扰了已调波的相位。

?非线性放大器的所有这些影响对移动通信设备来说都是至关重要的。因为,为了有效地

利用频率资源和避免对邻道的干扰,一般都将基带信号通过相应滤波器形成特定波形,以限制它的频带宽度,从而限制调制后的频带信号的频谱宽度。但这样产生的已调信号的包络往往是非恒定的,因此非线性放大器的频谱再生作用使发射机的这些性能指标变差。

?非线性放大器对发射信号的影响,与调制方式密切相关。不同的调制方式,所得到的时

域波形是不同的,如用于欧洲移动通信的GSM制式,该制式采用了高斯滤波的最小偏移键控(GMSK),是一种相位平滑变化的恒定包络的调制方式,因此可以用非线性放大器来放大,不存在包络失真问题,也不会因为频谱再生而干扰邻近信道。

?但对于北美的数字蜂窝(NADC)标准,采用的是偏移差分正交移相键控调制方式,已

调波为非恒定包络,它就必须用线性放大器放大,以防止频谱再生。

3.1.4杂散输出与噪声

对于通过天线双工器公用一副天线的接收机和发射机,如果接收机和发射机采用不同的工作频带,发射机功率放大器产生频带外的杂散输出或噪声若位于接收机频带内,就会由于天线双工器的隔离性能不好而被耦合到接收机前端的低噪声放大器输入端,形成干扰,或者也会对其他相邻信道形成干扰。

因此必须限制功率放大器的带外寄生输出,而且要求发射机的热噪声的功率谱密度在相应的接收频带出要小于-130dBm/Hz,这样对接收机的影响基本上可以忽略。

功率放大器的技术指标

功率放大器的技术指标: 1) 输出功率:1额定输出功率:是指在一定的谐波失真系数和一定频率范围下所测的功率放大器的输出功率。 2最大输出功率:是指在一定的负载上,功率放大器在规定的谐波失真系数时,采用1000Hz 的正弦波检测信号所得到的连续最大的输出功率。业余条件下,功率放大器的额定输出功率可以通过下式进行换算: 额定输出功率=最大输出功率×0.8 额定输出功率=峰值功率×0.5 2) 放大增益:也为放大倍数,放大器的电压增益是指输出电压和输入电压之比,电流增益是指输出电流和输入电流之比,功率增益是指输出功率与输入功率之比。 3) 频率响应:反应了功率放大器对各种频率信号放大的情况。品质较高的功率放大器能够重放频率较宽的信号。一般的放大器频率响应均应在20Hz~20KHz 4) 信噪比:是指信号电平与噪声电平的比率,用S/N表示。S为信号电平,N为噪声电平。信噪比越高噪声越低。 5) 失真:是指放大器的输入信号与输出信号在几何形态上发生了变化。 其主要有:1谐波失真:由于放大器的非线性而产生的,会使声音走调。 2互调失真:是由各个频率信号之间相互调制而产生的,会使声音尖刺、混浊。 3相位失真:是由于放大器对于不同频率产生的相移不均而产生的。 4瞬态失真:会使声音变抖动、不清晰。 5交越失真:会使重放声产生间歇感。 6) 动态范围:是指放大器的最高输出电压与无信号时的噪声之比。其表示了功率放大器的重放声的动态范围和对微弱信号的表现能力。其会受输出功率的影响。 7) 瞬态响应:是指放大器对脉冲信号(瞬时大信号)的跟随能力。从声音的重放角度来看,瞬态响应较好,重放时就会干净、利落。否则会含糊不清。一般用转换速率SR来表示。转换速率是指在单位时间内信号电压的变化量,其单位是V/μs 。一般前置放大器的SR能够达到5V/μs就可以满足前置放大器的要求。一般功率放大器的SR能够达到50V/μs就可以达到高保真瞬态的要求。 8) 阻尼系数:是表示功率放大器的内阻的指标,它与扬声器的阻抗成正比,通常阻尼系数越大,扬声器的失真就越小。

射频功率放大器

实验四:射频功率放大器 【实验目的】 通过功率放大器实验,让学生了解功率放大器的基本结构,工作原理及其设计步骤,掌握功率放大器增益、输出功率、频率范围、线性度、效率和输入/输出端口驻波比等主要性能指标的测试方法,以此加深对以上各项性能指标的理解。 【实验环境】 1.实验分组:每组2~4人 2.实验设备:直流电源一台,频谱仪一台,矢量网络分析仪一台,功率计一只,10dB衰减器一个,万用表一只,功率放大器实验电路 板一套 【实验原理】 一、功率放大器简介 功率放大器总体可分成A、B、C、D、E、F六类。而这六个小类又可以归入不同的大类,这种大类的分类原则,大致有两种:一种是按照晶体管的导通情况分,另一种按晶体管的等效电路分。按照信号一周期内晶体管的导通情况,即按导通角大小,功率放大器可分A、B、C三类。在信号的一周期内管子均导通,导θ(在信号周期一周内,导通角度的一半定义为导通角θ),称为A 通角? =180 θ。导通时间小于一半周期的类。一周期内只有一半导通的成为B类,即? =90 θ。如果按照晶体管的等效电路分,则A、B、C属于一大称为C类,此时? <90 类,它们的特点是:输入均为正弦波,晶体管都等效为一个受控电流源。而D、E、F属于另一类功放,它们的导通角都近似等于? 90,均属于高功率的非线性放大器。 二、功率放大器的技术要求 功率放大器用于通信发射机的最前端,常与天线或双工器相接。它的技术要求为: 1. 效率越高越好 2. 线性度越高越好 3. 足够高的增益

4. 足够高的输出功率 5. 足够大的动态范围 6. 良好的匹配(与前接天线或开关器) 三、功率放大器的主要性能指标 1.工作频率 2.输出功率 3.效率 4.杂散输出与噪声 5.线性度 6.隔离度 四、功率放大器的设计步骤 1.依据应用要求(功率、频率、带宽、增益、功耗等),选择合适的晶体管 2.确定功率放大器的电路和类型 3.确定放大器的直流工作点和设计偏置电路 4.确定最大功率输出阻抗 5.将最大输出阻抗匹配到负载阻抗(输出匹配网络) 6.确定放大器输入阻抗 7.将放大器输入阻抗匹配到实际的源阻抗(输入匹配网络) 8.仿真功率放大器的性能和优化 9.电路制作与性能测试 10.性能测量与标定 五、本实验所用功率放大器的简要设计过程 1. PA 2. 晶体管的选择 本实验所选用的晶体管为安捷伦公司的ATF54143_PHEMT,这种晶体管适合用来设计功率放大器。单管在~处能达到的最大资用增益大于18dB,而1dB压缩点高于21dB。

各类放大器技术指标的分析与比较

目录 引言 (1) 1放大器种类概述 (1) 1.1功率放大器 (1) 1.2运算放大器 (3) 2对各类不同的放大器性能和特点进行分析与比较 (4) 2.1功率放大器的技术指标 (4) 2.2运算放大器的技术指标 (7) 结束语 (8) 参考文献 (8) 错误!未定义书签。

各类放大器技术指标的分析与比较 摘要:放大器是能把输入信号的幅值或功率放大的电路,在通讯、广播、音响等系统中有着广泛的应用。本文主要介绍了功率放大器和运算放大器的工作原理和分类,并在此基础上对它们的技术指标进行了详细的分析与比较,总结了各类放大器的优缺点,为选择放大器提供了更多的参考和依据。通过对各类放大器的分析与比较,能够提高分析问题的能力,对实践具有重要的指导意义。 关键词:放大器;功率放大器;运算放大器;效率;输出功率 引言 放大器是广泛使用于各种电子系统中的一种电路。随着半导体器件及集成技术的迅猛发展,放大器的种类增多,其性能也大幅提高。就音频放大器的类别而言,已不仅限于传统的A类(甲类)和AB类(甲乙类),而出现了更多类别的放大器如D类、T类放大器等。同时集成运放发展迅速,新类型、高性能的运放层出不穷。在种类繁多,功能各异的众多放大器中进行选择使用,就必需对各类放大器的性能指标有个清晰的认识。本文通过对常见的各类音频功率放大器及运放技术指标的分析比较,总结了其各自的优缺点,对实际选用放大器具有参考意义。 1放大器种类概述 1.1功率放大器 功率放大器,简称为“功放”。现实生活中我们会遇到很多情况下主机的额定输出功率不能满足带动整个音响系统的任务,这时就需要在主机和播放设备之间加功率放大器来补充所需的功率缺口,这样功率放大器在整个音响系统中起到了“组织、协调”的枢纽作用,所以音响系统能否提供良好的音质输出与功率放大器的性能有着重要的关系[1]。 功率放大器是利用场效应管的电压控制作用或三极管的电流控制作用将电源的功率转换为按照输入信号变化的电流这个原理来实现放大的。同时,因为声音是不同振幅和频率的波,即交流电流信号,而三极管工作在放大区域时集电极电流总是基极电流的α倍,α是三极管的交流电流放大倍数,利用这个原理,若将小信号从基极输入,则在集电极会流出基极电流α倍的电流,再用隔直电容将这个信号隔离出来,就可以得到原来电压或电流α倍的放大信号,这种现象就称

射频功放设计

基于ADS的射频功率放大器仿真设计 1.引言 各种无线通信系统的发展,如GSM、WCDMA、TD-SCDMA、WiMAX和Wi-Fi,大大加速了半导体器件和射频功放的研究过程。射频功放在无线通信系统中起着至关重要的作用,它的设计好坏影响着整个系统的性能。因此,无线通信系统需要设计性能优良的放大器。而且,为了适应无线系统的快速发展,产品开发的周期也是一个重要因素。另外,在各种无线系统中由于采用了不同调制类型和多载波信号,射频工程师为减小功放的非线性失真,尤其是设计无线基站应用的高功率放大器时面临着巨大的挑战。采用Agilent ADS 软件进行电路设计可以掌握设计电路的性能,进一步优化设计参数,同时达到加速产品开发进程的目的。功放(PA)在整个无线通信系统中是非常重要的一环,因为它的输出功率决定了通信距离的长短,其效率决定了电池的消耗程度及使用时间。 2.功率放大器基础 2.1功率放大器的种类 根据输入与输出信号间的大小比例关系,功放可以分为线性放大器与非线性放大器两种。输入线性放大器的有A、B、AB类;属于非线性放大器的则有C、E 等类型的放大器。 (1)A类:其功率器件再输入信号的全部周期类均导通,但效率非常低,理想状态下效率仅为50%。 (2)B类:导通角仅为180°,效率在理想状态下可达到78%。 (3)AB类:导通角大于180°但远小于360°。效率介于30%~60%之间。 (4)C类:导通角小于180°,其输出波形为周期性脉冲。理论上,效率可达100%。 (5)D、E类:其原理是将功率器件当作开关使用。 设计功放电路前必须先考虑系统规格要求的重点,再来选择电路构架。对于射频功放,有的系统需要高效率的功放,有些需要高功率且线性度佳的功放,有些需要较宽的操作频带等,然而这些系统需求往往是相互抵触的。例如,B、C、E类构架的功率放大器皆可达到比较高的效率,但信号的失真却较为严重;而A

功率放大器技术指标概述

功率放大器技术指标概述 工作频率范围Operating Frequency 放大器满足或优于指标参数时的工作频率范围。 输出功率Output Power: 放大器的输出功率有两种表示方式:饱和功率和1dB压缩点输出功率。前者是输出的最大功率,后者则是指增益下降1dB时的输出功率,前者一般大于后者。对脉冲放大器有峰值功率和平均功率之分,前者表示有信号时的输出功率,后者则是按时间平均后的功率,两者之间的关系与信号的占空比有关。 增益Gain 功放输入输出功率的比值。 增益平坦度Gain flatness 表示放大器在工作频段内功率增益的波动。 噪声指数Noise Figure 指的是功放输出端和输入端信噪比的比值。

输入输出三阶截取点IIP3,OIP3 反映放大器的线性特性的指标。具体指三阶谐波与输入端基波电平相同时对应的输入/输出功率电平。此指标与输入电平的大小和放大器的增益无任何关系。 电压驻波比VSWR 放大器通常设计或用于50Ω阻抗的微波系统中,输入/输出驻波表示放大器输入端阻抗和输出端阻抗与系统要求阻抗(50Ω)的匹配程度。用下式表示:VSWR = (1+|Γ|)/(1-|Γ|) 其中Γ=(Z-Z0)/(Z+Z0) VSWR:输入输电压出驻波比 Γ:反射系数 Z:放大器输入或输出端的实际阻抗 Z0:需要的系统阻抗

效率Efficiency 指输入电流×输入电压=总功率 效率=实际输出射频功率/总功率×100% 临道功率比ACPR (Adjacent Channel Power Ratio) 用来衡量主信道的功率泄漏到相邻信道的多少,和放大器的线性、信号的调制等多因素有关。主要应用在象CDMA这样的宽频谱信号的研究上。 脉冲波的上升沿时间和下降沿时间Rise Time and Fall Time 上升沿时间:从脉冲波上升沿10%上升到90%所经历的时间; 下降沿时间:从脉冲波下降沿90%下降到10%所经历的时间; 脉冲宽度:两个脉冲幅值的50%的时间点之间所跨越的时间。 占空比Duty Cycle 在一串理想的脉冲序列中(如方波),正脉冲的持续时间(脉冲宽度pulse width)与脉冲总周期(Pulse cycle)的比值。

射频功率放大器实时检测的实现

射频功率放大器实时检测的实现 广播电视发射机是一个综合的电子系统,它不仅包括无线发射视音频通道,而且还包括通道的检测和自动控制电路,因此在设计时,它除了必须保证无线通道的技术指标处于正常范围外,还必须设计先进的取样检测和保护报警等电路,以确保发射机工作正常,从而实现发射机在线自动监测和控制。近年来,随着大功率全固态电视发射机多路功率合成技术的发展,越来越多的厂家采用模块化结构设计,因此单个功率放大器模块是整个发射机的基本测单元,本文就着重讨论单个模块的检测和控制电路,从而实现发射机在线状态自动监测。 一、工作原理 在功放模块中,主要检测和控制参数为电源电压,各放大管的工作电流,输出功率,反射功率,过温度和过激励保护等,图1为实现上述检测控制功能的方框图,它由取样放大电路,V/F变换,隔离电路,F/V变换,A/D转换,AT89C51,显示电路和输出保护电路等组成。 1、隔离电路 在功放模块中,由于大功率器件的应用,往往单个模块的输出功率都比较大,因而对小信号存在较大的高频干扰,如处理不好,就会影响后级模数转换电路工作,从而导致检测数据不准确,显示数据跳动的现象,甚至出现误动作。这里采用光电耦合器进行隔离,由于光电耦合器具有体积小、使用寿命长、工作温度范围宽、抗干扰性能强、无触点且输入与输出在电气上完全隔离等特点,从而将模拟电路和数字电路完全隔离,保障系统在高电压、大功率辐射环境下安全可靠地工作。 2、LM331频率电压转换器

V/F变换和F/V变换采用集成块LM331,LM331是美国NS公司生产的性能价格比较高的集成芯片,可用作精密频率电压转换器用。LM331采用了新的温度补偿能隙基准电路,在整个工作温度范围内和低到4.0V电源电压下都有极高的精度。同时它动态范围宽,可达100dB;线性度好,最大非线性失真小于0.01%,工作频率低到0.1Hz时尚有较好的线性;变换精度高,数字分辨率可达12位;外接电路简单,只需接入几个外部元件就可方便构成V/F或F/V等变换电路,并且容易保证转换精度。 图2是由LM331组成的电压频率变换电路,LM331内部由输入比较器、定时比较器、R-S触发器、输出驱动、复零晶体管、能隙基准电路和电流开关等部分组成。输出驱动管采用集电极开路形式,因而可以通过选择逻辑电流和外接电阻,灵活改变输出脉冲的逻辑电平,以适配TTL、DTL和CMOS等不同的逻辑电路。 当输入端Vi+输入一正电压时,输入比较器输出高电平,使R-S触发器置位,输出高电平,输出驱动管导通,输出端f0为逻辑低电平,同时电源Vcc也通过电阻R2对电容C2充电。当电容C2两端充电电压大于Vcc的2/3时,定时比较器输出一高电平,使R-S触发器复位,输出低电平,输出驱动管截止,输出端f0为逻辑高电平,同时,复零晶体管导通,电容C2通过复零晶体管迅速放电;电子开关使电容C3对电阻R3放电。当电容C3放电电压等于输入电压Vi时,输入比较器再次输出高电平,使R-S触发器置位,如此反复循环,构成自激振荡。输出脉冲频率f0与输入电压Vi成正比,从而实现了电压-频率变换。其输入电压和输出频率的关系为:fo=(Vin×R4)/(2.09×R3×R2×C2) 由式知电阻R2、R3、R4、和C2直接影响转换结果f0,因此对元件的精度要有一定的要求,可根据转换精度适当选择。电阻R1和电容C1组成低通滤波器,可减少输入电压中的干扰脉冲,有利于提高转换精度。 同样,由LM331也可构成频率-电压转换电路。

射频功率放大器的主要技术指标

射频功率放大器是各种无线发射机的主要组成部分。在发射机的前级电路中,调制振荡电路所产生的射频信号功率很小,需要经过一系列的放大如缓冲级、中间放大级、末级功率放大级,获得足够的射频功率后,才能馈送到天线上辐射出去。为了获得足够大的射频输出功率,必须采用射频功率放大器。 射频功率放大器电路设计需要对输出功率、激励电平、功耗、失真、效率、尺寸和重量等问题进行综合考虑。 射频功率放大器的主要技术指标是输出功率与效率,是研究射频功率放大器的关键。而对功率晶体管的要求,主要是考虑击穿电压、最大集电极电流和最大管耗等参数。 为了实现有效的能量传输,天线和放大器之间需要采用阻抗匹配网络。 3.1.1输出功率 在发射系统中,射频末级功率放大器输出功率的范围可小到毫瓦级(便携式移动通信设备)、大至数千瓦级(发射广播电台)。 为了要实现大功率输出,末级功率放大器的前级放大器单路必须要有足够高的激励功率电平。显然大功率发射系统中,往往由二到三级甚至由四级以上功率放大器组成射频功率放大器,而各级的工作状态也往往不同。 根据对工作频率、输出功率、用途等的不同要求,可以用晶体管、FET 、射频功率集成电路或电子管作为射频功率放大器。 在射频功率方面,目前无论是在输出功率或在最高工作频率方面,电子管仍然占优势。现在已有单管输出功率达2000kW 的巨型电子管,千瓦级以上的发射机大多数还是采用电子管。 当然,晶体管、FET 也在射频大功率方面不断取得新的突破。例如,目前单管的功率输出已超过100W ,若采用功率合成技术,输出功率可以达到3000W 。 3.1.2效率 效率是射频功率放大器极为重要的指标,特别是对于移动通信设备。定义功率放大器的效率,通常采用集电极效率?c 和功率增加效率PAE 两种方法。 1. 集电极效率?c 集电极效率?c 定义为输出功率P out 与电源供给功率P dc 之比,即 dc out p P =c η (3.1.1) 2.功率增加效率(PAE ,power added efficiency ) 功率增加效率定义为输出功率P out 与输入功率P in 的差于电源供给功率P dc 之比,即 c p dc in out PAE A P P P PAE ηη)11(-=-== (3.1.2) 功率增加效率PAE 的定义中包含了功率增益的因素,当有比较大的功率增益。 如何提高输出功率和保证高的效率,是射频功率放大器设计目标的核心。 3.1.3线性 ? 衡量射频功率放大器线性度的指标有三阶互调截点(IP3)、1dB 压缩点、谐波、邻道功率比等。邻道功率比衡量由放大器的非线性引起的频谱再生对邻道的干扰程度。 ? 由于非线性放大器的效率高于现行放大器的效率,射频功率放大器通常采用非线性放大器。但是分线性放大器在放大输入信号的放大的同时会产生一系列的有害影响。 ? 从频谱的角度看,由于非线性的作用,输出信号中会产生新的频率分量,如三阶互调分 量、五阶互调分量等,它干扰了有用信号并使被放大的信号频谱发生变化,即频带展宽了。

功率放大器性能指标测试

功率放大器性能指标测试 1、测试要求: 1.1电源为额定工作电压±2%,频率50H Z±1HZ 1.2测试信号标准频率:模拟:1KHZ,数字997HZ,超低音:30HZ (常用:80HZ,40HZ,100HZ) 1.3整机必须工作在以下状态: 1.3.1主音量电位器置最大 1.3.2如果有中置、环绕、超低音、音量置0dB 1.3.3音调电位器置中点。 1.3.4如果有等串响度,置于OFF位置。 1.3.5如果有声场处理器,置于关断位置。 1.3.6如果有其它滤波器,置于关断位置。 1.3.7接上额定负载,测试时用假负载,不允许用喇叭作负载。 1.3.8当测试卡拉OK功能时,把混响、延时、效果关最小位置。2 3、使用设备:双通示波器:HITACHI V-252 单针毫伏表:KIKUSUI AVM23

信号发生器:LODESTAR AG-2603AD 失真仪:ZD ZQ4121A 负载电阻:8?、4?、6?或额定负载。 4、失真限制的输出功率。 4.1测试目的:主要了解该机的输出功率是否达到额定功率。 4.2测量方框图:如图1 4.3输入信号:输入信号为标准参考频率,信号电平为额定源电动 势电平。 4.4测量步骤: 4.4.1按规定将被测样置于1.3状态,各通道接上足够功率的额 定负载电阻。 4.4.2调节主音量电位器,直到输出电压的总谐波失真达到额定 值,测量输出电压V 4.4.3失真限制的输出功率按下公式计算:P=V2/R(“V”为额定失真限制的输出电压;“R”为额定负载的阻值。) 5、信噪比: 5.1测量目的:主要考核整机在静态状态下,噪声输出电平是否 达到指标要求。 5.2测量方框图:如图1 5.3测量输入信号:信号频率为标准参考频率,信号电平为:额 定源电动势电平 5.4测量步骤:

(完整版)射频功率放大器的发展现状

1.1 研究背景 随着人类社会进入信息化时代,无线通信技术有了飞速的发展,从手机,无线局域网,蓝牙等,到航空航天宇宙探测,已经深入到当今社会生活的各个方面,成为社会生活和发展不可或缺的一部分。无线通信设备由最初体积庞大且功能单一的时代,发展到如今的口袋尺寸,方寸之间集成了各类功能强大的电路。这些翻天覆地的变化,都离不开射频与微波技术的支持。而急速增长的应用需求又促使着射频微波领域不断的研究,更新换代。快速的发展使得射频微波领域的研究进入了白热化阶段,而在几乎所有的射频与微波系统中,都离不开信号的放大,射频与微波功率放大器作为系统中功耗最大,产生非线性最强的模块,它的性能将直接影响系统性能的优劣,由于其在射频微波系统中的突出位置,功率放大器的研究也成为射频微波领域研究的一个十分重要的方向[1]。 功率放大器作为射频微波系统中最重要的有源模块,其理论方面已经十分成熟。 A 类、 B 类、 C 类、 D 类、AB 类、E/I E 类、F/I F 类、Doherty等各类功率放大器也已经成功应用到各个领域。 1.2射频功率放大器的发展现状 射频功率放大器的核心器件为其功率元器件——晶体管,它是一种非线性三端口有源半导体器件,它的放大作用,并不是晶体管能凭空产生能量,使能量放大,而是完全由集电极(BJT)或漏极(FET)电源的直流功率转换而来的。晶体管只是起到了一种控制作用,即用比较小的信号去控制直流电源产生随小信号变化的大信号,从而把电源的直流功率转换成为负载上的信号功率。功率放大器的理论知识发展已经十分完善,其面临的更多是一些工程的问题。所以,射频功率放大器性能的提升主要来自于晶体管性能的提升,即半导体技术的发展,和放大器本身电路形式的改进。根据晶体管所用的半导体材料的不同,可以大体将其分为三个不同的发展阶段。第一代半导体材料以硅(Si)和锗( Ge)等元素半导体为主。第二代半导体材料以砷化镓(GaAs)、磷化铟( InP)、锗硅(SiGe)等化合物半导体为代表,相比于第一代半导体材料,其禁带更宽、 1

射频功率放大器

射频功率放大器 射频功率放大器(RF PA)是各种无线发射机的重要组成部分。在发射机的前级电路中,调制振荡电路所产生的射频信号功率很小,需要经过一系列的放大一缓冲级、中间放大级、末级功率放大级,获得足够的射频功率以后,才能馈送到天线上辐射出去。为了获得足够大的射频输出功率,必须采用射频功率放大器。 目录 一、什么是射频功率放大器 二、射频功率放大器技术指标 三、射频功率放大器功能介绍 四、射频功率放大器的工作原理 五、射频放大器的芯片 六、射频功率放大器的技术参数 七、射频放大器的功率参数 八、射频功率放大器组成结构 九、射频功率放大器的种类 正文

一、什么是射频功率放大器 射频功率放大器是发送设备的重要组成部分。射频功率放大器的主要技术指标是输出功率与效率。除此之外,输出中的谐波分量还应该尽可能地小,以避免对其他频道产生干扰。 射频功率放大器是对输出功率、激励电平、功耗、失真、效率、尺寸和重量等问题作综合考虑的电子电路。在发射系统中,射频功率放大器输出功率的范围可以小至mW,大至数kW,但是这是指末级功率放大器的输出功率。为了实现大功率输出,末前级就必须要有足够高的激励功率电平。 射频功率放大器的主要技术指标是输出功率与效率,是研究射频功率放大器的关键。而对功率晶体管的要求,主要是考虑击穿电压、最大集电极电流和最大管耗等参数。为了实现有效的能量传输,天线和放大器之间需要采用阻抗匹配网络。 二、射频功率放大器技术指标 1、工作频率范围 一般来讲,是指放大器的线性工作频率范围。如果频率从DC开始,则认为放大器是直流放大器。 2、增益

工作增益是衡量放大器放大能力的主要指标。增益的定义是放大器输出端口传送到负载的功率与信号源实际传送到放大器输入端口的功率之比。 增益平坦度,是指在一定温度下,整个工作频带范围内放大器增益的变化范围,也是放大器的一个主要指标。 3、输出功率和1dB压缩点(P1dB) 当输入功率超过一定量值后,晶体管的增益开始下降,最终结果是输出功率达到饱和。当放大器的增益偏离常数或比其他小信号增益低1dB时,这个点就是大名鼎鼎的1dB压缩点(P1dB)。一般说放大器的功率容量,就是拿1dB压缩点来表示的了。 4、效率 由于功放是功率元件,需要消耗供电电流。因此功放的效率对于整个系统的效率来讲极为重要。 功率效率是功放的射频输出功率与供给晶体管的直流功率之比。 ηp=射频输出功率/直流输入功率 5、交调失真(IMD) 交调失真是指具有不同频率的两个或者更多的输入信号通过功率放大器而产生的混合分量。这是由于功放的非线性特质造成的。

功放电路性能指标及测试方法

1. 功放电路性能指标及测试方法 功率放大器的性能指标很多,有输出功率、频率响应、失真度、信噪比、输出阻抗、阻尼系数等,其中以输出功率、效率、频率响应、输入灵敏度、信噪比等项目指标为主。配备必要的仪器仪表主要有:音频信号发生器、音频毫伏表、示波器、失真度测量仪等。 (1)输出功率是指功放输送给负载的功率,以瓦(W )为基本单位。功放在放大倍数和负载一定的情况下,输出功率的大小由输入信号的大小决定,包括最大输出功率和额定输出功率两种。 额定输出功率:指在一定的谐波失真指标内,功放输出的最大功率。应该注意,功放的负载和谐波失真指标不同,额定输出功率也随之不同。通常规定的谐波失真指标有1%和10%。由于输出功率的大小与输入信号有关,通常测量时给功放输入频率为1KHz 的正弦信号,测出等阻负载电阻上的电压有效值o U ,此时功放的输出功率o P 可表示为 : 2o o =L U P R (4-1-4) 式中L R 为等效负载的阻抗。这样得到的输出功率,实际上为平均功率OAV P 。当输入信号幅度逐渐增大时,功放开始过载,波形削顶,谐波失真加大。谐波失真度为10%时的平均功率,称为额定输出功率,亦称最大有用功率或不失真功率。 最大输出功率:在上述情况下不考虑失真的大小,给功放输入足够大的信号,功放所能输出的最大功率称为最大输出功率。额定输出功率和最大输出功率是我国早期功放产品说明书上常用的两种功率。通常最大输出功率是额定功率的2倍。 2 L Uom Pom R (4-1-5) 其中,Uom 为放大器的最大输出电压有效值。 功放电路功率测量线路如图4-1-4所示,示波器用于监视波形失真之用,MV 表示音频毫伏表,L R 是负载电阻,O U 、I U 分别表示输出和输入信号电压。

射频功率放大器(RF PA)概述

基本概念 射频功率放大器(RF PA)是发射系统中的主要部分,其重要性不言而喻。在发射机的前级电路中,调制振荡电路所产生的射频信号功率很小,需要经过一系列的放大(缓冲级、中间放大级、末级功率放大级)获得足够的射频功率以后,才能馈送到天线上辐射出去。为了获得足够大的射频输出功率,必须采用射频功率放大器。在调制器产生射频信号后,射频已调信号就由RF PA将它放大到足够功率,经匹配网络,再由天线发射出去。 放大器的功能,即将输入的内容加以放大并输出。输入和输出的内容,我们称之为“信号”,往往表示为电压或功率。对于放大器这样一个“系统”来说,它的“贡献”就是将其所“吸收”的东西提升一定的水平,并向外界“输出”。如果放大器能够有好的性能,那么它就可以贡献更多,这才体现出它自身的“价值”。如果放大器存在着一定的问题,那么在开始工作或者工作了一段时间之后,不但不能再提供任何“贡献”,反而有可能出现一些不期然的“震荡”,这种“震荡”对于外界还是放大器自身,都是灾难性的。 射频功率放大器的主要技术指标是输出功率与效率,如何提高输出功率和效率,是射频功率放大器设计目标的核心。通常在射频功率放大器中,可以用LC谐振回路选出基频或某次谐波,实现不失真放大。除此之外,输出中的谐波分量还应该尽可能地小,以避免对其他频道产生干扰。 分类 根据工作状态的不同,功率放大器分类如下:

传统线性功率放大器的工作频率很高,但相对频带较窄,射频功率放大器一般都采用选频网络作为负载回路。射频功率放大器可以按照电流导通角的不同,分为甲(A)、乙(B)、丙(C)三类工作状态。甲类放大器电流的导通角为360°,适用于小信号低功率放大,乙类放大器电流的导通角等于180°,丙类放大器电流的导通角则小于180°。乙类和丙类都适用于大功率工作状态,丙类工作状态的输出功率和效率是三种工作状态中最高的。射频功率放大器大多工作于丙类,但丙类放大器的电流波形失真太大,只能用于采用调谐回路作为负载谐振功率放大。由于调谐回路具有滤波能力,回路电流与电压仍然接近于正弦波形,失真很小。 开关型功率放大器(Switching Mode PA,SMPA),使电子器件工作于开关状态,常见的有丁(D)类放大器和戊(E)类放大器,丁类放大器的效率高于丙类放大器。SMPA将有源晶体管驱动为开关模式,晶体管的工作状态要么是开,要么是关,其电压和电流的时域波形不存在交叠现象,所以是直流功耗为零,理想的效率能达到100%。 传统线性功率放大器具有较高的增益和线性度但效率低,而开关型功率放大器具有很高的效率和高输出功率,但线性度差。具体见下表: 电路组成 放大器有不同类型,简化之,放大器的电路可以由以下几个部分组成:晶体管、偏置及稳定电路、输入输出匹配电路。

功率放大器技术参数的测量

功放技术参数的测 一.常用测试仪器 信号源:GOOD WILL INSTRUMENT公司(固伟)GFG-8015G 宁波中策电子有限公司X010A 毫伏表:GOOD WILL INSTRUMENT公司(固伟)GFG-417B 宁波中策电子有限公司DF2173B 示波器:IWATSU ELECTRIC公司(日本)SS-7802A 失真仪:宁波中策电子有限公司DF4121A 二.频率响应的测量 术语:增益限制的有效频率范围 是指在振幅允许的范围内功放系统能够重放的频率范围,以及在此范围内信号的变化量,称为频率响应。 在该频率范围内,实际频响与所要求的频响的偏差不得超过规定限度。 1.将各仪器按上图所示方法连接(可不使用示波器),功放输出端接入一额定负载。 2.由函数发生器输入1KHz正弦信号,调节电位器,从毫伏表读取电压值,使功放输出为 额定输出电压。 并以此为电压参考点。

3.缓慢调节信号源上的频率旋钮,从功放规定的频率下限至频率上限,其输出电压变化范 围不得超过±3dB。 4.若连接示波器,看观测输出电压波形。 三.失真度的测量 理想的放大器应该是把输入的信号放大后,毫无改变的还原出来。但是由于各种原因经功放放大后的信号与输入信号相比较,往往产生了不同程度的畸变,这个畸变就是失真。用百分比表示,其数值越小越好。 1.将各仪器按上图所示方法连接,功放输出端接入额定负载。 2.由函数发生器输入1KHz正弦信号,调节电位器,使功放输出为额定电压。 3.对失真仪进行相对电平(0 dB)校准。 4.测量失真度,读出并记录此测量值。 5.可使用示波器监测输出波形是否异常。 四.输入灵敏度的测量 输入灵敏度:功放在额定负载上,输出额定电压时的输入激励电压称为输入灵敏度。

功率放大器的性能指标

功率放大器的性能指标有哪些? 功率放大器的性能指标很多,有输出功率、频率响应、失真度、信噪比、输出阻抗、阻尼系数等,其中以输出功率、频率响应、失真度三项指标为主。 1.输出功率 输出功率是指功放输送给负载的功率,以瓦(W)为基本单位。功放在放大量和负载一定的情况下,输出功率的大小由输入信号的大小决定。过去,人们用额定输出功率来衡量输出功率,现在由于高保真度的追求和对音质的评价不一样,采用的测量方法不同,因此形成了许多名目的功率称呼,应当注意。 (1) 额定输出功率(RMS) 额定输出功率是指在一定的谐波失真指标内,功放输出的最大功率。应该注意,功放的的负载和谐波失真指标不同,额定输出功率也随之不同。通常规定的谐波失真指标有1%和10%。由于输出功率的大小与输入信号有关,为了测量方便,一般采用连续正弦波作为测量信号来测量音响设备的输出功率。通常测量时给功放输入频率为1000Hz的正弦信号,测出等阻负载电阻上的电压有效值(V),此时功放的输出功率(P)可表为 P=V2/RL 式中:RL为扬声器的阻抗 这样得到的输出功率,实际上为平均功率。当音量逐渐开大时,功放开始过载,波形削顶,谐波失真加大。谐波失真度为10%时的平均功率,称为额定输出功率,亦称最大有用功率或不失真功率。 (2)最大输出功率 在上述情况下不考虑失真的大小,给功放输入足够大的信号,并将音量和音调电位器调到最大时,功放所能输出的最大功率称为最大输出功率。额定输出功率和最大输出功率是我国早期音响产品说明书上常用的两种功率。通常最大输出功率是额定功率的2倍。但是,在放音时却有这样的情况,两台最大有用功率及扬声器灵敏度都差不多的功放在试听交响乐节目时,当一段音乐从低潮过去以后突然来一突发性打击乐器声,可能一台功放能在瞬间给出相当大的功率,给人以力度感,另一台功放却显得底气不足。为了标志功放这种瞬间的突发输出功率的能力,除了测量上述的最大有用功率和最大输出功率之外,有必要测量功放的音乐输出功率和峰值输出功率。才能全面地反映功放的输出能力。 (3)音乐输出功率(MPO)

50MHz-250W射频功率放大器的设计复习课程

50M H z-250W射频功率放大器的设计

实例介绍设计与制作功放(二) 出处:何庆华发布日期:2007-8-2 浏览次数:2249 在上篇的文中,我用实例的方法基本地讲述了功放的一些参数计算与设定,其实这也可应用于音响系统中使用晶体管放大的电路中. 由于觉得使用实例会让初入门的朋友会有更深刻的认识,所以此篇也将用实例去介绍功放中各级的匹配传输.但要我一个可典型说明的例子让我想了不少时间,最终决定选用了之前制作的全无环路反馈的功放电路.由于没有使用级间的环路反馈,以致级间的匹配以及各级的电路但总显得十分重要. 见图,在后级的放大线路,是没有环路反馈的这将会电路的指标有所劣化.因电路工作于开环状态,这需要选用性能较好的电路组态,以取得更好的实际音质.而没有使用环路 负反馈,好处是大家所熟知的.如避免了各类的互相失 真,既然无环路反馈有如此.全音质更纯真透明.正如胆 友所追求的效果.但有点却要说明,胆与石,都是为了满 是个人的喜好.而在进口的众多名器中,可以有很多是超 过十万的晶体管后级.甚至有几十万过百万的钽却先见 有超过十万的胆机!而在低挡商品机中,如万元下的进口 器材,胆机却是可以优于石机,但中高挡机中.石机不再 受制于成本,全电路性能大幅提高.同价位的胆石机间胆 机已处于劣势,这从实际试听及一些前辈的言论中也得 到证实.而在DIY中由于没有过多的广告费用,可令成 本都能集中到机内,如电路合理工艺精良,性价比大优于 商品机. 再说回电路,之所以使用无反馈电路就是想用晶体管 收集于网络,如有侵权请联系管理员删除

去取得胆机那中清晰温暖的声音,在这里,使用共射共基电路是必然的,共射共基电路又叫渥尔曼电路,前管共射配合后管的共基放大,让两管中间严重失配,却大降低了前管的密勒电容效应,使前管的频响大改善,而后管是共基电路,天生是频响的高手。在放大能力上,基射共基电路与一般的单管共射电路是没有分别的,但频响却在高频上独领风骚,故而在许多的进口名器上不乏其影,用于本机却可大大改善了开环响应与高频线性。 电路的参数计算在上篇已介绍过,这里就不再罗索了,第一级的工作电流是5mA,增益是2K2与470欧的比值,增益约为15dB,注意的是两个33欧的电阻是配合了K170/J74的参数,如要换用其他的管子可能需要更改这两个电阻的数值。第二级的工作电流约为13mA,增益约为18dB,忽略了输出级的轻微损耗,整机增益在33dB 左右,可以直驳CD机了。 第一级电路与第二级电路在匹配上是没有问题的,但第二级与输出级却由于无反馈而有一定的要求了。若在此输出级使用一般常见的两级射极跟随器,输入阻抗一般只能达到15K欧,由于音箱的阻抗在全频段的不平均,将令第二级电压放大电路的负载(为输出级的输入阻抗)变得不平均稳定。这将导致此级在全频带的放大量不一致,而本机又没有使用环路负反馈来纠正增益。 要解决这一问题有两种方法,一个是输出级用场效应管作推动,使输入阻抗阻抗在理论上达百万M欧,,在实际的应用中可在50K欧,但使用场效应管往往需要有120mA如此大的静态电流,否则音色显得干硬,而如此大的功耗而使功放级的偏置难于补偿。另一种方法是使用近年来许多进口高档机采用的三级双极型三极管组成的输出级电路,本机就采用这种电路,使实际的输入阻抗在50K以上,且不易受音箱负载的影响,但50K的负载对于第二级放大电路来说是太高的,为免增益太高,在第二级放大电路的集电极上各并上了一个10K的电阻,从而令本级达到了预期的增益,且使本级负载的更为稳定,频响更平坦。 输出管使用三对5200/1943并联,以降低输出阻抗,由于无负反馈,这级往往需要较大的静态电流来克服失真与改善音色。另外,直流化电路也是国外高档功放的基本电路形式,本机也不例外,使用直流放大电路可以杜绝耦合电容的音染,获得更好的音色效果,至此后级功放的电路已告完成。 在此有必要提及一下的是音量电位器与后级电路的匹配.在沙的国内DIY的朋友中,多有喜欢在后级的输入端加个音量电位器控制音量就算了,就算是有前级放大的,电位器多是放于前后级之间,这样做本是没有问题的,但如今的电路多数会在后级的输入端加有低通滤波网络,这时就会产生问题了。 电位器的输出阻抗相对较大,而后级的输入低通滤波的截止频率大多是忽略前面的输出阻抗而计算的,而音量电位器的输出阻抗是无法估计的,因其在不同的刻度位置时会有不同的输出阻抗,这样一来,所设计的理想截止频率却变得不理想,截止频率下移了,限制了高频的延伸,为此我在电位器与后级间加入了一级的缓冲电器,以将电位器与后级的直接关联切断,在实际的听感中,会觉得有此电路后高频的延伸力增强,分析力提高,声音却更顺耳,当然这也会与增加了一级的电路有关。而事实上这个缓冲电路也可以说是一个前级。 后级的电压放大级单独用上一组并联稳压电源,本机的缓冲级与音调电路使用另一组关联稳压,音调的切换使用一个OMRON的高品质继电器,以求减低故障率。 收集于网络,如有侵权请联系管理员删除

功放主要测试方法和技术指标

专业功放测试:主要性能指标&信噪比测量功放与音响的主要性能指标 输出功率 衡量一件器材对高、中、低各频段信号均匀再现的能力。用图表的形式来展示音响器材的相对幅度和频率的函数关系。本底噪声 指由于设备硬件本身的原因而给输出信号中增添的多余信号。灵敏度 对放大器来说,一般指达到额定输出功率或电压时输入端所加信号的电压大小;音箱的灵敏度是指在经音箱输入端输入1W\1KHZ信号时,在距音箱喇叭平面垂直中轴前方一米的地方所测试得的声压级。总谐波失真加噪声(THD+N) THD+N是指由设备本身产生的失真谐波频率的总和,它是代表了输入信号与输出信号之间的吻合程度。 互调失真(IMD) 指由放大器所引入的一种输入信号的和及差的失真。信噪比(SNR) 表示信号与噪声电平的分贝差。立体声分离度 指设备的两个通道之间相互隔离、互不干扰的程度。阻抗 指设备输入信号的电压与电流的比值。阻尼系数 指放大器的额定负载(扬声器)阻抗与功率放大器实际阻抗的比值。阻尼系数是放大器在信号消失后控制扬声器锥体运动的能力。抖晃(Wow) 指录音机或录音座转速的缓慢变化导致产生不稳定的畸形声音。颤动(dither) 指有意添加在音频信号上用于改善低电平下数字信号的解析力的少量噪声。时基误差(jitter)指数字音响系统中用作同步的时钟自身在时间上的变化。 粉红噪声 每个八度带有相同能量的随机噪声。常用作测定音响或聆听环境的频谱的测试信号。 白噪声 所有频率具有相同能量的随机噪声称为白噪声。用来测试音箱的谐振和灵敏度的。 信噪比测量(S/N或SNR)“信号”测量一般采用的是指定输出电平的中频段正弦信号(通常为1kHz),“指定电平”通常是指设备的最大标称或标准的工作电平。“噪声”测量必须指定测量带宽和加权滤波器。两个测量的比值就是设备的信噪比。如果测量仪器特性包括一个“相对dB”单位,其0dB基准可以设定成等于输入信号电平值,那么信噪比的测量就比较容易了。利用这一特性,功放信噪比测量就变成如下简单的步骤:1. 建立指定的输出参考电平并正确接好输入端;2. 操作测量仪器,使这一电平成为0dB的基准值; 3. 取消信号源。虽然现在仪表指示的就是信噪比,但是表示成负值(比如,90dB的信噪比被表示为-90dB)。 专业功放测试:THD+N测量&串音测量&两通道比率测量功放失真测量方法 1.总谐波失真(THD) THD(不要与THD+N,总谐波失真加噪声相混淆)通常是由一系列单独谐波幅度测量结果计算出来的,而不是一次测量得到的。THD是单独谐波幅度的平方求和开方之后得到的。THD技术指标一般要说明包含在计算中的最高次谐波的次数;比如,“THD 含盖到5次谐波”。THD并不是经常进行的测量,因为它要求用一个相当不常用的分析仪来测量低于正常工作电平很多的某次谐波,并且要自动或手动计算出结果。应注意的是,许多早期的THD+N结构的分析仪在其面板上标注的是THD,并且许多人在使用的实际是THD+N技术时,认为是THD测量。 2. 总谐波失真+噪声(THD+N) 目前最常用的失真测量方法就是THD+N技术了。其中的主要功能块就是可调谐的陷波器。

最新50MHz-250W射频功率放大器的设计

实例介绍设计与制作功放(二) 出处:何庆华发布日期:2007-8-2 浏览次数:2249 在上篇的文中,我用实例的方法基本地讲述了功放的一些参数计算与设定,其实这也可应用于音响系统中使用晶体管放大的电路中. 由于觉得使用实例会让初入门的朋友会有更深刻的认识,所以此篇也将用实例去介绍功放中各级的匹配传输.但要我一个可典型说明的例子让我想了不少时间,最终决定选用了之前制作的全无环路反馈的功放电路.由于没有使用级间的环路反馈,以致级间的匹配以及各级的电路但总显得十分重要. 见图,在后级的放大线路,是没有环路反馈的这将会电路的指标有所劣化.因电路工作于开环状态,这需要选用性能较好的电路组态,以取得更好的实际音质.而没有使用环路负反馈,好处是大家所熟知的.如避免了各类的互相失真,既然无环路反馈有如此.全音质更纯真透明.正如胆友所追求的效果.但有点却要说明,胆与石,都是为了满是个人的喜好.而在进口的众多名器中,可以有很多是超过十万的晶体管后级.甚至有几十万过百万的钽却先见有超过十万的胆机!而在低挡商品机中,如万元下的进口器材,胆机却是可以优于石机,但中高挡机中.石机不再受制于成本,全电路性能大幅提高.同价位的胆石机间胆机已处于劣势,这从实际试听及一些前辈的言论中也得到证实.而在DIY中由于没有过多的广告费用,可令成本都能集中到机内,如电路合理工艺精良,性价比大优于商品机.

再说回电路,之所以使用无反馈电路就是想用晶体管 去取得胆机那中清晰温暖的声音,在这里,使用共射共 基电路是必然的,共射共基电路又叫渥尔曼电路,前管 共射配合后管的共基放大,让两管中间严重失配,却大 降低了前管的密勒电容效应,使前管的频响大改善,而 后管是共基电路,天生是频响的高手。在放大能力上, 基射共基电路与一般的单管共射电路是没有分别的,但 频响却在高频上独领风骚,故而在许多的进口名器上不 乏其影,用于本机却可大大改善了开环响应与高频线 性。 电路的参数计算在上篇已介绍过,这里就不再罗索了,第一级的工作电流是5mA,增益是2K2与470欧的比值,增益约为15dB,注意的是两个33欧的电阻是配合了K170/J74的参数,如要换用其他的管子可能需要更改这两个电阻的数值。第二级的工作电流约为13mA,增益约为18dB,忽略了输出级的轻微损耗,整机增益在33dB左右,可以直驳CD机了。 第一级电路与第二级电路在匹配上是没有问题的,但第二级与输出级却由于无反馈而有一定的要求了。若在此输出级使用一般常见的两级射极跟随器,输入阻抗一般只能达到15K欧,由于音箱的阻抗在全频段的不平均,将令第二级电压放大电路的负载(为输出级的输入阻抗)变得不平均稳定。这将导致此级在全频带的放大量不一致,而本机又没有使用环路负反馈来纠正增益。 要解决这一问题有两种方法,一个是输出级用场效应管作推动,使输入阻抗阻抗在理论上达百万M欧,,在实际的应用中可在50K欧,但使用场效应管往往需要有120mA

相关主题
文本预览
相关文档 最新文档