当前位置:文档之家› 射频功率放大器自适应预失真技术研究

射频功率放大器自适应预失真技术研究

射频功率放大器自适应预失真技术研究
射频功率放大器自适应预失真技术研究

射频功率放大器

实验四:射频功率放大器 【实验目的】 通过功率放大器实验,让学生了解功率放大器的基本结构,工作原理及其设计步骤,掌握功率放大器增益、输出功率、频率范围、线性度、效率和输入/输出端口驻波比等主要性能指标的测试方法,以此加深对以上各项性能指标的理解。 【实验环境】 1.实验分组:每组2~4人 2.实验设备:直流电源一台,频谱仪一台,矢量网络分析仪一台,功率计一只,10dB衰减器一个,万用表一只,功率放大器实验电路 板一套 【实验原理】 一、功率放大器简介 功率放大器总体可分成A、B、C、D、E、F六类。而这六个小类又可以归入不同的大类,这种大类的分类原则,大致有两种:一种是按照晶体管的导通情况分,另一种按晶体管的等效电路分。按照信号一周期内晶体管的导通情况,即按导通角大小,功率放大器可分A、B、C三类。在信号的一周期内管子均导通,导θ(在信号周期一周内,导通角度的一半定义为导通角θ),称为A 通角? =180 θ。导通时间小于一半周期的类。一周期内只有一半导通的成为B类,即? =90 θ。如果按照晶体管的等效电路分,则A、B、C属于一大称为C类,此时? <90 类,它们的特点是:输入均为正弦波,晶体管都等效为一个受控电流源。而D、E、F属于另一类功放,它们的导通角都近似等于? 90,均属于高功率的非线性放大器。 二、功率放大器的技术要求 功率放大器用于通信发射机的最前端,常与天线或双工器相接。它的技术要求为: 1. 效率越高越好 2. 线性度越高越好 3. 足够高的增益

4. 足够高的输出功率 5. 足够大的动态范围 6. 良好的匹配(与前接天线或开关器) 三、功率放大器的主要性能指标 1.工作频率 2.输出功率 3.效率 4.杂散输出与噪声 5.线性度 6.隔离度 四、功率放大器的设计步骤 1.依据应用要求(功率、频率、带宽、增益、功耗等),选择合适的晶体管 2.确定功率放大器的电路和类型 3.确定放大器的直流工作点和设计偏置电路 4.确定最大功率输出阻抗 5.将最大输出阻抗匹配到负载阻抗(输出匹配网络) 6.确定放大器输入阻抗 7.将放大器输入阻抗匹配到实际的源阻抗(输入匹配网络) 8.仿真功率放大器的性能和优化 9.电路制作与性能测试 10.性能测量与标定 五、本实验所用功率放大器的简要设计过程 1. PA 2. 晶体管的选择 本实验所选用的晶体管为安捷伦公司的ATF54143_PHEMT,这种晶体管适合用来设计功率放大器。单管在~处能达到的最大资用增益大于18dB,而1dB压缩点高于21dB。

射频功率放大器的发展现状

1.1 研究背景 随着人类社会进入信息化时代,无线通信技术有了飞速的发展,从手机,无线局域网,蓝牙等,到航空航天宇宙探测,已经深入到当今社会生活的各个方面,成为社 会生活和发展不可或缺的一部分。无线通信设备由最初体积庞大且功能单一的时代, 发展到如今的口袋尺寸,方寸之间集成了各类功能强大的电路。这些翻天覆地的变化,都离不开射频与微波技术的支持。而急速增长的应用需求又促使着射频微波领域不断 的研究,更新换代。快速的发展使得射频微波领域的研究进入了白热化阶段,而在几乎所有的射频与微波系统中,都离不开信号的放大,射频与微波功率放大器作为系统中功耗最大,产生非线性最强的模块,它的性能将直接影响系统性能的优劣,由于其在射频微波系统中的突出位置,功率放大器的研究也成为射频微波领域研究的一个十 分重要的方向[1]。 功率放大器作为射频微波系统中最重要的有源模块,其理论方面已经十分成熟。 A 类、 B 类、 C 类、 D 类、AB 类、E/I E 类、F/I F 类、Doherty等各类功率放大器也已经成功应用到各个领域。 1.2射频功率放大器的发展现状 射频功率放大器的核心器件为其功率元器件——晶体管,它是一种非线性三端口有源半导体器件,它的放大作用,并不是晶体管能凭空产生能量,使能量放大,而是 完全由集电极(BJT)或漏极(FET)电源的直流功率转换而来的。晶体管只是起到了一种控制作用,即用比较小的信号去控制直流电源产生随小信号变化的大信号,从而把电源的直流功率转换成为负载上的信号功率。功率放大器的理论知识发展已经十分完 善,其面临的更多是一些工程的问题。所以,射频功率放大器性能的提升主要来自于 晶体管性能的提升,即半导体技术的发展,和放大器本身电路形式的改进。根据晶体管所用的半导体材料的不同,可以大体将其分为三个不同的发展阶段。第一代半导体材料以硅(Si)和锗( Ge)等元素半导体为主。第二代半导体材料以砷化镓(GaAs)、磷化铟( InP)、锗硅(SiGe)等化合物半导体为代表,相比于第一代半导体材料,其禁带更宽、

宽带射频功率放大器设计

?阻抗变换器和阻抗匹配网络已经成为射频电路以及最大功率传输系统中的基本部件。为了使宽带射频功率放大器的输入、输出达到最佳的功率匹配,匹配电路的设计成为射频功率放大器的重要任务。要实现宽带内的最大功率传输,匹配电路设计非常困难。本文设计的同轴变换器电路就能实现高效率的电路匹配。同轴变换器具有功率容量大、频带宽和屏蔽好的特性,广泛应用于VHF/UHF波段。常见的同轴变换器有1:4和1:9阻抗变换,如图1所示。但是实际应用中,线阻抗与负载不匹配时,它们的阻抗变换不再简单看作1:4或1:9.本文通过建立模型,提出一种简化分析方法。 1 同轴变换器模型 同轴变换器有三个重要参数:阻抗变换比、特征阻抗和电长度。这里用电长度是为了分析方便。当同轴线的介质和长度一定时,电长度就是频率的函数,可以不必考虑频率。 1.1理想模型 理想的1:4变换器的输入、输出阻抗都匹配,每根同轴线的输入、输出阻抗等于其特征阻抗Z0,其等效模型如图2所示。

其源阻抗Zg与ZL负载阻抗变换比为: 图2和公式(1)表明:变换器的阻抗变换比等于输入阻抗与输出阻抗之比。 同轴变换器的输入阻抗等于同轴线的输入阻抗并联,输出阻抗等于同轴线的输出阻抗串联。 1.2通用模型 由于特征阻抗是实数,而源阻抗与负载阻抗一般都是复数,所以,就不能简单的用变换比来计算。阻抗匹配就是输入阻抗等于源阻抗的共轭,实现功率的最大传输。特征阻抗为Z0,电长度为E的无耗同轴线接复阻抗的电路如图3所示。 由于源阻抗与同轴线特征不匹配,电路的反射系数就不是负载反射系数。 由于同轴线是无耗的,进入同轴线的功率就等于负载消耗的功率。那就可以把电路简化只有一个负载Zin,又因为Zg与Zin都是复数且串联,就可以把Zg中的虚部等效到Zin中,最后得到反射系数为: 其中:

射频功放设计

基于ADS的射频功率放大器仿真设计 1.引言 各种无线通信系统的发展,如GSM、WCDMA、TD-SCDMA、WiMAX和Wi-Fi,大大加速了半导体器件和射频功放的研究过程。射频功放在无线通信系统中起着至关重要的作用,它的设计好坏影响着整个系统的性能。因此,无线通信系统需要设计性能优良的放大器。而且,为了适应无线系统的快速发展,产品开发的周期也是一个重要因素。另外,在各种无线系统中由于采用了不同调制类型和多载波信号,射频工程师为减小功放的非线性失真,尤其是设计无线基站应用的高功率放大器时面临着巨大的挑战。采用Agilent ADS 软件进行电路设计可以掌握设计电路的性能,进一步优化设计参数,同时达到加速产品开发进程的目的。功放(PA)在整个无线通信系统中是非常重要的一环,因为它的输出功率决定了通信距离的长短,其效率决定了电池的消耗程度及使用时间。 2.功率放大器基础 2.1功率放大器的种类 根据输入与输出信号间的大小比例关系,功放可以分为线性放大器与非线性放大器两种。输入线性放大器的有A、B、AB类;属于非线性放大器的则有C、E 等类型的放大器。 (1)A类:其功率器件再输入信号的全部周期类均导通,但效率非常低,理想状态下效率仅为50%。 (2)B类:导通角仅为180°,效率在理想状态下可达到78%。 (3)AB类:导通角大于180°但远小于360°。效率介于30%~60%之间。 (4)C类:导通角小于180°,其输出波形为周期性脉冲。理论上,效率可达100%。 (5)D、E类:其原理是将功率器件当作开关使用。 设计功放电路前必须先考虑系统规格要求的重点,再来选择电路构架。对于射频功放,有的系统需要高效率的功放,有些需要高功率且线性度佳的功放,有些需要较宽的操作频带等,然而这些系统需求往往是相互抵触的。例如,B、C、E类构架的功率放大器皆可达到比较高的效率,但信号的失真却较为严重;而A

射频功率放大器的建模

射频功率放大器的建模 随着通信技术的发展,射频射频电路在通信系统中得到了广泛的应用。功率放大器的研究和设计一直是通信发展中的重要课题。近年来,基于模糊神经网络的射频器件和电路建模建模的研究取得了巨大的成果,对大规模集成电路和复杂电路的建模有着巨大的启发意义,成为当今研究的热点之一,本文将基于这个理论对射频放大器进行建模和研究。1 建模方法的介绍本文将采用模糊逻辑网络中的一阶Sugeno模型,为了实现Sugeno 模糊推理系统的学习过程,一般将其转化为一个自适应网络,即自适应模糊神经推理系统,。该自适应网络是一个多层前馈网络,它可以分为5层,其中的方形节点需要进行参数学习。下面分别介绍这五层。图1 自适应模糊神经推理系统结构第1层计算输入变量的匹配度,即模糊化过程。假设模糊集采用高斯函数,那么该层输出( Oi表示第j层的第i个输出)为:对y 的计算同理, ci, σ i 分别表示高斯函数的中心和宽度,是模糊规则前提条件中需要调节的参数。第2 层计算当前输入对各条规则的激励强度,采用对规则前件部分各模糊变量的隶属度作乘积运算,即:第3层对激励强度进行归一化:第4层计算每条规则的输出,一条规则的输出是给定输入对该条规则的激励强度与结论部分的乘积:第5层计算模糊系统的输出,总的输出是所有规则输出之和:由此可见这一模糊逻辑系统定义了从x、y 到z 之间的一个映射:通过对模糊规则中各参数的精心选择,可准确地刻画变量之间的关系。用模糊逻辑建模可以把整个建模过程分成两步: 初始模型的建立和模型的后续训练调整。初始模型的建立除了可根据该领域已有的一些经验、知识外,现在还可以根据一组训练样本数据,运用一定的算法确定输入变量与输出变量的模糊集个数与相应的隶属度函数的形状,及一组模糊规则。有了这样一个初始模型后,再用学习算法,如BP算法、DFP算法,来调整隶属度函数中的参数,逐步减小系统的模糊输出值跟实际输出值之间的误差,可取得较好的效果。 2 建模过程在下面的实例中应用ANFIS进行建模的步骤如下:( 1)在ADS中对设计好的功放电路进行仿真,这里分别对输入为单音信号、双音信号以及调制信号的功放电路进行仿真,最终目的是建立一个描述输入输出端口关系的行为模型,故选择输入和输出的电压数据用以训练之用。( 2)编写程序,预设ANFIS中的参数值,确定隶属度函数的类型、模糊规则的条数、迭代次数、模糊集的个数等,建立初始模型,并完成对训练数据的学习;( 3)利用检测样本数据检验所建立的模型; 采用最小二乘法和梯度下降法对模型的参数进行调整。( 4)观察检测结果,若检测误差满足精度要求,建模结束,若不满足,继续调整。本文采用一个三输入单输出的初始模型,输入变量选为Vin ( k ), Vin ( k- 1), Vout ( k- 1)三个输入变量,其中Vin ( k ) 为输入电压,变量Vin ( k - 1 ) 用Vin ( k- 1) = Vin ( k ) - Vin ( k - 1)的差分形式来替换。Vout ( k- 1)为考虑记忆效应而加入的项,即前一刻的输出量。输出变量为一单变量Vou t ( k )。这样可以将整个需建模的电路输入输出的动态关系用式( 7)予以表达:模型采用高斯隶属度函数,模糊规则条数为[ 2 12],共四条,采用平均分割法。 3 应用实例以下是一个基于SM IC 技术设计的射频功率放大器功率放大器,。它的设计指标如下:S11< - 15 dB, S21> 20 dB, P1 dB > 20 dBm,PAE 30% , Pgain > 20 dB。图2电路中选用SM IC 库中的NMOS管,其他元件参数如表1~ 3所示。表1 元件参数单位: pF表2 元件参数单位: nH表3 元件参数单位: kΩ电路工作在2. 45 GHz 下,输入功率为RF_input= - 20 dBm~ 10 dBm(间隔1 dBm)的信号,对电路进行HB仿真,并选取时域下两个周期的抽样输入输出电压抽样数据作为训练数据。检验数据的选取与上述类似,可以选择输入功率RF_input= - 19. 5 dBm~10. 5 dBm (间隔为1 dBm )内的一组或多组信号。建模结果,图3是输入功率为6. 5 dBm和- 6. 5 dBm 时,稳态输出电压的结果。图4是利用输入功率为7. 5 dBm 时模型得到的时域数据,选取一个周期的输出电压数据做FFT 变换,得到电压信号频谱,对基波及二到五次谐波电压分别计算功率谱,并与

5G时代的射频功率放大器研究报告

5G时代的射频功率放大器研究报告 5G 时代,射频功率放大器需求有望多点开花 投资建议 ?行业策略:射频功率放大器(PA)作为射频前端发射通路的主要器件,通常 用于实现发射通道的射频信号放大。5G 将带动智能移动终端、基站端及 IOT 设备射频PA 稳健增长,智能移动终端射频PA 市场规模将从2017 年的 50 亿美元增长到2023 年的70 亿美元,复合年增长率为7%,高端LTE 功率 放大器市场的增长,尤其是高频和超高频,将弥补2G/3G 市场的萎缩。 GaAs 器件是消费电子3G/4G 应用的主力军,5G 时代仍将延续,此外,物联 网将是其未来应用的蓝海。GaN 器件则以高性能特点目前广泛应用于基站、 雷达、电子战等军工领域,在5G 时代需求将迎来爆发式增长。5G 时代,射 频功率放大器需求有望多点开花,建议买入行业龙头。 推荐组合:我们认为,随着5G 进程的加快,5G 基站、智能移动终端及IOT 终端射频PA 将迎来发展良机,使用量大幅增加,看好细分行业龙头,推荐: CREE 、Skyworks、稳懋、三安光电、环旭电子,建议关注:海特高新 (海威华芯)、旋极信息(拟收购安谱隆)。 行业观点 ?5G 推动手机射频PA 量价齐升:4G 时代,智能手机一般采取1 发射2 接收 架构,预测5G 时代,智能手机将采用2 发射4 接收方案,未来有望演进为 8 接收方案。功率放大器(PA)是一部手机最关键的器件之一,它直接决定 了手机无线通信的距离、信号质量,甚至待机时间,是整个射频系统中除基 带外最重要的部分。手机里面PA 的数量随着2G、3G、4G、5G 逐渐增加。 以PA 模组为例,4G 多模多频手机所需的PA 芯片为5-7 颗,预测5G 手机内 的PA 芯片将达到16 颗之多,价值量超过7.5 美元。5G 智能终端射频前端 SIP 将是大势所趋,高通已发布5G 第二代射频前端模组,MEMS 预测,到 2023 年,用于蜂窝和连接的射频前端SiP 市场将分别占SiP 市场总量的82% 和18%。按蜂窝通信标准,支持5G(sub-6GHz 和毫米波)的前端模组将占 到2023 年RF SiP 市场总量的28%。高端智能手机将贡献射频前端模组SiP 组装市场的43%,其次是低端智能手机(35%)和奢华智能手机(13%)。 ?5G 基站,PA 数倍增长,GaN 大有可为:4G 基站采用4T4R 方案,按照三 个扇区,对应的射频PA 需求量为12 个,5G 基站,预计64T64R 将成为主流 方案,对应的PA 需求量高达192 个,PA 数量将大幅增长。目前基站用功率 放大器主要为LDMOS 技术,但是LDMOS 技术适用于低频段,在高频应用 领域存在局限性。我们研判5G 基站GaN 射频PA 将成为主流技术,逐渐侵 占LDMOS 的市场,GaAs 器件份额变化不大。GaN 能较好的适用于大规模 MIMO,预计2022 年,4G/ 5G 基础设施用RF 半导体的市场规模将达到16 亿美元,其中,MIMO PA 年复合增长率将达到135%,射频前端模块的年复 合增长率将达到119%。 ?5G 时代,窄带物联网设备射频前端迎来发展新机遇:在手机市场追求更快 更强的同时,有另外一个市场就是窄带物联网(Cat-M /NB-IoT),NB-IoT 虽 然有要求和LTE 相同的上行功率(power class3),但是信号的峰均比较低。另 外,NB-IoT 采用半双工方式工作,避免使用FDD 双工器,PA 后端的插入损 耗小。这些因素可以让NB-IoT 的PA 更加偏向于非线性的设计,同时采用更 小的Die 设计,从而达到节省成本和提高效率的目的。对于NB-IoT PA 来 讲,超宽带、低电压、极端温度和低成本是重点要考虑的方向。 风险提示 ?智能手机及基站射频PA 被国际巨头垄断,技术难度较大,国内进展缓慢, 合格率较低,成本居高不下,射频PA 需要持续性投入。

射频功率放大器实时检测的实现

射频功率放大器实时检测的实现 广播电视发射机是一个综合的电子系统,它不仅包括无线发射视音频通道,而且还包括通道的检测和自动控制电路,因此在设计时,它除了必须保证无线通道的技术指标处于正常范围外,还必须设计先进的取样检测和保护报警等电路,以确保发射机工作正常,从而实现发射机在线自动监测和控制。近年来,随着大功率全固态电视发射机多路功率合成技术的发展,越来越多的厂家采用模块化结构设计,因此单个功率放大器模块是整个发射机的基本测单元,本文就着重讨论单个模块的检测和控制电路,从而实现发射机在线状态自动监测。 一、工作原理 在功放模块中,主要检测和控制参数为电源电压,各放大管的工作电流,输出功率,反射功率,过温度和过激励保护等,图1为实现上述检测控制功能的方框图,它由取样放大电路,V/F变换,隔离电路,F/V变换,A/D转换,AT89C51,显示电路和输出保护电路等组成。 1、隔离电路 在功放模块中,由于大功率器件的应用,往往单个模块的输出功率都比较大,因而对小信号存在较大的高频干扰,如处理不好,就会影响后级模数转换电路工作,从而导致检测数据不准确,显示数据跳动的现象,甚至出现误动作。这里采用光电耦合器进行隔离,由于光电耦合器具有体积小、使用寿命长、工作温度范围宽、抗干扰性能强、无触点且输入与输出在电气上完全隔离等特点,从而将模拟电路和数字电路完全隔离,保障系统在高电压、大功率辐射环境下安全可靠地工作。 2、LM331频率电压转换器

V/F变换和F/V变换采用集成块LM331,LM331是美国NS公司生产的性能价格比较高的集成芯片,可用作精密频率电压转换器用。LM331采用了新的温度补偿能隙基准电路,在整个工作温度范围内和低到4.0V电源电压下都有极高的精度。同时它动态范围宽,可达100dB;线性度好,最大非线性失真小于0.01%,工作频率低到0.1Hz时尚有较好的线性;变换精度高,数字分辨率可达12位;外接电路简单,只需接入几个外部元件就可方便构成V/F或F/V等变换电路,并且容易保证转换精度。 图2是由LM331组成的电压频率变换电路,LM331内部由输入比较器、定时比较器、R-S触发器、输出驱动、复零晶体管、能隙基准电路和电流开关等部分组成。输出驱动管采用集电极开路形式,因而可以通过选择逻辑电流和外接电阻,灵活改变输出脉冲的逻辑电平,以适配TTL、DTL和CMOS等不同的逻辑电路。 当输入端Vi+输入一正电压时,输入比较器输出高电平,使R-S触发器置位,输出高电平,输出驱动管导通,输出端f0为逻辑低电平,同时电源Vcc也通过电阻R2对电容C2充电。当电容C2两端充电电压大于Vcc的2/3时,定时比较器输出一高电平,使R-S触发器复位,输出低电平,输出驱动管截止,输出端f0为逻辑高电平,同时,复零晶体管导通,电容C2通过复零晶体管迅速放电;电子开关使电容C3对电阻R3放电。当电容C3放电电压等于输入电压Vi时,输入比较器再次输出高电平,使R-S触发器置位,如此反复循环,构成自激振荡。输出脉冲频率f0与输入电压Vi成正比,从而实现了电压-频率变换。其输入电压和输出频率的关系为:fo=(Vin×R4)/(2.09×R3×R2×C2) 由式知电阻R2、R3、R4、和C2直接影响转换结果f0,因此对元件的精度要有一定的要求,可根据转换精度适当选择。电阻R1和电容C1组成低通滤波器,可减少输入电压中的干扰脉冲,有利于提高转换精度。 同样,由LM331也可构成频率-电压转换电路。

浅议射频功率放大器的研究

浅议射频功率放大器的研究 随着现代通信技术的发展,发送设备系统在现代通信系统中地位十分突出,同时对于发送设备系统中射频功率放大器是极为重要的部件,因此加强对射频功率放大器的研究对于提高其综合性能以及融合现代通信技术都十分重要。研究射频功率放大器就要从最基本的概念、类别划分以及主要技术指标开始。文章主要對射频功率放大器的基本概念、射频功率放大器的分类以及射频功率放大器的主要技术指标做了简单阐述,可以对研究射频功率放大器的单位及科研人员提供一些借鉴。 标签:射频放大器;基本概念;类别;技术指标 前言 在发送设备系统中射频功率放大器是极为重要的组成器件,其主要是针对输出功率、功耗、效率、激励电平、失真以及尺寸和重量等相关因素做出综合考虑的一种电子电路。输出功率以及效率是衡量射频功率放大器的主要指标,在此基础上对于输出的谐波分量要尽可能的小,进而避免产生对其他频道的干扰。此外射频功率放大器在发射系统的应用中,其输出功率范围一般较大,可以从mW 到kW之间。因此对射频功率放大器进行研究,并实现射频大功率输出,把握关键环节,实现高效的能量传输,对于发送系统意义十分重大。 1 射频功率放大器的分类 由于射频功率放大器频带相对于较窄工作频率较高,因此其负载回路一般均采用选频网络。对于射频功率放大器的分类可以按照电流导通角进行分类,当其放大器的电流导通角为360°时,将该种射频功率放大器成为甲类工作状态也可成为A类,该类放大器适合于将低功率小信号进行放大;当其放大器的电流导通角为180°时将该种射频功率放大器成为乙类工作状态也可成为B类,该类放大器适合于大功率工作状态;当其放大器的电流导通角小于180°时我们将该种射频功率放大器成为丙类工作状态也可成为C类,该类放大器与乙类相同,均适合于大功率工作状态,只不过丙类工作状态的效率和输出状态相对更大。因此大多数射频功率放大器都工作在丙类状态,但由于丙类工作状态的放大器有一明显的缺点就是能够使得电流波形过大失真,因此为了避免过度失真,一般采用调谐回路将负载谐振功率放大,这是因为调谐回路具备滤波功能,进而使得电流波形接近于正弦状态,进而最大程度减小失真。除此之外为了得到更大的功率放大以及效率,还有丁类工作状态放大器以及戊类工作状态放大器,按照英文也可成为D类和E类。 2 射频功率放大器的主要技术指标 2.1 输出功率

射频功率放大器的主要技术指标

射频功率放大器是各种无线发射机的主要组成部分。在发射机的前级电路中,调制振荡电路所产生的射频信号功率很小,需要经过一系列的放大如缓冲级、中间放大级、末级功率放大级,获得足够的射频功率后,才能馈送到天线上辐射出去。为了获得足够大的射频输出功率,必须采用射频功率放大器。 射频功率放大器电路设计需要对输出功率、激励电平、功耗、失真、效率、尺寸和重量等问题进行综合考虑。 射频功率放大器的主要技术指标是输出功率与效率,是研究射频功率放大器的关键。而对功率晶体管的要求,主要是考虑击穿电压、最大集电极电流和最大管耗等参数。 为了实现有效的能量传输,天线和放大器之间需要采用阻抗匹配网络。 3.1.1输出功率 在发射系统中,射频末级功率放大器输出功率的范围可小到毫瓦级(便携式移动通信设备)、大至数千瓦级(发射广播电台)。 为了要实现大功率输出,末级功率放大器的前级放大器单路必须要有足够高的激励功率电平。显然大功率发射系统中,往往由二到三级甚至由四级以上功率放大器组成射频功率放大器,而各级的工作状态也往往不同。 根据对工作频率、输出功率、用途等的不同要求,可以用晶体管、FET 、射频功率集成电路或电子管作为射频功率放大器。 在射频功率方面,目前无论是在输出功率或在最高工作频率方面,电子管仍然占优势。现在已有单管输出功率达2000kW 的巨型电子管,千瓦级以上的发射机大多数还是采用电子管。 当然,晶体管、FET 也在射频大功率方面不断取得新的突破。例如,目前单管的功率输出已超过100W ,若采用功率合成技术,输出功率可以达到3000W 。 3.1.2效率 效率是射频功率放大器极为重要的指标,特别是对于移动通信设备。定义功率放大器的效率,通常采用集电极效率?c 和功率增加效率PAE 两种方法。 1. 集电极效率?c 集电极效率?c 定义为输出功率P out 与电源供给功率P dc 之比,即 dc out p P =c η (3.1.1) 2.功率增加效率(PAE ,power added efficiency ) 功率增加效率定义为输出功率P out 与输入功率P in 的差于电源供给功率P dc 之比,即 c p dc in out PAE A P P P PAE ηη)11(-=-== (3.1.2) 功率增加效率PAE 的定义中包含了功率增益的因素,当有比较大的功率增益。 如何提高输出功率和保证高的效率,是射频功率放大器设计目标的核心。 3.1.3线性 ? 衡量射频功率放大器线性度的指标有三阶互调截点(IP3)、1dB 压缩点、谐波、邻道功率比等。邻道功率比衡量由放大器的非线性引起的频谱再生对邻道的干扰程度。 ? 由于非线性放大器的效率高于现行放大器的效率,射频功率放大器通常采用非线性放大器。但是分线性放大器在放大输入信号的放大的同时会产生一系列的有害影响。 ? 从频谱的角度看,由于非线性的作用,输出信号中会产生新的频率分量,如三阶互调分 量、五阶互调分量等,它干扰了有用信号并使被放大的信号频谱发生变化,即频带展宽了。

433MHz低噪声射频功率放大器的设计毕业设计开题报告

毕业设计开题报告433MHz低噪声射频功率放大器的设计 学院: 班级: 学生姓名: 指导教师: 职称: 年月日

开题报告填写要求 1.开题报告作为毕业设计答辩委员会对学生答辩资格审查的依据材料之一,应在指导教师指导下,由学生在毕业设计工作前期完成,经指导教师签署意见、专家组及学院教学院长审查后生效; 2.开题报告必须用黑墨水笔工整书写或按教务处统一设计的电子文档标准格式(可从教务处网页上下载)打印,禁止打印在其它纸上后剪贴; 3.毕业设计开题报告应包括以下内容: (1)研究的目的; (2)主要研究内容; (3)课题的准备情况及进度计划; (4)参考文献。 4.开题报告的撰写应符合科技文献规范,且不少于2000字;参考文献应不少于15篇,包括中外文科技期刊、教科书、专著等。 5.开题报告正文字体采用宋体小四号,1.5倍行距。附页为A4纸型,左边距3cm,右边距2cm,上下边距为2.5cm,字体采用宋体小四号,1.5倍行距。 6.“课题性质”一栏: 理工类:A.理论研究B.应用研究C工程设计D.软件开发E.其它 经管文教类:A.理论研究B.应用研究C.实证研究D.艺术创作E.其它 “课题来源”一栏: A.科研立项 B.社会生产实践 C.教师自拟 D.学生自选 “成果形式”一栏: A.论文 B.设计说明书 C.实物 D.软件 E.作品

毕业设计开题报告 课题题目433MHz低噪声射频功率放大器的设计与制作 课题性质 A B C D E □□■□□课题来源 A B C D □□■□ 成果形式 A B C D E ■□□■□ 同组同学无 开题报告内容(可另附页) 见附页 指导教师意见(课题难度是否适中、工作量是否饱满、进度安排是否合理、工作条件是否具备等) 课题难度适中、工作量比较饱满、进度安排比较合理、工作条件基本具备 指导教师签名: 年月日 专家组及学院意见(选题是否适宜、各项内容是否达到毕业设计(论文)大纲要求、整改意见等) 专家组成员签字:教学院长(签章): 年月日

射频功率放大器RFPA概述

基本概念 射频功率放大器(RF PA)是发射系统中的主要部分,其重要性不言而喻。在发射机的前级电路中,调制振荡电路所产生的射频信号功率很小,需要经过一系列的放大(缓冲级、中间放大级、末级功率放大级)获得足够的射频功率以后,才能馈送到天线上辐射出去。为了获得足够大的射频输出功率,必须采用射频功率放大器。在调制器产生射频信号后,射频已调信号就由RF PA将它放大到足够功率,经匹配网络,再由天线发射出去。 放大器的功能,即将输入的内容加以放大并输出。输入和输出的内容,我们称之为“信号”,往往表示为电压或功率。对于放大器这样一个“系统”来说,它的“贡献”就是将其所“吸收”的东西提升一定的水平,并向外界“输出”。如果放大器能够有好的性能,那么它就可以贡献更多,这才体现出它自身的“价值”。如果放大器存在着一定的问题,那么在开始工作或者工作了一段时间之后,不但不能再提供任何“贡献”,反而有可能出现一些不期然的“震荡”,这种“震荡”对于外界还是放大器自身,都是灾难性的。 射频功率放大器的主要技术指标是输出功率与效率,如何提高输出功率和效率,是射频功率放大器设计目标的核心。通常在射频功率放大器中,可以用LC谐振回路选出基频或某次谐波,实现不失真放大。除此之外,输出中的谐波分量还应该尽可能地小,以避免对其他频道产生干扰。 分类 根据工作状态的不同,功率放大器分类如下: 传统线性功率放大器的工作频率很高,但相对频带较窄,射频功率放大器一般都采用选频网络作为负载回路。射频功率放大器可以按照电流导通角的不同,分为甲(A)、乙(B)、丙(C)三类工作状态。甲类放大器电流的导通角为360°,适用于小信号低功率放大,乙类放大器电流的导通角等于180°,丙类放大器电流的导通角则小于180°。乙类和丙类都适用于大功率工作状态,丙类工作状态的输出功率和效率是三种工作状态中最高的。射频功率放大器大多工作于丙类,但丙类放大器的电流波形失真太大,只能用于采用调谐回路作为负载谐振功率放大。由于调谐回路具有滤波能力,回路电流与电压仍然接近于正弦波形,失真很小。 开关型功率放大器(Switching Mode PA,SMPA),使电子器件工作于开关状态,常见的有丁(D)类放大器和戊(E)类放大器,丁类放大器的效率高于丙类放大器。SMPA将有源晶体管驱动为开关模式,晶体管的工作状态要么是开,要么是关,其电压和电流的时域波形不存在交叠现象,所以是直流功耗为零,理想的效率能达到100%。 传统线性功率放大器具有较高的增益和线性度但效率低,而开关型功率放大器具有很高的效率和高输出功率,但线性度差。具体见下表: 电路组成 放大器有不同类型,简化之,放大器的电路可以由以下几个部分组成:晶体管、偏置及稳定电路、输入输出匹配电路。

50MHz-250W射频功率放大器的设计复习课程

50M H z-250W射频功率放大器的设计

实例介绍设计与制作功放(二) 出处:何庆华发布日期:2007-8-2 浏览次数:2249 在上篇的文中,我用实例的方法基本地讲述了功放的一些参数计算与设定,其实这也可应用于音响系统中使用晶体管放大的电路中. 由于觉得使用实例会让初入门的朋友会有更深刻的认识,所以此篇也将用实例去介绍功放中各级的匹配传输.但要我一个可典型说明的例子让我想了不少时间,最终决定选用了之前制作的全无环路反馈的功放电路.由于没有使用级间的环路反馈,以致级间的匹配以及各级的电路但总显得十分重要. 见图,在后级的放大线路,是没有环路反馈的这将会电路的指标有所劣化.因电路工作于开环状态,这需要选用性能较好的电路组态,以取得更好的实际音质.而没有使用环路 负反馈,好处是大家所熟知的.如避免了各类的互相失 真,既然无环路反馈有如此.全音质更纯真透明.正如胆 友所追求的效果.但有点却要说明,胆与石,都是为了满 是个人的喜好.而在进口的众多名器中,可以有很多是超 过十万的晶体管后级.甚至有几十万过百万的钽却先见 有超过十万的胆机!而在低挡商品机中,如万元下的进口 器材,胆机却是可以优于石机,但中高挡机中.石机不再 受制于成本,全电路性能大幅提高.同价位的胆石机间胆 机已处于劣势,这从实际试听及一些前辈的言论中也得 到证实.而在DIY中由于没有过多的广告费用,可令成 本都能集中到机内,如电路合理工艺精良,性价比大优于 商品机. 再说回电路,之所以使用无反馈电路就是想用晶体管 收集于网络,如有侵权请联系管理员删除

去取得胆机那中清晰温暖的声音,在这里,使用共射共基电路是必然的,共射共基电路又叫渥尔曼电路,前管共射配合后管的共基放大,让两管中间严重失配,却大降低了前管的密勒电容效应,使前管的频响大改善,而后管是共基电路,天生是频响的高手。在放大能力上,基射共基电路与一般的单管共射电路是没有分别的,但频响却在高频上独领风骚,故而在许多的进口名器上不乏其影,用于本机却可大大改善了开环响应与高频线性。 电路的参数计算在上篇已介绍过,这里就不再罗索了,第一级的工作电流是5mA,增益是2K2与470欧的比值,增益约为15dB,注意的是两个33欧的电阻是配合了K170/J74的参数,如要换用其他的管子可能需要更改这两个电阻的数值。第二级的工作电流约为13mA,增益约为18dB,忽略了输出级的轻微损耗,整机增益在33dB 左右,可以直驳CD机了。 第一级电路与第二级电路在匹配上是没有问题的,但第二级与输出级却由于无反馈而有一定的要求了。若在此输出级使用一般常见的两级射极跟随器,输入阻抗一般只能达到15K欧,由于音箱的阻抗在全频段的不平均,将令第二级电压放大电路的负载(为输出级的输入阻抗)变得不平均稳定。这将导致此级在全频带的放大量不一致,而本机又没有使用环路负反馈来纠正增益。 要解决这一问题有两种方法,一个是输出级用场效应管作推动,使输入阻抗阻抗在理论上达百万M欧,,在实际的应用中可在50K欧,但使用场效应管往往需要有120mA如此大的静态电流,否则音色显得干硬,而如此大的功耗而使功放级的偏置难于补偿。另一种方法是使用近年来许多进口高档机采用的三级双极型三极管组成的输出级电路,本机就采用这种电路,使实际的输入阻抗在50K以上,且不易受音箱负载的影响,但50K的负载对于第二级放大电路来说是太高的,为免增益太高,在第二级放大电路的集电极上各并上了一个10K的电阻,从而令本级达到了预期的增益,且使本级负载的更为稳定,频响更平坦。 输出管使用三对5200/1943并联,以降低输出阻抗,由于无负反馈,这级往往需要较大的静态电流来克服失真与改善音色。另外,直流化电路也是国外高档功放的基本电路形式,本机也不例外,使用直流放大电路可以杜绝耦合电容的音染,获得更好的音色效果,至此后级功放的电路已告完成。 在此有必要提及一下的是音量电位器与后级电路的匹配.在沙的国内DIY的朋友中,多有喜欢在后级的输入端加个音量电位器控制音量就算了,就算是有前级放大的,电位器多是放于前后级之间,这样做本是没有问题的,但如今的电路多数会在后级的输入端加有低通滤波网络,这时就会产生问题了。 电位器的输出阻抗相对较大,而后级的输入低通滤波的截止频率大多是忽略前面的输出阻抗而计算的,而音量电位器的输出阻抗是无法估计的,因其在不同的刻度位置时会有不同的输出阻抗,这样一来,所设计的理想截止频率却变得不理想,截止频率下移了,限制了高频的延伸,为此我在电位器与后级间加入了一级的缓冲电器,以将电位器与后级的直接关联切断,在实际的听感中,会觉得有此电路后高频的延伸力增强,分析力提高,声音却更顺耳,当然这也会与增加了一级的电路有关。而事实上这个缓冲电路也可以说是一个前级。 后级的电压放大级单独用上一组并联稳压电源,本机的缓冲级与音调电路使用另一组关联稳压,音调的切换使用一个OMRON的高品质继电器,以求减低故障率。 收集于网络,如有侵权请联系管理员删除

射频功率放大器实验(虚拟实验)

射频功率放大器实验(虚拟实验)

射频功率放大器实验(虚拟实验) 姓名:学号:(一)甲类射频功率放大器电路 示波器中的输入输出信号的波形 分析: 观察可知,输入信号大小为40mV,输出波形的大小约为12V,放大了约300倍,此时放大器工作在大信号极限运用状态下,输出波形没有失真。 毫安表中的相应的读数为: 3.035mA 功率表相应读数为: 11.556mW = = D O P P η 观察失真 电路输入输出波形为: 分析: 当输入信号提高至60mV时,按照甲类放大器的特点,输出信号会输入信号的比例放大,输出60mV*300>12V,这时放大器工作在非线性状态,产生了失真。 % 73 . 31 % 100 035 . 3 12 556 . 11 = ? ?

(二)乙类射频功率放大器电路 输入输出信号波形的仿真 示波器中显示的输入输出信号的波形 失真分析: 由于门槛电压的存在(NPN硅管约为0.6V,PNP锗管约为0.2V),功放管的必须大于其时才有显著变化,否则,两管都截止,出现一段死区,也即交越失i B 真,如图所示。 至输入幅值为8V时,输入输出信号的波形 原因分析: 由上图可以观察到,当输入电压为8V时,输出波形的交越失真现象出现明显的减弱。主要因为当幅度增大时,两管便能在很短的时间内达到门槛电压,这段时间相比整个周期来说相对较短,可以忽略,因此失真现象不明显。

消除交越失真后的波形 输入信号幅值 (V) 2 4 5 6 6.5 7 电源电压利用系数ξ 0.167 0.333 0.42 0.497 0.542 0.583 输出功率L P (mW) 1.796 7.495 11.83 17.16 20.20 23.48 总的直流功率 D P (mW) 14.39 29.27 36.71 44.20 47.96 51.71 两管总耗散C P (mW) 12.60 21.78 24.88 27.05 27.76 28.23 效率η 12.49% 25.51% 32.2% 38.8% 42.08% 45.40% 输入信号幅值 (V) 8 9 10 12 13 14 电源电压利用系数ξ 0.667 0.750 0.833 0.999 - - 输出功率L P (mW) 30.80 39.11 48.42 70.03 - 总的直流功率 D P (mW) 59.22 66.73 74.25 89.46 - - 两管总耗散C P (mW) 28.42 27.62 25.83 19.43 - - 效率η 51.0% 58.6% 65.2% 78.3% - - “-”表示无法测量

最新50MHz-250W射频功率放大器的设计

实例介绍设计与制作功放(二) 出处:何庆华发布日期:2007-8-2 浏览次数:2249 在上篇的文中,我用实例的方法基本地讲述了功放的一些参数计算与设定,其实这也可应用于音响系统中使用晶体管放大的电路中. 由于觉得使用实例会让初入门的朋友会有更深刻的认识,所以此篇也将用实例去介绍功放中各级的匹配传输.但要我一个可典型说明的例子让我想了不少时间,最终决定选用了之前制作的全无环路反馈的功放电路.由于没有使用级间的环路反馈,以致级间的匹配以及各级的电路但总显得十分重要. 见图,在后级的放大线路,是没有环路反馈的这将会电路的指标有所劣化.因电路工作于开环状态,这需要选用性能较好的电路组态,以取得更好的实际音质.而没有使用环路负反馈,好处是大家所熟知的.如避免了各类的互相失真,既然无环路反馈有如此.全音质更纯真透明.正如胆友所追求的效果.但有点却要说明,胆与石,都是为了满是个人的喜好.而在进口的众多名器中,可以有很多是超过十万的晶体管后级.甚至有几十万过百万的钽却先见有超过十万的胆机!而在低挡商品机中,如万元下的进口器材,胆机却是可以优于石机,但中高挡机中.石机不再受制于成本,全电路性能大幅提高.同价位的胆石机间胆机已处于劣势,这从实际试听及一些前辈的言论中也得到证实.而在DIY中由于没有过多的广告费用,可令成本都能集中到机内,如电路合理工艺精良,性价比大优于商品机.

再说回电路,之所以使用无反馈电路就是想用晶体管 去取得胆机那中清晰温暖的声音,在这里,使用共射共 基电路是必然的,共射共基电路又叫渥尔曼电路,前管 共射配合后管的共基放大,让两管中间严重失配,却大 降低了前管的密勒电容效应,使前管的频响大改善,而 后管是共基电路,天生是频响的高手。在放大能力上, 基射共基电路与一般的单管共射电路是没有分别的,但 频响却在高频上独领风骚,故而在许多的进口名器上不 乏其影,用于本机却可大大改善了开环响应与高频线 性。 电路的参数计算在上篇已介绍过,这里就不再罗索了,第一级的工作电流是5mA,增益是2K2与470欧的比值,增益约为15dB,注意的是两个33欧的电阻是配合了K170/J74的参数,如要换用其他的管子可能需要更改这两个电阻的数值。第二级的工作电流约为13mA,增益约为18dB,忽略了输出级的轻微损耗,整机增益在33dB左右,可以直驳CD机了。 第一级电路与第二级电路在匹配上是没有问题的,但第二级与输出级却由于无反馈而有一定的要求了。若在此输出级使用一般常见的两级射极跟随器,输入阻抗一般只能达到15K欧,由于音箱的阻抗在全频段的不平均,将令第二级电压放大电路的负载(为输出级的输入阻抗)变得不平均稳定。这将导致此级在全频带的放大量不一致,而本机又没有使用环路负反馈来纠正增益。 要解决这一问题有两种方法,一个是输出级用场效应管作推动,使输入阻抗阻抗在理论上达百万M欧,,在实际的应用中可在50K欧,但使用场效应管往往需要有120mA

射频功率放大器在5G中的研究进展

综逋与评?Review and Comment 射频功率放大器在5G中的研究进展+ 刘洁仪,魏启迪,章国豪 (广东工业大学信息工程学院,广东广州510006) 摘要:射频功率放大器是射频前端的关键模块,而5Z高频段采用毫米波功放是主要发展趋势。5Z面对移动互联网等多种 业务的激增,对射频功率放大器的性能及工作环境提出了更加苛刻的要求。因此,对射频功率放大器在毫米波下的研究与了解 有着重要的应用意义。文中重点介绍了Doherty技术和线性度优化技术,并阐述了射频功率放大器在5Z中的应用趋势。 关键词!功率放大器;毫米波;线性度;第五代移动通信 中图分类号:TN722.7 +5; TN323 + .4 文献标识码:A D0I: 10. 19358/j.iss n.1674-7720.2017.23.004 引用格式:刘洁仪,魏启迪,章国豪.射频功率放大器在5Z中的研究进展[J].微型机与应用,2017,36(23):13-16. Research progress of RF power amplifier in 5G Lin Jieyi,Wei Qidi,Zhang Guohao (School of Information Engineering,Guangdong University of Technology,Guangzhou 510006,China) AbstTclCt:RF power amplifier is a key module in the RF front end. The high frequency section of 5G millimeter wave power amplifier is the main trend at present. With the development of the mobile Internet and posed extreme stringently requirements for RF power amplifier performance and operating environment. Therefore,it has important application significance to study and understand power amplifier worked in millimeter wave frequency band. In this paper,the Doherty and linear optimiza-tion techniques are introduced, and the application trend of RF power amplifier in 5G is expounded. K e y w o r d s:power amplifier;millimeter wave ;linearity;5G 〇引言 射频集成电路产业作为信息技术产业的核心,在维护 国家安全和提升市场经济等方面发挥着重大的作用。一 方面各国商业和战略主权方面的竞争给当前集成电路产业制造了一个竞争非常激烈的国际环境%12],另一方面当 今世界越发朝着知识经济成一体系、信息共享加快和网络 越发便捷的方向发展,集成电路产业在这些进程中扮演着 核心的角色。而功率放大器(Power A m plifier,P A)作为集 成电路产业中不可或缺的一部分,一方面体现在它是射频 模组前端必不可少的模块,连接射频天线和收发芯片(tran sc civer),另一方面是它的性能决定着移动通信系统的性能,包括移动通信终端支持的通信模式、天线接收信 号的强弱等。因此P A效率和线性度的提升决定着整个射频系统的性能水平的提升,以及对适应5G发展、提高 用户终端体验等都有十分重大的意义%%6]。 L T E(Long Term Evolution)技术虽然可以提供较高的下载速度并支持高吞吐量应用,但由于双工器和滤波器的 面积限制,目前尚无手持设备可以兼容所有聚合频带(Aggregation b a d)。另外,由于L T E与W iF i技术的不兼 *基金项目:广东省领军人才专项资助项目(400130002) 《微型机与应用》2017年第36卷第23期容,使得物联网的短距离传输更多的是采用W iF i、蓝牙或 ZigB e e等。L T E不能适应当前物联网兴起的发展,所以研 究新一代移动通信系统第五代移动通信(以下简称5G)的需要日益强烈。5G在克服上述L T E缺点的同时,对移动 互联网业务、时延的减少以及物联网多样化的业务需求等 提出了挑战%716]。相对于4G采用的网络扁平化架构,5G 将采用新型网络架构技术一C-R N A架构。该架构采用分布式远程射频单元(R R U)和集中式基带单元(B B U)实现 多点传输/接收技术,光纤传输网络把无线信号传送到偏远的地方,覆盖上百个基站,这要求射频模组前端的PA 对于在长距离下传送的信号,也能保持高效率和线性度。目前,4G所用频谱资源是十分紧缺的,而且各类通信设备 所占用的频谱带宽也是十分拥挤的,根据无线通信传输的 最大信号的带宽与载波频率成正相关的原理,5G若采用 毫米波频段能改善目前4G频谱资源相对紧缺的现状,而 且频谱带宽将轻松比4G宽10倍以上,甚至可到20倍。小天线、紧凑和轻设备是毫米波的另外几个优点,包括基 站的天线尺寸将越来越小,甚至做到毫米量级,未来可以 把基站设置在各种不起眼的角落。因此,毫米波段是未来 5G的应用趋势[17]。另外5G通信要求单位时间内吞吐率更高、能耗更低、电池寿命更长,特别是在毫米波频段(毫 欢迎网上投稿www. pcachina. com 13

相关主题
文本预览
相关文档 最新文档