当前位置:文档之家› 数学知识在物理解题中的应用

数学知识在物理解题中的应用

数学知识在物理解题中的应用
数学知识在物理解题中的应用

龙源期刊网 https://www.doczj.com/doc/4f14960255.html,

数学知识在物理解题中的应用

作者:孙少驰

来源:《文理导航》2018年第17期

【摘要】我们知道高中物理的抽象性、逻辑性较强的特点和数学简约性、逻辑性、精确性的优势相辅相成,因此可以说,数学是解决物理问题的一个重要的工具和方法。现代数学家陈省身教授在一次演讲中提到“物理就是几何”这六个字,巧妙的说明了物理和数学的关系。由此我们可以看出,数学和物理是紧密地联系在一起的。接下来,我将通过举例的方法把高中阶段物理题目中数学知识的运用展示给大家。

【关键词】数学思维;物理解题

物理和数学关系是非常紧密的,可以说数学为物理的解答提供了方法,而物理为数学提供了展示作用的平台。在平时解答试卷的过程中,经常要用到数学思维来解答物理问题,这样,在答题的过程中就会出现非常好的效果。

一、数学思维在物理解题中的运用

在平时解答物理题目的时候,我们经常会用到数学的知识和技巧。通过对这两年物理训练试卷做题的思路可以看出,物理題目中运用到数学技巧的题目所占比重很大,准确的运用数学方法,会起到事半功倍、节约解题时间的作用。要知道,在高考理综短短的考试期间,能够快速地解答一道题是非常重要的。下面就我总结的解答物理题中使用的一些数学方法进行举例说明。

(一)巧用对称性

对称现象在我们身边广泛存在。所谓的对称就是实物在变化的时候会具备一些不变的性质。

如题:如图所示,将一只轻质弹簧的上端悬挂在天花板上,下端连接一个质量为M的木板,木板下面再挂一个质量为m的物体。当剪掉m后,发现当木板的速率再次为零时,弹簧恰好能恢复到原长,则M与m之间的关系为()

A.M>m

B.M=m

C.M

解析:解答该题时我们要紧紧抓住“现当木板的速率再次为零时,弹簧恰好能恢复到原长”这句话,其中引申的重点就是简谐运动的对称性。理解好对称性这一点对解决有关问题很有帮助。“简谐运动”的对称性是指振子经过关于平衡位置对称的两位置时,振子的位移、回复力、

高考物理数学物理法解题技巧讲解及练习题

高考物理数学物理法解题技巧讲解及练习题 一、数学物理法 1.如右图所示,一位重600N 的演员,悬挂在绳上.若AO 绳与水平方向的夹角为 37?,BO 绳水平,则AO 、BO 两绳受到的力各为多大?若B 点位置往上移动,则BO 绳的 拉力如何变化?(孩子:你可能需要用到的三角函数有: 3375 sin ?=,4cos375?=,3374tan ?=,4 373cot ?=) 【答案】AO 绳的拉力为1000N ,BO 绳的拉力为800N ,OB 绳的拉力先减小后增大. 【解析】 试题分析:把人的拉力F 沿AO 方向和BO 方向分解成两个分力,AO 绳上受到的拉力等于沿着AO 绳方向的分力,BO 绳上受到的拉力等于沿着BO 绳方向的分力.根据平衡条件进行分析即可求解. 把人的拉力F 沿AO 方向和BO 方向分解成两个分力.如图甲所示 由平衡条件得:AO 绳上受到的拉力为21000sin 37 OA G F F N == = BO 绳上受到的拉力为1cot 37800OB F F G N === 若B 点上移,人的拉力大小和方向一定不变,利用力的分解方法作出力的平行四边形,如图乙所示: 由上图可判断出AO 绳上的拉力一直在减小、BO 绳上的拉力先减小后增大.

2.[选修模块3-5]如图所示,玻璃砖的折射率2 3 n = ,一细光束从玻璃砖左端以入射角i 射入,光线进入玻璃砖后在上表面恰好发生全反射.求光速在玻璃砖中传播的速度v 及入射角i .(已知光在真空中传播速度c =3.0×108 m/s ,计算结果可用三角函数表示). 【答案】83310/v m s =?;3 sin i = 【解析】 【分析】 【详解】 根据c n v = ,83310/v m s =? 全反射条件1 sin C n =,解得C=600,r =300, 根据sin sin i n r = ,3 sin 3 i = 3.质量为M 的木楔倾角为θ (θ < 45°),在水平面上保持静止,当将一质量为m 的木块放在木楔斜面上时,它正好匀速下滑.当用与木楔斜面成α角的力F 拉木块,木块匀速上升,如图所示(已知木楔在整个过程中始终静止). (1)当α=θ时,拉力F 有最小值,求此最小值; (2)求在(1)的情况下木楔对水平面的摩擦力是多少? 【答案】(1)min sin 2F mg θ= (2)1 sin 42 mg θ 【解析】 【分析】 (1)对物块进行受力分析,根据共点力的平衡,利用正交分解,在沿斜面和垂直斜面两方向列方程,进行求解. (2)采用整体法,对整体受力分析,根据共点力的平衡,利用正交分解,分解为水平和竖直两方向列方程,进行求解. 【详解】 木块在木楔斜面上匀速向下运动时,有mgsin mgcos θμθ=,即tan μθ= (1)木块在力F 的作用下沿斜面向上匀速运动,则:

数学知识在物理中的应用

高中物理中数学知识的应用

如图讨论绳子变长时,绳子的拉力和墙面的支持力如何变化?解析法: θ cos 2G F =如果绳子变长,θ角减小,θcos 变大,F 2减小;θtan 1 G F =,θ角减小,θtan 减小,F 1减小。此题图解法较容易在此省略。在力(速度、加速度)的合成与分解问 题中正弦、余弦、正切函数知识用的很多。 (2)正弦定理应用实例: 如图所示一挡板和一斜面夹住一球,挡板饶底端逆时针旋转直到水平,讨论挡板和斜面对球的弹力如何变化?此题图解法较容易在此省略。

解析法:βθαsin sin sin 12F F G == α θ sin sin 2G F = 因为θ不变α从锐角变成90 大再变小,所以F 2先变小后变大; () ()θβθβθβ βθβαβοcos cot sin sin sin 180sin sin sin sin 1-= =+= --== G G G G F β角从钝角变为零的过程中,βcot 一直变大,所以F 1一直变小。 (用到了正弦定理、诱导公式、两角和的正弦函数这种解法理论性较强。 ) (3)化θθcos sin b a +为一个角的正弦应用实例 如图所示物体匀速前进时,当拉力与水平方向夹角为多少度时最省力?动摩擦因数设为μ。 解答:匀速运动合力为零()θμθsin cos F G F -= ()() θβμμθβθβμμθμμθμμμθ μθμ++= ++= ??? ? ??++++= += sin 1sin cos cos sin 1sin 1cos 111sin cos 22222G G G G F 所以当θβ+为直角时F 最小,也就是当1 1 arcsin 2 2 2 +-= -= μπ βπ θ时F 最小。 5.组合应用实例 如图所示一群处于第四能级的原子,能发出几种频率的光子?这个还可以用一个一个查数的办法解决,如果是从第五能级开始向低能级跃迁问可以发出几种频率的光子就很难一个一个地数了。 利用组合知识很容易解决,处于第四能级有623 42 4=?==! C N 种 处于第五能级有10! 24 5!3!2!52 5=?=?= =C N 种 6.平面几何(1)三角形相似应用实例 例题1:如图所示当小球沿着光滑圆柱缓慢上升时,讨论绳子的拉力 和支持力如何变化? 由三角形相似可得 l T h G R N ==可以N 不变T 减小。 例题2:(2013新课标)水平桌面上有两个玩具车A 和B ,两者用一轻质 橡皮筋相连,在橡皮绳上有一红色标记R 。在初始时橡皮筋处于拉直状态,A 、B 和R 分别位于直角坐标系中的(0,l 2),(0,l -)和(0,0)点。已 知A 从静止开始沿y 轴正向做加速度大小为a 的匀加速运动:B 平行于x 轴朝x 轴正向匀速运动。两车此

数学物理方法学习心得

竭诚为您提供优质文档/双击可除数学物理方法学习心得 篇一:数学物理方程的感想 数学物理方程的感想 通过对数学物理方程一学期的学习,我深深的感受到数学的伟大与博大精深。 当应用数学发展到一定高度时,就会变得越来越难懂,越来越抽象,没有多少实际的例子来说明;物理正好也要利用数学来进行解释和公式推导,所以就出现了数学物理方法。刚开始到结束这门课程都成了我的一大问题。很难理解它的真正意义(含义),做题不致从何入手,学起来越来越费劲。让我很是绞尽脑汁。 后来由于老师耐心的指导与帮助下我开始有了点理解。用数学物理方法来解释一些物理现象,列出微分方程,当然这些微分方程是以物理的理论列出来的,如果不借助于物理方法,数学也没有什么好办法来用于教学和实践,而物理的理论也借助于数学方法来列出方程,解出未知的参数。这就是数学物理方法的根本实质所在。真正要学好数学物理方程

不仅要数学好物理也不能够太差。 接下来我想先对数学物理方程做一个简单的介绍与解 释说明。数学物理方程——描述许多自然现象的数学形式都可以是偏微分方程式 特别是很多重要的物理力学及工程过程的基本规律的 数学描述都是偏微分方程,例如流体力学、电磁学的基本定律都是如此。这些反映物理及工程过程的规律的偏微分方程人们对偏微分方程的研究,从微分学产生后不久就开始了。例如,18世纪初期及对弦线的横向振动研究,其后,对热传导理论的研究,以及和对流体力学、对位函数的研究,都获得相应的数学物理方程信其有效的解法。到19世纪中叶,进一步从个别方程的深入研究逐渐形成了偏微分的一般理论,如方程的分类、特征理论等,这便是经典的偏微分方程理论的范畴。 然而到了20世纪随着科学技术的不断发展,在科学实践中提出了数学物理方程的新问题,电子计算机的出现为数学物理方程的研究成果提供了强有力的实现手段。又因为数学的其他分支(如泛函分析、拓扑学、群论、微分几何等等)也有了迅速发 展,为深入研究偏微分方程提供了有力的工具。因而,20世纪关于数学物理方程的研究有了前所未有的发展,这些发展呈如下特点和趋势:

高考物理高考物理数学物理法解题技巧讲解及练习题

高考物理高考物理数学物理法解题技巧讲解及练习题 一、数学物理法 1.如图所示,一束平行紫光垂直射向半径为1m R =的横截面为扇形的玻璃砖薄片(其右侧涂有吸光物质),经折射后在屏幕S 上形成一亮区,已知屏幕S 至球心距离为 (21)m D =+,玻璃半球对紫光的折射率为2n =,不考虑光的干涉和衍射。求: (1)若某束光线在玻璃砖圆弧面入射角30θ=o ,其折射角α; (2)亮区右边界到P 点的距离d 。 【答案】(1)π 4 α=;(2)1m 【解析】 【分析】 【详解】 (1)据折射定律得 sin sin n α θ= 得 π4 α= (2)如图,紫光刚要发生全反射时的临界光线射在屏幕S 上的点E 到G 的距离d 就是所求宽度。 设紫光临界角为C ∠,由全反射的知识得 1sin C n ∠= 得

4 OAF △中 π 4 AOF AFO ∠=∠= π cos 4 R OF= GF D OF =- 得 1m GF= FGE △中 π 4 GFE GEF ∠=∠= d GE GF == 得 1m d= 2.如图所示,在x≤0的区域内存在方向竖直向上、电场强度大小为E的匀强电场,在x>0的区域内存在方向垂直纸面向外的匀强磁场。现一带正电的粒子从x轴上坐标为(-2l,0)的A点以速度v0沿x轴正方向进入电场,从y轴上坐标为(0,l)的B点进入磁场,带电粒子在x>0的区域内运动一段圆弧后,从y轴上的C点(未画出)离开磁场。已知磁场的磁感应强度大小为,不计带电粒子的重力。求: (1)带电粒子的比荷; (2)C点的坐标。 【答案】(1) 2 2 v q m lE =;(2)(0,-3t) 【解析】 【详解】 (1)带电粒子在电场中做类平抛运动,x轴方向 2l v t = y轴方向

数学在各方面的的应用

附录三关于数学在理科中应用的调查报告 我们对理科中物理、化学、计算机基础中数学知识的应用进行了相关的调查。调查过程中翻阅了大量的相关资料,并询问了不少相关的专家,现将结果公布如下: 一、物理学中的数学知识 数学是物理学的基础和工具。离开了数学,物理学几乎寸步难行。现行大学物理系的数学教材几乎囊括了所有高等数学的基础知识。理论物理和实验物理都必需具备相当高深的数学知识。 理论物理中所应用的数学知识有:空间及其拓朴、映射、实分析、群论、线性代数、方阵代数、微分流形和张量、黎曼流行、李导数、李群、矢量分析、积分变换(包括傅里叶变换和拉普拉斯变换)、偏微分方程、复变函数、球函数、柱函数、函数、格林函数、贝塞尔函数、勒让德多项式等。 实验物理中所应用的数学知识呈主要集中在概率统计学中。包括一维、多维随机变量及其分布、概率分布、大数定律、中心极限定理、参数估计、极大似然法等。其中概率分布包括伯努力分布、泊松分布、伽马分布、分布、t分布、F分布等。 从上可以看出,上述数学知识对物理专业来讲,必需了解,且有的需要深入了解。比如群论、空间及拓朴、积分变换、偏微分方程、概率分布、参数估计等。工科和理科、师范类和非师范类、物理专业和非物理专业、其物理学习中所应用的数学知识也有范围和程度上的变化。工科就没有理科要求高,物理专业中所涉及的数学知识也比非物理专业所学物理课本上的数学知识丰富的多。 二、化学中的数学知识 初等化学只是简单介绍物质的组成、结构、性质、变化及合成。除了相应的计算外,与数学的联系没有物理学那么紧密。高等化学需要更深入的研究物质,因此需要相应的高等数学知识为基础。下面我们就化学理论和化学实验两种课程来讨论。 化学理论中所应用的数学知识有:级数及其应用、幂级数与Taylor展开式、Fourier级数、Forbemus方法、Bessel方程、Euler-Maclaurh加法公式、String公式、有限差分、矩阵、一阶偏微分方程、二阶偏微分方程、常微分方程(包括一阶、二阶、线性、联立)、特殊函数(包括贝尔函数和勒让德多项式)积分变换、初步群论等。 化学实验中所应用的数学知识有:随机事件及其概率、随机变量的数字特征、随机分量及其分布、大数定理、中心极限定理、参数估计等。 从上面可以看出,化学中的数学知识主要应用于计算,因此大部分是一些数学公式和方程,并没有更深一步理论推导及逻辑思维、形象思维的要求。所以,化学专业中数学知识的要求不高,只限于了解并会套公式而已。

考研数学之物理应用分析

Born To Win 人生也许就是要学会愚忠。选我所爱,爱我所选。 考研数学之物理应用分析 数学一和数学二的学生对物理应用这一块掌握的比较薄弱。物理应用不是数学一和数学二的常考点,但是一旦考了,学生往往都不会。2015年数学二的考研真题出了一道与物理应用有关的大题。这是个拉分题,很多同学都不会。所以希望大家能够对物理应用有足够的重视,特别是那些立志上名校,希望数学给力的学生。下面,跨考教育数学教研室的向喆老师就来和大家分享物理应用分析的学习方法。 一.明确知识框架 有句古语:知己知彼,百战不殆。物理应用可以说是比较难的知识点,所以大家就应该明了考研都考了那些物理应用。首先,只有数学一和数学二才考物理应用。然后,物理应用分布在导数应用,定积分应用,微分方程应用中,其中物理应用在定积分中考查的最多。最后,有关的物理知识的储备。比如说速率,做功,压强,压力等。 二.掌握学习方法 大家在明白了物理应用的体系后,就应该掌握相应的学习方法。首先是导数中的物理应用。通过对历年真题的研究,我发现导数的物理应用主要体现在对导数物理意义的理解,即速率。然后是定积分中的物理应用。这是考查的重点。主要包括:变力做功(变力对质点沿直线做功和克服重力做功);液体静压力;质心及形心。这三个部分求解的核心思想是微元法:分割,近似,求和,取极限。大家应该把定积分的定义即曲边梯形面积是怎么求得掌握。接着,大家就应该把这三部分的微元法思想推一遍,从而熟练掌握本质的含义。其中克服重力做功问题已经在真题中出现过。最后是微分方程中的物理应用。通过历年考题分析,我发现微分方程中的物理应用主要考察的是牛顿第二定律。据此联系了位移与速率;重力,浮力及阻力与加速度关系。总之,在学习这部分知识时候,应该有一些基本的思想。比如说:微元法思想,牛顿第二定律,压强及压力,位移与速率等。 三.熟练掌握题型 大家在明白了知识体系以及学习方法后就应该通过做题来巩固。不过现在出现了一个问题:数学一和数学二的同学有很多都不是学物理的。所以有必要对基本的物理知识进行回顾。大家可以参考下高中的物理课本就够了。针对做题,题目不求多,关键是把真题搞懂。大家可以看下从1989年到2014年的真题,找到其中的物理应用部分,然后仔细的思考下,做一下,总结题型,体会下思想方法。 总之:物理应用部分是高等数学中一个难点,虽不是热点问题,但是往往冷不丁的在真题中出现,它是制约着大家能否拿高分的瓶颈。所以,大家应该掌握物理应用的知识体系,学习方法及该做哪些题目。 文章来源:跨考教育

数学学科前沿讲座报告

数学学科前沿讲座 通过一个学期的学习和学校数位专家教授的耐心讲解,产生了一些自己对数学学科的体会。下面就简要谈谈,通过听取前沿讲座我对数学学科的理解与变化。近半个多世纪以来,随着计算机技术的迅速发展,数学的应用不仅在工程技术、自然科学等领域发挥着越来越重要的作用,而且以空前的广度和深度向经济、金融、生物、医学、环境、地质、人口、交通等新的领域渗透,所谓数学技术已经成为当代高新技术的重要组成部分。因有数学,才有今天科技的繁荣,在我们身边到处都有数学问题。今天科技领域也以数学为基础。如计算机的发展,一切理论都是数学家提出的,某个物理学家要研究某个项目,都要以丰厚 的数学功底为前提。在人们的生活中,时刻与数学打交道,可谓世界因数学而精彩。既然数学有如此大的魅力,下面将粗略的介绍一下。数学曾出现三次危机:无理数的发现——第一次数学危机;无穷小是零吗——第二次数学危机;悖论的产生---第三次数学危机。数学历来被视为严格、和谐、精确的学科,纵观数学发展史,数学发展从来不是完全直线式的,他的体系不是永远和谐的,而常常出现悖论。在悖论中逐渐成熟,进而到现在出现多个分支,分为:基础数学、数论、代数学、几何学、拓扑学、函数论、常微分方程、偏微分方程、概率论、应用数学、运筹学。 一、应用数学应用数学属于数学一级学科下的二级学科。应用数学是应用目的明确的数学理论和方法的总称,它是数学理论知识与应用科学、工程技术等领域联系的重要纽带。应用数学主要研究具有实际背景或应用前景的数学理论或方法,以数学各个分支的应用基础理论为研究主体,同时也研究自然科学、工程技术、信息、经济、管理等科学中的数学问题,包括建立相应的数学模型、利用数学方法解决实际问题等。主要研究方向: (1) 非线性偏微分方程非线性偏微分方程是现代数学的一个重要分支,无论在理论中 还是在实际应用中,非线性偏微分方程均被用来描述力学、控制过程、生态与经济系统、化工循环系统及流行病学等领域的问题。利用非线性偏微分方程描述上述问题充分考虑到空间、时间、时滞的影响,因而更能准确的反映实际。本方向主要研究非线性偏微分方程、H-半变分不等式、最优控制系统的微分方程理论及其在电力系统的应用。 (2)拓扑学拓扑学,是近代发展起来的一个研究连续性现象的数学分支。中文名称起 源于希腊语Τοπολογ的音译。Topology 原意为地貌,于 19 世纪中期由科学家引入,当时主要研究的是出于数学分析的需要而产生的一些几何问题。发展至今,拓扑学主要研究拓扑空间在拓扑变换下的不变性质和不变量。拓扑学是数学中一个重要的、基础的分支。起初它是几何学的一支,研究几何图形在连续变形下保持不变的性质(所谓

物理解题常用的方法和技巧

物理解题常用的方法和技巧 1、正交分解法 在两个互相垂直的方向上,研究物体所受外力的大小及其对运动的影响,既好操作,又便于计算。 2、画图辅助分析问题的方法 分析物体的运动时,养成画v-t图和空间几何关系图的.习惯,有助于对问题进行全面而深刻的分析。 3、平均速度法 处理物体运动的问题时,借助平均速度公式,可以降二次方程为一次方程,以简化运算,极大提高运算速度和准确率。 4、巧用牛顿第二定律 牛顿第二定律是高中阶段最重要、最基本的规律,是高考中永恒不变的热点,至少应做到在以下三种情况中的熟练应用:重力场中竖直平面内光滑轨道内侧最高点临界条件,地球卫星匀速圆周运动的条件,带电粒子在匀强磁场中匀速圆周运动的条件。 5、回避电荷正负的方法 在电场中,电荷的正负很容易导致考生判断失误,在下列情景中可设法回避:比较两点电势高低时,无论场源电荷的正负,只需记住“沿电场线方向电势降低”;比较两点电势能多少时,无论检验电荷的正负,只需记住“电场力做正功电势能减少”。 6、“大内小外”

在电学实验中,选择电流表的内外接,待测电阻比电流表内阻大很多时,电流表内接;待测电阻比电压表内阻小很多时,电流表外接。 7、针对选择题常用的方法 ①特殊值验证法:对有一定取值范围的问题,选取几个特殊值进行讨论,由此推断可能的情况以做出选择。 ②选项代入或选项比较的方法:充分利用给定的选项,做出选择。 ③半定量的方法:做选择题尽量不进行大量的推导和运算,但是写出有关公式再进行分析,是避免因主观臆断而出现错误的不二法门,因此做选择题写出物理公式也是必不可少的。 二.物理基本性质 物理学是人们对自然界中物质的运动和转变的知识做出规律性的总结,这种运动和转变应有两种。一是早期人们通过感官视觉的延伸;二是近代人们通过发明创造供观察测量用的科学仪器,实验得出的结果,间接认识物质内部组成建立在的基础上。物理学从研究角度及观点不同,可大致分为微观与宏观两部分:宏观物理学不分析微粒群中的单个作用效果而直接考虑整体效果,是最早期就已经出现的;微观物理学的诞生,起源于宏观物理学无法很好地解释黑体辐射、光电效应、原子光谱等新的实验现象。它是宏观物理学的一个修正,并随着实验技术与理论物理的发展而逐渐完善。

2017年高三物理总复习(专题攻略)之数学方法在物理学中的应用及高考题型答题技巧 数学方法在物理

数学方法在物理学中的应用(一) 物理学中的数学方法是物理思维和数学思维高度融合的产物,借助数学方法可使一些复杂的物理问题显示出明显的规律性,能达到打通关卡、快速简捷地解决问题的目的。高考物理试题的解答离不开数学知识和方法的应用,借助物理知识渗透考查数学能力是高考命题的永恒主题。可以说任何物理试题的求解过程实质上都是一个将物理问题转化为数学问题,然后经过求解再次还原为物理结论的过程。复习中应加强基本的运算能力的培养,同时要注意三角函数的运用,对于图象的运用要重视从图象中获取信息能力的培养与训练。在解决带电粒子运动的问题时,要注意几何知识、参数方程等数学方法的应用。在解决力学问题时,要注意极值法、微元法、数列法、分类讨论法等数学方法的应用。 一、极值法 数学中求极值的方法很多,物理极值问题中常用的极值法有:三角函数极值法、二次函数极值法、一元二次方程的判别式法等。 1.利用三角函数求极值 y =acos θ+bsin θ = ( + ) 令sin φ=,cos φ= 则有:y = (sin φcos θ+cos φsin θ)= sin (φ+θ) 所以当φ+θ=π2 时,y 有最大值,且y max =。 【典例1】在倾角θ=30°的斜面上,放置一个重量为200 N 的物体,物体与斜面间的动摩擦因数为μ=3 3,要使物体沿斜面匀速向上移动,所加的力至少要多大?方向如何?

解得:F =α μαθμθsin cos cos (sin ++mg 因为θ已知,故分子为定值,分母是变量为α的三角函数 y=cos + = ( cos + sin ) = (sin cos + cos sin ) = sin(+ ) 其中 sin = ,cos =,即 tan = 。 当+ = 90 时,即 = 90 - 时,y 取最大值 。 F 最小值为 ,由于 = ,即 tan = ,所以 = 60。 带入数据得 F min = 100 N,此时 = 30 。 【答案】 100 N 与斜面夹角为30 【名师点睛】 根据对物体的受力情况分析,然后根据物理规律写出相关物理量的方程,解出所求量的表达式,进而结合三角函数的公式求极值,这是利用三角函数求极值的常用方法,这也是数学中方程思想和函数思想在物理解题中的重要应用。 2.利用二次函数求极值 二次函数:y =ax 2+bx +c =a (x 2 +b a x +b 24a 2)+c -b 24a =a (x +b 2a )2+4ac -b 24a (其中a 、b 、c 为实常数),

(完整版)高中物理学习中常用的数学知识

高中物理学习中常用的数学知识 1、角度的单位——弧度(rad ) ①定义:在圆中,长度等于半径的弧长所对的圆心角为1弧度(1rad )。 ②定义式:l r θ= 1rad=57.30 ③几个特殊角的弧度值: a. 30 (rad)6 π = o b. 45 (rad)4π = o c. 60 (rad)3 π = o d. 90 (rad)2π=o e. 2120 (rad)3π=o f. 5150 (rad)6 π=o g. 180 (rad)π=o h. 3270 (rad)2 π=o I. 3602 (rad)π=o 2、三角函数知识: ①几种三角函数的定义: 正弦:sin a c θ= 余弦:cos b c θ= 正切:tan a b θ= 余切:cot b a θ= ②关系:2 2 sin cos 1θθ+= sin tan cos θ θθ = cos cot sin θθθ= 1 tan cot θθ = ③诱导公式: sin(-θ)=sin θ cos(-θ)=-cos θ tan(-θ)= -tan θ cot (-θ)= -cot θ sin(900-θ)=cos θ cos(900-θ)=sin θ tan(900-θ)=cot θ cot (900-θ)=tan θ sin(1800-θ)=sin θ cos(1800-θ)=-cos θ tan(1800-θ)= -tan θ cot (1800-θ)= -cot θ θ a b c

θ θ θθθθθ2 22 2 2 2 11sin 211cos 2sin cos 2cos tg tg +-=-=-=-= ⑥半角公式:(符号的选择由 2 θ 所在的象限确定) 2cos 12 sin θθ -± = 2cos 12sin 2θθ-= 2cos 12cos θθ+±= 2cos 12 cos 2 θθ += 2sin 2cos 12θθ=- 2 cos 2cos 12θθ=+ 2 sin 2cos )2sin 2(cos sin 12θ θθθθ±=±=± θ θθθθθθ sin cos 1cos 1sin cos 1cos 12 -=+=+-± =tg ⑦和差角公式 βαβαβαsin cos cos sin )sin(±=± βαβαβαsin sin cos cos )cos(μ=± β αβ αβαtg tg tg tg tg ?±= ±μ1)( )1)((βαβαβαtg tg tg tg tg ?±=±μ γ βγαβαγ βαγβαγβαtg tg tg tg tg tg tg tg tg tg tg tg tg ?-?-?-??-++= ++1)( 其中当A+B+C=π时,有:

高中物理数学物理法(一)解题方法和技巧及练习题及解析

高中物理数学物理法(一)解题方法和技巧及练习题及解析 一、数学物理法 1.如图所示,ABCD是柱体玻璃棱镜的横截面,其中AE⊥BD,DB⊥CB,∠DAE=30°, ∠BAE=45°,∠DCB=60°,一束单色细光束从AD面入射,在棱镜中的折射光线如图中ab所示,ab与AD面的夹角α=60°.已知玻璃的折射率n=1.5,求:(结果可用反三角函数表示) (1)这束入射光线的入射角多大? (2)该束光线第一次从棱镜出射时的折射角. 【答案】(1)这束入射光线的入射角为48.6°; (2)该束光线第一次从棱镜出射时的折射角为48.6° 【解析】 试题分析:(1)设光在AD面的入射角、折射角分别为i、r,其中r=30°, 根据n=,得: sini=nsinr=1.5×sin30°=0.75 故i=arcsin0.75=48.6° (2)光路如图所示: ab光线在AB面的入射角为45°,设玻璃的临界角为C,则: sinC===0.67 sin45°>0.67,因此光线ab在AB面会发生全反射 光线在CD面的入射角r′=r=30° 根据n=,光线在CD面的出射光线与法线的夹角: i′="i=arcsin" 0.75=48.6° 2.一玩具厂家设计了一款玩具,模型如下.游戏时玩家把压缩的弹簧释放后使得质量m=0.2kg的小弹丸A获得动能,弹丸A再经过半径R0=0.1m的光滑半圆轨道后水平进入光滑水平平台,与静止的相同的小弹丸B发生碰撞,并在粘性物质作用下合为一体.然后从平台O点水平抛出,落于水平地面上设定的得分区域.已知压缩弹簧的弹性势能范围为

p 04E ≤≤J ,距离抛出点正下方O 点右方0.4m 处的M 点为得分最大值处,小弹丸均看作 质点. (1)要使得分最大,玩家释放弹簧时的弹性势能应为多少? (2)得分最大时,小弹丸A 经过圆弧最高点时对圆轨道的压力大小. (3)若半圆轨道半径R 可调(平台高度随之调节)弹簧的弹性势能范围为p 04E ≤≤J ,玩家要使得落地点离O 点最远,则半径应调为多少?最远距离多大? 【答案】(1)2J (2) 30N (3) 0.5m ,1m 【解析】 【分析】 【详解】 (1)根据机械能守恒定律得: 2 1p 012 2E v mg R m = +? A 、B 发生碰撞的过程,取向右为正方向,由动量守恒定律有: mv 1=2mv 2 200122gt R = x =v 2t 0 解得: E p =2J (2)小弹丸A 经过圆弧最高点时,由牛顿第二定律得: 2 1N v F mg m R += 解得: F N =30N 由牛顿第三定律知: F 压=F N =30N (3)根据 2 p 1122 E mv mg R = +? mv 1=2mv 2 2R =1 2gt 2, x =v 2t

《高等数学》知识在物理学中的应用举例

《高等数学》知识在物理学中的应用举例 一 导数与微分的应用 分析 利用导数与微分的概念与运算,可解决求变化率的问题。求物体的运动速度、加速度的问题是典型的求变化率问题。在求解这类问题时,应结合问题的物理意义,明确是在对哪个变量求变化率。在此基础上,灵活运用各类导数和微分公式解决具体问题。 例 1 如图,曲柄,r OA =以均匀角速度ω饶定点O 转动.此曲柄借连杆AB 使滑块B 沿直线Ox 运动.求连杆上C 点的轨道方程及速度.设,a CB AC == ,?=∠AOB .ψ=∠ABO y 解 1) 如图,点C 的坐标为: ψ?cos cos a r x +=, (1) .sin ψa y = (2) 由三角形的正弦定理,有 ,sin 2sin ? ψa r = o x 故得 .2sin 2sin r y r a == ψ? (3) 由(1)得 r y a x r a x 2 2cos cos --= -=ψ? (4) 由,1cos sin )4()3(2222=+=+??得 ,12422 222222=---++r y a x y a x r y 化简整理,得C 点的轨道方程为: .)3()(422222222r a y x y a x -++=- 2) 要求C 点的速度,首先对(1),(2)分别求导,得 ,sin cos 2cos sin ψψ?ω?ωr r x --=' ,2 cos ? ωr y =' 其中.?ω'=

又因为,sin 2sin ψ?a r = 对该式两边分别求导,得 .cos 2cos ψ ? ωψa r = ' 所以C 点的速度 2 2 y x V '+'=4 cos )sin cos 2cos sin (2222 ?ωψψ?ω?ωr r r + --= .)sin(cos sin 4cos cos 22ψ?ψ??ψ ω ++= r 例2 若一矿山升降机作加速度运动时,其加速度为),2sin 1(T t c a π-=式中c 及 T 为常数,已知升降机的初速度为零,试求运动开始t 秒后升降机的速度及其所走过的路程. 解: 由题设及加速度的微分形式dt dv a = ,有 ,)2sin 1(dt T t c dv π-= 对等式两边同时积分 ? ?-=v t dt T t c dv 0 ,)2sin 1(π 得: ,2cos 2D T t T c ct v ++=ππ 其中D 为常数. 由初始条件:,0,0==t v 得,2c T D π - =于是 )].12(cos 2[-+ =T t T t c v ππ 又因为,dt ds v = 得 ,)]12(cos 2[dt T t T t c ds -+ =ππ 对等式两边同时积分,可得: )].2sin 2(221[2t T t T T t c s -+=πππ

物理竞赛中数学知识

物理竞赛中的数学知识 一、重要函数 1. 指数函数 2. 三角函数 3. 反三角函数 反正弦Arcsin x ,反余弦Arccos x ,反正切Arctan x ,反余切Arccot x 这些函数的统称,各自表示其正弦、余弦、正切、余切为x 的角。 二、数列、极限 1. 数列:按一定次序排列的一列数称为数列,数列中的每一个数都叫做这个数列的项。排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项……排在第n 位的数称为这个数列的第n 项。 数列的一般形式可以写成 a 1,a 2,a 3,…,a n ,a (n+1),… 简记为{an }, 通项公式:数列的第N 项a n 与项的序数n 之间的关系可以用一个公式表示,这个公式就叫做这个数列的通项公式。 2. 等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。通项公式a n =a 1+(n-1)d ,前n 项和11(1) 22 n n a a n n S n na d +-= =+ 等比数列:一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一 个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q 表示。通项公式a n =a 1q (n-1) ,前n 项和11(1) (1)11n n n a a q a q S q q q --= =≠--

所有项和1 (1)1n a S q q =<- 3. 求和符号 4. 数列的极限: 设数列{}n a ,当项数n 无限增大时,若通项n a 无限接近某个常数A ,则称数列{}n a 收敛于A ,或称A 为数列{}n a 的极限,记作A a n n =∞ →lim 否则称数列{}n a 发散或n n a ∞ →lim 不存在. 三、函数的极限:在自变量x 的某变化过程中,对应的函数值f (x )无限接近于常数A ,则称常数A 是函数f (x )当自变量x 在该变化过程中的极限。 设f (x )在x>a (a >0)有定义,对任意ε>0,总存在X >0,当x>X 时,恒有| f (x )-A |<ε,则称常数A 是函数f (x )当x →+∞时的极限。记为+∞ →x lim f (x )=A ,或f (x ) → A (x →+∞)。 运算法则 lim x x →[f (x )± g (x )]=0 lim x x →f (x ) ±0 lim x x →g (x ) lim x x →[f (x ) ? g (x )]=0 lim x x →f (x ) ?0 lim x x →g (x ) ) (lim )(lim )()(lim 0 0x g x f x g x f x x x x x x →→→=,其中0lim x x →g (x )≠ 0. 四、无穷小量与无穷大量 1.若0)(lim 0 =→x f x x ,则称)(x f 是0x x →时的无穷小量。

最新高考物理数学物理法解题技巧及练习题

最新高考物理数学物理法解题技巧及练习题 一、数学物理法 1.如图所示,圆心为O 1、半径4cm R =的圆形边界内有垂直纸面方向的匀强磁场B 1,边界上的P 点有一粒子源,能沿纸面同时向磁场内每个方向均匀发射比荷 62.510C/kg q m = ?、速率5110m/s v =?的带负电的粒子,忽略粒子间的相互作用及重力。其中沿竖直方向PO 1的粒子恰能从圆周上的C 点沿水平方向进入板间的匀强电场(忽略边缘效应)。两平行板长110cm L =(厚度不计),位于圆形边界最高和最低两点的切线方向上,C 点位于过两板左侧边缘的竖线上,上板接电源正极。距极板右侧25cm L =处有磁感应强度为21T B =、垂直纸面向里的匀强磁场,EF 、MN 是其左右的竖直边界(上下无边界),两边界间距8cm L =,O 1C 的延长线与两边界的交点分别为A 和O 2,下板板的延长线与边界交于D ,在AD 之间有一收集板,粒子打到板上即被吸收(不影响原有的电场和磁场)。求: (1)磁感应强度B 1的方向和大小; (2)为使从C 点进入的粒子出电场后经磁场偏转能打到收集板上,两板所加电压U 的范围; (3)当两板所加电压为(2)中最大值时,打在收集板上的粒子数与总粒子数的比值η。(可用反三解函数表示,如 π1arcsin 62 =) 【答案】(1)11B =T ,方向垂直纸面向里;(2)1280V 2400V U ≤≤; (3)17 arcsin arcsin 168π + 【解析】 【分析】 【详解】 (1)由题可知,粒子在圆形磁场区域内运动半径

r R = 则 2 1 v qvB m R = 得 11T B = 方向垂直纸面向里。 (2)如图所示 211()22L qU y mR v =? 且要出电场 04cm y ≤≤ 在磁场B 2中运动时 2 2v qvB m r =合 ,cos v v a =合 进入B 2后返回到边界EF 时,进出位置间距 2cos y r a ?= 得 2 2mv y qB ?= 代入得 8cm y ?= 说明与加速电场大小无关。要打到收集板上,设粒子从C 点到EF 边界上时所发生的侧移为y 0,需满足 04cm 8cm y ≤≤ 且

现代数学的特点和现状-丁伟岳

我主要回答同学们的一些问题。这些问题中大部分都是关系现代数学大局的问题,很深刻,也很难回答。这种问题是没有标准答案的,每个人会有不同的答案。我今天讲的是我的个人意见,同学们可以参考,但不一定正确。 1.现代数学的特点和现状 有的同学问:听说现代数学分支非常细,不同分支的人彼此不了解,这样还能出现总揽全局的数学大师吗?此外,数学的复杂是否使它远离“简单性”这个朴素的自然法则? 这是一个很大的问题,提这个问题的同学希望从总体上了解现代数学,这是非常好,非常值得鼓励的。但是要把这个问题说清楚并不容易。确实,现代数学分支繁多。按美国数学会的分类,数学科目可以分成60多个大类,每个大类下面又有几十个子类,总计有3500个以上的子类。肯定没有人能把所有这些分支都了如指掌,甚至于一个分支的专家也很难把分支里的所有数学了解得一清二楚。 但是,真正影响大局的数学却没有那么多。这就像世界上有200多个国家,但是影响全球格局的却只有少数大国。这种影响大局的数学可以叫做“主流数学”。即便在主流数学中也不是所有的问题都是平等的,还有主次之分。因此,如果能抓住主流数学中的主流问题,大体上就可以说是“总揽全局”了。至于说“大师”,他不仅能总揽全局,而且能通过他的工作影响全局。这样的人肯定很少,但也不能说一个没有,这要由历史来做定论。那么,为什么现在出不了牛顿,欧拉,高斯,黎曼这样的大师了呢?这有两个原因。首先,时势造英雄;不是每个时代都会出旷世英雄的。其次,即便是这样的英雄,他的历史地位也要经过历史的考验,并不是在当时就能确立的。 那么哪些是主流数学呢?回顾历史,现代基础数学从17世纪开始发源,经过18-19世纪的大发展和20世纪的完善,现代数学的基础部分,包括代数和数论,几何与拓扑,分析学的所有主要分支,我们叫这些为经典分支,都进入了成熟期。所谓成熟是指,理论已经十分完善,而内在的发展动力则减弱了。因此,基础数学的单独分支的自身发展已不再是主流。取而代之的是综合与交叉,集多个分支的方法来解决以前无法解决的重要问题。费尔马猜想和庞加莱猜想相继被证明就是最好的例证。在我看来,现代数学的另一个特点是应用数学的兴起,随着现代科学技术的迅速发展各个方面对数学的需求日益增长,推动了应用数学的崛起,它正成长为数学中一个不可忽视的主流。 从重要问题的来源看,基础数学内部一些最主要的问题是来自数论,拓扑以及几何,例如克莱研究所的7大问题中4个是关于纯数学的,两个来自数论(黎曼猜想,BSD猜想),一个拓扑(庞加莱猜想),一个代数几何(Hodge猜想)。[另外3个多少与应用有关:Navior-Stokes方程(流体力学),P-NP问题(计算复杂性),Yang-Mills理论(理论物理)。] 近年来,理论物理对基础数学的影响越来越大,这是值得注意的。 数学的复杂性不在于它的分支繁多,而在于它的深度和难度越来越大。世界既有简单的一面,又有复杂的一面。科学家的任务是把复杂的东西分析和解剖,化繁为简,找出对

(完整版)高中物理中常用的三角函数数学模型(强烈推荐)

高中物理中常用的三角函数数学模型 数学作为工具学科,其思想、方法和知识始终渗透贯穿于整个物理学习和研究的过程中,为物理概念、定律的表述提供简洁、精确的数学语言,为学生进行抽象思维和逻辑推理提供有效方法.为物理学的数量分析和计算提供有力工具。 高考物理试题的解答离不开数学知识和方法的应用,借助物理知识渗透考查数学能力是高考命题的永恒主题。可以说任何物理试题的求解过程实质上是一个将物理问题转化为数学问题经过求解再次还原为物理结论的过程。高考物理考试大纲对学生应用数学工具解决物理问题的能力作出了明确要求。 一、三角函数的基本应用 在进行力的分解时,我们经常用到三角函数的运算.虽然三角函数学生初中已经学过,但笔者在多年的教学过程中发现,有相当一部分学生经常在这里出问题,还有一部分学生一直到高三都没把这部分搞清楚.为此,本人将自己的一些体会写出来,仅供大家参考. (一)三角函数的定义式 斜边对边正弦= 邻边 对边正切= 斜边邻边余弦= 对边 邻边余切= (二)探寻规律 1.涉及斜边与直角边的关系为“弦”类,涉及两直角边的关系为“切”类; 2.涉及“对边”为“正”类,涉及“邻边”为“余”类; 3.运算符:由直角边求斜边用“除以”,由斜边求直角边用“乘以”,为更具规律性,两直角边之间互求我们都用“乘以”. (三)速写 第一步:判断运算符是用“乘以”还是“除以”; 第二步:判断用“正”还是用“余”; 第三步:判断用“弦”还是用“切”. 即 (边)=(边)(运算符)(正/余)(弦/切) 1、由直角边求斜边 正弦 对边斜边= 余弦邻边斜边= 2、由斜边求直角边 正弦斜边对边?= 余弦斜边邻边?= 3、两直角边互求 正切邻边对边?= 余切对边邻边?= (四)典例分析 经典例题1 如图1所示,质量为m 的小球静止于斜面与竖直挡板之间,斜面倾角为θ,求小球对挡板和对斜面的压力大小分别是多少? 【解析】小球受到的重力产生的效果是压紧挡板和使球压紧斜面,重力的分解如图2所示。 θtan 1?=mg F

数学分支之数学物理学

数学物理学是以研究物理问题为目标的数学理论和数学方法。它探讨物理现象的数学模型,即寻求物理现象的数学描述,并对模型已确立的物理问题研究其数学解法,然后根据解答来诠释和预见物理现象,或者根据物理事实来修正原有模型。 物理问题的研究一直和数学密切相关。作为近代物理学始点的牛顿力学中,质点和刚体的运动用常微分方程来刻画,求解这些方程就成为牛顿力学中的重要数学问题。这种研究一直持续到今天。例如,天体力学中的三体问题和各种经典的动力系统都是长期研究的对象。 在十八世纪中,牛顿力学的基础开始由变分原理所刻画,这又促进了变分法的发展,并且到后来,许多物理理论都以变分原理作为自己的基础。 十八世纪以来,在连续介质力学、传热学和电磁场理论中,归结出许多偏微分方程通称数学物理方程(也包括有物理意义的积分方程、微分积分方程和常微分方程)。直到二十世纪初期,数学物理方程的研究才成为数学物理的主要内容。 此后,联系于等离子体物理、固体物理、非线性光学、空间技术核技术等方面的需要,又有许多新的偏微分方程问题出现,例如孤立子波、间断解、分歧解、反问题等等。它们使数学物理方程的内容进一步丰富起来。复变函数、积分变换、特殊函数、变分法、调和分析、泛函分析以至于微分几何、代数几何都已是研究数学物理方程的有效工具。 从二十世纪开始,由于物理学内容的更新,数学物理也有了新的面貌。伴随着对电磁理论和引力场的深入研究,人们的时空观念发生了根本的变化,这使得闵科夫斯基空间和黎曼空间的几何学成为爱因斯坦狭义相对论和广义相对论所必需的数学理论。许多物理量以向量、张量和旋量作为表达形式在探讨大范围时空结构时,还需要整体微分几何。 量子力学和量子场论的产生,使数学物理添加了非常丰富的内容。在量子力学中物质的态用波函数刻画,物理量成为算子,测量到的物理量是算子的谱。在量子场论中波函数又被二次量子化成为算子,在电磁相互作用、弱相互作用和强相互作用中描述粒子的产生和消灭。 因此,必须研究各种函数空间的算子谱、函数的谱分析和由算子所形成的代数。同时还要研究微扰展开和重正化(处理发散困难)的数学基础。此外,用非微扰方法研究非线性场论也是一个令人注目的课题。 物理对象中揭示出的多种多样的对称性,使得群论显得非常有用。晶体的结构就是由欧几里得空间运动群的若干子群给出。正交群和洛伦茨群的各种表示对讨论具有时空对称性的许多物理问题有很重要的作用。 基本粒子之间,也有种种对称性,可以按群论明确它们的某些关系。对基本粒子的内在对称性的研究更导致了杨-米尔斯理论的产生。它在粒子物理学中意义重大,统一了弱相互作用和电磁相互作用的理论,提供了研究强子结构的工具。这个理论以规范势为出发点,而它就是数学家所研究的纤维丛上的联络(这是现代微分几何学中非常重要的一个概念)。有关纤维丛的拓扑不变量也开始对物理学发挥作用。 微观的物理对象往往有随机性。在经典的统计物理学中需要对各种随机过程的统计规律

相关主题
文本预览
相关文档 最新文档