当前位置:文档之家› 实验教案-火焰光度法

实验教案-火焰光度法

实验教案-火焰光度法
实验教案-火焰光度法

实验名称:火焰光度法测定污水中的钾、钠

一、教学目的:

1、加深对火焰光度法原理的理解;

2、掌握火焰光度法测定钾、钠的方法;

3、了解火焰光度计的主要组成部分的作用、学习火焰光度计的

使用。

二、教学内容:

(一)实验原理:

用火焰进行激发并以光电检测系统来测量被激发元素辐射强度,进而求出该元素含量的分析方法,称为火焰光度法。火焰光度计属于原子发射光谱的范畴。元素发射的谱线强度随该元素含量的变化而变化,谱线强度可由下列经验公式来表示:

I=aC b

式中:I-谱线强度;C-元素的含量;a-常数,与元素的激发电位、激发温度、试样组成、仪器类型有关;b-自吸系数,其值为与谱的自吸情况有关。浓度很低时计为1,即I=aC。

钾、钠、钙等碱土金属及碱土金属的激发电位较低,可在火焰中被激发,可采用测谱线绝对强度的方法进行定量分析。

用火焰光度法进行分析时,可采用标准加入法和标准曲线法,本实验采用标准曲线法,即先测定不同浓度的钠、钾标准溶

液的谱线强度,将浓度对强度作图作出标准曲线,再测定未知水样中的钠或钾谱线强度,从标准曲线上可求出其含量。

(二)实验仪器及试剂:

6400-A型火焰光度计;含铝为10mg/mL的三氯化铝溶液;1∶1的盐酸;氯化钠;氯化钾。

(三)实验步骤:

1、标准系列的配制:

(1)钾、钠混合标准溶液(钾:200μg/mL;钠:1mg/mL):迅速称取 A.R并己烘干的氯化钾0.1097克,溶于水后,移入500mL的容量瓶中,迅速称取A.R并己烘干的氯化钠1.2711克,溶于水后,移入同一容量瓶中摇匀。

(2)标准系列的配制:吸收上述标准溶液1、2、3、4、5mL 于5个100mL容量瓶中,加入10mL三氯化铝,用蒸馏水定容到刻度。

2、样品处理:

取100mL的污水,加入5mL1∶1的盐酸酸化,煮沸除去二氯化碳,将体积浓缩至80mL左右,冷却,移入100mL容量瓶中,加入10mL三氯化铝溶液,用水稀释至刻度。

3、待测液的测定

(1)将仪器电源打开,开空压机,空气压力为0.1kg/cm2,打开液化气开关,点燃火焰,调整火焰高度为3-5cm,预热燃烧20分钟。

(2)用蒸馏水调节使指示器指于“0”,然后用中间浓度的标准溶液调节指示器达于“50”左右处,反复校正二次以上,就可将标准溶液由低浓度向高浓度逐个测试,标准系列测定完后,即可进行样品待测液的测定。记录下标准系列和待测样品的读数。(四)结果处理:

以标准系列的浓度为横坐标,相应的检流计光点偏转格数为纵坐标,分别作出钾、钠的标准曲线,根据测定水样时,检流计光点偏转的格数,在标准曲线上查出水样中的钾、钠的浓度。(五)思考与讨论:

1、火焰光度分析的原理是什么?火焰光度分析与摄谱法分析有何异、同处?

2、火焰光度分析中,为什么要采用滤光片滤光?

用火焰光度检测器的气相色谱法测定硫化物

用火焰光度检测器的气相色谱法测定硫化物,在国内色谱生产厂家中已有部分涉及,但因在定性、稳定性及计算方法等多方面的技术限制,一直未能推广,GC微量硫分析仪是在我公司原有火焰光度检测器的基础上,经过不断改进,定型为微量硫专用分析仪,具有较高的灵敏度,稳定性好,定性、定量准确,操作简便等优点。 1.原理: 硫化物在富氢火焰中能够裂解生成一定数量的硫分子,并且能在该火焰条件下发出394纳米的特征光谱,经干涉滤光片除去其它波长的光线后,用光电倍增管把光信号转换成电信号并加以放大,然后经微机处理并打印出结果。因为光电倍增管本身的放大能力以及我们研制的FPD的特殊性,所以保证了GC微量硫分析仪的高选择性和高灵敏度。 被分析气体样品经色谱柱分离后,不同的硫化物在不同的时刻进入FPD,从而在工作站上出现不同保留时间的色谱峰。因为硫化物响应与硫浓度的平方成正比,所以工作站必须根据开方峰面积和校正系数计算出分析结果并根据保留时间,直接标定和显示各种硫化物的实际含量。 2.定性定量: 用色谱法分析硫化物,定性问题一直未能很好地解决。众所周知,硫化物的存在形式多种多样,而在实际工作中又不可能拥有众多硫化物的标样,这就给广大的硫分析工作者造成了极大的难题。但是,在实际工作中,多数情况下只需要对硫化物进行大致的定性。如只需要看无机硫,低沸点有机硫,高沸点有机硫的的分布情况,以便指导脱硫工作的进行。这种情况在许多化工厂是很普遍的。鉴于这种情况,一般分析人员采用的定性手段为:对无机硫,如硫化氢、二氧化硫,可以用GDX301柱子进行分离以便定性;对低沸点有机硫,如甲硫醇、甲硫醚、硫氧化碳可以用TCP柱子分离以进行定性;而对高沸点有机硫,一般不作定性,大多数采用反吹方式测定其总含量。也可直接用反吹法分析总硫,这也是本仪器的一大特点。 一般而言,在样品气中,如原料天然气、炼厂尾气、煤造气生成的原料气,无机硫、低沸点的有机硫含量占很大比例(几乎达90%以上),因此采用以上方法进行定性定量分析是切实可行的。它不仅简化了分析程序,而且分析结果也比较准确。这样做,不仅可监视样气中的硫含量,而且也为选择脱硫剂和脱硫路线提供了理论依据。 3.色谱柱的选用: 本仪器随机配备了两根色谱柱: A. TCP柱 4×0.5,2米,20%TCP,白色101担体,60~80目。 B. GDX柱,4×0.5,2米,GDX301,60~80目。 一般选用TCP柱做有机硫分析,用GDX柱做无机硫分析。在既有无机硫,又有有机硫的样品分析时,可用双柱TCP柱和GDX柱,两次进样,此时应选02方式。而在进行总硫分析时,可选GDX柱用反吹法来做,选06,07方式或选用01,03(只显示不能画峰图,主要用于在线分析)。选用00,02方式做硫化氢,硫氧化碳和有机总硫。 4.进样: 由于硫化氢具有较强的化学活性,很容易被其他物质吸附而使其含量降低,从而影响测定的准确度。因此在测定过程中,采用吸附性较低的玻璃注射器采集样品,且要求样品的贮存时间不能太长,仪器中凡是样品经过的管线均经过钝化处理。也可采用特殊处理的六通阀自动进样。 5.仪器特点: ①独特的火焰光度检测器结构,操作简便,稳定时间快,采用特殊的火焰结构消除烃类化合物的干扰,使选择性大幅提高; ②在光信号的收集上,采用聚焦的方式,使捕捉到的信号大幅增加,灵敏度成倍数提高; ③采用优质材质及精湛的加工工艺,密封性很好,在实际操作中,抗外界干扰能力大幅提高,稳定性较好; ④在检测器底部,采用加热功能,有效去除冷凝水,使分析精度有很大提高; ⑤整机稳定性较好,操作简便,易于掌握。 6.参考谱图: 常见有机硫在TCP柱上保留时间

火焰光度计检定装置操作规程

编号:JL12-理化-作业-101 火焰光度计检定装置的 操作规程 编写:年月日 审核:年月日 批准:年月日 理化实验室

火焰光度计检定装置的操作规程 1目的 为了规范测试、校准或检定过程,严格执行检定规程,保证量值传递的准确性,保证结果的客观公正性,特制定该操作规程。 2测量标准的组成 2.1检校设备 火焰光度计用标准物质的浓度 4准备工作 4.1仪器安装要求 仪器应置于水平无震动的工作台上,操作时不得有摇动现象。 4.2气体管路 气路连接正确,不得有漏气现象,气源压力应符合出厂说明规定的指标。 5量传参数和量值点 根据JJG 630-2007《火焰光度计检定规程》,火焰光度计检定装置的量传参数是:元素分析。量传量值点是:稳定性、重复性、线性误差、检测限、滤光片透光特性、响应时间、样品吸喷量。 6操作步骤 6.1外观检查

参照规程5.1要求,逐一进行检查。 6.2绝缘电阻检定 在未接通电源时,打开仪器开关,用兆欧表测量电源进线端(相线或中线)与机壳间的绝缘电阻。 6.3稳定性检定 6.3.1仪器通电并点火,经预热稳定(不超过30min )后,用空白溶液(二次蒸馏水或去离子水)校正零点。 6.3.2按下述方法校准仪器 采用标准曲线回归方式的仪器:用0.06mmol/L K 与0.3mmol/L N a 的混合标准溶液进行激发,指针式仪器将仪器示值调至50%,数显式仪器将仪器示值调至100.0。如上述方法不适用,则根据仪器数显范围,进行最佳化调节。 采用浓度直读方式的仪器,参照仪器说明书用适当浓度的校准溶液进行校准。 6.3.3用0.06mmol/L K 与0.3mmol/L N a 的混合标准溶液连续进样15s ,待稳定后连续观测并读出仪器示值与初值间的最大偏移量,计算仪器示值的相对最大变化量;然后在5min 内,对仪器不做任何调整并重复6次测量,每次测量间隔1min ,计算仪器各次示值与初值间的最大偏移量,求出6次仪器示值的相对最大变化量。测量过程中进样管插入溶液的深度应没有相对明显的改变。仪器示值的相对最大变化量R 由下式计算: R= %100??I I (3) 式中:I ?——仪器示值与初值间的最大偏移量 I ——仪器初值。 注:对于某些测量量程较高的浓度直读式仪器,可选择量程中间浓度点进行稳定性检定;对于内标法仪器,应按照仪器说明书的规定在空白和标准溶液中加入适当浓度的内标元素进行相关检定项目的检定。 6.4重复性检定 6.4.1用空白溶液(二次蒸馏水或去离子水)校正仪器零点后,按照6.3.3.2对仪器进行校准,对同一标准溶液重复进行7次连续独立测量(每次测量前允许调零),测量过程中进样管插入溶液的深度应没有相对明显的改变。 6.4.2仪器测量的重复性以7次测量值的相对标准偏差表示: RSD= %1006 )(1 7 1 2 ?-∑=i i I I I (4) 式中:RSD ——相对标准偏差,%; i I ——单次测量值;

火焰光度检测器fpd ()

火焰光度检测器-FPD(SFPD 、DFPD 、PFPD) 一.概述 1.FPD是1966年问世的,它是一种高灵敏度、高选择性的检测器,对含磷、硫的有机化合物和气体硫化物特别敏感。 2.主要用来检测 ⑴ 油精馏中硫醇、COS、H2S、CS2、、SO2; 0 水质污染中的硫醇; ⑵ 空气中H2S、SO2、CS2; 0 农药残毒; 0 天然气中含硫化物气体。 3.FPD检测硫化物是目前最好的方法,为了提高FPD灵敏度和操作特性,在单火焰气体的流路形式上作了多种尝试,随后设计出了双火焰光度检测器(DFPD),但没有从根本上解决测硫灵敏度 和操作特性欠佳的缺点,最近几年在市场上又推出了脉冲火焰光度检测器(DFPD),无论在测硫、 测磷的灵敏度和选择性都有了成百倍的提高。也可以说,在测磷方面已没有必要再推荐氮磷检 测器了,测硫也基本上满足了当前各领域分析的要求。 二.FPD简明工作原理 FPD实质上是一个简单的发射光谱仪,主要由四部分组成: 1.光发射源是一个富氢火焰(H2 :O2> 3 :1),温度可达2000 ~ 3250 ℃ ; 2.波长选择器,常用波长选择器有干涉式或介质型滤光片; 3.接收装置包括光电倍增管(PMT)和放大器,作用是把光的信号转变成电的信号,并适当放大; 4.记录仪和其它的数据处理。 FPD简明工作原理为:当含磷、硫的化合物,在富氢火焰中燃烧时,在适当的条件下,将发射一系列的特征光谱。其中,硫化物发射光谱波长范围约在300 ~ 450nm之间,最大波长约在 394nm 左右;磷化合物发射光谱波长范围约在480 ~ 575nm之间,最大波长约在526 nm左右。 含磷化合物,一般认为首先氧化燃烧生成磷的氧化物,然后被富氢焰中的氢还原成HPO,这个被火焰高温激发的磷裂片将发射一定频率范围波长的光,其光强度正比于HPO的浓度,所以 FPD 测磷化合物响应为线性。 含硫的化合物在富氢火焰中燃烧,在适当温度下生成激发态的S2*分子,当回到基态时,也发射某一波段的特征光。它和含磷的化合物工作机理的不同是:必须由两个硫原子,并且在适当的温度 条件下,方能生成具有发射特征光的激发态S2*分子,所以发射光强度正比于S2*分子,而S2*分子与SO2的浓度的平方成正比,故FPD测硫时,响应为非线性,但在实际上,硫发射光谱强度(IS2 * )与 n 含硫化物的质量、流速之间的关系为IS2=I0[SO2],式中:n不一定恰好等于2,它和操作条件以及化合物的种类有很大的关系,特别是在单火焰定量操作时,若以n = 2计算将会造成很大的定量误差。三. 双火焰光度检测器(DFPD) 双火焰光度检测器(DFPD),克服了单火焰的响应依赖于火焰条件与样品种类的缺点,使响应仅和样品中的硫(磷)的质量有关,并在检测硫时基本遵循平方关系。DFPD工作原理是使用了两个空 气-氢气火焰,将样品分解区域与特征光发射测量区域分开,即从柱流出的样品组分首先与空气混合,然后与过量的氢气混合,在第一个火焰喷嘴上燃烧。第一个火焰将烃类溶剂和复杂的组分分解成比 较简单的产物,这些产物和尚未反应的氢气再与补充的空气相混合,这时的氢气含量仍稍过量,既

火焰光度计工作原理及操作方法(2020年10月整理).pdf

火焰光度计工作原理及操作方法 1、工作原理 火焰光度计是以发射光谱为基本原理的一种仪器,它利用火焰本身提供的热能,激发碱土金属中的部分原子,使这些原子吸收能量后跃迁至上一个能量级,这个被释放的能量具有特定的光谱特征,即一定的波长范围。例如,将食盐置于火焰中,火焰成黄色,就是因为钠原子在火焰中回落到正常能量级时所释放的能量的光谱是黄色的。人们常称之为火焰反应。不同碱金属在火焰中的颜色是不同的,配上不同的滤光片,就可以进行定性测试。而火焰的强度又正比与溶液中所含原子的浓度,这就构成了定量测定的基础。这个方法称为火焰光度法,这类仪器称为火焰光度计。 由于火焰温度不是很高,使被测原子释放的能量有限。同时,在燃烧过程中,有自吸、自浊现象存在,所以只有在低浓度范围中的测试才是线性的。 火焰光度计是一种相对测量的仪器,被测样品的浓度值是在同一测试条件下标准样品的浓度的相对值。所以,测试前必需首先制备一组相应的标准样品,然后进行标定操作,人工或通过仪器绘制曲线,最后才能对被测样品进行测试,得到其浓度值或其它需要的数据。 (3)打开液化气钢瓶上的开关按下燃气调节旋钮点火,点火应采用点动方法,即压下 2、标液配制: a.氧化钠标准储备液:称取9.4293±0.0001g预先经500~600℃灼烧半小时的氯化钠高纯试剂溶于水,移入1L的容量瓶中,用水稀释至标线,摇匀。储于塑料瓶中。此溶液5mg/ml; b.氧化钾标准储备液:称取1.5829±0.0001g预先经500~600℃灼烧半小时的氯化钾高纯试剂溶于水,移入1L的容量瓶中,用水稀释至标线,摇匀。储于塑料瓶中。此溶液1mg/ml; c.氧化钠和氧化钾混合标准溶液:分别取50.00ml氧化钠标准储备液和25.00ml氧化钾标准储备液于500ml容量瓶中,用水稀释至标线,摇匀。储于塑料瓶中。此液0.5mg/ml氧化钠和0.05mg/ml氧化钾;

【开题报告】固体废物中有机磷农药的测定气相色谱-火焰光度检测器法

开题报告 化学 固体废物中有机磷农药的测定气相色谱-火焰光度检测器法一、选题的背景与意义 有机磷农药是为取代有机氯农药发展起来的,它比有机氯农药较易降解,残留期较短,是现有农药中品种最多、使用最广的一类,约有100多种。环境中有机磷农药的污染和毒害已日益引起人们的广泛关注。有机磷农药毒性较高,是急性中毒类农药,如对硫磷和内吸磷等都是剧毒品。 有机磷农药常被用作杀虫剂喷洒在果树、蔬菜上,残留在水果、蔬菜上的农药或进入环境的农药进入有机体,对人、畜毒性较大,大部分对生物体内胆碱酯酶有抑制作用,抑制胆碱酯酶使其失去分解乙酰胆碱的能力,造成乙酰胆碱积累,引起神经功能紊乱,从而导致肌体的损害。 有机磷农药的各类环境质量标准和污染物排放(控制)标准,均没有针对固废。现收集到与土壤或固废相关的标准,见表1。 表1 有机磷农药相关环境质量或排放标准 环境质量或排 放标准标准号排放限值 浓度单 位 土壤环境质量 标准 GB15618-1995 无相关排放标准 乐果对硫 磷 甲基对硫磷 马拉硫 磷 浸出液 危险废物毒性 标准浸出毒性 鉴别GB5085.3-2007 8 0.3 0.2 5 mg/L 生活垃圾填埋 污染控制标准 GB16889-2008 无相关排放标准展览馆用地土 壤环境质量标 准 HJ350-2007 无相关排放标准城镇垃圾农用GB8172-1987 无相关排放标准

控制标准 在现行的有机磷农药的监测分析方法中,主要采用有机溶剂提取,净化步骤除去干扰物,用气相色谱氮磷检测器(NPD)或火焰光度检测器(FPD)检测,再根据色谱峰的保留时间定性,外标法定量。此方法仅适应于水和土壤中有机磷农药的分析,尚未制定固体废物中有机磷农药的标准分析方法。 现根据对目前农田里常用有机磷农药的使用情况调研以及相关有机磷农药的标准,筛选出12种左右的有机磷农药,分别为甲拌磷、乐果、二嗪农、乙拌磷、异稻瘟净、甲基对硫磷、马拉硫磷、对硫磷、毒死蜱、稻丰散、丙溴磷、乙硫磷,对这12种有机磷农药制定标准方法。 三、研究的方法与技术路线: 考虑到快速溶剂萃取法(ASE)具有萃取速度快、溶剂用量少、效率高、密封性能好造成环境污染小的特点,决定样品的前处理采用ASE提取,经浓缩定量后采用GC-FPD的方法检测固体废物中的有机磷农药。 技术路线: 四、研究的总体安排与进度:

fpd检测器

书名:气相色谱检测方法(第二版)作者:吴烈钧编著 火焰光度检测器 第一节引言 火焰光度检测器(flame photometric detector,FPD)是利用富氢火焰使含硫,磷杂原子的有机物分解,形成激发态分子,当它们回到基态时,发射出一定波长的光。此光强度与被侧组分量成正比。所以它是以物质与光的相互关系为机理的检侧方法,属光度法。因它是分子激发后发射光,故它是光度法中的分子发射检测器。 1966年Brody和Chancy首次提出气相色谱FPD,称通用型FPD。它有易灭火等缺点。以后在气体的流路形式方面又作了改进。这些均属单火焰FPD(single flame photometric detector,简称SFPD)。为了克服SFPD的缺点,出现了双火焰光度检侧器(dual-flame photometric detector;简称DFPD)。近年又出现了脉冲火焰光度检侧器(pulsed-flame photometric detector;PFPD),使灵敏度和选择性均较SFPD, DFPD有很大提高,还扩大了检侧元素的范圈。 FPD是一种高灵敏度和高选择性的检测器,其主要特征是对硫为非线性响应,它是六个最常用的气相色谱检测器之一、主要用于含硫、磷化合物,特别是硫化物的痕量检测。近年也用于有机金属化合物或其他杂原子化合物的痕量检测。 第二节工作原理和响应机理 一、工作原理 图6-1为FPD系统示意图。它主要由二部分组成:火焰发光和光、电信号系统。 火焰发光部分由燃烧器(4)和发光室(2)组成,各气体流路和喷嘴等构成燃烧器,又称燃烧头。通用型喷嘴由内孔和环形的外孔组成。气相色谱柱流出物和空气混合后进入中心孔,过量氢从四周环形孔流出。这就形成了一个较大的扩散富氢火焰、烃类和硫、磷确化合物在火焰中分解,并产生复杂的化学反应,发出特征光。硫、磷在火焰上部扩散富氢焰中发光,烃类主要在火焰底部的富氧焰中发光,故在火焰底部加一不透明的遮光罩(3)挡住烃类光,可提高FPD的选择性。为了减小发光室的体积,可在喷嘴上方安一玻璃或石英管(1),以降低检测器的响应时间常数。 右为光、电信号部分,为了避免发光中产生的大量水蒸气,燃烧产物和高温对光、电系统的影响,用石英窗(5)和散热片(6)将发光室和光电系统隔开。因FPD不是将所有的光变成电信号,而是用滤光片(7)选择硫、磷特征光。图6-2为硫、磷和碳的相对光谱响应曲线,当硫化物进人火焰,.形成激发态的S2*分子,此分子回到基态发射出波长为320~480nm的光,

GC126-FPD火焰光度检测器使用说明书

1 GC126-FPD火焰光度检测器 1.1引言 1.1.1 GC126-FPD火焰光度检测器概述 GC126-FPD火焰光度检测器是GC126气相色谱仪中选配的特种检测器之一,是专门用于检测含磷化物及含硫化物;是一种高选择性及高灵敏度的检测器。它只对含磷化物、硫化物有响应,而其它元素对它无干扰或干扰很小,因此这种检测器可以应用在石油化工中的含硫化物的微量检测。特别是自然界生物体内含磷、含硫化合物很多,新合成有机磷化物、硫化物、农药中的大量杀虫剂、杀菌剂都是含磷、含硫的有机化合物,而这些农药的残留量测定必须依赖于对磷、硫有高灵敏度及高选择性的火焰光度检测器(特别是对硫化物唯有采用火焰光度检测器测定)。 故火焰光度检测器可以广泛应用在生物、农业、环保、化工、医药、食品等行业的质量检验。 GC126-FPD火焰光度检测器有两个单元所组成,其一是火焰光度控制器包括微电流放大器和负高压稳压输出;其二是火焰光度检测器。本使用说明书仅对GC126-FPD火焰光度检测器的结构原理、操作方法和仪器保养、检修作较详细的说明。 1.1.2 GC126-FPD火焰光度检测器基本参数 1.1. 2.1 技术指标 检测限:对磷:Dt≤2×10-11g/s(p)(甲基对硫磷) 对硫:Dt≤1×10-10g/s(s)(甲基对硫磷) 基线噪声:≤10μV P;108;衰减1/32 (1mV量程) S;108;衰减1/8 (1mV量程) 基线漂移:≤30μV/30min 线性范围:对磷:103 对硫:102 启动时间:检测器开机≤2h应能正常工作。

1.1. 2.2 检测器使用要求 电源电压:220V±22V,50Hz±0.5Hz 功率:≤100W 环境温度:+5℃~35℃ 相对湿度:≤85% 环境条件:检测器安装室内应没有腐蚀性气体及不致使电子器件的放大器、色谱数据处理机及色谱工作站正常工作的电场和电磁场存在,检 测器安装后工作台应稳固,不能有振动,以免影响检测器正常工 作。在接氢气瓶或氢发生器的室内2m内不得有火种存在或发火 装置的可能性。 1.1. 2.3 外形体积 510mm(长)×370mm(宽)×200mm(高) 1.1. 2.4 重量 1kg(该重量是指本检测器所带附件及备件经包装后的重量参考值)。 1.1. 2.5 检测器成套性 GC126-FPD火焰光度检测器一台 附件、备件清单、合格证、说明书与检测器同装纸箱。 1.1.3 开箱与验收 收到仪器后,应该校对检测器型号与选购的检测器订单是否相符合。同时开箱检查仪器在运输过程中是否有损坏,若有明显损坏现象应立即与本厂质量检验科联系酌情处理。检测器自用户购买日起14个月内,厂方免费为用户进行非用户人为所至的故障修理。

火焰光度计标准操作规程

目的:建立FP6410火焰光度计标准操作规程,规范检验人员的操作。 范围:本规程适用于本公司FP6410火焰光度计的操作。 职责:QC检验人员按本规程实施操作,QC负责人监督本规程的执行。 内容: 1操作步骤 1.1 在正式测试前,正确的选择仪器上的浓度开关、空气压力、燃气压力等参数,进行设置。 1.2 打开主机电源开关,打开空气压缩机电源开关,将进样毛细管放入蒸馏水中。 1.3打开液化气钢瓶开关,执行点火操作。 1.4按“确认”键,进入初始菜单,选择元素、单位和校正方法。 1.5选“标定”,按“确认”键进入“标定菜单”。 1.6在“标定菜单”中,输入序号,选“标定”,按“确认”进入数据输入屏幕,按确定的格式设置标准数据输入,检查无误后,按“确认”键。以此类推,输入所有标样序号的数据。 1.7在点火预热25分钟后,在确信用最高浓度的标准溶液进样时,模拟量不会溢出(即模拟量不超过1000)的前提下,用标准溶液逐个进样,得到标准曲线。 1.8在“标定菜单”中选择“测试”,按“确认”键进入样品测试操作,按序号依次进样,待数据稳定,选“确定”,按“确认”存储数据。 1.9检查数据,按标定操作重做结果有疑问的样品。测试完成(按实际扩大或缩小)计算结果。 1.10关机前,在燃烧状态下用蒸馏水清洗5分钟,然后先关液化气钢瓶开关,再关主机电源开关及空气压缩机电源开关。 1.11 清洁仪器和工作台,填写仪器使用记录。

2.注意事项 2.1燃气和助燃气(空气)必须是干燥的,纯净而没有污染的,不要在湿度很高、粉尘很多的环境中使用仪器。 2.2仪器与钢瓶周围不能摆放易燃易爆物品。实验环境必须通风良好,有条件的地方可设置强制排气装置或在通风橱中操作仪器仪器。 2.3必须使用稳定的220V的电源电压,工作环境附近不能有功率较大、频率启动的电气设备。接地线必须可靠接地,不能用零线代替接地线。 2.4操作过程中,燃烧室与烟囱罩都是非常烫的,不能将身体凑近或者用手触摸这些地方,也不要从上而下张望。 2.5从废液杯里流出的排放液要集中收集,适当处理,不要随意处置。 2.6定期保养清洗雾化室、燃烧头。雾化室清洗后前盖板上喷射器的安装螺母一定要反复拧紧;碰撞球与喷口的间隙要重新仔细调整。如果做了高盐样品测试,蒸馏水喷烧的时间要适当延长。 2.7一些表面张力较大的样品,需要加入适量的表面活性剂,同时注意在样品标准空白中加入的量要相同。 2.8 标准测试液必须精确配置。长期保存时,请注意保存条件,并要加入适当的抑菌剂。任何样品不能存放在钠玻璃的器皿中。 2.9 样品中不能含有颗粒状物质,最好过滤后使用。操作中经常注意液面高度,使塑料毛细管只吸取上层溶液。

火焰光度计作业指导书

一、操作步骤 1、开机预热20~30分钟; 2、预热完毕,按“确认”键,进入初始菜单; 3、在初始菜单下,用左、右移动键选择设定元素(Na、K或Na、K同时选定)、单位(本机可选三种浓度单位:mmol/L、μg/ml、mg/100mL),按确认键选定,该项设定操作一次后,每次开机均默认上一次的设定; 4、在初始菜单下,用左移键选定校正方法[分段法(-f-)和线性回归法(-2x-),一般都是选择线性回归法(-2x-)],按下“左移”键2秒以上,两种方法互相转换,将在屏幕右上方显示-f-或-2x-; 5、屏幕下行的字符是菜单项,用左右移动键选择,选中的菜单项以黑底白字显示,按“确认”键进入选中项的操作; 6、标准溶液的标定。 (1)标准溶液浓度的输入。选“标定”,按“确认”键,进入标定菜单,当标定序号为001#时,选“标定”,按“确认”键,进入数据输入屏幕;标准溶液浓度输入按(钾□□.□□,如浓度为0时,则为00.00,浓度为5μg/ml时,则为05.00,以下以此类推,必须输完四位数)格式输入。在数据输入中,按“左移”键一次,数值增加“1”,从0至9循环选择;按“右移”键一次,光标移动一个位置。数据输入完成之后,按“确认”键,序号为001#的标准溶液数据已输入完毕,此时,光标停在001#处,按“确认”键,序号显示为002#,选“标定”,进入下一个标准样数据的设置;重复操作,直至把标准系列浓度输入完毕。这一步骤的操作可在开启主机电源后即进行,也可在点火后进行(点火后标样浓度的输入可与标准溶液的进样同时进行)。 (2)点火。打开液化气钢瓶开关(逆时针打开,顺时针关闭),顺时针转动减压阀,使输出压力表显示0.06MPa左右;接通空压机电源,观察压力表显示接近0.10MPa,塑料毛细进样管放入去离子水中(新机或仪器搁置较长时间后,在点火前应先喷雾几分钟,直到废液管有水排出),拿下烟囱罩,按下燃气调节按钮(点火应采用点动方法,即按下燃气调节按钮3秒左右,立即松手,然后再按下,如此循环,直至点燃火焰,点火成功后,仍需按住燃气调节按钮5秒钟左右。点火后,转动燃气调节按钮,使火焰状态调至外焰内焰(一簇独立的小火焰)均为锥形的,用蒸馏水进样时,火焰的下部都呈蓝色,上部呈黄色;将烟囱罩上。 (3)在标定菜单,在确信用最高浓度的标准溶液进样时,模拟量(序号右边紧接着的数字即为待测元素的模拟量)不超过1000的前提下,用“▽”、“△”选定序号001#,用001#标液进样,选“标定”,按“确认”键,待模拟量稳定后,按“确认”键;选“▽”,按“确认”键,序号为002#,重复同样的操作,如此反复,直至将标准样全部进样,标定操作完成。选“返回”按下,返回至

火焰光度计安全技术操作规程实用版

YF-ED-J2337 可按资料类型定义编号 火焰光度计安全技术操作 规程实用版 In Order To Ensure The Effective And Safe Operation Of The Department Work Or Production, Relevant Personnel Shall Follow The Procedures In Handling Business Or Operating Equipment. (示范文稿) 二零XX年XX月XX日

火焰光度计安全技术操作规程实 用版 提示:该操作规程文档适合使用于工作中为保证本部门的工作或生产能够有效、安全、稳定地运转而制定的,相关人员在办理业务或操作设备时必须遵循的程序或步骤。下载后可以对文件进行定制修改,请根据实际需要调整使用。 一、操作步骤 1.依次打开主机电源开关,空压机开关, 液化气源开关。 2.按下点火按钮,同时调整燃气开关,直 至点火成功。松开点火按钮调整燃气旋钮至火 焰大小正常稳定,纯兰色。 3.预热半小时后进行测定,首先用蒸馏水 作低标溶液进行吸样,待仪器显示数字稳定后 调 K、Na低标旋钮使之显示数字为零。稳定后 改用高标溶液调至满度,反复调整至稳定后待

测试液测定,并记取显示次数。 4.测完后仪器应用蒸馏水清洗5分钟,停机时依次关闭液化气源开关,空压机开关,主机电源开关,试验结束。 二、注意事项 1.检测中注意废液排放速度及试液进样速度是否政正常,否则应进行相应调整,以免影响检测准确度。 2.测完后仪器应用蒸馏水分钟。 3.停机后千万不要忘记关掉液化气源,以免发生火灾。 4.仪器下有一排水口,应定期进行排水 5.雾化室应定期进行清洗。 6.非专业人员不得随意乱动仪器。

火焰光度法测钾

土壤全钾含量一般在1~2%左右,其中矿物态钾(土壤矿物晶格或深受结构束缚的钾)约占90一98%,缓效钾占2—8%,速效钾占(水溶性钾和交换态钾)0.1—2%。 根据钾的存在状态和植物吸收性能,可将土壤钾素分为四部分:土壤矿物钾(难溶性钾,无效态钾),非交换性钾(缓效性钾),交换性钾;水溶性钾。后两种钾为速效钾,可直接被作物吸收利用。 钾的测定,有重量法、容量法,比色法、比浊法,火焰光度法和原子吸收分光光度法。现在多采用火焰光度法和原子吸收分光光度法 (一)1N中性醋酸铵提取—火焰光度法或原于吸收分光光度法的测定原理 以lN中性醋酸铵溶液为浸提剂时,NH4+与土壤胶体表面的K+进行交换,连同水溶液K+(二者合称速效钾)一起进入溶液。浸出液中的钾直接用火焰光度计或原子吸收分光光度计(简称AAS)测定。 原子吸收分光光度计的工作原理: 元素在热解石墨炉中被加热原子化,成为基态原子蒸汽,对空心阴极灯发射的特征辐射进行选择性吸收。在一定浓度范围内,其吸收强度与试液中被的含量成正比。 有火焰原子吸收分光光度计和带石墨炉的原子吸收分光光度计。前者原子化的温度在2100℃~2400℃之间,后者在2900℃~3000℃之间。 具体是这样的:光源也叫元素灯(一般是空心阴极灯或无极放电灯)里有被测金属,它被激发放出锐线光谱(就是一定波长的不连续光谱)。而气化池可以气化(即原子化)被测金属,原子金属可以吸收空心阴极灯发出的锐线光谱,通过检测被吸收后光谱的强度,得到被吸收的光谱强度,从而可以计算出金属原子的浓度(比尔-朗伯定律)。 火焰光度计是以发射光谱为基本原理的一种分析仪器。用火焰作激发光源进行火焰光度分析时,把待测液用雾化器使之变成溶胶导入火焰中,待测元素因热离解生成基态原子,原子外层电子吸收火焰的热能,而跃迁到受激能级(激发态,不稳定),再由受激能级恢复到正常状态(基态)时,电子就要释放能量,这种能量的表征是发射出待测元素原子所特有波长的光谱线光谱,经单色器分解成单色光后通过光电系统测量。利用火焰的热能使某元素的原子激发发光,并用仪器检测其光谱能量的强弱,进而判断物质中某元素含量的高低,这类仪器称之为火焰光度计。由于火焰的温度比较低,因此只能激发少数的元素,火焰光度法特别适用于较易激发的碱金属及碱土金属的测定.碱金属有锂、钠、钾、铷、铯等,碱土金属有铍、镁、钙、锶、钡、镭等. 一个是原子吸收原理,一个是原子发射原理,测试的内容不同

火焰光度计的使用与测定

实验九火焰光度法测K、Na 一、实验目的 1.了解火焰光度计的构造、原理,学会使用方法。 2.测定样品中K、Na的含量。 二、方法原理 当原子或离子受到热能或电能激发(如在火焰、电弧电光花中),有一些电子就吸收能量而跃迁到离原子核较远的轨道上,当这些被激发的电子返回或部分返回到稳定或过渡状态时,原先吸收的能量以光(光子)形式重新发射出来,这就产生了发射光谱(线光谱),各种元素都有自己的特定的线光谱。 火焰所提供的能量比电火花小得多,煞费苦心只能激发电离能较低的元素(主要是碱金属和碱土金属)使之产生发射光谱(高温火焰可激发30种以上的元素产生火焰光谱)。当待测元素(如K、Na)在火焰中被激发后,产生了发射光谱光线通过滤光片或其他波长选择装置(单色器),使该元素特有波长的光照射到光电池上,产生光电流,此光电流通过一系列放大路线,用检流计测量其强度。如果激发光条件(包括燃料气体和压缩空气的供应速度,样品溶液的流速,溶液中其他物质的含量等)保持一定时,则检流计读数与待测元素的浓度成正比,因此可以定量进行测定。 火焰光度计有各种不同型号,但都包括三个主要部件: 1.光源:包括气体供应,喷雾器、喷灯等。使待测液分散在压缩空气中成为雾状,再与燃料气体和乙炔、煤气、液化石油、苯、汽油等混合,在喷灯燃烧。 2.单色器:简单的是滤光片,复杂的则是用石英等棱镜与狭缝来选择一定波长的光线。 3.光度计:包括光电池、检流计、调节电阻等。与光电比色计的测量光度部分一样。 影响火焰光度法准确度的因素主要有三方面: 1.激发情况的稳定性,如气体压力和喷雾情况的改变会严重影响火焰的稳定,喷雾器没有保持十分清洁时会引起不小的误差,在测定过程中,如激发情况发生变化应及时校正压缩空气及燃料气体的压力,并重新测试标准系列及试样。 2.分析溶液组成改变的影响:必须使标准溶液与待测溶液都有几乎相同的组成。如酸浓度和其他离子浓度要力求相近。 3.光度计部分(光电池、检流计)的稳定性:如光电池连续使用很久后会发生“疲劳”现象,应停止测定一段时间,待其恢复效能后再用。多数火焰光度分析适当浓度的纯盐溶液时,准确度都很高,误差仅1%~3%,分析土壤、肥料、植物样品待测液时,一些元素(K、Na)的测定误差为3%~8%,可满足一般生产上要求的准确度。 实验证明,待测液的酸含量(不论是HCl、H2SO4或HNO3)为0.02mol·L-1时,对测定几乎没有影响,但太高时往往使测定结果偏低。如果溶液中盐的浓度过高,测定时易发生灯被盐霜堵塞,使结果大大降低。应及时停火,清洗。此外,K、Na彼此的含量对测定也互有影响,为了免除这项误差,可加入相应的“缓冲溶液”,例如在测K时,加入NaCl的饱和溶液。在测Na时,加入KCl的饱和溶液。 三、实验仪器 6400型火焰光度计容量瓶50mL(10个)250mL (2个) 吸量管10mL(2支)吸移管25mL(2支) 四、实验试剂

火焰光度计操作指导书

火焰光度计操作指导书 1.标定 精确称取预先在130~150℃烘干2小时的基准试剂氯化钾1.5830g 和氯化钠1.8858g。分别溶于水中,各自移入1L容量瓶中。加水稀释至标线,摇匀后备用。此溶液每毫升分别相当于1mg氯化钾. 氯化钠。(即分别含有1000×10-6的氯化钾.氯化钠) 分别精确移取1.0,2.0, 3.0, 4.0……10.0ml的氯化钾和氯化钠标准溶液于100ml 容量瓶中,用水稀释至标线,摇匀。此标准溶液分别为10×10-6,20×10-6,30×10-6,……100×10-6氯化钾和氯化钠,分别取出部分标准溶液置于小皿中。在火焰光度计上按仪器使用规程进行测定,绘制工作曲线。 2.试样测定 精确称取0.2~0.3 g试样于铂皿中,用少量水润湿,加入(1+1)硫酸1ml,5~10ml氢氟酸,低温加热分解样品,并蒸发至冒白烟。逐渐升高温度使白烟冒尽,取下冷却。加入50ml热水,并将残渣压碎使其溶解。加2g/L甲基红指示剂一滴,用(1+1)氨水中和至微碱性。再加入10ml100g/L新配制的碳酸铵溶液,搅拌,置于电热板上加热20~30min至无二氧化碳气泡冒出为止。用快速滤纸过滤,以热水洗涤。滤液及洗液盛于100ml容量瓶中,(容量瓶体积视钾.钠含量多少而定)冷却。用(1+1)盐酸中和至微红色,再用水稀释至标线,摇匀。用火焰光度计按仪器使用规程进行测定。 氧化钾和氧化钠的百分含量按下式计算: C×V X k2O(或N a2O)= ×100 m×1000 式中: C_在标准曲线上查得氧化钾.氧化钠的含量(mg) V_试样溶液稀释的总体积.( ml) m_试样的质量.(g) 维护保养与注意事项:

脉冲式火焰光度检测器(PFPD)

脉冲式火焰光度检测器(PFPD) 脉冲式火焰光度检测器(PFPD)是最新设计的火焰光度检测器。最适合于含硫和磷化合物的选择性检测. PFPD检测器也能够选择性的测定28种特定的元素。和标准的FPDs较,PF PD可获得更高的检测限(10倍),更大的选择性(10-1000),更强的可靠性和更低的操作成本。它的双通道模拟输出功能允许S和P,S和C或任意两种元素产生的信号同时输出。 操作原理: PDPF主要使用反应气体未端的扩散火焰。火焰中气相反应的结果, 使一些分子产生特征的发射光谱及发射的延迟。种不同的发射光谱及延迟可以用于增强PFPD的选择性减少噪音,提高检测灵敏度。由于使用不连续扩散火焰,燃烧室所用气体流量大大降低( 大约1/10 )。另外, 电 子门脉冲性能使噪音控制在门脉冲窗口之外,进一步增强了检测器的性能。 主要测定的28种元素S, P (主要应用) C, N, As, Br, Pb (关键应用) B, Al, Si, V, Cr, Mn, Fe, Ni, Cu, Ga, Ge, Se, Ru, Rh, In, Sb, Te, W, Bi, Eu(其他应用) OI公司的PFPD检测器可以配置到任何进口的GC上. 1.更高的灵敏度 使用窄口径毛细柱(0.25mm内径) 可得到的最小检测限为硫:2x10-13 g S/sec,磷:1x10-14 g P/sec和氮:2x10-12g N/sec。若使用大口径毛细柱(0.53mmID),灵敏度会略有降低,但此检测限要高出任何FPD的结果。 其出众的灵敏度可归功于: A. 由于时间过滤使得火焰背景和化学噪音降低; B. 由于电流控制,使得暗电流降低; C. 由于低燃烧气流量和更小的燃烧室体积可得到更高的信号强度; D. 使用波长范围更宽的滤光片; PFPD对磷的检测灵敏度相当于或高于NPD,且没有峰拖尾及长时间的稳定预热问题,它还有选择性检测C和N的优势。 PFPD硫模式的检测限大致和硫化学荧光检测器(SCD)相等。但由于二元响应,PFPD的信噪比更好些。 2.提高选择性 发射信号的时间延迟明显地增强了选择性(>103),因此,PFPD相对碳氢化合物而言是一种特殊的检测器(选择性超过107)。由于各元素唯一的发射时间及双门槛差减软件,可明显地增加不同元素间的选择性。改善硅的选择性,可在高温流失的条件下提供一稳定的基线。3.较低的燃气消耗

火焰光度计检定规程

MV_RR_CNJ_0023 石墨炉原子吸收分光光度方法通则 1.石墨炉原子吸收分光光度方法通则的说明 编号JY/T 023—1996 名称(中文) 石墨炉原子吸收分光光度方法通则 (英文) General rules for graphite furnace atomic absorption spectrophotometry 归口单位国家教育委员会 起草单位国家教育委员会 主要起草人邓 勃 批准日期 1997年1月22日 实施日期 1997年4月1日 替代规程号无 适用范围本标准规定了石墨炉原子吸收分光光度法,适于用新购置的和在 用的各种类型的石墨炉原子吸收分光光度计。 方法原理 主要技术要求 1. 2. 试剂和材料 3. 仪器 4. 样品分析步骤 5. 分析结果的表述 是否分级无 检定周期(年) 附录数目无 出版单位科学技术文献出版社 检定用标准物质 相关技术文件 备注 2.石墨炉原子吸收分光光度方法通则的摘要 本标准规定了石墨炉原子吸收分光光度法,适于用新购置的和在用的各种类型的石墨炉原子吸收分光光度计。 3 方法原理 原子吸收分光光度法是基于蒸气相中被测元素的基态原子对来自光源的特性辐射的共 振吸收。石墨炉原子吸收分光光度法是以电热石墨炉为原子化器进行原子吸收测定的方法。原子吸收的大小以吸光度表示,吸光度与试样中被测组分浓度之间的关系,遵循光吸收定律:

A = lg - I I - =KcL (1) 式中 A ——吸光度(其单位为A) I 0——入射辐射(光)强度 I ——透射辐射(光)强度 K ——摩尔吸光系数 c ——试样中被测组分的浓度 L ——光通过石墨炉原子化器的光程 4 试剂和材料 实验中所用的制剂和溶液按GB/T602化学试剂杂质测定用标准溶液的制备和GB/T603化学试剂试验方法中所用制剂和样品的制备中所规定的方法配制。去离子水应符合GB/T6682中实验用水二级水规格。 5 仪器 石墨炉原子吸收分光光度计应有锐线光源,石墨炉电热原子化系统、光学系统、检测器、背景校正系统与数据处理系统等主要部件。 5.1 锐线光源 锐线光源是发射被测元素特征的锐线辐射。常用的锐线光源是空心阴极灯与无极放电灯。 5.2 石墨炉原子化系统 石墨炉原子化系统应有石墨炉原子化器、冷却水箱、内外保护气气路与供电电路。石墨炉原子化器是提供能量,使被测元素化合物解离与实现原子化。石墨炉电热原子化器有管式原子化器和杯式原子化器及组合式原子化器。石墨炉电热原子化系统应设有慢速斜坡升温与快速升温两种方式。在实际工作中,采用何种升温方式取决于试样的性质。 5.3 光学系统 光学系统应有入射狭缝,准光镜,色散元件,成像物镜与出射狭缝,分光系统的核心部件是光栅。光栅应具有中等分辨能力,190nm ~900nm 光谱范围。 5.4 检测器 广泛使用的检测器是光电倍增管,光电倍增管的增益应达到106倍,暗电流小到10- 10A 。 5.5 背景校正系统 背景校正系统应有连续光源、或塞曼效应、或自吸效应校正背景装置。 5.5.1 连续光源校正背景是先用锐线光源测得分析线与背景吸收的总吸光度,再用连续光源(在紫外区用氘灯,在可见区用碘钨灯)在同一波长测量背景吸收的吸收值,两次测得的吸光度值相减,得到校正背景后的分析线的吸光度值。它测得的背景是光谱带宽范围内的平均背景,只能校正低背景吸收,不能校正精细结构与光谱干扰引起的背景。 5.5.3 塞曼效应校正背景是基于光的偏振特性。目前在商品仪器中采用吸收线调制法,调制方式有恒定磁场与可变磁场调制两种方式。 5.5.4 自吸效应校正背景是基于高电流脉冲供电时空心阴极灯发射线的自吸效应。 5.5.5 5.6 数据处理系统 由检测器阳极输出的信号经前置放大器放大,阻抗转换,锁相放大器滤波,对数变换等,

FP6400火焰光度计操作规程

FP6400火焰光度计操作规程 一、适用范围: 该仪器广泛用于医疗卫生的临床化验及病理研究,还适用于农业、工业、食品行业对钾、钠、锂、钙的测定。 二、工作条件 1.环境温度(1 0℃~35℃); 2.相对湿度≦85 %; 3.产品应水平放置于无震动的工作台上,避免强光直接照射,周围无强烈干扰,无强气流影响,无影响使用的振动; 4.产品使用现场不应有易燃、易爆、腐蚀性气体,并备有灭火设备。 三、操作方法 1.插上空气压缩机电源插头,启动空气压缩机,可见压力表逐渐上升。拔起空气过滤减上调节旋钮,然后顺时针或逆时针转动调节旋钮,压力可进行调整至0.15MPa左右。将吸管插入溶液,溶液进入雾化室,不久在废液皿内有溶液流出,这表示仪器进样雾化正常,废液皿下放一个容器,收集废液就好。 2.插上主机电源线,打开电源开关,然后打开液化石油气钢瓶上的开关,将燃气阀旋到适当的位置按点火键,然后从观察窗能看到点火花,旋动燃气阀调节火焰高度,使火焰呈现蓝色的锥形火焰,仪器进入预热。若火点不着仪器显示Err1,可加大燃气阀的开度,再按点火键从新点火。在使用中因燃气用完或其他原因引发熄火将声光报警显示Err2并自动关闭燃气电磁阀,防止燃气益出。 3.由于火焰的燃烧、样品的注入是个动态过程。起初是常温状态,然后是升温过程,当燃气及进样量确定后。火焰趋向热平衡,这时火焰较稳定,激发能量恒定,因而读数就稳定。 4.预热时间越需30分钟,采用蒸馏水连续进样较好,因为这样更能模拟实际的进样条件。 5.关机时,先将液化石油气钢瓶关闭(顺时针旋紧),管路内残留的石油气燃完后,火焰随之熄灭。关机前,请用蒸馏水空烧5分钟左右。关机后,仪器的燃气阀可不比旋动,下次使用只需打开液化石油气钢瓶上的开关同时按点火开关即可,火焰状态就不比调整了,燃气的开、关另有电磁阀控制。火点不着时,可以

火焰原子吸收分光光度计的使用规范

火焰原子吸收分光光度计的使用规范 随着原子吸收光谱技术的不断发展,火焰原子吸收分光光度计已经等到广泛的应用,本期《聚创环保小科普》将结合多位行业老师的工作经验,从多个方面介绍关于火焰原子吸收分光光度计的使用规范和日常的维护方法,帮助大家使用正确的操作方法和日常维护方法使用火焰原子吸收分光光度计。 原子吸收光谱法是1955年被提出,在如今的65年里获得了迅速的发展,因原子吸收光谱法检测灵敏度高,精密度好,准确性高和操作简单等优势,已经被应用到了环境保护,食品检验,冶金,地质勘探等多个行业领域。 为了充分发挥原子吸收分光光度计的高效能就需要做好一定标准的使用规范和良好的日常维护工作,否则会造成仪器自身无法修复的伤害,严重时可能在检测时危及检测人员的财产安全,这不得不引起我们的重视,所以,聚创环保在此给相关的工作人员必须明晰原子吸收分光光度计的使用规范和日常维护规范,以确保检测工作的安全进行。 火焰原子吸收分光光度计的组成结构 以聚创环保JC-YZ-100火焰原子吸收分光光度计举例,火焰原子吸收分光光度计包括4个部分:光源系统、火焰原子化系统、分光系统、检测系统。 JC-YZ-100光源系统 火焰原子吸收分光光度计的光源系统的作用是发射能被检测元素的特征共振辐射,对光源的基本要求是发射的共振辐射的半宽度要明显的小于吸收光线的半宽度,光源系统的辐射强度要大,辐射的光强度要稳定,使用寿命要长,目前最为常用的光源为空心阴极灯。 JC-YZ-100火焰原子化器 火焰原子化器系统的功能是提供能量实现待测原子化,该系统主要由雾化器、雾化室和燃烧室三个部分组成,在使用的过程中,火焰原子化器是规范使用和日常维护的关键。 JC-YZ-100分光系统 火焰原子吸收分光光度计的分光系统是将单光束区分开,避免原子吸收光区与吸收波长无关的辐射进入到检测区域内,实现被测元素共振吸收先与临近谱线的分离。 JC-YZ-100检测系统 火焰原子吸收分光光度计的检测系统的作用是实现光信号能够转为电信号,完成元素的分析和计算,供检测人员操作和使用。 以上内容是火焰原子吸收分光光度计的主要的构成部分,提供的示意图仅供参考哦,接下来进入文章的正题,将为您带来火焰原子吸收分光光度计的使用规范。 在本期文章中,我们将使用规范分为三个部分: 第一部分:使用前的检查 火焰原子吸收分光光度计在使用前,检测人员必须仔细阅读箱内提供的使用说明书,若有不明白的地方请一定在使用仪器前与聚创环保的服务人员取得联系,在熟悉了仪器的基本结构和工作原理后,根据仪器要求的使用环境和条件,请检查仪器的光路,气路和水路,我们合称“三路”,下面我将分别为您加以介绍。 1.光路-检查光路的工作内容包括5项: (1)要确定空心阴极灯是否是长期搁置; (2)光路系统是否已经提亲预热了30分钟; (3)光路系统的灯体是否是洁净的; (4)使用光轴量具判断光轴和燃烧缝是否垂直拟合; (5)使用称量纸放置在接受光源处观察光斑是否照射在接受器口的正中央。 2.气路-检查气路对于实验的安全更重要,检查包括以下4项: (1)高纯的乙炔在使用前需要进行验漏操作; (2)燃气的气压表是否已经调至规定气压的范围内; (3)是否已经打开废气通风系统; (4)助燃器的路中是否存在水雾。 3.水路-水路的检查项目包含2项: (1)要打开空气压缩机,将出气气压调至说明规定的范围内,将毛细管插入去离子水中,观察燃烧口处形成的水雾是否是稳定均匀的。 (2)要确保废液管插入到废液缸规范要求的标准以下。

相关主题
文本预览
相关文档 最新文档