当前位置:文档之家› 1.函数的概念和三要素(艺术)

1.函数的概念和三要素(艺术)

1.函数的概念和三要素(艺术)
1.函数的概念和三要素(艺术)

函数的概念

知识点1:函数符号y=f(x) 【例1】:

知识点2(函数的值)

【例2】:已知:2

()3f x x x =-+,求:(2)f ,(1)f a +1

(),(1)f f x x

+.

练习:已知:()21f x x =-,求:(3)f ,(2)f n ,2(),(31)f f x x

+.

知识点3(关于分段函数)

【例3】:已知函数f (x )= )

()

(360

50

x x x x ?-≥??

+

练习:设函数.)2(,2)

2(,2)(2?

??>≤+=x x x x x f (1)求)9(f 的值;(2)求)1(-f 的值.

【例4】:已知函数f (x )= )

()

(360

50

x x x x ?-≥??

+

练习:

1.已知函数?

??>-≤+=)0(2)

0(12x x x x y 使函数值为10的x 值为( )

A .3或-3 B.3或-5 C.-3 D.3或-3或-5

2.设函数.)

2(,2)

2(,2)(2??

?>≤+=x x x x x f 求若8)(0=x f ,求.0x

【例5】:(浙江)设()|1|||f x x x =--,则1()2f f ??????

=( )

(A).-2

1

(B).0 (C).2

1

(D).1

【例6】:已知??

?

??<-=->=)0(,32)0(,1)0(,0)(x x x x x f ,则()[]{}5f f f 的值是( )

A .0 B.-1 C.5 D.-5

练习:

1.已知函数??

?

??<=>+=0

300

32)(2x x x x x f ,则=)1(f ,=-)1(f ,=-)]1([f f .

2.设??

???<=>+=)0(,0)0(,)

0(,1)(x x x x x f π,则=-)]}1([{f f f ( )

A .1+π

B .0

C .π

D .1-

【例7】:已知g (x )=1-2x,f [g (x )]=)0(12

2≠-x x

x ,则f (21

)等于 ( ) A .1 B .3

C .15

D .30

练习:已知x x x f 2)12(2

-=+,则)3(f = .

【例8】:设2

()23,()2f x x g x x =-=+,求(())f g x (或(())g f x 。

练习:设1)(,)(2

+=+=x x g x x x h ,求))((x g h

知识点4

【例9】:作出函数122--=x x y 的图象. 练习:作出函数|32|2

--=x x y 的函数图像.

【例10】:作函数x x y 42-=的图象. 练习:作函数322

--=x x y 的图象.

【例11】:作函数2

243,03y x x x =--≤≤的图象. 练习:作函数42,322

<<----=x x x y 的图象.

定义

名称

符号

数轴表示

{|}x a x b ≤≤ 闭区间 [,]a b {|}x a x b <<

开区间

(,)a b {|}x a x b ≤< 半开半闭区间

[,)a b

{|}x a x b <≤

(,]a b

a

b

课后巩固

1.已知32)(2

+-=x x x f ,则)2(f = .

2.已知32)(2+-=x x x f ,则)(a f = .

3.已知32)(2+-=x x x f ,则)2(x f -= .

4.已知32)(2+-=x x x f ,则)2(x f = .

5.已知f(2x)=2x+3,则=)2

1(f

6.已知32)1(2+-=-x x x f ,则)2(f = .

7.已知函数()2

0,0,

x x f x x x ≥?=?

f -的值。

8.设函数.)

0(,3)

0(,2)(2???>-≤+-=x x x x x x f (1)求)2(-f 的值;

(2)求)2(f 的值 (3)若8)(0-=x f ,求.0x

9.设函数.)1(,63)

1(,4)(2?

??>+≤-=x x x x x x f (1)求)1(-f 的值;

(2)求()()2f f -的值;(3)若5)(0=x f ,求.0x

10.作出函数(]6,3,762

∈+-=x x x y 的图象。 11.画出函数()3f x x =+的图象。

12.作出函数562

+-=x x y 的图象。 13.作出函数562

+-=x x y 的图象。

函数的定义域

【例1】:求下列函数的定义域:

(1)1

()2

f x x =- (2)||21)(x x f -=

练习: (1)213x y x +=- (2)|

1|1

)(-=x x f

(3)1y x x =+

(3)4

||2

)(-=x x f

【例2】:求下列函数的定义域:

(1)()32f x x =+ (2)5x 4x )x (f 2+--=

练习:

(1)13x x 1)x (f -++

-= (2)10x 6x )x (f 2+-=

(3)32)(2--=x x x f (4)x x x f 3)(2-=

【例3】:求下列函数的定义域:

(1)1()12f x x x

=++-. (2)1

x x 4)x (f 2

--=

练习:1.求函数x x x f -+

+=222)(的定义域。 2.求函数x

x x f +++=221)(的定义域。

【例4】:已知)(x f 的定义域为[-1,3],求(1))52(+-x f 的定义域;(2))13(-x f 的定义域。

练习:

1.函数)(x f 的定义域是[0,2],则)2(+x f 的定义域是 。

2.若函数y=f(x)的定义域为(-2,4),则函数y=f(-2x)的定义域是 。

3.已知)(x f 的定义域为[-3,5],求(1))5(+x f 的定义域; (2))5(--x f 的定义域。

函数的值域

【例1】:求函数342)(2+-=x x x f 的值域。 练习:求函数x x x f 2)(2-=的值域。

【例2】:求函数142)(2++-=x x x f 的值域。 练习:求函数16)(2-+-=x x x f 的值域。

【例3】:求函数64)(2+-=x x x f ,)4,1(∈x 的值域。

练习:

1.求函数()3[1,2]f x x x =-+∈-的值域。

2.求函数182)(2+-=x x x f ,)3,1(-∈x 的值域。

【例4】:求函数242y x x =-++([1,1]x ∈-)的值域。

练习:

1.求函数f (x )= - x 2

-2x+3([1,1]x ∈-)的值域。

2.求函数2

23y x x x =-+当自变量在下列范围内取值时的最值.

①10x -≤≤ ② 03x ≤≤ ③(,)x ∈-∞+∞

【例5】:求函数y=522+-x x 的值域。 练习:求函数y=222++x x 的值域。

【例6】:求函数y=522+--x x 的值域。 练习:求函数y=222+--x x 的值域。

【例7】:求函数125

x

y x -=

+的值域。 练习:求函数312x y x +=-的值域。

函数的解析式

【例1】:若1(

)1x

f x x

=-, 求()f x

练习:

1.已知 2

(21)2f x x x +=- 求)(x f 。 2.若(1)2f x x x +=+,求()f x 。

3.(1)已知2

()43f x x x =-+,(1)f x +; (2)已知2

(1)2f x x x +=-,求()f x .

【例2】:判断下列各组中的两个函数是同一函数的为( )

⑴3

)

5)(3(1+-+=

x x x y ,52-=x y ; ⑵111-+=x x y ,)1)(1(2-+=x x y ;

⑶x x f =)(,2)(x x g =; ⑷343()f x x x =-,3()1F x x x =-;

⑸21)52()(-=x x f ,52)(2-=x x f 。

A .⑴、⑵

B .⑵、⑶

C .⑷

D .⑶、⑸

练习:

1.下列函数表示同一个函数的是 ( )

A.24

(),()22

x f x g x x x -=

=+- B.2()1,()21f x x g x x x =-=-+ C.()21,()21f x x g t t =+=+ D.2()1,()11f x x g x x x =-=-?+

2.下列各组函数中,表示同一函数的是( ) A .x

x

y y =

=,1 B.1,112-=+?-=x y x x y 332

1 第1讲 函数及其表示

知识点 最新考纲 函数及其表示 了解函数、映射的概念. 了解函数的定义域、值域及三种表示法(解析法、图象法和列表法). 了解简单的分段函数,会用分段函数解决简单的问题. 函数的基本性 质 理解函数的单调性、奇偶性,会判断函数的单调性、奇偶性. 理解函数的最大(小)值的含义,会求简单函数的最大(小)值. 指数函数 了解指数幂的含义,掌握有理指数幂的运算. 理解指数函数的概念,掌握指数函数的图象、性质及应用. 对数函数 理解对数的概念,掌握对数的运算,会用换底公式. 理解对数函数的概念,掌握对数函数的图象、性质及应用. 幂函数 了解幂函数的概念. 掌握幂函数y =x ,y =x 2,y =x 3,y =1 x ,y =x 1 2的图象和性质. 函数与方程 了解函数零点的概念,掌握连续函数在某个区间上存在零点的判定方法. 函数模型及其 应用 了解指数函数、对数函数以及幂函数的变化特征. 能将一些简单的实际问题转化为相应的函数问题,并给予解决. 1.函数与映射的概念 函数 映射 两集合 A 、B 设A ,B 是两个非空的数集 设A ,B 是两个非空的集合 对应关系 f :A →B 如果按照某种确定的对应关系f , 使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应 如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应

名称 称f :A →B 为从集合A 到集合B 的一个函数 称对应f :A →B 为从集合A 到集合B 的一个映射 记法 y =f (x )(x ∈A ) 对应f :A →B 是一个映射 (1)函数的定义域、值域 在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域.显然,值域是集合B 的子集. (2)函数的三要素:定义域、值域和对应关系. (3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据. (4)函数的表示法 表示函数的常用方法有:解析法、图象法、列表法. 3.分段函数 若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数. [疑误辨析] 判断正误(正确的打“√”,错误的打“×”) (1)函数y =f (x )的图象与直线x =a 最多有2个交点.( ) (2)函数f (x )=x 2-2x 与g (t )=t 2-2t 是同一函数.( ) (3)若两个函数的定义域与值域相同,则这两个函数是相等函数.( ) (4)若A =R ,B ={x |x >0},f :x →y =|x |,则对应关系f 是从A 到B 的映射.( ) (5)分段函数是由两个或几个函数组成的.( ) (6)分段函数的定义域等于各段定义域的并集,值域等于各段值域的并集.( ) 答案:(1)× (2)√ (3)× (4)× (5)× (6)√ [教材衍化] 1.(必修1P18例2改编)下列函数中,与函数y =x +1是相等函数的是( ) A .y =(x +1)2 B .y =3 x 3+1 C .y =x 2 x +1 D .y =x 2+1 解析:选B.对于A ,函数y =( x +1)2的定义域为{x |x ≥-1},与函数y =x +1的定义 域不同,不是相等函数;对于B ,定义域和对应关系都相同,是相等函数;对于C ,函数y

函数的基本概念练习

第 1 页 共 1 页 函数的基本概念 一、知识归纳: 1、映射: 2、函数的定义: 3、函数的三要素: 4、函数的表示: 二、题型归纳: 1、有关映射概念的考察; 2、求函数的定义域; 3、求函数的解析式: 4、求函数的值域。 三、练习: 1、设B A f →:是集合A 到集合B 的映射,则下列命题正确的是( ) A 、A 中的每一个元素在B 中必有象 B 、B 中的每一个元素在A 中必有原象 C 、B 中的每一个元素在A 中的原象是唯一的 D 、A 中的不同元素的象不同 3、已知A={1、2、3、 4、5},对应法则f :1)3(2 +-→x x ,设B 为A 中元素在f 作用下的象集,则B = 。 4、设函数f(x)=132 +-x x ,则f(a)-f(-a)= 。 5、设(x ,y )在映射f 下的象是(x +y ,x -y ),则象(1,2)的原象是 ( ) A .(3,1) B .)21,23 (- C .(-1,3) D .)2 3,21(- 6、已知函数 =???>+-≤+=)]25([,) 1(3)1(1)(f f x x x x x f 则 . 7、函数y =f(x)的图像与直线x =4的交点个数为 ( ) (A )至多一个(B )至少一个(C )必有一个(4)一个、两个或无穷多个 8、由函数1)(2++= mx mx x f 的定义域是一切实数,则m 的取值范围是 ( ) A .(0,4] B .[0,1] C .[0,4] D .[4,+∞) 9、下列各组中,函数f (x )和g(x )的图象相同的是 ( ) A .f (x )=x ,g(x )=(x )2 B .f (x )=1,g(x )=x 0 C .f (x )=|x |,g(x )=2 x D .f (x )=|x |,g(x )=? ??-∞∈-+∞∈)0,(,) ,0(,x x x x 10、函数y =1122---x x 的定义域为 ( ) A .{x |-1≤x ≤1} B .{x |x ≤-1或x ≥1} C .{x |0≤x ≤1} D .{-1,1} 3、已知函数f (x )的定义域为[0,1],则f (x 2)的定义域为 ( ) A .(-1,0) B .[-1,1] C .(0,1) D .[0,1] 6、已知y=f(x)的定义域为R ,f(x+2)=-f(x),f(1)=10,则f(9)的值为( ) A .10 B .-1 C .0 D .不确定 7、设f (x -1)=3x -1,则f (x )=__ _______. 8、已知函数f ( 2x + 1 )的定义域为(0,1),则f ( x ) 的定义域为 。 9、函数)1(-x f 的定义域是[0,2],则)2(+x f 的定义域是 。 11、已知f ( x ) = 2 21x x +,那么f ( 1 ) + f ( 2) + f (2 1) + f ( 3 ) + f( 31 ) + f ( 4 ) + f ( 4 1 ) = 。 13、 14、 ). ()1(x f x x x f ,求已知函数满足+=+的解析式。,求已知函数)(1 2)1(2 x f x x x f +=

函数概念及其基本性质

第二章函数概念与基本初等函数I 一. 课标要求: 函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重要数学模型来学习,强调结合实际问题,从而发展学生对变量数学的认识。教材把指数函数,对数函数,幂函数当作三种重要的函数模型来学习,强调通过实例和图象的直观,揭示这三种函数模型增长的差异及其关系,体会建立和研究一个函数模型的基本过程和方法,学会运用具体函数模型解决一些实际问题. 1.会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;了解函数构成 的三要素,了解映射的概念;体会函数是一种刻画变量之间关系的重要数学模型,体会对应关系在刻画函数概念中的作用;会求一些简单函数的定义域和值域, 2. 了解函数的一些基本表示法(列表法、图象法、分析法),并能在实际情境中,恰当地进行选择;会用描点法画一些简单函数的图象. 3.通过具体实例,了解简单的分段函数,并能简单应用. 4. 结合熟悉的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性和周期性的含义,通过具体函数的图象,初步了解中心对称图形和轴对称图形. 5. 学会运用函数的图象理解和研究函数的性质,体会数形结合的数学方法. 6.理解有理数指数幂的意义,通过具体实例了解实数指数幂的意义,掌握幂的运算. 7.了解指数函数模型的实际背景.理解指数函数的概念和意义,掌握f(x)=a x的符号、意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的有关性质(单调性、值域、特别点). 8.理解对数的概念及其运算性质,了解对数换底公式及其简单应用,能将一般对数转化为常用对数或自然对数,通过阅读材料,了解对数的发现历史及其对简化运算的作用.通过具体函数,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,掌握f(x)=log a x符号及意义,体会对数函数是一类重要的函数模型,能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的有关性质(单调性、值域、特殊点). 9.知道指数函数y=a x与对数函数y=log a x互为反函数(a>0, a≠1),初步了解反函数的概念和f- -1(x)的意义. 10.通过实例,了解幂函数的概念,结合五种具体函数 1 312 ,,, y x y x y x y x - ====的 图象,了解它们的变化情况 11.通过应用实例的教学,体会指数函数是一种重要的函数模型. 12. 通过实习作业,使学生初步了解对数学发展有过重大影响的重大历史事件和重要人物,了解生活中的函数实例. 二. 编写意图与教学建议 1.教材突出了函数概念的背景教学,强调从实例出发,让学生对函数概念有充分的感性基础,再用集合与对应语言抽象出函数概念,符合学生的认识规律,同时有利于培养学生的抽象概括的能力,增强学生应用数学的意识,教学中要高度重视数学概念的背景教学. 2..教材对函数的三要素着重从函数的实质上要求理解,而对定义域、值域的繁难计算,特别是人为的过于技巧化的训练不做提倡,要准确把握这方面的要求,防止拨高教学. 3. 函数的表示是本章的主要内容之一,教材重视采用不同的表示法(列表法、图象法、分析法),目的是丰富学生对函数的认识,帮助理解抽象的函数概念. 在教学中,既要充分发挥图象的直观作用,又要适当地引导学生从代数的角度研究图象,使学生深刻体会数形结合这一重要数学方法.

第04讲-函数的概念(讲义版)

第04讲函数的概念 一、考情分析 1.了解构成函数的要素,能求简单函数的定义域; 2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数,理解函数图象的作用; 3.通过具体实例,了解简单的分段函数,并能简单应用. 二、知识梳理 1.函数的概念 设A,B是两个非空数集,如果按照确定的法则f,对A中的任意数x,都有唯一确定的数y与它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A. 2.函数的定义域、值域 (1)函数y=f(x)自变量取值的范围(数集A)叫做这个函数的定义域;所有函数值构成的集合{y|y=f(x),x∈A}叫做这个函数的值域. (2)如果两个函数的定义域相同,并且对应法则完全一致,则这两个函数为相等函数. 3.函数的表示法 表示函数的常用方法有解析法、图象法和列表法. 4.分段函数 (1)在函数的定义域内,对于自变量x的不同取值区间,有着不同的对应法则,这种函数称为分段函数. (2)分段函数是一个函数,分段函数的定义域是各段定义域的并集,值域是各段值域的并集. [微点提醒] 1.直线x=a(a是常数)与函数y=f(x)的图象有0个或1个交点. 2.分段函数无论分成几段,都是一个函数,求分段函数的函数值,如果自变量的范围不确定,要分类讨论. 三、经典例题 考点一求函数的定义域 【例1-2】函数y=1-x2+log2(tan x-1)的定义域为________;

【解析】 (1)要使函数y =1-x 2+log 2(tan x -1)有意义,则1-x 2≥0,tan x -1>0,且x ≠k π+π 2(k ∈Z ). ∴-1≤x ≤1且π4+k π1),则x =2 t -1 , ∴f (t )=lg 2t -1,即f (x )=lg 2 x -1 (x >1). 【例2-2】已知f (x )是二次函数且f (0)=2,f (x +1)-f (x )=x -1,则f (x )=________; 【解析】设f (x )=ax 2+bx +c (a ≠0), 由f (0)=2,得c =2, f (x +1)-f (x )=a (x +1)2+b (x +1)+2-ax 2-bx -2=2ax +a +b =x -1, 所以???2a =1,a +b =-1, 即?????a =1 2,b =-32. ∴f (x )=12x 2-3 2x +2. 【例2-3】已知函数f (x )的定义域为(0,+∞),且f (x )=2f ? ?? ?? 1x ·x -1,则f (x )=________. 【解析】在f (x )=2f ? ?? ?? 1x ·x -1中, 将x 换成1x ,则1 x 换成x , 得f ? ?? ?? 1x =2f (x )·1x -1,

函数三要素教案

(一)教学目标 1.知识与技能 (1)了解函数三要素的含义,掌握根据函数的三要素判定两个函数是否为同一个函数的方法. (2)会求简单函数的定义域和函数值. 2.过程与方法 通过示例分析,让学生掌握求函数定义域的基本题型及方法,进一步加深对函数概念的理解.通过求出函数的函数值,加深对应法则的认识. 3.情感、态度与价值观 通过动手实践研究数学问题,提高分析问题,解决问题能力;体会成功地解答数学问题的学习乐趣,培养钻研精神. (二)教学重点与难点 重点:掌握函数定义域的题型及求法. 难点:理解函数由定义域与对应法则确定函数这一基本原则.

二、授课内容: 【知识要点】 ⑴定义域———自变量x 的取值范围 函数三要素 ⑵值 域———函数值的集合 ⑶对应法则——自变量x 到对应函数值y 的对应规则 注意:①核心是对应法则;②值域是由定义域与对应法则所确定了的,故确定一个函数只需确定其定义域、对应法则则即可;③如何判断“两个”函数为同一函数;④函数()12-= x x f 的对应法则f :x (平方再 减1整体再开平方)y 。而在此基础上的函数()1+=x f y ,其自变量为式中的x 而不是1+x ,其对应法则x (加1再取f 运算)y ,即x (加1整体平方再整体减1再整体开方)y ,故此时()1)1(12-+=+x x f 。 【典型例题】 1.函数定义域求法 ⑴已知函数的解析式求定义域时需要注意: ①()x f 是整式,则定义域为R ; ②()x f 是分式,则令分母不为0的值为定义域; ③()x f 是偶次根式,则函数定义域为使被开方式为非负数的自变量集合; ④若()x f 由几个部分式子构成,则定义域是使几个部分式子都有意义的值的集合; ⑤函数[]2 )(x f y =的定义域()x f 0≠; ⑥对数函数()x f y a log =(0>a ,且1≠a )的定义域要求()x f >0; ⑵求函数()[]x g f 的定义域,()x g 相当于()x f 中的x 。 ⑶当函数由实际问题给出时,还应考虑实际意义。 例1:求下列函数的定义域 ①()0 2 )1(4--= x x x f ; ②()1 21 12 2+-+ ++=x x x x x f ; ③()x x f 11111++ = 042 ≥-x 22≤≤-x 解析:①由 ? ∴函数定义域为[)(]2,11,2?- 01≠-x 1≠x 012 ≥++x x (Ⅰ) ② 12 ++x x 的判别式0

1函数的定义及表示 - 中等 - 讲义

函数的定义及表示 知识讲解 一、函数 1.函数的概念 概念:设集合A 是一个非空数集,对A 中的任意的数x ,按照确定的法则f ,都有唯一确定的数y 与它对应,则这种对应关系叫做集合A 上的一个函数.记作()y f x =,x A ?其中x 叫做自变量.自变量取值的范围(数集A )叫做这个函数的定义域.如果自变量取值a ,则由法则f 确定的值y 称为函数在a 处的函数值,记作()y f a =,所有函数值构成的集合{()}y y f x x A =?,叫做这个函数的值域. 2.函数的三要素:定义域,值域,对应法则 3.函数的表示法 1)解析法:就是把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式; 2)列表法:就是列出表格来表示两个变量的函数关系; 3)图象法:就是用函数图象表示两个变量之间的关系. 4.求函数定义域注意事项 1)分式的分母不应为零; 2)零的零次幂没有意义; 3)开偶次方根的被开方数大于或者等于零; 4)对数式的真数大于零; 5)()=tan f x x 的定义域为{|}2 x x k k Z π π ??,; 6)复合函数求定义域要保证复合过程有意义,最后求它们的交集. 5.分段函数 定义:若一个函数的定义域分成了若干个子区间,而每个子区间的解析式不同,这种函数又称分段函数. 6.复合函数 定义:若()y f u =,()u g x =,(),x a b ∈,(),u m n ∈,那么[()]y f x =称为复合函数,u 称

为中间变量,它的取值范围是()g x 的值域. 注意:函数的定义域必须写成集合或区间的形式. 二、映射 定义:设A B , 是两个非空集合,如果按照某种对应法则f ,对A 中的任意一个元素x 在B 中有一个且仅有一个元素y 与x 对应,则称f 是集合A 到集合B 的映射,这时称y 是x 在映射f 的作用下的象,记作()f x ,于是 ()y f x = x 称为y 的原象,映射f 也可记为: :f A B ? ()x f x ? 其中A 叫做映射f 的定义域(函数定义域的推广).由所有象()f x 构成的集合叫做映射f 的值域.通常记作()f A . 映射三要素:集合A B 、以及对应法则,三者缺一不可;:f A B ?,集合A 中每一个元素 在集合B 中都有唯一的元素与之对应,从A 到B 的对应关系为一对一或多对一,绝对不可以一对多,但也许B 中有多余元素. 三、函数求解析式 1.换元法 2.方程组法 四、函数求值域 1.直接法(分析观察法) 2.函数单调性法:确定函数在定义域(或某个定义域的子集)上的单调性,求出函数的值 域. 3.配方法:二次函数或可转化为二次函数的函数常用此方法来还求解,但在转化的过程中 要注意等价性,特别是不能改变定义域.对于形如2y ax bx c =++(0)a 1或2()[()]()F x a f x bf x c =++(0)a 1类的函数的值域问题,均可使用配方法. 4.分离常数法:当分式中分子分母都函数由参数时.可以采用分离常数法.

1.1 函数的概念及其基本性质

第一章 函数 1.1 函数的概念及其基本性质(4课时) 教学要求:理解集合、区间、邻域及映射的概念,理解函数的概念,掌握函数的表示方法,了解函数的基本性质,理解复合函数及分段函数的概念,了解反函数及隐函数的概念,掌握基本初等函数的性质及图形,会建立简单应用问题中的函数关系式。 教学重点难点:重点是理解集合、映射及函数的概念;难点是理解反函数及隐函数的概念。 教学过程: 一、集合及其运算 1、集合概念 (1) 什么是集合? 所谓集合是指具有某种特定性质的事物的总体,组成这个集合的事物称为该集合的元素. (2) 集合的表示法 a 列举法:就是把集合的元素一一列举出来表示.由元素n a a a ,,21组成的集合A,可表示成 A={n a a a ,,21} b 描述法:若集合M 是由具有某种性质P 的元素x 的全体所组成,就可表示成 }|{P x x M 具有性质= (3) 集合元素的三大特性:确定性、互异性、无序性. (4) 元素与集合,集合与集合之间的关系:属于、包含、子集、真子集、空集. 2、集合的运算 (1) 并集 {| }A B x x A x B ?=∈∈或;(2) 交集 {| } A B x x A x B ?=∈∈且 (3) 差集 \{| }A B x x A x B =∈?但 (4) 全集与补集(或余集) 全集用I 表示,称A I \为A 的补集记作C A . 即 \{| }C A I A x x I x A ==∈?但 集合的并、交、补满足下列法则: (1) 交换律:A B B A ?=?,A B B A ?=? (2) 结合律:)()(C B A C B A ??=??,)()(C B A C B A ??=?? (3) 分配律:)()()(C B C A C B A ???=??, )()()(C B C A C B A ???=?? (4) 对偶律:C C C B A B A ?=?)(,C C C B A B A ?=?)( (5)幂等律:A A A ?=A A A ?=;(6)吸收律:A A ?Φ=A A ?Φ= 两个集合的直积或笛卡儿乘积 {(,)| }A B x y x A y B ?=∈∈ 且 二、区间与邻域 1、映射与领域 区间:开区间 ),(b a 、闭区间 ],[b a 、半开半闭区间],(b a ,),[b a 、有限,无限区间. 邻域:)(a U 或}|{),(δδδ+<<-=a x a x a U a :邻域的中心,δ:邻域的半径 去心邻域: }||0|{),(δδ<-<=a x x a U 左δ邻域),(a a δ-、右δ邻域),(δ-a a . 2、映射概念 定义 设,A B 是两个非空集合,如果存在一个法则f ,使得对A 中的每一个元素x .按法则f ,在B 中有唯一确定的元素y 与之对应,则称f 为从A 到B 的映射,记作 f B →:A 或,f y x A →∈:x| 其中,并y 称为元素x 的像,记作)(x f ,即 )(x f y =,而x 称为元素y 的一个原像。 映射f 的定义域:f D A =,映射f 的值域:(){()|}f R f A f x x A ==∈

函数的概念练习题

函数的概念练习题 一、填空题 1、函数的 、 、 统称函数的三要素 2、下列几组函数相等的是 。 ①11 12+=--=x y x x y 与②1112+?-=-=x x y x y 与 ③x x y x y +?-=-=1112与④x y x y ==与2⑤x y x y ==与2)( 3、若函数,1)(2+-=x x x f 则=)1(f ,=--+)1()1(n f n f 。 4、函数)(x f y =与a x =的交点个数为 。 5、函数2233x x x x y -+-= 的定义域为 ,函数24x y -=的定义域 为 。 6、函数)3,1[,12)(2-∈+-=x x x x f ,则函数=+)2(x f 。 7、函数)(x f 的定义域为)3,2[-,则)()()(x f x f x g -+=的定义域为 。 8、函数1)(22+=x x x f ,则=)2 1()2(f f 。 二、解答题 9、下列对应那些能称为函数?并说明理由。 (1)R x x x ∈→,1,(2),y x →这里R y R x x y ∈∈±=+,, (3),y x →这里R y R x x y ∈∈= +,,(4),.12R x x x ∈+→ 10、求下列函数的定义域 (1)3 21)(-=x x f (2)22)(x x x f -=

(3)2232)(2 ++--=x x x x f 11、求下列函数的值域。 (1)]3,0[,32)(2∈--=x x x x f (2)),0[,113)(+∞∈+-=x x x x f (3)123 2)(22+-+-=x x x x x f ( 4)x x y 21-+= 12、

多元函数微分学总结

多元函数微分学总结内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

`第八章多元函数微分学 基本知识点要求 1.理解多元函数的概念,理解二元函数的几何意义. 2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质。 3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性。 4.理解方向导数与梯度的概念,并掌握其计算方法. 5.熟练掌握多元复合函数一阶、二阶偏导数的求法. 6.了解隐函数存在定理,熟练掌握多元隐函数偏导数的求法. 7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,熟练掌握它们的方程的求法。 8.了解二元函数的二阶泰勒公式. 9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,掌握二元函数极值存在的充分条件,并会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题。 基本题型及解题思路分析 题型1 与多元函数极限、连续、偏导数和可微的概念及其之间的关系有关的题 1.二元函数的极限与连续的概念及二元函数极限的计算。 (1)基本概念

①二元函数极限的定义:设()(,)f P f x y =的定义域为D ,000(,)P x y 是D 的聚点.若?常数A ,对于?0ε>,总?0δ>,使得当0(,)(,)P x y D U P δ∈时,都有 ()(,)f P A f x y A ε-=-<成立,则称A 为函数(,)f x y 当00(,)(,)x y x y →时的极限,记 作 000 (,)(,) lim (,)lim ()x y x y P P f x y A f P A →→==或。 ②二元函数的连续:设()(,)f P f x y =的定义域为D ,000(,)P x y 为D 的聚点,且 0P D ∈.若 0000(,)(,) lim (,)(,)x y x y f x y f x y →=,则称(,)f x y 在点000(,)P x y 连续。 (2)关于二元函数极限的解题思路 注意:在二元函数0 lim ()P P f P A →=存在的定义中,0P P →方式任意,正是由于这 一点致使二元函数有与一元函数不一样的性态,在学习过程中注意比较、总结和体会二者之间的不同。 ① 证明二元函数的极限不存在:若0P P 以两种不同的方式趋于时,()f P 的极 限不同,则0 lim ()P P f P →一定不存在(见例1)。 ②求二元函数的极限:可以应用一元函数求极限方法中的适用部分求二元 函数的极限,比如:极限的局部有界性、局部保号性、四则运算法则、夹逼准则、两个重要的极限、变量代换法则、等价无穷小代换、分子分母有理化、无穷小量与有界变量的乘积仍为无穷小量、连续性等(见例2) 例1证明:2 24(,)xy f x y x y =+在原点0,0()的极限不存在。 【分析】观察分子、分母中变量,x y 的各次幂的特点,可考虑选择路径 2x ky =。 证明: 22 24242442000lim (,)lim lim 1y y y x ky x ky xy ky k f x y x y k y y k →→→=====+++, k ∴不同,极限值就不同,故 (,)(0,0) lim (,)x y f x y →不存在。

函数的基本概念及表示法

题一:定义集合{1,2,…,n }到{1,2,…,n }上的函数f :k →i k ,k =1,2,…,n .记作:121,2,,,,,n n i i i ?? ??? . 设121,2,,,,,n n f i i i ??= ??? ,12 1,2,,,,,n n g j j j ??= ??? (这里的j 1,j 2,…,j n n j j j ,,,21 也是1,2,…,n 这n 个整数的一个排列).定义g f 12 1,2,,,,,n n i i i ??= ??? 121,2,,,,,n n j j j ?? ??? ,其中)]([)(k g f k g f = ,k =1,2,…,n ..则? ?? ? ?????? ??4,5,1,2,35,4,3,2,13,1,2,4,55,4,3,2,1= 题二:在加工爆米花的过程中,爆开且不糊的粒数占加工总数的比率称为可食用率p .它的大小主要取决于加工时间t (单位:分钟). 做了三次实验,数据记录如图所示.已知图中三个点都在函数p =-0.2t 2+bt +c 上,则由此得到的理论最佳加工时间为 分钟. 题三:3,10 ()((5)),10x x f x f f x x -≥?=?+

函数概念及三要素

函数概念及三要素 1.函数的概念: 设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的 任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数(function ). 记作: y=f(x),x ∈A . 其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域(domain );与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)| x ∈A }叫做函数的值域(range ). 2.分段函数:在定义域内不同的区间上有不同的 。注:分段函数是 个函数,而不是多个函数。 3.复合函数:若(),(),(,)y f u u g x x m n ==∈,那么[]()y f g x =称为复合函数,u 称为中间变量,它的取值范围是()g x 的值域。 方法一:函数定义域的求法 关注:分母、根号、指对数底数对数真数、tan 、零次方的底数 例题:)35lg(lg x x y -+= 的定义域为_______ 方法二:求函数解析式的常用方法 1、配凑法 2、待定系数法 3、换元法 4、解方程组法 例1、已知2(1)23f x x x -=--,则()f x = 。

例2、已知2 (31)965f x x x +=-+,则()f x = 。 例3、已知()f x 是一次函数,且(1)(1)23f x f x x +--=+,则()f x = 。 例4、已知()2()32f x f x x +-=-,则()f x = 。 例5、已知()f x 是奇函数,()g x 是偶函数,并且()()1f x g x x +=+,则()g x = 。 方法三:分段函数 分段函数在其定义域的不同子集上,因对应关系不同,而分别用几个不同的式子来表示,这种函数就称之为分段函数.分段函数虽然有几个部分组成,但它表示的是一个函数.近几年高考考察的频率较高. 1.函数 22, 0,()log , 0.x x f x x x ?=?>?≤则1()4f =____;方程1()2f x -=的解是____. 2. 已知函数11,02()ln ,2 x f x x x x ?+<≤?=??>?,如果关于x 的方程()f x k =有两个不同的实根,那么实数k 的取 值范围是( ) (A ) (1,)+∞ (B )3[,)2+∞ (C )32[,)e +∞ (D )[ln 2,)+∞

高中数学必修一 第1讲函数及其表示

第4讲 函数及其表示 基础梳理 1.函数的基本概念 (1)函数的定义:设A 、B 是非空数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么称f :A →B 为从集合A 到集合B 的一个函数,记作:y =f (x ),x ∈A . (2)函数的定义域、值域 在函数y =f (x ),x ∈A 中,x 叫自变量,x 的取值范围A 叫做定义域,与x 的值对应的y 值叫函数值,函数值的集合{f (x )|x ∈A }叫值域.值域是集合B 的子集. (3)函数的三要素:定义域、值域和对应关系. (4)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等;这是判断两函数相等的依据. 2.函数的三种表示方法 表示函数的常用方法有:解析法、列表法、图象法. 3.映射的概念 一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射. 两个防范 (1)解决函数问题,必须树立优先考虑函数的定义域的良好习惯. (2)用换元法解题时,应注意换元后变量的范围. 考向一 相等函数的判断 【例1】下列函数中哪个与函数)0(≥=x x y 是同一个函数( ) A y =( x )2 B y=x x 2 C 33x y = D y=2x 【例2】x x y 2 =与???-∞∈-+∞∈=). 0,(,);,0(,)(t t t t x f 是相同的函数吗? 考向二 求函数的定义域 高中阶段所有基本初等函数求定义域应注意: (1)分式函数中分母不为0; (2)开偶次方时,被开方数大于等于0; (3)对数函数的真数大于0(如果底数含自变量,则底数大于0且不为1); (4)0次幂的底数不为0。

多元函数微分法及其应用

第八章多元函数微分法及其应用 (讲授法18学时) 上册研究了一元函数微分法,利用这些知识,我们可以求直线上质点运动的速度和加速度,也可以求曲线的切线的斜率,可以判断函数的单调性和极值、最值等,但这远远不够,因为一元函数只是研究了由一个因素确定的事物。一般地说,研究自然现象总离不开时间和空间,确定空间的点需要三个坐标,所以一般的物理量常常依赖于四个变量,在有些问题中还需要考虑更多的变量,这样就有必要研究多元函数的微分学。 多元函数微分学是一元函数的微分学的推广,所以多元函数微分学与一元函数微分学有许多相似的地方,但也有许多不同的地方,学生在学习这部分内容时,应特别注意它们的不同之处。 一、教学目标与基本要求 1、理解多元函数的概念,理解二元函数的几何意义。 2、了解二元函数的极限与连续性的概念,以及有界闭区域上连续函数的性质。 3、理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性,了解全微分在近似计算中的应用。 4、理解方向导数与梯度的概念并掌握其计算方法。 5、掌握多元复合函数偏导数的求法。 6、会求隐函数(包括由方程组确定的隐函数)的偏导数。 7、了解曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程。 8、了解二元函数的二阶泰勒公式。 9、理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题。 二、教学内容及学时分配: 第一节多元函数的基本概念2课时 第二节偏导数2学时 第三节全微分2学时 第四节多元复合函数的求导法则2学时 第五节隐函数的求导公式2学时 第六节多元函数微分学的几何应用2学时 第七节方向导数与梯度2学时 第八节多元函数的极值及其求法2学时 三、教学内容的重点及难点: 重点: 1.多元函数的极限与连续; 2.偏导数的定义;全微分的定义 3.多元复合函数的求导法则;隐函数的求导法则 4.方向导数与梯度的定义 5.多元函数的极值与最值的求法 难点: 1.多元函数微分学的几个概念,即多元函数极限的存在性、多元函数的连续性、偏导数的存在性、全微分的存在性、偏导数的连续性之间的关系; 2.多元复合函数的求导法则中,抽象函数的高阶导数; 3.由方程组确定的隐函数的求导法则; 4.梯度的模及方向的意义; 5.条件极值的求法

函数概念的产生及其历史演变

《函数》整体学习指导 函数的概念和基本性质(单调性、奇偶性) 解读:该部分学习意在通过对函数基本概念的理解(函数的概 念)、巩固(分段函数)和加深(映射的概念)(教材中先函数后映 射遵循概念发展的历史过程);基本性质的学习(为什要只重点研 究函数的这几个性质?水浒传里有108将,但是只对武松、鲁智深、 林冲等十几个人着力刻画,这是文学家的方法,也是数学家的方法。函数(Function)本部分学习的目的是通过学习形成函数研究的一般方法和套路。 基本初等函数(指数、对数、幂函数) 解读:该部分学习是在形成函数研究的一般方法之后对方法的 有力尝试,在尝试中不断加深对函数研究一般方法的认识和理解。 数学内部发展(函数的零点、二分法求方程近似解) (数学发展的两条主线都涉及了) 社会现实需要(解决社会与生活中的实际问题) 第一节:函数概念的起源及其历史演变 我们要参观的景点:(The scenery we’ll visit) 1. 函数的概念是什么?(What?) 2. 为什么要建立函数的概念?(Why ?) 3. 函数的概念是如何建立的?函数概念的建立经历了怎样的历史演变过程?(How?) 景点一:函数的概念是什么?函数的概念是如何建立的?

函数概念是全部数学概念中最重要的概念之一,纵观300年来函数概念的发展,众多数学家从集合、代数、对应、集合的角度不断赋予函数概念以新的思想,从而推动了整个数学的发展。 案例1:圆的面积S与圆半径r的关系; 案例2:锐角α与锐角β互余,α与β的关系; 案例3:气体的质量一定时,它的体积V与它的密度ρ之间的关系; 【思考1】上述的每一个问题在变化过程中,谁是常量,谁是变量?都涉及几个变量?【思考2】两个变量之间的关系是通过什么来刻画的? 【思考3】综合思考1和思考2的解答,总结上述例子变量间关系的共同特点?【早期函数概念】 十七世纪伽俐略在《两门新科学》一书中,几乎从头到尾包含着函数或称为变量的关 系这一概念,用文字和比例的语言表达函数的关系。1673年前后笛卡尔在他的解析几何中,已经注意到了一个变量对于另一个变量的依赖关系,但由于当时尚未意识到需要提炼一般的函数概念。 1718年约翰·贝努利对函数概念进行了明确定义:由任一变量和常数的任一形式所构 成的量(是历史上第一个正式发表的明确的函数定义),贝努利把变量x和常量按任何方 式构成的量叫“x的函数”。 欧拉在《无穷分析引论》(1748)中给出的函数定义是:“一个变量的函数是由该变量和一些数或常量以任何方式组成的解析式。” 【总结】十七和十八世纪的数学家对函数问题的认识上有着共同的思考:函数就是解析式

人教A版高一数学函数的概念知识点总结与例题讲解

函数的概念知识点总结 本节主要知识点 (1)函数的概念. (2)函数的三要素与函数相等. (3)区间的概念及其表示. 知识点一 函数的概念 初中学习的函数的传统定义 一般地,如果在一个变化过程中,有两个变量x 和y ,对于x 的每一个值,y 都有唯一的值与之对应,我们就说x 是自变量,y 是因变量,此时也称y 是x 的函数. 函数的近代定义 设A , B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数()x f 和它对应,那么就称f :B A →为从集合A 到集合B 的一个函数,记作 )(x f y =,A x ∈. 其中,x 叫作自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫作函数值,函数值的集合{}A x x f y y ∈=),(叫做函数的值域.显然,值域是集合B 的子集. 对函数的近代定义的理解 (1)只有两个非空的数集之间才可能建立函数关系.定义域或值域为空集的函数是不存在的. 如x x y --= 11就不是函数. (2)注意函数定义中的“三性”:任意性、存在性和唯一性. 任意性:集合A 中的任意一个元素x 都要考虑到. 存在性:集合A 中的任意一个元素x ,在集合B 中都存在对应元素y . 唯一性:在集合B 中,与每一个元素x 对应的元素y 是唯一的.

(3)集合B 不一定是函数的值域,值域是集合B 的子集. 在集合B 中,可以存在元素在集合A 中没有与之对应者. 例1. 讨论二次函数的定义域和值域. 解:二次函数的一般式为()02≠++=a c bx ax y ,为整式函数,所以其定义域为R ,其值域的确定分为两种情况: ①当0>a 时,函数的值域为?????? -≥a b ac y y 442; ②当0

第1讲函数概念及特性2009

第1讲 函数概念及函数特性 讲授内容 一、函数概念 (1)函数定义 定义1 给定两个实数集D 和M ,若有对应法则f ,使对D 内每一个数x ,都有唯一的一个数M y ∈与它相对应,则称f 是定义在数集D 上的函数,记作 M D f →:, .y x (1) 数集D 称为函数f 的定义域,x 所对应的数y ,称为f 在点x 的函数值,常记为)(x f . )}(),(|{)(M D x x f y y D f ?∈==称为函数f 的值域. (1)中第一式“M D →”表示按法则f 建立数集D 到M 的函数关系;第二式“y x ”表示这两个数集中元素之间的对应关系,也可记为“)(x f x ”.习惯上,我们称此函数关系中的x 为自变量,y 为因变量. (2)函数的表示法 函数的表示法主要有三种,即解析法(或称公式法)、列表法和图象法.有些函数在其定义域的不同部分用

不同的公式表达,这类函数通常称为分段函数.例如,函数?? ? ??<-=>=0,10,00,1sgn x x x x 是分段函数,称为符号函数. 又如函数||)(x x f =也可用如下的分段函数形式来表示:x x x f sgn )(= . 有些函数难以用解析法、列表法或图象法来表示,只能用语言来描述.如定义在R 上的狄利克雷 )(Dirichlet 函数: ?? ?=为无理数 当为有理数当x x x D ,0,,1)( 定义在[)1,0上的黎曼)(Riemann 函数:()?? ???=∈= =+内的无理数和当为既约真分数当1,01,0 ,0),,,( ,1 )(x q p N q p q p x q x R (3)函数的四则运算 给定两个函数f ,1D x ∈和2D x ∈,记21D D D =,并设φ≠D .我们定义f 与g 在D 上的和、差、积运算如下:,),()()(D x x g x f x F ∈+=,),()()(D x x g x f x G ∈-=D x x g x f x H ∈=),()()(. 若在D 中剔除使0)(=x g 的x 值,即令,},0)(|{21* φ≠∈≠=D x x g x D D 可在*D 上定义f 与g 的商的运算如下:.,) ()()(* D x x g x f x L ∈= 注:若,21φ==D D D ,则f 与g 不能进行四则运算.例如41)()(2 2 -+-=+x x x g x f (4)复合函数 设有两函E x x g u D u u f y ∈=∈=),(,),(,记E D x g x E })(|{*∈=.若,* φ≠E 则对每一个 * E x ∈,可通过函数g 对应D 内唯一的一个值u ,而u 又通过函数f 对应唯一的一个值y .这就确定了一个 定义在* E 上的函数,它以x 为自变量,y 为因变量,记作 * * ))(()),((E x x g f y E x x g f y ∈=∈=,或 称为函数f 和g 的复合函数.并称f 为外函数,g 为内函数,u 为中间变量.函数f 和g 的复合运算也可简单地写作g f . 例1 函数),0[,)(+∞=∈= =D u u u f y 与函数R E x x x g u =∈-==,1)(2 的复合函数为 ,1))((1))((22 x x g f x x g f y -=-= = 或 其定义域E E ?-=]1,1[* . 复合函数也可由多个函数相继复合而成.例如,由三个函数= =u u y ,sin v 与2 1x v -=(它们的定义

相关主题
文本预览
相关文档 最新文档