当前位置:文档之家› 专题1.1 函数概念及三要素(学生版)

专题1.1 函数概念及三要素(学生版)

专题1.1 函数概念及三要素(学生版)
专题1.1 函数概念及三要素(学生版)

第一讲函数的概念及三要素

1.函数与映射

2.函数的有关概念

(1)函数的定义域、值域

在函数y=f(x),x∈A中,x叫做自变量,所有的输入值x组成的集合A叫做函数y=f(x)的定义域;对于A 中的每一个x,都有一个输出值y与之对应.我们将所有输出值y组成的集合称为函数的值域.

(2)函数的三要素:定义域、对应法则和值域.

(3)函数的表示法

表示函数的常用方法有解析法、图象法和列表法.

3.分段函数

若函数在其定义域的不同子集上,因对应法则不同而分别用几个不同的式子来表示,这种函数称为分段函数.

分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.

考向一函数、映射的判断

【例

1】(1)若函数y=f(x)的定义域为M={x|-2≤x≤2},值域为N={y|0≤y≤2},则函数y=f(x)的图象可能是( )

(2)集合A={x|0≤x≤4},B={y|0≤y≤2},下列不表示从A到B的函数的是( )

A.f:x→y=

1

2

x B.f:x→y=

1

3

x

C.f:x→y=

2

3

x D.f:x→y=x

【举一反三】

1.下列从集合M到集合N的对应关系中,其中y是x的函数的是

A.M={x|x∈Z},N={y|y∈Z},对应关系f:x→y,其中y=x

2

B.M={x|x>0,x∈R},N={y|y∈R},对应关系f:x→y,其中y=±2x C.M={x|x∈R},N={y|y∈R},对应关系f:x→y,其中y=x2

D.M={x|x∈R},N={y|y∈R},对应关系f:x→y,其中y=2

x

2.下图中,能表示函数y=f(x)的图象的是( )

A.B.C.D.

考向二函数定义域求法

类型一:已知解析式求定义域

的定义域是。

【例2-1】(1)函数y=√3?x

lgx

(x?1)0的定义域是。

(2)函数y=

√12+x?x2

【举一反三】

1.函数()()

lg 1f x x =+的定义域为 。

2.函数f (x )=√2?x +log 2x 的定义域是 。 3.函数f(x)=lg(4x ?2)的定义域为_____________.

类型二 求无解析式的定义域

【例2】(1)若函数f (x )的定义域是[-1,3],则函数f (2x -1)的定义域是________ (2)已知函数f (2x +1)的定义域为(﹣2,0),则f (x )的定义域为( ) (3)已知函数f(x +3)的定义域为[?5,?2],则函数f(2x ?1)的定义域为______ (4)函数

的定义域为

【举一反三】

1.函数f (x )的定义域是[?1,1],则函数f(log 12

x)的定义域为_________.

2.已知函数f(x)的定义域为[?2,2],函数g(x)=

√2x+1

,则g(x)的定义域为_________

3.若函数f (x +1)的定义域是[?1,1],则函数f (log 12

x)的定义域为________.

4.已知函数()f x 的定义域为()0,+∞,则函数1f x y +=

__________.

类型三 利用定义域求参数

【例3】(1)若函数f (x )=lg (1+kx ?kx 2)的定义域为R ,则实数k 的取值范围是( ) A .?40 D .k

(2)已知函数()()2

211f x x a x =---(其中0a >,且1a ≠)在区间1,2??

+∞

???

上单调递增,则函数()

g x =

的定义域为( )

A .(),a -∞

B .()0,a

C .(]

0,a D .(),a +∞ 【举一反三】

1. 若函数()

f x =

的定义域为R ,则实数a 的取值范围是_______.

2.若函数f (x )=ax 2

+abx +b 的定义域为{x |1≤x ≤2},则a +b 的值为________.

考向三 函数的解析式求法

【例3】(1)已知f ?

??

??x +1x =x 2+1

x

2,求f (x )的解析式.

(2)已知f ? ??

??

2x

+1=lg x ,求f (x )的解析式.

(3)已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x ).

(4)已知函数f (x )的定义域为(0,+∞),且f (x )=2f ? ??

??

1x

x -1,求f (x ).

(5).已知f (x )是(0,+∞)上的增函数,若f [f (x )-ln x ]=1,则f (x)。 (6).若函数f(x)的图像如图所示,则f(x)的解析式可能是( )

A .21()1x e f x x -=-

B .2()1x e f x x =-

C .321()1x x f x x ++=-

D .421

()1

x x f x x ++=-

【举一反三】

1.设二次函数y =f (x )的最大值为13,且f (3)=f (-1)=5,求f (x )的解析式;

2.已知f ? ?

???1-x 1+x =

1-x 2

1+x 2,求f (x )的解析式.

3.已知函数f (x )满足f ?

??

??2-1x +2f ? ??

??

2+1x =3x ,则f (-2)=________.

4.已知f (x )是二次函数且f (0)=2,f (x +1)-f (x )=x -1,则f (x )=________.

考向四 函数值域的求法

【例4】求下列函数的值域

(1)f(x)=log 2(3x

+1)(2)f(x)=5x -14x +2

,x ∈[-3,-1] (3)y =2x +1-2x ;

(4)y =x +4+9-x 2

.(5)y =1-2x

1+2x (6)y =

sinx +1x -1,x ∈????

??π2,π

【举一反三】 1.求下列函数的值域: (1)y =3x 2

-x +2,x ∈[1,3]; (2)y =3x +1

x -2;

(3)y =x +41-x ;

(4)y =

2x 2

-x +12x -1? ??

??

x >12. 考向五 相等函数

【例4】判断下列各组中的两个函数是同一函数的是( )

①y 1=(x +3)(x -5)x +3

,y 2=x -5; ②f (x )=x ,g (x )=x 2

③f (x )=x ,g (x )=3x 3; ④f 1(x )=(2x -5)2

,f 2(x )=2x -5. A .①② B .②③ C .③ D .③④

【举一反三】

1.下列各组函数中,表示同一函数的是

A . f(x)=x 2, g(x)=x 3

B . f(x)=√x 2, g(x)=(√x)2

C . f(x)=

x 2x

, g(x)=x D . f(x)=|x |, g(x)={

x, x ≥0?x, x <0

2.下列函数为同一函数的是( )

A . y =√(x +1)2与y =x +1

B . y =x 2?2x 与y =t 2?2t

C . y =x 0与y =1

D . y =lgx 2与y =2lgx

3.下列各组函数中,表示同一函数的是( )

A . f(x)=x 与g(x)=(√2

B . f(x)=√(x +2)(x ?2)与g(x)=√x +2?√x ?2

C . f(x)={x +1(x >0)x ?1(x ≤0) 与g(x)={x +1(x ≥0)x ?1(x <0)

D . f(x)=2x (x ∈{1})与g (x )=2|x | (x ∈{1}) 4.下列各组函数中,表示同一函数的是( ) A . f (x )=1,g (x )=x 0 B . y =e lnx ,y =lne x

C . y =√x +1√x ?1,y =√x 2?1

D . y =|x |,y =√x 2

考向六 分段函数

【例6】(1)设函数f (x )=???

1+log 2(2-x ),x <1,

2x -1,x ≥1,则f (-2)+f (log 212)=

(2)已知函数f (x )=???

2x

-2,x ≤1,

-log 2(x +1),x >1,且f (a )=-3,则f [f (14-a )]=________.

(3)已知函数f (x )=???

-x 2

+2x ,x ≤0,

ln (x +1),x >0.

若|f (x )|≥ax ,则a 的取值范围是 。

【举一反三】

1.已知f (x )=?

??

log 3x ,x >0,

a x +

b ,x ≤0,且f (0)=2,f (-1)=3,则f (f (-3))=________.

2.已知函数f (x )=?????

? ??

??13x ,x ≥3,

f (x +1),x <3,

则f (2+log 32)的值为________.

3.已知实数a ≠0,函数f (x )=???

2x +a ,x <1,

-x -2a ,x ≥1.若f (1-a )=f (1+a ),则a 的值为________.

4.已知函数f (x )=???

log 2x ,x >0,3x +1,x ≤0,

则f ? ????f ? ????14的值是________.

1.给定的下列四个式子中,能确定y 是x 的函数的是 。

①x 2

-y 2

=1;②|x -1|+√y 2?1=0;③√x ?1?√y ?1=1;④y =√x ?2?√1?x =1.

2.下列对应法则f 中,能构成从A 到B 的函数的有 。

①A={0,2},B={0,1},f :x →y=x

2

; ②A={–2,0,2},B={4},f :x →y=x 2

③A=R ,B={y|y>0},f :x →y=1

x

2; ④A=R ,B=R ,f :x →y=2x+1.

A .1个

B .2个

C .3个

D .4个 3.函数f (x )=√2?x +log 2x 的定义域是 。 4.函数f(x)=1

1?x +lg(x +1)的定义域是 . 5.已知函数f (x )的定义域为[?1,1],y =

f (2x+1)

x

的定义域为 。

6.若y=f (x )的定义域为(0,2],则函数g (x )=

f(2x)x?1

的定义域是 。

7.函数f(x)的定义域是[2,+∞),则函数y =

f(2x)x?2

的定义域 。

8.已知函数f(x)=

√?mx 2+mx+1

的定义域是R ,则实数m 的取值范围是 。

9.函数y =log 2(1

x+1?1)的定义域为__________.

10.记函数()f x =D .若在区间[-5,5]上随机取一个数x ,则x ∈D 的概率为

__________.

11.已知f (x )是一次函数,且f [f (x )]=x +2,则f (x )=

12.若()f x 对于任意实数x 恒有()()3251f x f x x --=+,则()f x = . 13.下列哪组中的两个函数是同一函数 。

A . y =√x 2与y

=

√x 33

B . y =

x 2?1x?1

与y=x+1

C . f(x)=|x |与g(t)=(√t)2

D . y=x 与g(x)=√x 33

14.已知函数()y f x =满足1()2()3f x f x x

=+,则()f x 的解析式为__________. 15.函数y =2x -x -1的值域是________. 16函数f (x )=1-e

2x

1+e

2x 的值域是________.

17.函数y =x 2

x 2-x +1

的值域是________.

18.函数f (x )=

x +1

x 2+4x +7

的值域为________.

19.已知f (x )={x ?5,x ≥6f(x +2),x <6

(x ∈N ),那么f (3)等于 。

20.已知函数f (x )={

(12)x

?7,x <0log 2(x +1),x ≥0

,若f(a)<1,则实数a 的取值范围是 。

21.已知函数f (x )={lg (ax +4),x >0x +2,x ≤0

,且f (0)+f (3)=3,则实数a 的值是 。

22.设函数f(x)={lnx, x ≥11?x,x <1

,若f(m)>1,则实数m 的取值范围是__________ .

23.已知函数f(x)={2?x ?2,x ≤0f(x ?2)+1,x >0

,则f(2019)=__________

高考复习函数知识点总结

高考复习 函数知识点总结 一.函数概念的理解以及函数的三要素 (1)函数的概念 ①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →. ②函数的三要素:定义域、值域和对应法则. ③只有定义域相同,且对应法则(函数关系式)也相同的两个函数才是同一函数. (2)区间的概念及表示法 ①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ; 满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ; 满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做 [,)a b ,(,]a b ; 满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做 [,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b < . (3)求函数的定义域时,一般遵循以下原则: ① 分式的分母不为0; ② 偶次根式下被开方数大于0; ③ 0y x = ,则有0x ≠ ; ④ 对数函数的真数大于0,底数大于0切不等于1 注意:①解析式为整式的函数定义域为R ; ②若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则

其定义域一般是各基本初等函数的定义域的交集; ③对于求复合函数定义域问题,一般步骤是:若已知() f x的定义域 为[,] a g x b ≤≤解出. f g x的定义域应由不等式() a b,其复合函数[()] (4)求函数的值域或最值 常用方法: ①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值. ②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量 的取值范围确定函数的值域或最值. ③判别式法:若函数() =可以化成一个系数含有y的关于x的二次方程 y f x 2 ++=,则在()0 a y x b y x c y ()()()0 a y≠时,由于,x y为实数,故必须有 2()4()()0 ?=-?≥,从而确定函数的值域或最值. b y a y c y ④不等式法:利用基本不等式确定函数的值域或最值. ⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代 数函数的最值问题转化为三角函数的最值问题. ⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的 值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法. (5)函数解析式 ①换元法;(用于求复合函数的解析式) ②配凑法;(用于求复合函数的解析式)

2021新高考一轮复习专题2.1 函数概念及三要素(解析版)

第一讲 函数的概念及三要素 1.函数与映射 函数 映射 两个集合A ,B 设A ,B 是两个非空数集 设A ,B 是两个非空集合 对应法则f :A →B 如果按某种对应法则f ,使对于集合A 中的每一个元素x ,在集合B 中都有唯一的元素y 和它对应 如果按某种对应法则f ,使对于集合A 中的每一个元素x ,在集合B 中都有唯一的元素 y 与之对应 名称 称y =f (x ),x ∈A 为从集合A 到集合B 的一个函数 称f :A →B 为从集合A 到集合B 的一个映射 记法 函数y =f (x ),x ∈A 映射:f :A →B 2.函数的有关概念 (1)函数的定义域、值域 在函数y =f (x ),x ∈A 中,x 叫做自变量,所有的输入值x 组成的集合A 叫做函数y =f (x )的定义域;对于 A 中的每一个x ,都有一个输出值y 与之对应.我们将所有输出值y 组成的集合称为函数的值域. (2)函数的三要素:定义域、对应法则和值域. (3)函数的表示法 表示函数的常用方法有解析法、图象法和列表法. 3.分段函数 若函数在其定义域的不同子集上,因对应法则不同而分别用几个不同的式子来表示,这种函数称为分段函数. 分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数. 考向一 函数、映射的判断 【例1】(1)若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( ) 【修炼套路】---为君聊赋《今日诗》,努力请从今日始 【套路秘籍】---千里之行始于足下

函数概念及其基本性质

第二章函数概念与基本初等函数I 一. 课标要求: 函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重要数学模型来学习,强调结合实际问题,从而发展学生对变量数学的认识。教材把指数函数,对数函数,幂函数当作三种重要的函数模型来学习,强调通过实例和图象的直观,揭示这三种函数模型增长的差异及其关系,体会建立和研究一个函数模型的基本过程和方法,学会运用具体函数模型解决一些实际问题. 1.会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;了解函数构成 的三要素,了解映射的概念;体会函数是一种刻画变量之间关系的重要数学模型,体会对应关系在刻画函数概念中的作用;会求一些简单函数的定义域和值域, 2. 了解函数的一些基本表示法(列表法、图象法、分析法),并能在实际情境中,恰当地进行选择;会用描点法画一些简单函数的图象. 3.通过具体实例,了解简单的分段函数,并能简单应用. 4. 结合熟悉的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性和周期性的含义,通过具体函数的图象,初步了解中心对称图形和轴对称图形. 5. 学会运用函数的图象理解和研究函数的性质,体会数形结合的数学方法. 6.理解有理数指数幂的意义,通过具体实例了解实数指数幂的意义,掌握幂的运算. 7.了解指数函数模型的实际背景.理解指数函数的概念和意义,掌握f(x)=a x的符号、意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的有关性质(单调性、值域、特别点). 8.理解对数的概念及其运算性质,了解对数换底公式及其简单应用,能将一般对数转化为常用对数或自然对数,通过阅读材料,了解对数的发现历史及其对简化运算的作用.通过具体函数,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,掌握f(x)=log a x符号及意义,体会对数函数是一类重要的函数模型,能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的有关性质(单调性、值域、特殊点). 9.知道指数函数y=a x与对数函数y=log a x互为反函数(a>0, a≠1),初步了解反函数的概念和f- -1(x)的意义. 10.通过实例,了解幂函数的概念,结合五种具体函数 1 312 ,,, y x y x y x y x - ====的 图象,了解它们的变化情况 11.通过应用实例的教学,体会指数函数是一种重要的函数模型. 12. 通过实习作业,使学生初步了解对数学发展有过重大影响的重大历史事件和重要人物,了解生活中的函数实例. 二. 编写意图与教学建议 1.教材突出了函数概念的背景教学,强调从实例出发,让学生对函数概念有充分的感性基础,再用集合与对应语言抽象出函数概念,符合学生的认识规律,同时有利于培养学生的抽象概括的能力,增强学生应用数学的意识,教学中要高度重视数学概念的背景教学. 2..教材对函数的三要素着重从函数的实质上要求理解,而对定义域、值域的繁难计算,特别是人为的过于技巧化的训练不做提倡,要准确把握这方面的要求,防止拨高教学. 3. 函数的表示是本章的主要内容之一,教材重视采用不同的表示法(列表法、图象法、分析法),目的是丰富学生对函数的认识,帮助理解抽象的函数概念. 在教学中,既要充分发挥图象的直观作用,又要适当地引导学生从代数的角度研究图象,使学生深刻体会数形结合这一重要数学方法.

人教版必修1函数的概念教案(第一课时)

1.2.1 函数的概念 第一课时 一,教材的地位与作用 函数是描述客观世界变化规律的重要数学模型。高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言来刻画函数,函数的思想方法将贯穿于高中数学课程的始终。 函数的概念是抽象概括出的概念,通过大量的实例,培养学生从“特殊到一般”的综合归纳的能力,培养学生分析问题的能力,引导学生如何发现事物的本质,如何找到问题的突破口来解决问题。 二,教学目标 1,知识与技能: (1)理解函数的概念及其符号表示,能够辨别函数的例证和反例 (2)会求简单函数的定义域与值域 (3)掌握构成函数的三要素,学会判别两个函数是否相等,理解函数的整体性 2,过程与方法: (1)通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;(2)通过函数概念学习的过程,培养学生从“特殊到一般”的分析问题能力以及抽象概括能力 3,情感态度与价值观 让学生体会现实世界充满变化,感受数学的抽象概括之美。 三,教学重点与难点 1,教学重点:函数的概念,构成函数的三要素 2,教学难点:函数符号y=f(x)的理解 四,教学方法分析 1,教法分析: 遵循建构主义观点的教学方式,即通过大量实例,按照从“特殊到一般”的认识规律,提出问题,大胆猜想,确定方向分组研究尝试验证,归纳总结,通过搭建新概念与学生原有认识结构间的桥梁,使学生在心理上得到认同,建立新的认识结构。 2,学法分析: 倡议学生主动观察,积极思考,提出问题,大胆猜测,从而自主归纳小结。在学习中培养自我的从“特殊到一般”的分析问题能力,感受数学的抽象概括之美。 五、教学过程 1,复习回顾 回顾初中所学函数(如一次函数y=ax+b a≠0等)及函数的概念:(传统定义:设在一个变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一的值与它对应,那么就说y是x的函数,x叫做自变量);指出用函数可以描述变量之间的依赖关系;强调函数是

函数三要素教案

(一)教学目标 1.知识与技能 (1)了解函数三要素的含义,掌握根据函数的三要素判定两个函数是否为同一个函数的方法. (2)会求简单函数的定义域和函数值. 2.过程与方法 通过示例分析,让学生掌握求函数定义域的基本题型及方法,进一步加深对函数概念的理解.通过求出函数的函数值,加深对应法则的认识. 3.情感、态度与价值观 通过动手实践研究数学问题,提高分析问题,解决问题能力;体会成功地解答数学问题的学习乐趣,培养钻研精神. (二)教学重点与难点 重点:掌握函数定义域的题型及求法. 难点:理解函数由定义域与对应法则确定函数这一基本原则.

二、授课内容: 【知识要点】 ⑴定义域———自变量x 的取值范围 函数三要素 ⑵值 域———函数值的集合 ⑶对应法则——自变量x 到对应函数值y 的对应规则 注意:①核心是对应法则;②值域是由定义域与对应法则所确定了的,故确定一个函数只需确定其定义域、对应法则则即可;③如何判断“两个”函数为同一函数;④函数()12-= x x f 的对应法则f :x (平方再 减1整体再开平方)y 。而在此基础上的函数()1+=x f y ,其自变量为式中的x 而不是1+x ,其对应法则x (加1再取f 运算)y ,即x (加1整体平方再整体减1再整体开方)y ,故此时()1)1(12-+=+x x f 。 【典型例题】 1.函数定义域求法 ⑴已知函数的解析式求定义域时需要注意: ①()x f 是整式,则定义域为R ; ②()x f 是分式,则令分母不为0的值为定义域; ③()x f 是偶次根式,则函数定义域为使被开方式为非负数的自变量集合; ④若()x f 由几个部分式子构成,则定义域是使几个部分式子都有意义的值的集合; ⑤函数[]2 )(x f y =的定义域()x f 0≠; ⑥对数函数()x f y a log =(0>a ,且1≠a )的定义域要求()x f >0; ⑵求函数()[]x g f 的定义域,()x g 相当于()x f 中的x 。 ⑶当函数由实际问题给出时,还应考虑实际意义。 例1:求下列函数的定义域 ①()0 2 )1(4--= x x x f ; ②()1 21 12 2+-+ ++=x x x x x f ; ③()x x f 11111++ = 042 ≥-x 22≤≤-x 解析:①由 ? ∴函数定义域为[)(]2,11,2?- 01≠-x 1≠x 012 ≥++x x (Ⅰ) ② 12 ++x x 的判别式0

2019精品教育4.示范教案(2.1函数的概念第1课时)

1.2 函数及其表示 1.2.1 函数的概念 整体设计 教学分析 函数是中学数学中最重要的基本概念之一.在中学,函数的学习大致可分为三个阶段.第一阶段是在义务教育阶段,学习了函数的描述性概念,接触了正比例函数、反比例函数、一次函数、二次函数等最简单的函数,了解了它们的图象、性质等.本节学习的函数概念与后续将要学习的函数的基本性质、基本初等函数(Ⅰ)和基本初等函数(Ⅱ)是学习函数的第二阶段,这是对函数概念的再认识阶段.第三阶段是在选修系列的导数及其应用的学习,这是函数学习的进一步深化和提高. 在学生学习用集合与对应的语言刻画函数之前,学生已经把函数看成变量之间的依赖关系;同时,虽然函数概念比较抽象,但函数现象大量存在于学生周围.因此,课本采用了从实际例子中抽象出用集合与对应的语言定义函数的方式介绍函数概念. 三维目标 1.会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;通过学习函数的概念,培养学生观察问题、提出问题的探究能力,进一步培养学习数学的兴趣和抽象概括能力;启发学生运用函数模型表述思考和解决现实世界中蕴涵的规律,逐渐形成善于提出问题的习惯,学会数学表达和交流,发展数学应用意识. 2.掌握构成函数的三要素,会求一些简单函数的定义域,体会对应关系在刻画函数概念中的作用,使学生感受到学习函数的必要性的重要性,激发学生学习的积极性. 重点难点 教学重点:理解函数的模型化思想,用集合与对应的语言来刻画函数. 教学难点:符号“y=f(x)”的含义,不容易认识到函数概念的整体性,而将函数单一地理解成对应关系,甚至认为函数就是函数值. 课时安排 2课时 教学过程 第1课时函数的概念 导入新课 思路1.北京时间2005年10月12日9时整,万众瞩目的“神舟”六号飞船胜利发射升空,5天后圆满完成各项任务并顺利返回.在“神舟”六号飞行期间,我们时刻关注“神舟”六号离我们的距离y随时间t是如何变化的,本节课就对这种变量关系进行定量描述和研究.引出课题. 思路2.问题:已知函数y=1,x请用初中所学函数的定义来解释y与x的函数关系?先让学生回答后,教师指出:这样解释会显得十分勉强,本节将用新的观点来解释,引出课题. 推进新课 新知探究 提出问题 (1)给出下列三种对应:(幻灯片) ①一枚炮弹发射后,经过26 s落到地面击中目标.炮弹的射高为845 m,且炮弹距地面的高度为h(单位:m)随时间t(单位:s)变化的规律是h=130t-5t2. 时间t的变化范围是数集A={t|0≤t≤26},h的变化范围是数集B={h|0≤h≤845}.则有对应 f:t→h=130t-5t2,t∈A,h∈B. ②近几十年来,大气层的臭氧迅速减少,因而出现了臭氧洞问题.图1-2-1-1中的曲线显示了南极上空臭氧层空洞的面积S(单位:106 km2)随时间t(单位:年)从1991~2001年的变化情况.

函数学生版

函数 1、回顾初中有关函数的概念:在一个变化过程中,有两个变量x 和y ,如果给定了一个x 值,相应地就确定唯一的一个y 值,那么我们称y 是x 的 函数. (1)变量:因变量,自变量 在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。 (2)一次函数:①若两个变量y ,x 间的关系式可以表示成y kx b =+(b 为常数,k 不等于0)的形式,则称y 是x 的一次函数。②当b =0时,称y 是x 的正比例函数。 (3)一次函数的图象及性质 ①把一个函数的自变量x 与对应的因变量y 的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。 ②正比例函数y =k x 的图象是经过原点的一条直线。 ③在一次函数中,当k <0, b 0时,则经1、2、4象限;当k >0, b <0时,则经1、3、4象限;当k >0, b >0时,则经1、2、3象限。 ④当k >0时,y 的值随x 值的增大而增大,当k <0时,y 的值随x 值的增大而减少。 (4)二次函数: ①一般式:22 24()24b ac b y ax bx c a x a a -=++=++(0a ≠),对称轴是,2b x a =- 顶点是 2 4,)24b ac b a a -(-; ②顶点式:2 ()y a x m k =++(0a ≠),对称轴是,x m =-顶点是(),m k -; ③交点式:12()()y a x x x x =--(0a ≠),其中(1,0x ),(2,0x )是抛物线与x 轴的交点

2函数三要素-讲义版

函数的三要素 【知识点】 一、函数的定义域 (1)研究一个函数一定在其定义域内研究,所以求定义域是研究任何函数的前提,要树立定义域优先的原则. (2)函数的定义域常由其实际背景决定,若只给解析式时,定义域就是使此式子有意义的实数x 的集合(区间表示). 常见定义域的求法: 常见定义域求法:对于()x f y =而言: ①整式:实数集R ; ②分式:使分母不等于0的实数的集合; [1 (0)x x ≠] ③0指数幂:底数不等于零; [0 (0)x x ≠] ④偶次根式:使根号内的式子大于或等于0的实数的集合; [2(0)n x x ≥] ⑤对数:真数大于零; [log (0)a x x >] ⑥由几个部分的式子构成:使各部分式子都有意义的实数的集合(即各集合的交集); 实际问题:使实际问题有意义的实数的集合. 二、函数的值域 对于)(x f y =,x A ∈,与x 的值相对应的y 的值叫做函数值,函数值的集合{}A x x f ∈|)(叫做函数)(x f y =的值域. 三、解析式 (1)当已知函数的类型时,可用待定系数法求解; (2)当已知表达式为()[]x g f 时,可考虑配凑法或换元法.若易将含x 的式子配成()x g ,用配凑法;若易换元后求出x ,用换元法; (3)若求抽象函数的解析式,通常采用方程组法; (4)求分段函数的解析式时,要注意符合变量的要求. 课程类型: 1对1课程 ? Mini 课程 ? MVP 课程

【课堂演练】 题型一 函数定义域 例1 求下列函数的定义域: (1)1()2 f x x =- (2)0()32(2)f x x x = +- (3)1 ()1 2f x x x =+- 练1 求下列函数的定义域: (1)83y x x =+- (2)22 111 x x y x --= - (3)()3||f x x =- 练2 函数0()(12)13 g x x x x = --的定义域为 . 例2 函数3()1log (63)f x x x = +-的定义域为( ) A .(,2)-∞ B .(2,)+∞ C .[1,2)- D .[1,2]- 练3 函数()3lg(1)f x x x =-+的定义域为( ) A .[1,3)- B .(1,3)- C .(1,3]- D .[1,3] - 练4 函数1 ()ln(31) = +f x x 的定义域是( ) A .1 (,)3- +∞ B .1 (,0)(0,)3- +∞U C .1 [,)3- +∞ D .[0,) +∞ 题型二 函数值域 ? 一次分式值域 例3 求432+-=x y 在?? ? ???-∈1,32x 上的值域.

函数的三要素学生版

一、函数与映射的基本概念判断 1. 设:f M N →是集合M 到N 的映射,下列说法正确的是 A 、M 中每一个元素在N 中必有象 B 、N 中每一个元素在M 中必有原象 C 、N 中每一个元素在M 中的原象是唯一的 D 、N 是M 中所在元素的象的集合 2. 设集合{1,0,1},{1,2,3,4,5}M N =-=,映射:f M N →满足条件“对任意的x M ∈, ()x f x +是奇数” ,这样的映射f 有____个 3. 设2:x x f →是集合A 到集合B 的映射,若B={1,2},则B A 一定是_____ 4. 若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“值同函数”,那么解析式为2y x =,值域为{4,1}的“值同函数”共有______个 5. 以下各组函数表示同一函数是________________ (1)f (x )=2x ,g (x )=33x ; (2)f (x )=x x ||,g (x )=? ??<-≥;01,01x x (3)f (x )=x 1+x ,g (x )=x x +2; (4)f (x )=x 2-2x -1,g (t )=t 2-2t -1。 二、函数的定义域 1.求下列函数的定义域 (1)2161x x y -+= ;(2 )34x y x +=- 2.(1) 已知)(x f 的定义域为]30(,,求)2(2x x f +定义域。 (2)若函数()x f 23-的定义域为[]2,1-,求函数()x f 的定义域 (3)已知)1(+x f 的定义域为)32[,-,求 2f x y -的定义域。 3. 求函数()f x = 4. 若函数()f x = 3 442++-mx mx x 的定义域为R ,则实数m 的取值范围是 ( )

函数的概念练习题

函数的概念练习题 一、填空题 1、函数的 、 、 统称函数的三要素 2、下列几组函数相等的是 。 ①11 12+=--=x y x x y 与②1112+?-=-=x x y x y 与 ③x x y x y +?-=-=1112与④x y x y ==与2⑤x y x y ==与2)( 3、若函数,1)(2+-=x x x f 则=)1(f ,=--+)1()1(n f n f 。 4、函数)(x f y =与a x =的交点个数为 。 5、函数2233x x x x y -+-= 的定义域为 ,函数24x y -=的定义域 为 。 6、函数)3,1[,12)(2-∈+-=x x x x f ,则函数=+)2(x f 。 7、函数)(x f 的定义域为)3,2[-,则)()()(x f x f x g -+=的定义域为 。 8、函数1)(22+=x x x f ,则=)2 1()2(f f 。 二、解答题 9、下列对应那些能称为函数?并说明理由。 (1)R x x x ∈→,1,(2),y x →这里R y R x x y ∈∈±=+,, (3),y x →这里R y R x x y ∈∈= +,,(4),.12R x x x ∈+→ 10、求下列函数的定义域 (1)3 21)(-=x x f (2)22)(x x x f -=

(3)2232)(2 ++--=x x x x f 11、求下列函数的值域。 (1)]3,0[,32)(2∈--=x x x x f (2)),0[,113)(+∞∈+-=x x x x f (3)123 2)(22+-+-=x x x x x f ( 4)x x y 21-+= 12、

函数概念及三要素

函数概念及三要素 1.函数的概念: 设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的 任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数(function ). 记作: y=f(x),x ∈A . 其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域(domain );与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)| x ∈A }叫做函数的值域(range ). 2.分段函数:在定义域内不同的区间上有不同的 。注:分段函数是 个函数,而不是多个函数。 3.复合函数:若(),(),(,)y f u u g x x m n ==∈,那么[]()y f g x =称为复合函数,u 称为中间变量,它的取值范围是()g x 的值域。 方法一:函数定义域的求法 关注:分母、根号、指对数底数对数真数、tan 、零次方的底数 例题:)35lg(lg x x y -+= 的定义域为_______ 方法二:求函数解析式的常用方法 1、配凑法 2、待定系数法 3、换元法 4、解方程组法 例1、已知2(1)23f x x x -=--,则()f x = 。

例2、已知2 (31)965f x x x +=-+,则()f x = 。 例3、已知()f x 是一次函数,且(1)(1)23f x f x x +--=+,则()f x = 。 例4、已知()2()32f x f x x +-=-,则()f x = 。 例5、已知()f x 是奇函数,()g x 是偶函数,并且()()1f x g x x +=+,则()g x = 。 方法三:分段函数 分段函数在其定义域的不同子集上,因对应关系不同,而分别用几个不同的式子来表示,这种函数就称之为分段函数.分段函数虽然有几个部分组成,但它表示的是一个函数.近几年高考考察的频率较高. 1.函数 22, 0,()log , 0.x x f x x x ?=?>?≤则1()4f =____;方程1()2f x -=的解是____. 2. 已知函数11,02()ln ,2 x f x x x x ?+<≤?=??>?,如果关于x 的方程()f x k =有两个不同的实根,那么实数k 的取 值范围是( ) (A ) (1,)+∞ (B )3[,)2+∞ (C )32[,)e +∞ (D )[ln 2,)+∞

最新函数三要素经典习题(含答案)

函数的三要素练习题 (一)定义域 1 、函数()f x = ) A 、[2,2]- B 、(2,2)- C 、(,2)(2,)-∞-+∞ D 、{2,2}- 2 _ _ _; 定义域为________; [1,1]-; [4,9] 3、若函数(1)f x + (21)f x -的定义域是 ;函数 1(2)f x +的定义域为 。1][,)2 +∞ 4、知函数()f x 的定义域为[]1,1-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。11m -≤≤ 5、求下列函数的定义域 (1)2|1|)43(43 2-+--=x x x y 解:(1)???-≠≠?≠-+≥-≤?≥--3 102|1|410432x x x x x x x 且或 ∴x ≥4或x ≤-1且x ≠-3,即函数的定义域为 (-∞,-3 )∪(-3,-1)∪[4,+∞] (2)y = {|0}x x ≥ (3)0 1(21)1 11y x x = +-++(二)解析式 1. 设X={x|0≤x ≤2},Y={y|0≤y ≤1},则从X 到Y 可建立映射的对应法则是( ) (A )x y 32= (B )2)2(-=x y (C )24 1x y = (D )1-=x y 2. 设),(y x 在映射f 下的象是)2 ,2(y x y x -+,则)14,6(--在f 下的原象是( ) (A ))4,10(- (B ))7,3(-- (C ))4,6(-- (D ))2 7,23(-- 3. 下列各组函数中表示同一函数的是 (A )x x f =)(与2)()(x x g = (B )||)(x x x f =与?????-=22)(x x x g )0()0(<>x x (C )||)(x x f =与33 )(x x g = (D )1 1)(2--=x x x f 与)1(1)(≠+=t t x g 4. 已知函数y f x =+()1定义域是[]-23,,则y f x =-()21的定义域是( )

人教A版高一数学函数的概念知识点总结与例题讲解

函数的概念知识点总结 本节主要知识点 (1)函数的概念. (2)函数的三要素与函数相等. (3)区间的概念及其表示. 知识点一 函数的概念 初中学习的函数的传统定义 一般地,如果在一个变化过程中,有两个变量x 和y ,对于x 的每一个值,y 都有唯一的值与之对应,我们就说x 是自变量,y 是因变量,此时也称y 是x 的函数. 函数的近代定义 设A , B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数()x f 和它对应,那么就称f :B A →为从集合A 到集合B 的一个函数,记作 )(x f y =,A x ∈. 其中,x 叫作自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫作函数值,函数值的集合{}A x x f y y ∈=),(叫做函数的值域.显然,值域是集合B 的子集. 对函数的近代定义的理解 (1)只有两个非空的数集之间才可能建立函数关系.定义域或值域为空集的函数是不存在的. 如x x y --= 11就不是函数. (2)注意函数定义中的“三性”:任意性、存在性和唯一性. 任意性:集合A 中的任意一个元素x 都要考虑到. 存在性:集合A 中的任意一个元素x ,在集合B 中都存在对应元素y . 唯一性:在集合B 中,与每一个元素x 对应的元素y 是唯一的.

(3)集合B 不一定是函数的值域,值域是集合B 的子集. 在集合B 中,可以存在元素在集合A 中没有与之对应者. 例1. 讨论二次函数的定义域和值域. 解:二次函数的一般式为()02≠++=a c bx ax y ,为整式函数,所以其定义域为R ,其值域的确定分为两种情况: ①当0>a 时,函数的值域为?????? -≥a b ac y y 442; ②当0

1.2.1函数的概念第一课时崔

1.2.1 函数的概念(第一课时) 年级:高一 主备人:崔艳 思考:y=1是函数吗?对于这个问题若用函数变量的观点来解释就很难说明它是一个函数,因此,我们不得不用新的观点来解释它是一个函数。 学习任务: 阅读课本P 15—18例1完,回答下列问题: 1、请用集合的观点写出函数的定义。并指出其中关键词。 3、请填写下列表格。 4、函数f :A →B 的定义域是什么?若它的值域为C ,那么集合B=C 吗? 5、回答:函数的三要素是什么?四个符号y=f (x ),f (0),f (x ),f (a )之间的区别和联系是什么? 思考:如何理解函数记号y=f (x )?是不是表示“y 等于f 与x 的乘积”? 6、下列图中,可表示函数y=f (x )图像的只能是( ) 7、下列表达式中关于y 是x 函数的是哪一个?① 2x y = ②2y x =③1=y 必做题: 1.已知:2 1 3)(++ += x x x f , ①求)3(-f , )32(f ,))3((-f f 的值。 ②当0>a ,求)(a f ,)1(-a f . 2.课本P 19 练习2. P 24 习题4、6 选做题: 1.设}20{≤≤=x x M ,}20{≤≤=y y N ,给出如图所示的四个图形,其中能表示集合M 到集合N 的函数关系的有( ) A B C D 函数 一次函数 二次函数 反比例函数 a >o a-o,a<0 对应关系 定义域 值域 :f B A 1 2 3 4 5 6 ① : f B A 1 2 3 4 6 ② : f B A 1 3 4 5 6 ③ :f B A 1 2 4 5 6 ④ : f B A 1 2 3 4 5 ⑤ 2、左边图形哪些表示的是从集合A 到集合B 表示的函数的是,请你说明理由?

函数概念及其三要素

函数概念及其相关概念(2课时) 考点一:由函数的概念判断是否构成函数 函数概念:设A 、B 是非空的数集,如果按照某种确定的关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数。 例1. 下列从集合A 到集合B 的对应关系中,能确定y 是x 的函数的是( ) ① A={x x ∈Z},B={y y ∈Z},对应法则f :x →y= 3 x ; ② A={x x>0,x ∈R}, B={y y ∈R},对应法则f :x →2 y =3x; ③ A=R,B=R, 对应法则f :x →y=2 x ; 变式1. 下列图像中,是函数图像的是( ) ① ② ③ ④ 变式2. 下列式子能确定y 是x 的函数的有( ) ①2 2 x y +=2 ②111x y -+ -= ③y=21x x -+- A 、0个 B 、1个 C 、2个 D 、3个 变式3. 已知函数y=f (x ),则对于直线x=a (a 为常数),以下说法正确的是( ) A. y=f (x )图像与直线x=a 必有一个交点 B. y=f (x )图像与直线x=a 没有交点 C. y=f (x )图像与直线x=a 最少有一个交点 D. y=f (x )图像与直线x=a 最多有一个交点 考点二:同一函数的判定 函数的三要素:定义域、对应关系、值域。 如果两个函数的定义域相同,并且对应关系完全一致,我们就称这两个函数相等。 例2. 下列哪个函数与y=x 相同( ) A. y=x B. 2 y x = C. () 2 y x = D.y=t 变式1.下列函数中哪个与函数3 2y x =-相同( ) A. 2y x x =- B. 2y x x =-- C. 3 2y x x =-- D. 2 2y x x -= 变式2. 下列各组函数表示相等函数的是( ) O O O O X X X X y y y y

高中数学函数专题之函数三要素

函数的三要素 【函数定义域求法】 一、常规型 即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。 分式中的分母不为零; 偶次方根下的数(或式)大于或等于零; 指数式的底数大于零且不等于1; 0的0次幂没有意义; 对数式的底数大于0且不等于1,真数大于0。 正切函数x y tan = ??? ??∈+≠∈Z ππk k x R x ,2,且 余切函数x y cot = ()Z π∈≠∈k k x R x ,,且 例1 求函数8|3x |15x 2x y 2-+--=的定义域。 例2 求函数x x y cos lg 252+-=的定义域。 二、抽象函数型 抽象函数是指没有给出解析式的函数,不能常规方法求解,一般表示为已知一个抽象函数的定义域求另一个抽象函数的解析式,一般有两种情况。 ? 类型一:已知)x (f 的定义域,求)]x (g [f 的定义域。 其解法是:已知)x (f 的定义域是[a ,b ]求)]x (g [f 的定义域是解b )x (g a ≤≤,即为所求的定义域。 例1 已知)x (f 的定义域为[-2,2],求)1x (f 2-的定义域。 ? 类型二:已知)]x (g [f 的定义域,求f(x)的定义域。 其解法是:已知)]x (g [f 的定义域是[a ,b ],求f(x)定义域的方法是:由b x a ≤≤,求g(x)的值域,即所求f(x)的定义域。 例1 已知)1x 2(f +的定义域为[1,2],求f(x)的定义域。 三、实际问题型 这里函数的定义域除考虑解析式有意义外,还要注意问题的实际意义对自变量的限制 例1 用长为L 的铁丝弯成下部为矩形上部为半圆的框架,如图,若矩形底边长为2x ,求此框架围成的面积y 与x 的函数关系式,并求定义域。 四、逆向型 即已知所给函数的定义域求解析式中参数的取值范围。特别是对于已知定义域为R ,求参数范围问题通常是转化为恒成立问题来解决。

函数的定义及三要素

函数的定义及三要素 考点一、函数概念的理解 [例1] 下列对应是否为A 到B 的函数: (1)A =R ,B ={x |x >0},f :x →y =|x |; (2)A =Z ,B =Z ,f :x →y =x 2; (3)A =Z ,B =Z ,f :x →y =x ; (4)A =[-1,1],B ={0},f :x →y =0. [例2】下列各图中,可表示函数)(x f y 的图象的只可能是( ) 变式1:在下列从集合A 到集合B 的对应关系中不可以确定y 是x 的函数的是( ①A ={x |x ∈Z },B ={y |y ∈Z },对应法则f :x →y =x 3; ②A ={x |x >0,x ∈R },B ={y |y ∈R },对应法则f :x →y 2=3x ; ③A ={x |x ∈R },B ={y |y ∈R },对应法则f :x →y :x 2+y 2=25; ④A =R ,B =R ,对应法则f :x →y =x 2; ⑤A ={(x ,y )|x ∈R ,y ∈R },B =R ,对应法则f :(x ,y )→S =x +y ; ⑥A ={x |-1≤x ≤1,x ∈R },B ={0},对应法则f :x →y =0. A .①⑤⑥ B .②④⑤⑥ C .②③④ D .①②③⑤ 变式2、如图中,哪些是以x 为自变量的函数的图象,为什么?

考点二、相等函数的判断 [例2] 下列各对函数中,是相等函数的序号是________. ①f(x)=x+1与g(x)=x+x0 ②f(x)=x+2与g(x)=|2x+1| ③f(n)=2n+1(n∈Z)与g(n)=2n-1(n∈Z) ④f(x)=3x+2与g(t)=3t +2 变式:下列各组式子是否表示相等函数?为什么? (1)f(x)=|x|,φ(t)=t2; (2)y=x2,y=(x)2; (3)y=x+1·x-1,y=x2-1; (4)y=1+x·1-x,y=1-x2. 考点三、求函数的定义域 [例3] 求下列函数的定义域: (1)y=2x+3; (2)f(x)= 1 x+1; (3) y=x-1+1-x; (4)y= x+1 x2-1.

人教版初中数学第1课时一次函数的概念 2018-2019学年教案

19.2.2 一次函数 第1课时 一次函数的概念 【学习目标】 1.理解一次函数的概念,会求实际问题中的一次函数的解析式. 2.通过分析、探索现实生活中大量的具体的一次函数实例,建立一次函数模型. 【学习重点】 一次函数的概念. 【学习难点】 正确理解一次函数与正比例函数的关系. 情景导入 生成问题 旧知回顾 1.已知正比例函数y =(2k -1)x ,若y 随x 的增大而减小,则k 的取值范围是( B ) A .k >12 B .k <12 C .k >0 D .k <0 2.正比例函数的图象:正比例函数y =kx (k 是常数,k ≠0)的图象是一条经过点(0,0)和点(1,k )的直线. 自学互研 生成能力 知识模块一 一次函数的定义 【自主探究】 阅读教材P 89~P 90,完成下列内容: 1.一次函数的定义:形如y =kx +b (k 、b 为常数,k ≠0)的函数叫做一次函数.当b =0时,y =kx +b 即为y =kx ,所以说正比例函数是一种特殊的一次函数. 2.下列函数是一次函数的是( A ) ①y =-3x ;②y =2x 2;③y =-2;④y =3x ;⑤y =3x -1. A .①⑤ B .①④⑤ C .②③ D .②④⑤ 【合作探究】 已知y =(m -1)x 2-|m |+n +3. (1)当m 、n 取何值时,y 是x 的一次函数? (2)当m 、n 取何值时,y 是x 的正比例函数? 解:(1)根据一次函数的定义得2-|m |=1,解得m =±1.又∵m -1≠0即m ≠1,∴当m =-1,n 为任意实数时,这个函数是一次函数. (2)根据正比例函数的定义得2-|m |=1,n +3=0,解得m =±1,n =-3.又∵m -1≠0即m ≠1,∴当m =-1,n =-3时,这个函数是正比例函数. 归纳:1.一次函数的结构特征:①k ≠0,②自变量的次数为1,③常数项b 可以为任意实数.

函数的三要素

第一章函数 第一讲函数的概念 【知识归纳】 (1) 映射 映射的定义:设A,B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中 的任意一个元素x,在集合B中都有惟一确定的元素y与之对应,那么这样的对应(包括集合A,B 以及A到B的对应法则f)叫做集合A到集合B的映射,记作f:A→B.其中与A中的元素a对应的B 中的元素b叫做a的象,a叫做b的原象. 一对一,多对一是映射但一对多显然不是映射 辨析: ①任意性:映射中的两个集合A,B可以是数集、点集或由图形组成的集合等; ②有序性:映射是有方向的,A到B的映射与B到A的映射往往不是同一个映射; ③存在性:映射中集合A的每一个元素在集合B中都有它的象; ④唯一性:映射中集合A的任一元素在集合B中的象是唯一的; ⑤封闭性:映射中集合A的任一元素的象都必须是B中的元素,不要求B中的每一个元素都 有原象,即A中元素的象集是B的子集. 映射三要素:集合A、B以及对应法则f,缺一不可; (2) 映射观点下的函数概念 如果A,B都是非空的数集,那么A到B的映射f:A→B就叫做A到B的函数,记作y=f(x),其中x∈A,y∈B.原象的集合A叫做函数y=f(x)的定义域,象的集合C(C B)叫做函数y=f(x)的值域.函数符号y=f(x)表示“y是x的函数”,有时简记作函数f(x). (3)函数概念: 设A、B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f (x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数记作:y = f (x),x∈A. 其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f (x) | x∈A}叫做函数的值域. 显然,值域是集合B的子集. (4)函数的表示方法 1.解析式:把常量和表示自变量的字母用一系列运算符号连接起来,得到的式子叫做解析式. 2.列表法:列出表格来表示两个变量之间的对应关系. 3.图象法:用图象表示两个变量之间的对应关系.

相关主题
文本预览
相关文档 最新文档