当前位置:文档之家› 非水相酶催化技术的应用

非水相酶催化技术的应用

非水相酶催化技术的应用
非水相酶催化技术的应用

酶催化技术在医药工业中的应用

酶催化技术在医药工业中的应用 摘要:近10年来随着生物技术的发展,酶催化技术已愈来愈多地用于有机合成,特别是不对称合成、光学活性化合物及天然产物的合成,已在医药、食品、轻工业、纺织等行业中得到越来越广泛的应用。本文介绍了酶和细胞固定化、非水相介质中的酶催化、低共熔酶催化反应和酶催化反应与分离的祸合等酶催化技术的研究进展,以及酶催化技术在制药工业和临床诊断及治疗上的应用。 关键词:酶催化医药工业应用 酶作为一种高效生物催化剂,具有高度的特异立体选择性及区域选择性,并在常温、常压和pH值中性附近条件下具有十分高效的催化活力。利用酶的高效选择性催化作用可制造出种类繁多的目的产物,避免了化学法合成中的许多不足。目前,酶催化技术在医药方面的应用是当前最为关注的领域之一,这主要是因为医药产品一般附加值高,且大多是光学活性物质,作为十分优良的手性催化剂—酶,用于多种高效手性药物的合成及制备将十分有效,潜力巨大。在生物学和化学领域中,作为绿色化学和手性技术的总要组成,酶催已经成为重点研究对象。 1、酶催化简介 酶催化可以看作在酶的表面吸附了反应物,或者是酶与反应物形成了中间化合物后进行反应。酶催化是酶的减慢或者加速化学反应作用。在多数情况下,化合物作为底物的能力的丧失,其原因是因为底物分子中微小结构产生变化所致。作为一种绿色的手性技术,酶催化工艺已经是化学制药领域重点研究的课题之一。酶催化剂催化的反应可在水中进行,其具有较高的立体选择性和区域选择性,反应条件较为温和是没催化剂催化的特点。随着人类环保意识的提高,制药工业对手性化合物需求的增加,使人们进一步认识了没催化剂。现代基因工程的应用以及生物技术的高速发展,也降低了生产酶成本。作为有机化学合成工具,没催化剂的优点在于选择性好、合成步骤少、多数能够在水相中进行、反应条件温和、催化效率高等。为了进一步提高酶催化剂的适应性和稳定性,利用生物工程改造和筛选酶催化剂。 2、酶催化技术的研究进展 随着生命学科的迅速发展和人们对生物大分子结构与功效认识的不断深人,对酶催化技术的研究及创新已取得了长足的进步。主要表现在以下几方面: 2.1 酶和细胞固定化技术 在实现酶催化生化或化学反应过程中,酶固定化技术可使酶长期反复和连续运行、大幅降低酶的应用成本、精简下游分离工艺,这已成为一个最主要和基础的酶催化技术,现已发展了吸附、共价、交联、包埋、微胶囊、膜法等数十种固定化方法(1),而对多酶系统的共固定化及完整细胞的固定化则是对酶固定化技术的重要发展(1)。多酶系统的共固定化比单酶固定化成本更低、稳定性更高,并可

酶催化作用综述

工业催化原理论文 论文题目:浅谈酶催化作用 课程名称:工业催化原理 学院:化学与化工学院 专业:化学工程与工艺 年级:化工122 学号:1208110201 学生姓名:邓元顺

浅论酶催化作用 摘要 酶作为催化剂使用已经有几个世纪的历史,但那时人们对酶的本性和功能并不了解。直到20世纪初,才证明所有的发酵过程均是由所用的酶促成的,故而酶也常被叫做酵素。现已证明,酶是由长链氨基酸构成的蛋白质。许多酶的初级结构已得到确定,而且影响酶催化功能的三维空间结构已被证明。尽管获得了不少信息,关于酶催化作用机理的一些基本细节仍不甚明朗,如今酶催化技术作为工业生物技术的核心,被誉为工业可持续发展最有希望的技术。 Abstracts Enzymes have been used for centuries, but it is not known to the nature and function of the enzyme. It was not until early twentieth Century that all of the fermentation processes were promoted by the enzymes that were used, and the enzyme was often called an enzyme. It has been proved that the enzyme is a protein composed of long chain amino acids. The primary structure of many enzymes has been determined, and the three-dimensional structure of the enzyme catalytic function has been demonstrated. In spite of a lot of information, some basic details about the mechanism of enzyme catalysis are still not very clear, and now the catalytic technology as the core of industrial biotechnology, known as the most promising technology for the sustainable development of industry. 关键词:酶,酶催化作用,

酶的非水相催化及其应用

天津科技大学 《食品酶学》本科生课程论文 酶的非水相催化及其应用 non-aqueous enzymatic catalysis technology and its applications 学生姓名: 学号: 专业: 任课教师:

摘要 非水相酶催化反应是酶催化反应中的一个重要方面。非水相溶剂通常可增加底物溶解度, 减少水相中的副反应, 加快生物催化的速率和效率, 在药物及药物中间体和食品等方面具有较大的应用价值。以下主要分析了在非水介质中酶促反应的几个重要影响因素; 介绍了非水介质中酶催化反应的应用,以及其前景发展。 关键词:非水相催化,影响因素,实际应用,发展前景

Abstract It is well known that non-aqueous enzymatic catalysis has emerged as an important area of enzyme engineering with the advantages of higher substrate solubility, increased stereoselectivity, modified substrate specificity and suppression of unwanted water-dependent side reactions. As a result, non-aqueous enzymatic catalysis has been applied in the biocatalytic synthesis of important pharmaceuticals and nutriceuticals. The following main analyzed several important factors in non-aqueous enzymatic catalysis:introduced in non-aqueous enzymatic catalysis in front of the catalytic reaction,introduced the bright future of non-aqueous enzymatic catalysis technology Key words:non-aqueous enzymatic catalysis;important factors; applications,Development prospect

酶的作用与特性导学案

第五章第一节酶的作用与特性导学案 编制:胡玉苹审核:张凤霞 2012.8.30 【考纲解析】 知识目标:(1)细胞代谢的概念(2)酶的作用和本质(3)探究影响酶活性的因素学习重点:酶的作用和特性 学习难点:1.酶降低活化能的原理。 2.实验中控制变量的科学方法。 【基础整理】 一、酶在细胞代谢中的作用 1.概念 ①细胞代谢:。 ②活化能:。 ③原理:同无机催化剂相比,酶__________的作用更显著,因而催化效率__________。 ④意义:使细胞代谢能在________条件下______进行。 2、酶在细胞代谢中的作用: 2H2O2 △2H2O+O22H2O22H2O+O2实验:比较过氧化氢在不同条件下的分解 实验步骤:【问题探讨】 1.与1号试管相比,2号试管出现什么不同的现象?这一现象说明什么? 2.3号试管和4号试管未经加热,也有大量气泡产生,这说明什么? 催化剂(酶)的作用原理是: 3.酶的催化效率和无机催化剂相比谁更高?为什么? 4.为什么说酶对于细胞内化学反应的顺利进行至关重要? 5.本实验最后得出了什么结论? 【实验总结】 1.变量、自变量、因变量、无关变量的概念: 本实验的自变量: 本实验的因变量: 本实验的无关变量: 2.对照实验、对照组、实验组的概念: 对照实验: 对照组:本实验的对照组:实验组:本实验的实验组:

【小结1】控制变量: 【小结2】酶在细胞代谢中的作用: 二、酶的本质 探究一:酶的高效性的实验验证 (1)实验原理 ①________________________________________________________________________。 ②H 2O 2在常温、高温、过氧化氢酶、Fe 3+ 等不同条件下气泡产生的________或卫生香燃烧的________不同。 (2)实验过程 (3)实验结论:酶具有________,与无机催化剂相比,酶的催化效率________。 探究二:酶的专一性的验证实验 (1)实验原理 ①?????? ??? ?淀粉非还原性糖――→酶麦芽糖蔗糖非还原性糖――→酶葡萄糖+果糖还原糖+斐林试剂― →________________ ②用________分别催化淀粉和蔗糖后,再用斐林试剂鉴定,根据是否有砖红色沉淀来判定淀粉酶是否对二者都有催化作用,从而验证酶的________。 (2)实验程序 (3)实验结论: 探究三:影响酶活性的条件 1.温度对酶活性的影响 (1)实验原理 ①淀粉――→淀粉酶 麦芽糖 ↓碘液 ↓碘液 ②温度影响酶的活性,从而影响淀粉的水解程度。滴加碘液,根据________________________来判断酶的活性。 (2)实验设计程序 淀粉 淀粉酶 ↓ ↓ 各自在所控制的温度下处理一段时间 ↓ 淀粉与 下的淀粉酶混合 ↓ 在各自所控制的温度下保温一段时间 ↓ 滴加 ,观察颜色变化 2.pH 对酶活性的影响 (1)实验原理 ①2H 2O 2――→过氧化氢酶________ ②pH 可影响酶活性,从而影响O 2的产生情况,可根据__________

第六章 酶的非水相催化

第六章酶的非水相催化 教学目的:使学生了解并掌握酶非水相催化的概念及意义,掌握酶非水相催化技术。 教学重点、难点:酶非水相催化机理。 教学方法:讲授 教学手段:多媒体 第一节酶非水相催化研究概况 一、概念及分类 (一)、概念: 酶在非水介质中进行的催化作用。 1984年,美国A.M.Klibanov在《科学》上发表一篇关于酶在有机介质中催化条件和特点的综述,并成功酶促合成了酯、肽、手性醇等许多有机化合物。指出,酶可在非生物体系的疏水介质中催化天然或非天然的疏水性底物和产物的转化,对酶只能在水溶液中起作用的传统酶学思想提出了挑战。 (二)、分类 1、有机介质中的酶催化 指酶在含有一定量水的有机溶剂中进行的催化作用 适用范围:底物、产物两者或其中之一为疏水性物质的酶催化作用。主要研究对象 2、气相介质中的酶催化 指酶在气相介质中进行的酶催化反应。 适用范围:底物是气体或者能够转化为气体物质的酶催化反应。研究较少。 3、超临界流体介质中的酶催化 指酶在超临界流体中进行的催化反应。 …绿色化学? ——无毒、无害要求,代替有机溶剂 4、离子液介质中酶的催化 离子液:有机阳离子与有机(无机)阴离子构成的在室温条件下呈液态的低熔点盐类,挥发性低、稳定性好;酶反应具有良好的稳定性和区域选择性、立体选择性、键选择性等优点。 二、有机相酶反应的优点 ⒈有利于疏水性底物的反应。(主要提高脂溶性底物的溶解度,有利于高浓度底物连续 生物转化。) ⒉可提高酶的热稳定性,提高反应温度加速反应。 ⒊能催化在水中不能进行的反应(有许多难溶于水的非极性底物能够溶于有机溶剂中) ⒋可改变反应平衡移动方向(使许多热力学平衡从加水分解反应转为其逆反应,如酶 合成,酯交换等)主要朝着合成而不是水解的方向进行。 ⒌可控制底物专一性(不同底物反应所选最适溶剂不一定相同)。 ⒍可防止由水引起的副反应。 ⒎可扩大反应pH 值的适应性。 ⒏酶易于实现固定化。 ⒐酶和产物易于回收。(酶不溶于有机溶剂,有利于产物分离和酶的回收利用,且从低 沸点的溶剂中分离纯化产物比水中容易。) ⒑可避免微生物污染。 仿水溶剂体系 原理: 可用二甲基甲酰胺(DMF),乙二醇,丙三醇等极性添加剂部分或全部替代系统中的辅助溶剂水,从而影响酶的活性和立体选择性。 仿水溶剂体系 极性添加剂对体系的影响

酶促反应的特点与作用机制

20 ~ 20 学年度第学期 教师课时授课教案 学科系:医学院授课教师: 专业:科目:生物化学 教研室主任签字:学科系系办主任签字:年月日年月日

第二节酶促反应的特点与作用机制 一、酶促反应的特点 酶是一类催化剂,具有一般催化剂的特征:在化学反应前后没有质和量的改变;只能催化热力学上允许进行的反应;只加速可逆反应的进程,不改变平衡点;对可逆反应的正反应和逆反应都具有催化作用。但酶的化学本质是蛋白质,又具有一般催化剂所没有的特征。 (一)高度的催化效率 酶的催化效率通常比非催化反应高108~1020倍,比一般催化剂高107-1013倍。例如蔗糖酶催化蔗糖水解的速率是H+催化作用的2.5×1012倍,脲酶催化尿素的水解速率是H+催化作用的7×1012倍,且不需要较高的反应温度。研究表明,酶能更有效地降低反应的活化能,使参与反应的活化分子数量显著增加,从而大大提高酶的催化效率。 (二)高度的专一性 一种酶只能催化一种或一类化合物,或一种化学键,发生一定的化学反应,生成一定的产物,这种特性称为酶的专一性或特异性。根据酶对底物选择的严格程度不同,酶的专一性可分为三种类型。 1.绝对专一性酶只作用于某一特定的底物,进行一种专一的反应,生成一种特定的产物,称为绝对专一性。例如,尿酶只催化尿素水解成NH3和CO2,而对尿素的衍生物如甲基尿素没有催化作用。 2.相对专一性有些酶能作用于一类化合物或一种化学键,这种不太严格的选择性称为相对专一性。如磷酸酶对一般的磷酸键都能水解,不论是甘油磷酸酯,还是葡萄糖磷酸酯;蔗糖酶不仅水解蔗糖,

也能水解棉子糖,使之生成蜜二糖和果糖。 3.立体异构专一性有些酶对底物的立体构型有要求,仅作用于底物的一种立体异构体,这种特性称为酶的立体异构专一性。如L-氨基酸氧化酶只作用于L-氨基酸,对D-氨基酸则没有催化作用;淀粉酶只能水解淀粉中的α-1,4-糖苷键,而不能水解纤维素中的β-1,4-糖苷键。 (三)酶具有不稳定性 酶所催化的反应都是在比较温和的条件下进行的,如常温、常压、接近中性的环境等。由于酶的化学本质是蛋白质,任何能引起蛋白质变性的理化因素,如强酸、强碱、重金属盐、高温、紫外线、X射线等均能影响酶的催化活性,甚至使酶完全失活。 (四)酶促反应具有可调节性 酶促反应受多种因素的调控,以适应内外环境变化和生命活动的需要。例如在细胞内酶的分布具有区域化;酶原的激活使酶在合适的环境被激活和发挥作用;代谢物对关键酶、变构酶的抑制与激活和酶的共价修饰等调节;酶的含量受到酶蛋白合成的诱导、阻遏与酶降解速率的调节。 二、酶的作用机制 (一)酶能更有效地降低反应活化能 在任何一种热力学允许的反应体系中,底物分子所含能量各不相同,只有那些能量达到或超过一定水平的过渡态分子(即活化分子)オ有可能发生化学反应,底物分子达到活化分子所需要的最小能量称为

酶的定义及特点

酶的定义及特点 酶的概念: 酶是由活细胞合成的,对其特异底物起高效催化作用的生物催化剂(biocatalyst)。已发现的有两类:主要的一类是蛋白质酶(enzyme),生物体内已发现4000多种,数百种酶得到结晶。美国科学家Cech于1981年在研究原生动物四膜虫的RNA前体加工成熟时发现核酶“ribozyme”,为数不多,主要做用于核酸(1989年的诺贝尔化学奖)。 二、酶的作用特点 酶所催化的反应称为酶促反应。在酶促反应中被催化的物质称为底物,反应的生成物称为产物。酶所具有的催化能力称为酶活性。 酶作为生物催化剂,具有一般催化剂的共性,如在反应前后酶的质和量不变;只催化热力学允许的化学反应,即自由能由高向低转变的化学反应;不改变反应的平衡点。但是,酶是生物大分子,又具有与一般催化剂不同的特点。 1.极高的催化效率 酶的催化效率通常比非催化反应高108~1020倍,比一般催化剂高107~1013倍。例如,脲酶催化尿素的水解速度是H+催化作用的7×1012倍;碳酸酐酶每一酶分子每秒催化6×105 CO2与水结合成H2CO3,比非酶促反应快107倍。 2.高度的特异性

酶对催化的底物有高度的选择性,即一种酶只作用一种或一类化合物,催化一定的化学反应,并生成一定的产物,这种特性称为酶的特异性或专一性。有结构专一性和立体异构专一性两种类型。 结构专一性又分绝对专一性和相对专一性。前者只催化一种底物,进行一种化学反应。如脲酶仅催化尿素水解。后者可作用一类化合物或一种化学键。如酯酶可水解各种有机酸和醇形成的酯。在动物消化道中几种蛋白酶专一性不同,胰蛋白酶只水解Arg或Lys羧基形成的肽键;胰凝乳蛋白酶水解芳香氨基酸及其它疏水氨基酸羧基形成的肽键。 立体异构专一性指酶对底物立体构型的要求。例如乳酸脱氢酶催化L-乳酸脱氢为丙酮酸,对D-乳酸无作用;L-氨基酸氧化酶只作用L-氨基酸,对D-氨基酸无作用。 3.酶活性的可调节性 酶促反应受多种因素的调控,通过改变酶的合成和降解速度可调节酶的含量;酶在胞液和亚细胞的隔离分布构成酶的区域化调节;代谢物浓度或产物浓度的变化可以抑制或激活酶的活性;激素和神经系统的信息,可通过对关键酶的变构调节和共价修饰来影响整个酶促反应速度。所以酶是催化剂又是代谢调节元件,酶水平的调节是代谢调控的基本方式。 4.酶的不稳定性

影响酶催化作用的因素

影响酶催化作用的因素 1.酶催化速率的表示方法:单位时间内底物的减少量或产物的生成量。 2.影响酶作用的因素及其规律。影响酶促反应的因素常有酶的浓度、pH、温度、、底物浓度、激活剂、抑制剂等,其变化规律有以下特点: (1)温度对酶促反应的影响 ①在一定温度范围内酶促反应速率随温度的升高而加快;但当温 度升高到一定限度时,酶促反应速率不仅不再加快反而随着温度的升 高而下降。②在一定条件下,酶活性最大时的温度称为该酶的最适温 度。见图1。 ③低温影响酶的活性,但不会使酶的空间结构破坏,温度升高后,酶 仍能恢复活性。但高温会导致酶变性,使其永久失去活性。 (2)pH对酶促反应的影响 ①每一种酶只能在一定限度的pH范围内才有活性,超过这个范围 酶就会永久失去活性。 ②在一定条件下,每一种酶在某一pH时活性最大,此pH称为该酶的 最适pH。如图2表示胰蛋白酶的活性与pH的关系。 (3)底物(反应物)浓度对酶促反应的影响 ①在底物浓度较低时,反应速率随底物浓度增加而加快,反应速 率与底物浓度近乎成正比。 ②在底物浓度较高时,底物浓度增加,反应速率也随之加快,但 不显著。 ③当底物浓度很大,且达到一定限度时,反应速率就达到一个最 大值,此时即使再增加底物浓度,反应速率也几乎不再改变,原因是 酶饱和了。见图3。 (4)酶浓度对酶促反应的影响。在底物足够、其他条件固定的条件 下,反应系统中不含有抑制酶活性的物质及其他不利于酶发挥作用的 因素时,酶促反应速率与酶浓度成正比。见图4。 (5)酶激活剂和酶抑制剂对酶活性的影响 ①酶激活剂:能增强酶的活性或使非活性的酶变为活性酶,如唾 液淀粉酶需要被氯离子激活后,其活性才能增强。 ②酶抑制剂:能使酶的活性下降或丧失,如氰化物可以抑制细胞 色素氧化酶的活性。 影响酶作用的因素: 曲线分析:

酶作为生物催化剂的特点

酶作为生物催化剂的特点:1,用量少而催化效率高;2,专一性高;3,反应条件温和 4,可调节性 影响酶催化作用的因素:1,底物浓度对酶促反应速度的影响在低底物浓度时, 反应速度与底物浓度成正比,表现为一级反应特征。当底物浓度达到一定值,几乎所有的酶都与底物结合后,反应速度达到最大值(Vmax),此时再增加底物浓度,反应速度不再增加,表现为零级反应。2. pH 的影响在一定的pH 下, 酶具有最大的催化活性,通常称此pH 为最适pH。pH影响酶活力的原因可能有以下几个方面:(1)过酸或过碱可以使酶的空间结构破坏,引起酶构象的改变,酶活性丧失。(2)当pH改变不很剧烈时,酶虽未变性,但活力受到影响。(3)pH影响维持酶分子空间结构的有关基团解离,从而影响了酶活性部位的构象,进而影响酶的活性3. 温度的影响一方面是温度升高,酶促反应速度加快。另一方面,温度升高,酶的高级结构将发生变化或变性,导致酶活性降低甚至丧失。因此大多数酶都有一个最适温度。在最适温度条件下,反应速度最大。4.酶浓度的影响在一个反应体系中,当[S]>>[E]反应速率随酶浓度的增加而增加(v=k[E]),这是酶活测定的基础之一。5 抑制剂对酶活性的影响使酶的活性降低或丧失的现象,称为酶的抑制作用。能够引起酶的抑制作用的化合物则称为抑制剂酶的抑制剂一般具备两个方面的特点:a.在化学结构上与被抑制的底物分子或底物的过渡状态相似。能够与酶的活性中心以非共价或共价的方式形成比较稳定的复合体或结合物。6.激活剂对酶反应的影响凡能提高酶活力的物质都称为激活剂,有的酶反应的系统需要一定的激活剂。 酶的分类与命名(1) 氧化还原酶AH2 + B = A +BH2主要包括脱氢酶(dehydrogenase)和氧化酶 例,醇+NAD+=醛或酮+NADH +H+→氢供体是醇,氢受体是NAD+ 系统命名→醇:NAD+氧化还原酶;推荐名→采用某供体脱氢酶,如醇脱氢酶 (2) 转移酶AB +C =A +BC系统命名:“供体:受体某基团转移酶”。推荐名:“受体(或供体)某基团转移酶。例,L-丙氨酸+2-酮戊二酸=丙酮酸+L-谷氨酸丙氨酸氨基转移酶→L-丙氨酸:2-酮戊二酸氨基转移酶表明该酶催化氨基从L-丙氨酸转移到2-酮戊二酸。(3) 水解酶系统命名:先写底物名称,再写发生水解作用的化学键位置,后面加上“水解酶”。推荐名:在底物名称的后面加上一个酶字。 (4) 裂合酶系统命名:“底物-裂解的基团-裂合酶”。 如L-谷氨酸1-羧基-裂合酶,表明该酶催化L-谷氨酸在1-羧基位置发生裂解反应。 推荐名:在裂解底物名称后面加上“脱羧酶”(decarboxylase)、“醛缩酶”(aldolase)、“脱水酶”(dehydratase)等,在缩合反应方向更为重要时,则用“合酶”( synthase)。 例子,如谷氨酸脱羧酶(L-谷氨酸=γ-氨基丁酸+CO2), 苏氨酸醛缩酶(L-苏氨酸=甘氨酸+乙醛), 柠檬酸脱水酶(柠檬酸=顺乌头酸+水), 乙酰乳酸合酶(2-乙酰乳酸+CO2 =2-丙酮酸)。 (5) 异构酶Isomerase 异构酶按照异构化的类型不同,分为6 个亚类。命名时分别在底物名称的后面加上异构酶(isomerase),、消旋酶(racemase)、变位酶(mutase)、表异构酶(epimerase)、顺反异构酶(cis-trans-isomerase)等。 (6) 合成酶Ligase or Synthetase 系统命名:在两个底物的名称后面加上“连接酶”。如谷氨酸:氨连接酶,其催化反应式为:L-谷氨酸+ 氨+ ATP ===== L-谷氨酰胺+ ADP +Pi。 推荐名:在合成产物名称之后加上“合成酶”。 如,天门冬酰胺合成酶,其催化反应式为: L-天门冬氨酸+ 氨+ATP == L-天门冬酰胺+ AMP +PPi。

第八章 非水相酶催化

?第八章非水相酶催化 ?概述酶催化反应的介质 ?第一节有机介质中的酶促反应概述 ?第二节有机介质中酶促反应的条件 ?第三节有机介质对酶性质的影响 ?第四节有机介质中酶促反应应用举例 ?酶催化反应的介质 ?酶非水相催化的几种类型 ?酶非水相催化的几种类型 ?第一节有机介质中的酶促反应概述 ?一.有机相酶反应的优点: ?二.有机相酶反应具备条件 ?三.有机相酶反应的研究进展 ?四.有机相酶反应的应用现状 ?一.有机相酶反应的优点: ?1.有利于疏水性底物的反应。 ?2.可提高酶的热稳定性,扩大反应pH值的适应性。 ?3.可改变反应平衡移动方向,能催化在水中不能进行的反应。 Eg:脂肪酶在水中催化油脂水解,有机溶剂中催化酯化、转酯化、氨解多种反应。P179(2) ?一.有机相酶反应的优点: ?4.可控制底物专一性,可防止由水引起的副反应。 Eg:酸酐的水解、氰醇的消旋化和酰基转移。P179(3) ?5.酶易于实现固定化。 ?6.酶和产物易于回收。(低沸点溶剂更易分离纯化产物) ?7.可避免微生物污染。 ?有机介质反应体系 ?一、非极性有机溶剂?酶悬浮体系(微水介质体系) 用非极性有机溶剂取代所有的大量水,使固体酶悬浮在有机相中。但仍然含有必需的结合水以保持酶的催化活性(含水量一般小于2%)。 酶的状态可以是结晶态、冻干状态、沉淀状态,或者吸附在固体载体表面上。 ?二、与水互溶的有机溶剂?水单相体系 有机溶剂与水形成均匀的单相溶液体系。酶、底物和产物都能溶解在这种体系中。 ?三、非极性有机溶剂?水两相/多相体系 由含有溶解酶的水相和一个非极性的有机溶剂(高脂溶性)相所组成的两相体系。 ?反应体系中水对酶催化反应的影响 ?酶都溶于水,只有在一定量的水存在的条件下,酶分子才能进行催化反应。所以酶 在有机介质中进行催化反应时,水是不可缺少的成分之一。有机介质中的水含量多 少对酶的空间构象、酶的催化活性、酶的稳定性、酶的催化反应速度等都有密切关 系,水还与酶催化作用的底物和反应产物的溶解度有关。 ?酶分子只有在空间构象完整的状态下,才具有催化功能。在无水的条件下,酶的空 间构象被破坏,酶将变性失活。故此,酶分子需要一层水化层,以维持其完整的空 间构象。维持酶分子完整的空间构象所必需的最低水量称为必需水(essential water)。 ?有机介质中水的含量对酶催化反应速度有显著影响。存在最适水含量。 ?二.有机相酶反应具备条件

酶促反应的特点与作用机制

酶促反应的特点与作用机制 以下是为大家整理的酶促反应的特点与作用机制的相关范文,本文关键词为酶促,反应,特点,作用,机制,酶促,反应,特点,作用,机制,,您可以从右上方搜索框检索更多相关文章,如果您觉得有用,请继续关注我们并推荐给您的好友,您可以在医药卫生中查看更多范文。 酶促反应的特点和作用机制 宝鸡职业技术学院 20~20学年度第学期 教师课时授课教案

学科系:医学院授课教师: 专业:科目:生物化学 教研室主任签字:学科系系办主任签字:年月日年月日 酶促反应的特点和作用机制 宝鸡职业技术学院 第二节酶促反应的特点与作用机制 一、酶促反应的特点 酶是一类催化剂,具有一般催化剂的特征:在化学反应前后没有

质和量的改变;只能催化热力学上允许进行的反应;只加速可逆反应的进程,不改变平衡点;对可逆反应的正反应和逆反应都具有催化作用。但酶的化学本质是蛋白质,又具有一般催化剂所没有的特征。 (一)高度的催化效率 酶的催化效率通常比非催化反应高108~1020倍,比一般催化剂高107-1013倍。例如蔗糖酶催化蔗糖水解的速率是h+催化作用的2.51012倍,脲酶催化尿素的水解速率是h+催化作用的71012倍,且不需要较高的反应温度。研究表明,酶能更有效地降低反应的活化能,使参与反应的活化分子数量显著增加,从而大大提高酶的催化效率。 (二)高度的专一性 一种酶只能催化一种或一类化合物,或一种化学键,发生一定的化学反应,生成一定的产物,这种特性称为酶的专一性或特异性。根据酶对底物选择的严格程度不同,酶的专一性可分为三种类型。 1.绝对专一性酶只作用于某一特定的底物,进行一种专一的反应,生成一种特定的产物,称为绝对专一性。例如,尿酶只催化尿素水解成nh3和co2,而对尿素的衍生物如甲基尿素没有催化作用。

酶作用的特性

精品资源 欢下载 酶作用的特性 酶是催化剂,只需微量就可以使所催化的反应加速进行,而其本身的质和量都不发生变化,此外酶是生物催化剂,它有着不同于化学催化剂的特性。 (1)酶具有高效性 酶的催化能力远远超过化学催化剂。例如,碳酸酐酶能够催化下面的反应: 3222CO H O H CO =+ 碳酸酐酶是目前已经知道的催化反应速度最快的酶之一。每个碳酸酐酶分子每秒能够催化5106?个2CO ,使它们与相同数量的O H 2结合,形成相同数量的32CO H 。碳酸酐酶催化上述反应的速度比非酶催化的上述反应速度快上710倍。酶为什么会具有这样强大的催化能力呢?酶的中间产物学说认为:酶在催化某一底物时,先与底物结合成一种不稳定的中间产物。这种中间产物极为活泼,很容易发生化学反应而变成反应物,并且放出酶。按照中间产物学说,酶的催化反应可以写成下式: S (底物)十E (酶)=SE (中间产物)=E 十P (反应产物) (2)酶具有高度的专一性 这就是说,一种酶只能作用于一种底物,或一类分子结构相似的底物,促使底物进行一定的化学反应,产生一定的反应产物。酶为什么具有这样高度的专一性呢?这可以用“诱导契合学说”来解释。 所谓“诱导契合学说”是指底物一旦与酶结合,酶分子上的某些基团常常发生明显的变化,从而使酶蛋白的构象发生相应的变化,使酶的活性中心的空间结构和底物的空间结构十分吻合,最终契合形成酶—底物络合物,这种变化的结果,使酶只能与对应的化合物契合,从而排斥了那些形状、大小不适合的化合物。科学家们对羧肽酶等进行了X 射线衍射研究,研究的结果有力地支持了这个假说。 (3)酶很容易失活 同一般的催化剂相比,酶很容易失去活性。酶失活的原因是蛋白质的空间结构发生改变造成的。 酶的催化作用,受到温度、pH 和某些化合物等因素的影响。 温度的影响:在一定的温度范围(0—40℃)内,酶的催化作用速度随着温度的升高而加快。一般地说,温度每升高10℃,反应速度就相应提高一倍。但超过60℃,绝大多数的酶就会失去活性。 pH 的影响:酶对环境中的pH 十分敏感。酶只有在一定的pH 范围内才能表现出活性,超过这个范围,酶就失活了。即使在这个有限的pH 范围内,酶的活性也要随着环境中pH 的变动而有所不同。一般来说,酶的最适pH 在4~8之间。但是,各种酶的最适pH 是不一样的。 某些化合物的影响:有些化合物可引起酶失活,如酒精、有机磷农药、有机氯农药等有机小分子物质;重金属离子等;有些离子或简单的有机化合物,能够增强酶的活性,这些物质叫做酶的激活剂。例如,经过透析的唾液淀粉酶的活性不高、如果加入少量的NaCl ,这种酶的活性就会大大增强,因为NaCl 中的-Cl 起到了激活唾液淀粉酶的作用;还有些物质能够抑制酶的活性,这类物质叫做酶的抑制剂,例如,氰化物可以抑制细胞色素氧化酶的活性。

【生物学】第六章酶的非水相催化

第六章酶的非水相催化 ◆人们以往普遍认为只有在水溶液中酶才具有催化活性。 ◆酶在非水相介质中催化反应的研究:在理论上进行了非水介质(包括有机溶剂介质,超临界流体介质,气相介质,离子液介质等)中酶的结构与功能、非水介质中酶的作用机制,非水介质中酶催化作用动力学等方面的研究,初步建立起非水酶学(non-aqueous enzymology)的理论体系。 ◆非水介质中酶催化作用的应用研究,取得显著成果。 1.酶非水相催化的研究概况 ◆酶在非水介质中进行的催化作用称为酶的非水相催化。 1.1有机介质中的酶催化: ◆有机介质中的酶催化是指酶在含有一定量水的有机溶剂中进行的催化反应。 ◆适用于底物、产物两者或其中之一为疏水性物质的酶催化作用。 ◆酶在有机介质中由于能够基本保持其完整的结构和活性中心的空间构象,所以能够发挥其催化功能。 ◆酶在有机介质中起催化作用时,酶的底物特异性、立体选择性、区域选择性、键选择性和热稳定性等都有所改变。 1.2气相介质中的酶催化: ◆气相介质中的酶催化是指酶在气相介质中进行的催化反应。 ◆适用于底物是气体或者能够转化为气体的物质的酶催化反应。 ◆由于气体介质的密度低,扩散容易,所以酶在气相中的催化作用与在水溶液中的催化作用有明显的不同特点。 1.3超临界流体介质中的酶催化: ◆超临界介质中的酶催化是指酶在超临界流体中进行的催化反应。 ◆用于酶催化反应的超临界流体应当对酶的结构没有破坏作用,对催化作用没有明显的不良影响;具有良好的化学稳定性,对设备没有腐蚀性;超临界温度不能太高或太低,最好在室温附近或在酶催化的最适温度附近;超临界压力不能太高,可节约压缩动力费用;超临界流体要容易获得,价格要便宜等。 1.4离子液介质中的酶催化: ◆离子液介质中的酶催化是指酶在离子液中进行的催化作用。 ◆离子液(ionic liquids)是由有机阳离子与有机(无机)阴离子构成的在室温条件下呈液态的低熔点盐类,挥发性低、稳定性好。酶在离子液中的催化作用具有良好的稳定性和区域选择性、立体选择性、键选择性等显著特点。 ◆在酶的非水相催化中,研究最多的非水介质是有机溶剂。 ◆酯酶、脂肪酶、蛋白酶、纤维素酶、淀粉酶等水解酶,过氧化氢酶、过氧化物酶、醇脱氢酶、胆固醇氧化酶、多酚氧化酶、细胞色素氧化酶等氧化还原酶以及醛缩酶等转移酶中的十几种酶都可以在适当的有机溶剂介质中起催化作用。而且酶在有机介质中的热稳定性比水溶液中显著提高。 ◆在理论上进行了非水介质(包括有机溶剂介质,超临界流体介质,气相介质,离子液介质等)中酶的结构与功能、非水介质中酶的作用机制,非水介质中酶催化作用动力学等方面的研究,初步建立起非水酶学(non-aqueous enzymology)的理论体系。 ◆并进行了非水介质中,特别是在有机介质中酶催化作用的应用研究,利用酶在有机介质中的催化作用进行多肽、酯类等的生产,甾体转化,功能高分子的合成,手性药物的拆分等方

生物化学课后答案6酶

6 酶 1.作为生物催化剂,酶最重要的特点是什么? 解答:作为生物催化剂,酶最重要的特点是具有很高的催化效率以及高度专一性。 2.酶分为哪几大类?每一大类酶催化的化学反应的特点是什么?请指出以下几种酶分别属于哪一大类酶: 磷酸葡糖异构酶(phosphoglucose isomerase) 碱性磷酸酶(alkaline phosphatase) ●肌酸激酶(creatine kinase) ?甘油醛―3―磷酸脱氢酶(glyceraldehyde-3-phosphate dehydrogenase) ?琥珀酰―CoA合成酶(succinyl-CoA synthetase) ?柠檬酸合酶(citrate synthase) ?葡萄糖氧化酶(glucose oxidase) ?谷丙转氨酶(glutamic-pyruvic transaminase) ?蔗糖酶(invertase) ? T4 RNA 连接酶(T4 RNA ligase) 解答:前两个问题参考本章第3节内容。 异构酶类; 水解酶类; ●转移酶类; ?氧化还原酶类中的脱氢酶; ?合成酶类; ?裂合酶类; ?氧化还原酶类中的氧化酶; ?转移酶类; ?水解酶类; ?合成酶类(又称连接酶类)。 3.什么是诱导契合学说,该学说如何解释酶的专一性? 解答:“诱导契合”学说认为酶分子的结构并非与底物分子正好互补,而是具有一定的柔性,当酶分子与底物分子靠近时,酶受底物分子诱导,其构象发生有利于与底物结合的变化,酶与底物在此基础上互补契合进行反应。根据诱导契合学说,经过诱导之后,酶与底物在结构上的互补性是酶催化底物反应的前提条件,酶只能与对应的化合物契合,从而排斥了那些形状、大小等不适合的化合物,因此酶对底物具有严格的选择性,即酶具有高度专一性。 4.阐述酶活性部位的概念、组成与特点。 解答:参考本章第5节内容。

生物酶的特点催化的优点

生物酶的特点催化的优点 生物酶的特点催化的优点 高效性。酶的催化效率非常高。 具有高度特异性。一种酶只能催化一种化学反应。 反应条件比较温和。强酸,强碱都可以使其失去活性。 生物酶是一种无毒、对环境友好的生物催化剂,其化学本质为蛋白质。酶的生产和应用,在国内外已具有80多年历史,进入20世 纪80年代,生物工程作为一门新兴高新术在我国得到了迅速发展, 酶的制造和应用领域逐渐扩大,酶在纺织工业中的应用也日臻成熟,由过去主要用于棉织物的退浆和蚕丝的脱胶,至现在在纺织染整的 各领域的广泛应用,体现了生物酶在染整工业中的优越性。 现在酶处理工艺已被公认为是一种符合环保要求的绿色生产工艺,它不仅使纺织品的.服用性能得到改善和提高,又因无毒无害,用量少,可生物降解废水,无污染而有利于生态环保的保护。 作为大的分类,酶类分为“分解系酶”和“合成系酶”。比如说,将蛋白质分解成能被吸吸收(那样)大小的氨基酸,通过分解系的酶 和吸收后的氨基酸来合成自身身体所必需的蛋白质,这些都是根据 酶来进行的。但是,为了区分生体内和生体外被使用的酶,称在生 体组织内被使用的酶为“代谢酶”,称在肠胃内等生体组织外被使 用的酶为“消化酶”,也可以说是为了方便起见。在生物化学上, 分为酸化还原酶、转移酶、加水分解酶、脱离酶、异性化酶和合成 酶等六大类。 溶菌酶 溶菌酶可作为一种具有杀菌作用的天然抗感染物质,有抗菌、消肿及加快组织恢复功能等作用。常用于人体肌肤护理。 果胶酶

果胶酶主要是由果胶裂解酶、聚半乳糖醛酸酶、果胶酸盐裂解酶和果胶酯酶组成。果胶物质是高度酯化的聚半乳糖醛酸。果胶酶作 用于果胶物质时,果胶裂解酶、聚半乳糖醛酸酶、果胶酸盐裂解酶 直接作用于果胶聚合物分子链内部的配糖键上,而果胶酯酶则使聚 半糖醛酸酯水解,为聚半乳糖醛酸酶和果胶酸盐裂解酶创造更多的 位置。 脂肪酶 脂肪酶能将脂肪水解成甘油和脂肪酸,脂肪酸进一步进行B一氧化,每次脱下一个C2物,生成乙酰COA(N—环己基辛基胺),进入TCA(三羧酸)环彻底氧化或进入乙醛酸环合成糖类。 脂肪酶(EC3.2.2.3,甘油酯水解酶)是分解天然油脂的酶,其在 纺织加工中主要用于绢纺原料脱脂处理;同时,只没在羊毛洗毛中是 较好的助洗剂,能去除羊毛附生杂质、脂蜡,使羊毛获得可纺性;对 棉织物进行精炼处理,能有效的去除棉的脂蜡;对涤纶进行处理,可 改善涤纶表面的亲水性。 蛋白酶 由微生物分泌的蛋白酶因菌种不同而异,例如枯草杆菌分泌明胶酶和酪蛋白酶,可以水解明胶和酪蛋白;费氏链酶菌分泌角蛋白酶, 可以水解动物的毛、角、蹄的角蛋白。蛋白酶将蛋白质分解成肽, 再经肽酶水解成氨基酸。 纤维素酶 纤维素酶是一个多组分酶体系,纺织工业中应用的纤维素酶大多数是由木酶属真菌制造的。纤维素酶中的纤维素二糖水解酶又称为 外切纤维素酶,由CHBI和CHBII两种酶组成,而内切葡聚糖酶,又 称为内切纤维素酶,至少由5种纤维素酶(EGI、EGII、EGHI、EGIV、EGV)组成。此外,还有13一葡萄糖醛酶。这些纤维素酶在纤维素的 水解中具有协同作用。 过氧化氢酶

酶催化

1.1 酶催化概念 酶催化是介于均相与非均相催化反应之间的一种催化反应方式,它既可以看成是反应物与酶形成的一种化合物,也可以看成是酶表面产生的吸附物质,然后再进行反应的。酶在加速或者减慢化学反应方面发挥着重要的意义,在一个活细胞中同时进行着几百种不同的 反应,这都是借助于细胞内部相当数量的酶来完成的,它们的反应与其他催化反应一直,催化率与温度、酸碱值以及敏感性方 面都有着一定的关系。 1.2 酶催化特点 酶催化技术在应用的过程中存在着自己独特的方面,酶催化剂在通常情况下都具备着反应条件温和,具备着很高的区域选择性和立体选择性,并且反应大多数都可以在水中直接进行着。随着制药工业对手工业化合物需求量的不断增加、人类环保意识的不断增强,酶 催化技术越来越受到人们的重视,已成为化学制药领域研究最多的技术之一。同时,近年来,随着生物技术和基因工程的应用, 酶催化技术的性能也得到了很大的提升,酶催化反应以及生成成本也得到了显著的提升。在这种社会背景下,人们对酶催化剂 的认识越来越深入,极大的改变了传统酶催化反应要求提出了许多的新内容。 1.3 酶催化技术发展 传统的酶催化反应主要在水相中进行,但自1987年Kilibanov等用脂肪酶粉或固定化酶在几乎无水的有机溶剂中成功地催化合成了肽以及手性的醇、脂和酞胺以来,对酶在非水相介质的催化反应技术的开发及研究报道迅速增加,特别在手性药物的不对称合成及手 性药物拆分的生物技术开发中得到了很多应用。由于脂肪酶本身是一种界面酶,在非水介质中比较稳定,因此,具有良好的工 业化应用前景。 非水相酶催化反应是酶催化反应中的一个重要方面。非水相溶剂通常具有可增加底物溶解度,改变反应的平衡方向, 提高反应的立体选择性,抑制水参与的副反应,易于消除底物和产物的抑制作用,加快生物催化的速率和效率等优点,在药物及药物中间体和食品 等方面具有较大的应用价值。目前非水相中的酶催化技术已衍生出以下几类体系: 无溶剂系统 无溶剂系统是指以纯底物作为溶剂,没有其他溶剂的稀释和参与。通常在类似体系中,底物浓度高, 反应速度快,转化效率高, 并避免了溶剂使用和回收等问题。无溶剂系统与其他反应系统相比具有明显的优势,但局限于底物为液态的酶催化反应,在实际应用时受到 了较大的限制。 有机溶剂系统 有机介质中的酶催化是指酶在含有一定量水的有机溶剂中进行的催化反应。适用于底物、产物两者或其中之一为疏水性物质的酶催化作用。 酶在有机介质中由于能够基本保持其完整的结构和活性中心的空间构象,所以能够发挥其催化功能。它包括:非极性有机溶 剂--酶悬浮体系(微水介质体系),与水互溶的有机溶剂--水单相体系,非极性有机溶剂--水两相/多相体系。 反胶束体系 反胶束是表面活性剂溶解于非极性溶液中形成一个围绕极性核的纳米聚集体,为一种低水含量的油包水微乳液。极性核中的水不同于普通水,其黏度较高,酸性和极性比普通水低,其中的水可以溶解原本不溶的物质,如脂肪酶等生物催化剂。 低共熔混合物 所谓低共熔混合物是指将两种纯净物按不同比例相混合,在一定组成下,相图上出现了一个最低熔化温度点,即低共熔点。此时形成的混合物叫低共熔混合物。低共熔点一般比任何一种纯净物的熔点都低。当体系温度高于低共熔温度时,体系中就会产生包含各种反 应物的液相。实验证明,以该体系为反应介质进行酶促反应时,反应正是在低共熔混合物中的液相发生的。 低共熔多相混合物体系中的酶促反应不需溶剂,成本低、污染少、纯化过程容易,避免了有机溶剂对酶活性的影响,有广阔的应用前景,对食品,制药等产品纯度要求较高的行业来说更具有深远的意义。但目前对它的研究主要限于肽类和酯类的合成。 超临界流体 超临界流体是一种超过临界温度和临界压力的特殊物质,物理性质介于液体和气体之间作为酶反应的介质。超临界流体具有黏度小、易扩散、溶解性好、无毒及产物易分离等特点。常用作超临界流体的有: CO2、SO2、C2H4、C2H6、C3H8、C4H10 、C5H12、CCIF6及 SF6等,其中最常用的是CO2。 离子液体 离子液体由有机阳离子和无机或有机阴离子构成, 在室温或室温附近温度下呈液态,不易挥发,不造成环境污染, 被誉为绿色溶剂。理论上改变不同的阳离子/阴离子组合可以合成多种不同的离子液体。离子液体易于与催化剂一起循环使用,为生物催化反应提供了新 的介质, 可提高催化剂的活性和选择性。对于易使酶失活的离子液体,通过改造其结构、加入缓冲液或调节pH 值等手段恢

相关主题
文本预览
相关文档 最新文档