当前位置:文档之家› 材料力学习题第12章

材料力学习题第12章

材料力学习题第12章
材料力学习题第12章

材料力学习题

第12章

12-1 一桅杆起重机,起重杆AB 的横截面积如图所示。钢丝绳的横截面面积为10mm 2。起重杆与钢丝的许用力均为MPa 120][=σ,试校核二者的强度。

12-2 重物F =130kN 悬挂在由两根圆杆组成的吊架上。AC 是钢杆,直径d 1=30mm ,许用应力[σ]st =160MPa 。BC 是铝杆,直径d 2= 40mm, 许用应力[σ]al = 60MPa 。已知ABC 为正三角形,试校核吊架的强度。

12-3 图示结构中,钢索BC 由一组直径d =2mm 的钢丝组成。若钢丝的许用应力[σ]=160MPa,横梁AC 单位长度上受均匀分布载荷q =30kN/m 作用,试求所需钢丝的根数n 。若将AC 改用由两根等边角钢形成的组合杆,角钢的许用应力为[σ] =160MPa ,试选定所需角钢的型号。

12-4 图示结构中AC 为钢杆,横截面面积A 1=2cm 2;BC 杆为铜杆,横截面面积A 2=3cm 2。[σ]st = 160MPa ,[σ]cop = 100MPa ,试求许用载荷][F 。

12-5 图示结构,杆AB 为5号槽钢,许用应力[σ] = 160MPa ,杆BC 为b h = 2的矩形截面木杆,其截面尺寸为b = 5cm, h = 10cm,许用应力[σ] = 8MPa ,承受载荷F = 128kN ,试求:

(1)校核结构强度;(2)若要求两杆的应力同时达到各自的许用应力,两杆的截面应取多大?

12-6 图示螺栓,拧紧时产生?l = 0.10mm 的轴向变形,试求预紧力F ,并校核螺栓强度。已知d 1=8mm, d 2=6.8mm, d 3=7mm, l 1=6mm, l 2=29mm, l 3=8mm; E =210GPa, [σ]=500MPa 。

12-7 图示传动轴的转速为n=500r/min ,主动轮1输入功率P 1=368kW ,从动轮2和3分别输出功率P 2=147kW 和P 3=221kW 。已知[σ]=212MPa ,[ ? ]=1?/m, G =80GPa 。

(1)试按第四强度理论和刚度条件确定AB 段的直径d 1和BC 段的直径d 2。

(2)若AB段和BC段选用同一直径,试确定直径d。

(3)主动轮和从动轮的位置如可以重新安排,试问怎样安排才比较合理?

12-8图示钢轴,d1 = 4d2/3, M=1kN·m,许用应力[σ]=160MPa,[? ]=0.5?/m, G=80GPa,试按第三强度理论和刚度条件设计轴径d1与d2。

12-9 图示钢轴所受扭转力偶矩分别为M1=0.8kN·m,M2=1.2kN·m及M3=0.4kN·m。已知:l1=0.3m,l2=0.7m, [σ]=100MPa, [?]=0.25?/m, G=80GPa。试按第三强度理论和刚度条件求轴的直径。

12-10图示组合轴,套筒和芯轴借两端刚性平板牢固地连接在一起。设作用在刚性平板上的力矩M=2kN·m,套筒和芯轴的切变模量分别为G1=40GPa,G2=80GPa。许用应力分别为[σ]1=85MPa,[σ]2=110MPa。试按第三强度理论分别校核套筒与芯轴的强度。

12-11图示槽形截面悬臂梁,F=10kN, M=70kN·m, [σt]=35MPa, [σc]=120MPa,试校核其强度。

12-12图示简支梁,由四块尺寸相同的木板胶合而成,试校核其强度。已知:F =4kN, l = 400mm, b = 50mm, h = 80mm,板的许用应力[σ]=7MPa,胶缝的许用应力[τ]=5MPa。

12-13图示外伸梁由25a工字钢制成,其跨度l=6m, 全梁上受均布载荷q作用,为使支座处截面A、B上及跨度中央截面C上的最大正应力均为140MPa,试求外伸部分的长度a及载荷集度q。

12-14某四轮吊车之轨道为两工字形截面梁,设吊车重力W=50kN,最大起重量F=10kN,工字钢的许用应力为[σ] = 160MPa,[τ] = 80MPa,试选择吊车梁的工字钢型号。

12-15矩形截面简支梁由圆形木料制成,已知F = 5kN, a = 1.5m, [σ] = 10MPa。若要求在圆木中所截取的梁抗弯截面系数具有最大值,试确定此矩形截面h的值及所需木料的最小上径d。

12-16如图所示支承楼板的木梁,其两端支承可视为铰支,跨度l = 6m, 两木梁的间距a = 1m,楼板受均布载荷q=3.5kN/m2的作用。若[σ] = 100MPa, [τ] = 10MPa,木梁截面为矩形,b/h = 2/3,试选定其尺寸。

12-17图示为一承受纯弯曲的铸铁梁,其截面为⊥形,材料的拉伸和压缩的许用应力之比[σt]/[σc]=1/4,求水平翼板的合理宽度b。

12-18图示轧辊轴直径D = 280mm,l = 450mm, b = 100mm,轧辊材料的许用应力[σ] = 100MPa。试根据轧辊轴的强度求轧辊能承受的最大轧制力F(F = qb)。

12-19某操纵系统中的摇臂,右端所受的力F1=8.5kN,截面1-1和2-2均为高宽比h/b=3的矩形,材料的许用应力[σ] = 50MPa。试确定1-1及2-2两个横截面的尺寸。

12-20为了起吊W = 300kN的大型设备,采用一台150kN和一台200kN的吊车及一根辅助梁AB,如图所示。已知钢材的许用应力[σ] = 160MPa,l = 4m。试分析和计算:

(1)设备吊在AB的什么位置(以到150kN吊车的间距a表示),才能保证两台吊车都不会超载?

(2)若以普通热轧工字型钢作为辅梁,确定工字钢型号。

12-21图示结构中,ABC为No10普通热轧工字型钢梁,钢梁在A处为铰链支承,B处用圆截面钢杆悬吊。已知梁与杆的许用应力均为[σ] = 160MPa。试求:

(1)许可分布载荷集度q;

(2)圆杆直径d。

12-22组合梁如图所示,已知q = 40kN/m, F = 48kN,梁材料的许用应力[σ] = 160MPa。试根据形变应变能强度理论对梁的强度作全面校核。

12-23梁受力如图所示,已知F = 1.6kN, d = 32mm, E = 200GPa。若要求加力点的挠度不大于许用挠度[v] = 0.05mm,试校核梁的刚度。

12-24一端外伸的轴在飞轮重力作用下发生变形,已知飞轮重W = 20kN,轴材料的E = 200GPa。轴承B处的许用转角[θ] = 0.5?。试设计轴径d。

12-25简易桥式起重机的最大载荷F = 20kN,起重机梁为32a工字钢,E = 210GPa, l = 8.76m,规定许用挠度[v] = l/500。试校核梁的刚度。

12-26图示承受均布载荷的简支梁由两根竖向放置普通槽钢组成。已知q = 10kN/m, l= 4m,材料的[σ] = 100MPa,许用挠度[v] = l/1000, E = 200GPa。试确定槽钢型号。

12-27图示三根压杆,它们的最小横截面面积相等,材料相同,许用应力[σ] = 120MPa,试校核三杆的强度。

12-28矩形截面杆在自由端承受位于纵向对称面内的纵向载荷F,若已知F = 60kN,试求:

(1)横截面上点A的正应力取最小值的截面高度h;

(2)在上述h值下点B的正应力值。

12-29已知木质简支梁,横截面为矩形,l = 1m, h = 200mm, b = 100mm。受力情况如图所示,F = 4kN。[σ] = 20MPa。校核强度。

12-30有一用10号工字钢制造的悬臂梁,长度为l,端面处承受通过截面形心且与z轴夹角为α的集中力F作用。试求当α为何值时,截面上危险点的应力值为最大。

12-31两槽钢一端固定,另一端装一定滑轮,拉力F可通过定滑轮与拉力为40kN的W力平衡,构件的主要尺寸见图,[σ] = 80MPa,试选择适当的槽钢型号。

12-32由三根木条胶合而成的悬臂梁的如图所示,跨长l = 1m,若胶合面上的许用切应力为0.34MPa,木材的许用弯曲正应力为[σ] = 10MPa,许用切应力[τ] = 1MPa,试求许可载荷F。

12-33手摇式提升机如图所示,最大提升力为W = 1kN,提升机轴的许用应力[σ] = 80MPa。试按第三及第四强度理论设计轴的直径。

12-34图示一齿轮传动轴,齿轮A上作用铅垂力F1= 5kN,齿轮B上作用水平方向力F2= 10kN。若[σ] = 100MPa,齿轮A的直径为300mm,齿轮B的直径为150mm,试用第四强度理论计算轴的直径。

12-35电动机功率P = 9kW,转速n = 715rpm,皮带轮直径D = 250mm,电动机轴外伸长度l = 120mm,轴的直径d = 40mm, 轴材料的许用应力[σ] = 60MPa。试按最大切应力理论校核轴的强度。

12-36图示传动轴,传递的功率P = 7kW,转速n = 200rpm。齿轮A上作用的力F与水平切线夹角20?(即压力角)。皮带轮B上的拉力F1和F2为水平方向,且F1 = 2F2。若轴的[σ] = 80MPa,试对下列两种情况,按最大切应力理论设计轴的直径。

(1)忽略皮带轮的重力W。

(2)考虑皮带轮的自重W = 1.8kN。

12-37 圆截面等直杆受横向力F 和绕轴线的外力偶M 作用。由实验测得杆表面A 点处沿轴线方向的线应变40104-?= ε,杆表面B 点处沿与母线成45?方向的线应变4451075.3-?= ε。并知杆的抗弯截面系数W = 6000mm 3,弹性模量E = 200GPa ,泊松比v = 0.25,许用应力[σ] = 140MPa 。试按第三强度理论校核杆的强度。

12-38 图示圆截面杆,直径为d ,承受轴向力F N 与扭力矩T 作用,杆用塑性材料制成,许用应力为[σ]。试画出危险点处微体的应力状态图,并根据第四强度理建立杆的强度条件。

12-39 图示圆截面钢杆,承受载荷F 1,F 2与力矩M 作用。试根据第三强度理论校核杆的强度。已知载荷F 1 = 500N ,F 2 = 15kN ,力矩M = 1.2kN ·m ,许用应力[σ] = 160MPa 。

12-40 图示圆截面钢轴,由电机带动。在斜齿轮的齿面上,作用有切向力F t = 1.9kN 、径向力F r = 740N 以及 平行于轴线的外力F = 660N 。若许用应力[σ] = 160MPa ,试根据第四强度理论校核轴的强度。

12-41图示简支梁,跨度中点承受集中载荷F作用。若横截面的宽b保持不变,试根据等强度观点确定截面高度h (x)的变化规律。许用应力[σ]与许用切应力[τ]均为已知。

材料力学习题(6)第十一章 哈工业大材料力学本科生试卷和课后题目

材料力学习题 第11章 11-1 已知应力状态如图(图中应力单位为MPa )。若3.0=ν,试分别计算出第一到第四强度理论的相当应力。 11-2 构件中危险点的应力状态如图所示,试选择合适的强度理论对以下两种情况作强度校核(3.0=ν): 1.构件材料为Q235钢,160][=σMPa ;危险点的应力状态为45=x σMPa , 135=y σMPa ,0==xy z τσ。 2.构件材料为铸铁,30][=σMPa ;危险点的应力状态为20=x σMPa ,25-=y σMPa ,30=z σMPa ,0=xy τ。 11-3 由单向应力状态和纯切应力状态组成的平面应力状态如图所示,试证明:不论正应力是拉应力还是压应力,不论切应力是正还是负,总有0 , 0 , 0min 32max 1<==>=σσσσσ。因而 11-4 已知应力状态如图(应力单位为MPa )所示,试按第三与第四强度理论计算其相当应力。 11-5 某结构上危险点处应力状态如图所示,其中MPa 3.46 , MPa 7.116-==xy x τσ。材料为钢,许用应力MPa 160][=σ。试校核此结构的强度。 11-6 已知应力状态如图(应力单位为MPa )所示,按第三、第四强度理论考察,图中三个应力状态是否等价?三个应力状态的平均应力m σ彼此是否相等?试分别画出应力圆,并观察它们的特点。 11-7 试说明或证明,第三、第四强度理论与平均应力 m σ无关。 11-8 钢轨上与车轮接触点处为三向压应力状态,已知,6501-=σMPa ,7002-=σMPa ,9003-=σMPa 。如钢轨材料的许用应力300][=σMPa ,试按第三与第四强度理论校核其强度。

工程力学材料力学_知识点_及典型例题

作出图中AB杆的受力图。 A处固定铰支座 B处可动铰支座 作出图中AB、AC杆及整体的受力图。 B、C光滑面约束 A处铰链约束 DE柔性约束 作图示物系中各物体及整体的受力图。 AB杆:二力杆 E处固定端 C处铰链约束

(1)运动效应:力使物体的机械运动状态发生变化的效应。 (2)变形效应:力使物体的形状发生和尺寸改变的效应。 3、力的三要素:力的大小、方向、作用点。 4、力的表示方法: (1)力是矢量,在图示力时,常用一带箭头的线段来表示力;(注意表明力的方向和力的作用点!) (2)在书写力时,力矢量用加黑的字母或大写字母上打一横线表示,如F、G、F1等等。 5、约束的概念:对物体的运动起限制作用的装置。 6、约束力(约束反力):约束作用于被约束物体上的力。 约束力的方向总是与约束所能限制的运动方向相反。 约束力的作用点,在约束与被约束物体的接处 7、主动力:使物体产生运动或运动趋势的力。作用于被约束物体上的除约束力以外的其它力。 8、柔性约束:如绳索、链条、胶带等。 (1)约束的特点:只能限制物体原柔索伸长方向的运动。 (2)约束反力的特点:约束反力沿柔索的中心线作用,离开被约束物体。() 9、光滑接触面:物体放置在光滑的地面或搁置在光滑的槽体内。 (1)约束的特点:两物体的接触表面上的摩擦力忽略不计,视为光滑接触面约束。被约束的物体可以沿接触面滑动,但不能沿接触面的公法线方向压入接触面。 (2)约束反力的特点:光滑接触面的约束反力沿接触面的公法线,通过接触点,指向被约束物体。() 10、铰链约束:两个带有圆孔的物体,用光滑的圆柱型销钉相连接。 约束反力的特点:是方向未定的一个力;一般用一对正交的力来表示,指向假定。()11、固定铰支座 (1)约束的构造特点:把中间铰约束中的某一个构件换成支座,并与基础固定在一起,则构成了固定铰支座约束。

材料力学习题册答案-第2章-拉压

第二章 轴向拉压 一、 选择题 1.图1所示拉杆的外表面上有一斜线,当拉杆变形时,斜线将( D ) A.平动 B.转动 C.不动 D.平动加转动 2.轴向拉伸细长杆件如图2所示,则正确的说法是 ( C ) A.1-1、2-2面上应力皆均匀分布 B.1-1、2-2面上应力皆非均匀分布 C. 1-1面上应力非均匀分布,2-2面上应力均匀分布 D.1-1 面上应力均匀分布,2-2面上应力非均匀分布 F P P 1 1 2 2 图1 图2 3.有A 、B 、C 三种材料,其拉伸应力-应变实验曲线如图3所示,曲线( B )材料的弹性模量E 大,曲线( A )材料的强度高,曲线( C )材料的塑性好。 A B C 图3 ε σ B A C 图4 p α h b a 图5 4.材料经过冷却硬化后,其( D )。 A .弹性模量提高,塑性降低 B .弹性模量降低,塑性提高 C .比利极限提高,塑性提高 D .比例极限提高,塑性降低 5.现有钢铸铁两种杆件,其直径相同。从承载能力与经济效益两个方面考虑,图4所示结构中两种合理选择方案是( A )。 A .1杆为钢,2 杆为铸铁 B .1杆为铸铁,2杆为钢 C .2杆均为钢 D .2杆均为铸铁 6.如图5所示木接头,水平杆与斜杆成角,其挤压面积A 为( A )。 A .bh B .bh tg C .bh/cos D .bh/(cos -sin ) 7.如图6所示两板用圆锥销钉联接,则圆锥销钉的受剪面积为( C ),计算挤压面积为 ( D ) A . B . C . D (3d+D )

二、填空题 1.直径为d 的圆柱体放在直径为D =3d ,厚为t 的圆基座上,如图7所示低级对基座的支反力均匀分布,圆柱承受轴向压力P ,则基座剪切面的剪力 。 F F h h D d 图6 P d t D 图7 2.判断剪切面和挤压面应注意的是:剪切面是构件的两部分有发生 相对错动 趋势的平面;挤压面是构件 相互挤压 的表面。 三、试画下列杆件的轴力图 2 3 1 1 2 F F F F 3 + -解: 2KN 1 1 2 2 3 3 18KN 3KN 25KN 10KN + -15KN 10KN 解: 四、计算题 1.作出图示等截面直杆的轴力图,其横截面积为,指出最大正应力发生的截面,并计 算相应的应力值。 4KN 10KN 11KN 5KN A B C D 解:+ + -轴力图如下: 4KN 5KN

材料力学习题册答案-第13章能量法

第十三章能量法 一、选择题 1.一圆轴在图1所示两种受扭情况下,其(A )。 M A 应变能相同,自由端扭转角不同; B 应变能不同,自由端扭转角相同; 2 M M C 应变能和自由端扭转角均相同; D 应变能和自由端扭转角均不同。—_a—一i—_a—一 (图1) 2?图2所示悬臂梁,当单独作用力F时,截面B的转角为θ,若先加力偶M,后加F,则在加F的过程中,力偶M ( C )。 A 不做功; B 做正功; 1 C 做负功,其值为Md ; D 做负功,其值为一Mr。 2 3 ?图2所示悬臂梁,加载次序有下述三种方式:第一种为F、M同时按比例施加;第二种 为先加F ,后加M;第三种为先加M ,后加F。在线弹性范围内,它们的变形能应为(D )。 A 第一种大; B 第二种大; C 第三种大; D 一样大。 4.图3所示等截面直杆,受一对大小相等,方向相反的力F作用。若已知杆的拉压刚度为 μFl EA ,材料的泊松比为μ,则由功的互等定理可知,该杆的轴向变形为,I为杆件长 EA 度。(提示:在杆的轴向施加另一组拉力F。) A0 ; 卩Fb C EA F l M I *] A B C4 (图2) Fb EA D 无法确定。 b:

、计算题 1.图示静定桁架,各杆的拉压刚度均为 EA 相等。试求节点 C 的水平位移。 解:解法1-功能原理,因为要求的水平位移与 P 力方向一致,所以可以用这种方法。 由静力学知识可简单地求出各杆的内力,如下表所示。 L 2 — 2 Pa 2 Pa 2 ” 2 P ] i 一 2 a 2 EA 2 EA 2 EA 可得出:厶C =2 '2 1 Pa EA 解法2-卡氏定理或莫尔积分,这两种方法一致了。 在C 点施加水平单位力,则各杆的内力如下表所杆 N i N i I i N i N t J i AB P 1 a Pa BC P 1 a Pa CD 0 0 a 0 BD -Λ∕2P -√2^ √2a 2、''2Pa AD a (2丁2 +2)Pa EA 则C 点水平位移为: 札 J 2 IPa EA EA ,抗弯刚度均为 El 。试求A 截面的铅直位移。 1 P iC 2 2 ?图示刚架,已知各段的拉压刚度均为

材料力学习题册答案-第3章 扭转

第三章扭转 一、是非判断题 1.圆杆受扭时,杆内各点处于纯剪切状态。(×) 2.杆件受扭时,横截面上的最大切应力发生在距截面形心最远处。(×) 3.薄壁圆管和空心圆管的扭转切应力公式完全一样。(×) 4.圆杆扭转变形实质上是剪切变形。(×) 5.非圆截面杆不能应用圆截面杆扭转切应力公式,是因为非圆截面杆扭转时“平截面假设”不能成立。(√) 6.材料相同的圆杆,他们的剪切强度条件和扭转强度条件中,许用应力的意义相同,数值相等。(×) 7.切应力互等定理仅适用于纯剪切情况。(×) 8.受扭杆件的扭矩,仅与杆件受到的转矩(外力偶矩)有关,而与杆件的材料及其横截面的大小、形状无关。(√) 9.受扭圆轴在横截面上和包含轴的纵向截面上均无正应力。(√) 10.受扭圆轴的最大切应力只出现在横截面上。(×) 11.受扭圆轴内最大拉应力的值和最大切应力的值相等。(√) 12.因木材沿纤维方向的抗剪能力差,故若受扭木质圆杆的轴线与木材纤维方向平行,当扭距达到某一极限值时,圆杆将沿轴线方向出现裂纹。(×) 二、选择题

1.内、外径之比为α的空心圆轴,扭转时轴内的最大切应力为τ,这时横截面上内边缘的切应力为 ( B ) A τ; B ατ; C 零; D (1- 4α)τ 2.实心圆轴扭转时,不发生屈服的极限扭矩为T ,若将其横截面面积增加一倍,则极限扭矩为( C ) 0 B 20T 0 D 40T 3.两根受扭圆轴的直径和长度均相同,但材料C 不同,在扭矩相同的情况下,它们的最大切应力τ、τ和扭转角ψ、ψ之间的关系为( B ) A 1τ=τ2, φ1=φ2 B 1τ=τ2, φ1≠φ2 C 1τ≠τ2, φ1=φ2 D 1τ≠τ2, φ1≠φ2 4.阶梯圆轴的最大切应力发生在( D ) A 扭矩最大的截面; B 直径最小的截面; C 单位长度扭转角最大的截面; D 不能确定。 5.空心圆轴的外径为D ,内径为d, α=d /D,其抗扭截面系数为 ( D ) A ()3 1 16p D W πα=- B ()3 2 1 16p D W πα=- C ()3 3 1 16p D W πα=- D ()3 4 1 16p D W πα=- 6.对于受扭的圆轴,关于如下结论: ①最大剪应力只出现在横截面上; ②在横截面上和包含杆件的纵向截面上均无正应力; ③圆轴内最大拉应力的值和最大剪应力的值相等。

材料力学习题与答案

第一章 包申格效应:指原先经过少量塑性变形,卸载后同向加载,弹性极限(σP)或屈服强度(σS)增加;反向加载时弹性极限(σP)或屈服强度(σS)降低的现象。 解理断裂:沿一定的晶体学平面产生的快速穿晶断裂。晶体学平面--解理面,一般是低指数,表面能低的晶面。 解理面:在解理断裂中具有低指数,表面能低的晶体学平面。 韧脆转变:材料力学性能从韧性状态转变到脆性状态的现象(冲击吸收功明显下降,断裂机理由微孔聚集型转变微穿晶断裂,断口特征由纤维状转变为结晶状)。 静力韧度:材料在静拉伸时单位体积材料从变形到断裂所消耗的功叫做静力韧度。是一个强度与塑性的综合指标,是表示静载下材料强度与塑性的最佳配合。 可以从河流花样的反“河流”方向去寻找裂纹源。 解理断裂是典型的脆性断裂的代表,微孔聚集断裂是典型的塑性断裂。 5.影响屈服强度的因素 与以下三个方面相联系的因素都会影响到屈服强度 位错增值和运动 晶粒、晶界、第二相等

外界影响位错运动的因素 主要从内因和外因两个方面考虑 (一)影响屈服强度的内因素 1.金属本性和晶格类型(结合键、晶体结构) 单晶的屈服强度从理论上说是使位错开始运动的临界切应力,其值与位错运动所受到的阻力(晶格阻力--派拉力、位错运动交互作用产生的阻力)决定。 派拉力: 位错交互作用力 (a是与晶体本性、位错结构分布相关的比例系数,L是位错间距。)2.晶粒大小和亚结构 晶粒小→晶界多(阻碍位错运动)→位错塞积→提供应力→位错开动→产生宏观塑性变形。 晶粒减小将增加位错运动阻碍的数目,减小晶粒内位错塞积群的长度,使屈服强度降低(细晶强化)。 屈服强度与晶粒大小的关系: 霍尔-派奇(Hall-Petch) σs= σi+kyd-1/2 3.溶质元素 加入溶质原子→(间隙或置换型)固溶体→(溶质原子与溶剂原子半径不一样)产生晶格畸变→产生畸变应力场→与位错应力场交互运动→使位错受阻→提高屈服强度(固溶强化)。 4.第二相(弥散强化,沉淀强化) 不可变形第二相

材料力学习题册答案-第13章-能量法

第 十三 章 能 量 法 一、选择题 1.一圆轴在图1所示两种受扭情况下,其( A )。 A 应变能相同,自由端扭转角不同; B 应变能不同,自由端扭转角相 同; C 应变能和自由端扭转角均相同; D 应变能和自由端扭转角均不同。 (图1) 2.图2所示悬臂梁,当单独作用力F 时,截面B 的转角为θ, 若先加力偶M ,后加F ,则在加F 的过程中,力偶M ( C )。 A 不做功; B 做正功; C 做负功,其值为θM ; D 做负功,其值为θM 2 1 。 3.图2所示悬臂梁,加载次序有下述三种方式:第一种为F 、 M 同时按比例施加;第二种为先加F ,后加M ;第三种为先 加M ,后加F 。在线弹性范围内,它们的变形能应为( D )。 A 第一种大; B 第二种大; C 第三种大; D 一样大。 4.图3所示等截面直杆,受一对大小相等,方向相反的力F 作 用。若已知杆的拉压刚度为,材料的泊松比为μ,则由功的互等定理可知,该杆的轴向变形为 EA Fl μ,l 为杆件长度。(提示: 在杆的轴向施加另一组拉力F 。)

A 0; B EA Fb ; C EA Fb ; D 无法确定。 (图3)

二、计算题 1.图示静定桁架,各杆的拉压刚度均为相等。试求节点C 的水 平位移。 解:解法1-功能原理,因为要求的水平位移与P 力方向一致,所以可以用这种方法。 由静力学知识可简单地求出各杆的内力,如下表所示。 ( )() EA a P EA Pa EA Pa P C 22222212 2 2 2 ++=? 可得出:() EA Pa C 122+= ? 解法2-卡氏定理或莫尔积分,这两种方法一致了。 在C 点施加水平单位力,则各杆的内力如下表所示。

13简明材料力学习题答案第十三章

13.1. 两根圆截面杆材料相同,尺寸如图所示,一根为等截面杆,一根为变截面杆,试比较两杆 的变形能。 解:方法1: 两杆的变形 外力的功 功能原理 方法2: 两杆的内力 变形能 13.2. 图示杵架各杆的材料相同截面面积相等,在P 力作用下,试求桁架的变形能。 解:(1) 求约束力 (2) 分析铰B (3) 分析铰D (4) 分析铰C (5) 桁架的变形能 13.3. 计算图示各杆的变形能。 解:(b) 方法1: (1) 查表得C 截面的转角 (2) 由功能原理 方法2 (1) 列出梁的弯矩方程 (2) 求弯曲变形能 (c) (1) 列出梁的弯矩方程 (2) 求弯曲变形能 13.4. 传动轴受力情况如图所示,轴直径为40 mm ,E=210 GPa ,G=80 GPa 。试计算轴的变 形能。 A M (b) B EI C 2l /3 l /3 θ ds dθ R P B A O θ R P B Q (θ) M (θ) N (θ) x 1 A M B EI C M /l M /l x 2 l 3/8 d 3/8 d 2d 2d l /4 P P (a) (b) A B D l l C l P X A Y A R B B B N BD N BC R BD N BC 45o D N DB N DA N DC C P CB N P N CB N CA

解:(1) 传动轴受力 (2) 弯矩方程和扭矩方程 (3) 变形能 (4) 使用功能原理求解本题 13.6. 试用互等定理求跨度中点C 的挠度,设EI =常量。 解:(a) (1) P 力移到C 截面处,如下图 (2) 由位移互等定理 方向向上 (b) (1) 将P 力移到C 截面处,如下图 (2) 由位移互等定理 方向向下 13.8. 车床主轴可简化成EI =常量的当量轴,如图所示,试求在载荷P 作用下,截面C 的挠 度和前轴承B 处的截面转角。 解:(1) 约束反力 (2) 弯矩方程 (3) 在C 处作用单位集中力 截面C 的挠度 (4) 在B 处作用单位集中力偶 截面B 的转角 顺时针转向 13.9. 试求图示各梁截面B 的挠度和转角。EI =常量 解:(1) 在B 处作用虚加力P f 和M f ,并列出弯矩方程 (2) 上式分别对P f 和M f 求偏导数 (3) 用卡氏定理求挠度和转角 (4)令上两式中的f 和M f 为零 挠度和转角的方向与虚加力的方向一致 13.9. 图示刚架各杆的的EI 相等。试求A 的位移和截面C 的转角。 解:(a) 应用莫尔定理 (1) 刚架各段的弯矩方程(2) 在A 处垂直方向作用单位集中力 A 的垂直位移 (3) 在A 处水平方向作用单位集中力 A B (a ) D C a l /2 l /2 P l /2 l /2 C A (b ) a l q C A (a ) 2 A B D C P 1 P B C A 2 1 x 1 M f q B C A x 2 P f A B 200 C 200 0.08kN.m 0.36kN 1kN A B Y A C 0.08kN.m 0.36kN 1kN 0.08kN.m Z A Z B Y B A C x 1 x 2 x 3 1 A a b h x 1 x 2 x 3 (a) A C x 3 1 A B C a P 4a x 1 x 2 R A R B A B C x 1 x 2 1/4 5/4 A B C x 1 x 2 1/4a 1 1/4a

《材料力学》压杆稳定习题解

第九章 压杆稳定 习题解 [习题9-1] 在§9-2中已对两端球形铰支的等截面细长压杆,按图a 所示坐标系及挠度曲线形状,导出了临界应力公式2 2l EI P cr π= 。试分析当分别取图b,c,d 所示坐标系及挠曲线形 状时,压杆在cr F 作用下的挠曲线微分方程是否与图a 情况下的相同,由此所得cr F 公式又是否相同。 解: 挠曲线微分方程与坐标系的y 轴正向规定有关,与挠曲线的位置无关。 因为(b )图与(a )图具有相同的坐标系,所以它们的挠曲线微分方程相同,都是 )("x M EIw -=。(c )、(d)的坐标系相同,它们具有相同的挠曲线微分方程:)("x M EIw =,显然,这微分方程与(a )的微分方程不同。 临界力只与压杆的抗弯刚度、长度与两端的支承情况有关,与坐标系的选取、挠曲线的位置等因素无关。因此,以上四种情形的临界力具有相同的公式,即:2 2l EI P cr π=。 ?

[习题9-2] 图示各杆材料和截面均相同,试问杆能承受的压力哪根最大,哪根最小(图f 所示杆在中间支承处不能转动) 解:压杆能承受的临界压力为:2 2).(l EI P cr μπ=。由这公式可知,对于材料和截面相同的压杆, 它们能承受的压力与 原压相的相当长度l μ的平方成反比,其中,μ为与约束情况有关的长 度系数。 (a )m l 551=?=μ (b )m l 9.477.0=?=μ (c )m l 5.495.0=?=μ (d )m l 422=?=μ (e )m l 881=?=μ \ (f )m l 5.357.0=?=μ(下段);m l 5.255.0=?=μ(上段) 故图e 所示杆cr F 最小,图f 所示杆cr F 最大。 [习题9-3] 图a,b 所示的两细长杆均与基础刚性连接,但第一根杆(图a )的基础放在弹性地基上,第二根杆(图b )的基础放在刚性地基上。试问两杆的临界力是否均为2 min 2).2(l EI P cr π=

材料力学第一章复习题

第一章 拉伸与压缩 1. 根据均匀性假设,可认为构件的下列各量中的某个量在各点处都相同: (A ) 应力; (B )应变; (C ) 材料的弹性常数; (D )位移; 正确答案是 。 2.根据各向同性假设,可认为构件的下列各量中的某一种量在各方向都相同: (A ) 应力; (B )应变; (C ) 材料的弹性常数; (D )位移; 正确答案是 。 3.关于确定截面内力的截面法的适用范围,有下列四种说法: (A )仅适用于等截面直杆; (B )仅适用于直杆承受基本变形; (C )仅适用于不论基本变形还是组合变形,但限于直杆的横截面; (D )适用于不论等截面或变截面、直杆或曲杆、基本变形或组合变形、横截 面或任意截面的普遍情况; 正确答案是 。 4.变截面杆受集中力P 作用,如图。设1F 、2F 和3F 分别表示杆中截面1—1,2—2和3—3上沿轴线方向的内力值,则下列结论中哪个是正确的? (A )321F F F ==; (B )321F F F ≠=; (C )321F F F =≠; (D )321F F F ≠≠; 正确答案是 。 5.判断下列结论的正确性: (A ) 杆件某截面上的内力是该截面上应力的代数和; (B ) 杆件某截面上的应力是该截面上内力的平均值; (C ) 应力是内力的集度; (D ) 内力必大于应力; 正确答案是 。 P

6.甲、乙两杆,几何尺寸相同,轴向拉力P 相同,材料不同,它们的应力和变形有四种可能: (A )应力σ和变形l ?相同; (B )应力σ不同和变形l ?相同; (C )应力σ相同和变形l ?不同; (D )应力σ不同和变形l ?不同; 正确答案是 。 7.关于下列结论: 1) 应变分为正应变和切应变 ; 2) 应变为无量纲量; 3) 若物体的各部分均无变形,则物体内各点的应变均为零; 4) 若物体内各点的应变均为零,则物体无位移; 现有四种答案: (A )仅1、2对; (B )仅3、4对; (C )1、2、3对; (D )全对; 正确答案是 。 8. 等截面直杆受力P 作用发生拉伸变形。已知其横截面面积为A ,则横截面上的正应力和? 45斜截面上的正应力分别为: (A )A P ,()A P 2; (B )A P ,( ) A P 2; (C ))A P 2,()A P 2; (D )A P ,A P 2; 正确答案是 。 9.在A 、B 两点连接绳索ACB ,绳索上悬挂重物P ,如图。点A 、B 的距离保持不变,绳索的许用应力为[]σ。问:当α角取何值时,绳索的用料最省? (A )?0; (B )?30; (C )?45; (D )?60; 正确答案是 。 l B

材料力学复习总结

《材料力学》第五版 刘鸿文 主编 第一章 绪论 一、材料力学中工程构件应满足的3方面要求是:强度要求、刚度要求和稳定性要求。 二、强度要求是指构件应有足够的抵抗破坏的能力;刚度要求是指构件应有足够的抵抗变形的能力;稳定性要求是指构件应有足够的保持原有平衡形态的能 力。 三、材料力学中对可变形固体进行的3个的基本假设是:连续性假设、均匀性假设和各向同性假设。 第二章 轴向拉压 一、轴力图:注意要标明轴力的大小、单位和正负号。 二、轴力正负号的规定:拉伸时的轴力为正,压缩时的轴力为负。注意此规定只适用于轴力,轴力是内力,不适用于外力。 三、轴向拉压时横截面上正应力的计算公式:N F A σ= 注意正应力有正负号,拉伸时的正应力为正,压缩时的正应力为负。 四、斜截面上的正应力及切应力的计算公式:2cos ασσα=,sin 22 αστα= 注意角度α是指斜截面与横截面的夹角。 五、轴向拉压时横截面上正应力的强度条件[],max max N F A σσ=≤ 六、利用正应力强度条件可解决的三种问题:1.强度校核[],max max N F A σσ=≤ 一定要有结论 2.设计截面[],max N F A σ≥ 3.确定许可荷载[],max N F A σ≤ 七、线应变l l ε?=没有量纲、泊松比'εμε=没有量纲且只与材料有关、 胡克定律的两种表达形式:E σε=,N F l l EA ?= 注意当杆件伸长时l ?为正,缩短时l ?为负。 八、低碳钢的轴向拉伸实验:会画过程的应力-应变曲线,知道四个阶段及相应的四个极限应力:弹性阶段(比例极限p σ,弹性极限e σ)、屈服阶段(屈服

材料力学第十一章习题选及其解答

11-2. 桥式起重机上悬挂一重量G=50kN 的重物,以匀速度v=1m/s 向前移动(在 图中移动的方向垂直于纸面)。若起重机突然停止移动,重物将象单摆一样向前摆动。若梁为No14工字钢,吊索截面面积A=5×10-4m 2,试问当惯性力为最大值时,梁及吊索内的最大应力增加多少? 解:(1)起重机突然停止时,吊索以初速v 作圆周运动,此时吊索轴力增量是 kN R v g G ma N n D 28.12 =?==Δ (2)吊索的应力增量是 MPa A N σD d 56.2== ΔΔ (3)梁内最大弯矩的增量是 l N M D ΔΔ4 1 = (4)查表得梁的抗弯截面系数 3610102m W -?= (5)梁内最大正应力的增量是 MPa W M σd 68.15'==ΔΔ 11-4. 轴上装一钢质圆盘,盘上有一圆孔。若轴与盘ω=40 1/s 的匀角速度转动, 试求轴内因这一圆孔引起的最大正应力。

解:(1)假设挖空圆盘和圆孔部分的质量分别是M 和m ,它们的质心距轴线的 距离分别为R 的r ,则有 mr MR = (2)挖空圆盘的惯性力是 kN ωr g V γωmr ωMR Ma F n n 64.10222=?= === 上式中钢的密度取 3/8.76m kN γ= (3)轴内的最大正应力增量是 MPa W l F W M σn d 5.1241max max ===Δ 11-5. 在直径为100mm 的轴上装有转动惯量I=0.5kN ?m ?s2的飞轮,轴的转速为 300r/min 。制动器开始作用后,在20转内将飞轮刹住,试求轴内最大剪应力。设在制动器作用前,轴已与驱动装置脱开,且轴承的磨擦力矩可以不计。 解:(1)飞轮作匀减速转动 2 2 20/25.120 /42.3130 s rad φ ωωεωs rad π n ωt t -=-=∴=== (2)惯性力距是 kNm εI m d 96.1=-= (3)轴在飞轮和制动器之间发生扭转变形 MPa d πT W T τm T t d 10163 max === ∴= 11-6. 钢轴AB 的直径为80mm ,轴上有一直径为80mm 钢质圆杆CD ,CD 垂直 于AB 。若AB 以匀角速度ω=40rad/s 转动。材料的许用应力[σ]=70MPa ,密度为7.8g/cm3。试校核AB 轴及CD 杆的强度。

材料力学习题第13章

材料力学习题 第13章 13-1 冲床的最大冲力为400kN ,被冲剪钢板的剪切极限应力MPa 360=b τ,冲头材料的 M P a 440][=σ,试求在最大冲力作用下所能冲剪的圆孔的最小直径和板的最大厚度。 13-2 图示凸缘联轴节传递扭矩m k N 35M ?=,直径为mm 121=d 的螺栓分布在mm 150=d 的圆周上。材料的MPa 90][=τ,试校核螺栓的剪切强度。 13-3 两块钢板用七个铆钉联接如图所示。已知钢板的厚度,m m 6=δ宽度mm 200=b ,铆钉直径mm 18=d 。材料的许用应力,MPa 160][=σ,MPa 100][=τMPa 240][=bs σ载荷F 的=150kN ,试校核此接头强度。 13-4 图示装置中,键的长度l =35mm ,许用切应力MPa 100][=τ,许用挤压应力MPa 220][=bs σ,试求允许作用在手柄上的力F 的最大值。 13-5 夹剪如图,销钉C 的直径d =5mm ,剪断一根与销钉直径相同的铜丝时,需加力F =0.5kN ,求铜丝与销钉横截面上的平均切应力各为多少? 13-6 图示摇臂,承受载荷F 1与F 2作用。试确定轴销B 的直径d 。已知载荷F 1=50kN ,F 2=35.4kN ,许用切应力MPa 100][=τ,许用挤压应力MPa 240][=bs σ。 13-7 试校核图示铆接接头的强度。铆钉与板件的材料相同,许用正应力MPa 160][=σ,许用切应力MPa 120][=τ,许用挤压应力MPa 340][=bs σ,载荷k N 230=F 。 13-8 图示两根矩形截面木杆,用两块钢板连接在一起,承受轴向载荷F =45kN 作用。已知木杆的截

工程力学材料力学答案-第十一章

11-6图示悬臂梁,横截面为矩形,承受载荷最大 弯曲正应力,及该应力所在截面上 F1与F2作用,且F1=2F2=5 kN,试计算梁内的 K点处的弯曲正应力。 M max =7.5 kN 解:(1)查表得截面的几何性质: y0 =20.3 mm b = 79 mm I 176 cm4 (2)最大弯曲拉应力(发生在下边缘点处) 解:⑴画梁的弯矩图 1m 40 80 y ------ ”z 30最大弯矩(位于固定端) CT + max M(b-y。) = 80X79-20.3)X0」2.67 MPa lx 176 10’ ⑶ 最大应力: 计算应力: max M max W Z M bh2 max 6 7 5^10 - ------- =176 MPa 40 80 K点的应力: y l z M max bh 7爲106330 =132 MPa 40 803 12 M=80 N.m, 试求梁内的最大弯曲拉应力与最大弯曲压应力。 11-7图示梁,由No22槽钢制成,弯矩 12 并位于纵向对称面(即x-y平面)内。

(3)最大弯曲压应力(发生在上边缘点处) y 。 max 80 20.3 10 176 10' =0.92 MPa 11-8图示简支梁,由No28工字钢制成,在集度为q的均布载荷作用下,测得横截面边的纵向正应变F3.0 XI0"4,试计算梁内的最大弯曲正应力, 已知钢的弹性模量 C底 E=200 Gpa, a=1 m。 解:(1)求支反力 R A 3 4 qa 1 R B= qa 4 (2)画内力图 x x 由胡克定律求得截面C下边缘点的拉应力为: 也可以表达为: max _4 9 ;E =3.0 10 200 10 =60 MPa ⑷梁内的最大弯曲正应力: 二 max 2 qa CT : C max M e W z W z 小 2 9qa M max ___ 32 W z W z 9 . 蔦二C max =67.5 MPa 8

材料力学_陈振中_习题第十三章交变应力

第十三章 交 变 应 力 13.1火车轮轴受力情况如图所示。a =500mm,l =1435mm,轮轴中段直径d =15cm 。若P =50kN,试求轮轴中段截面边缘上任一点的最大应力 σmax 、最小应力σmin 、循环特征r ,并作出σ-t 曲线。(原图见教P141.) 解:22615.05.01050max /5.75/105.753 323332m MN m N d Pa W M =?====???ππσ 1 /5.755.755.752 max min max min -===-=-=-σσσσr m MN 13.5货车轮轴两端载荷P=110kN ,材料为车轴钢,σb =500MPa,σ-1=240Mpa 。规定安全系数n =1.5。试校核Ⅰ—Ⅰ和Ⅱ—Ⅱ截面的强度。(原图见教材P142.) 解:校核Ⅰ—Ⅰ截面的强度: 23.1/9.72/9.72/109.721081332max min 226108.0082.010110108.0082.0max 3323332==-=-==?==== ?????d D P W M m MN m MN m N σσσππ 由教材图13-8(c )查得:当2/500m MN b =σ时,34.1=σK 由教材表13-1查得: 当mm d 108=时,碳钢70.0=σε 由教材表13-2查得: 当2/400m MN b =σ时,车削加工,95.0=β 当2/800m MN b =σ时,车削加工,90.0=β 用插入法求得: 当2/500m MN b =σ时,车削加工,94.0=β 根据教材(13-11)式可知:5.162.19.7224094.070.034.1m ax 1==== ??-n n K σσσβσεσ 校核Ⅱ—Ⅱ截面的强度 : 226133.0118.010110133.0118.0max /2.56/102.563333 3m MN m N P W M =?====?????ππσ 2max min /2.56m MN -=-=σσ 3.013340==d r ; 1 .1133146 ==d D 由教材图13-8(a )查得:当2/500m MN b =σ时,2 .1=σK 由教材表13-1查得:当mm d 133=时,碳钢68.0=ε

《材料力学》期末复习题

1、解释:形变(应变)强化、弹性变形、刚度、弹性不完整性、弹性后效、弹性滞后、Bauschinger效应、应变时效、韧性、脆性断裂、韧性断裂、平面应力状态、平面应变状态、低温脆性、高周疲劳、低周疲劳、疲劳极限、等强温度、弹性极限、疲劳极限、应力腐蚀开裂、氢脆、腐蚀疲劳、蠕变极限、持久强度、松弛稳定性、磨损。 2.弹性滞后环是由于什么原因产生的。材料的弹性滞后环的大小对不同零件有不同的要求? 弹性滞后环是由于材料的加载线和卸载线不重合而产生的。对机床的底座等构件,为保证机器的平稳运转,材料的弹性滞后环越大越好;而对弹簧片、钟表等材料,要求材料的弹性滞后环越小越好。3.断口的三个特征区?微孔聚集型断裂、解理断裂和沿晶断裂的微观特征分别为? 断口的三要素是纤维区、放射区和剪切唇。微孔聚集型断裂的微观特征是韧窝;解理断裂的微观特征主要有解理台阶和河流和舌状花样;沿晶断裂的微观特征为石状断口和冰糖块状断口。 4.应力状态系数α值大小和应力状态的软硬关系。为测量脆性材料的塑性,常选用应力状态系数α值(大)的实验方法,如(压缩)等。 5. 在扭转实验中,塑性材料的断口方向及形貌,产生的原因?脆性材料的断口的断口方向及形貌,产生的原因? 在扭转试验中,塑性材料的断裂面与试样轴线垂直;脆性材料的断裂面与试样轴线成450。 6. 材料截面上缺口的存在,使得缺口根部产生(应力集中)和(双(三)向应力),试样的屈服强度(升高),塑性(降低)。 7. 低温脆性常发生在具有什么结构的金属及合金中,在什么结构的金属及合金中很少发现。 低温脆性常发生在具有体心立方结构的金属及合金 中,而在面心立方结构的金属及合金中很少发现。 8. 按断裂寿命和应力水平,疲劳可分为?疲劳断口的典型特征是? 9.材料的磨损按机理可分为哪些磨损形式。 10. 不同加载试验下的应力状态系数分别为多少? 11. 材料的断裂按断裂机理可分为?按断裂前塑性变形大小可分为? 答:材料的断裂按断裂机理分可分为微孔聚集型断裂,解理断裂和沿晶断裂;按断裂前塑性变形大小分可分为延性断裂和脆性断裂。微孔聚集型断裂的微观特征是韧窝;解理断裂的微观特征主要有解理台阶和河流和舌状花

材料力学习题第12章

材料力学习题 第12章 12-1一桅杆起重机,起重杆AB的横截面积如图所示。钢丝绳的横截面面积为10mm2。起重杆与钢丝的许用σ,试校核二者的强度。 力均为MPa [= ] 120 12-2重物F=130kN悬挂在由两根圆杆组成的吊架上。AC是钢杆,直径d1=30mm,许用应力[]st=160MPa。BC是铝杆,直径d2= 40mm, 许用应力[]al= 60MPa。已知ABC为正三角形,试校核吊架的强度。 12-3图示结构中,钢索BC由一组直径d =2mm的钢丝组成。若钢丝的许用应力[]=160MPa,横梁AC单位长度上受均匀分布载荷q =30kN/m作用,试求所需钢丝的根数n。若将AC改用由两根等边角钢形成的组合杆,角钢的许用应力为[] =160MPa,试选定所需角钢的型号。 12-4图示结构中AC为钢杆,横截面面积A1=2cm2;BC杆为铜杆,横截面面积A2=3cm2。[]st = 160MPa,[]cop [F。 = 100MPa,试求许用载荷] 12-5图示结构,杆AB为5号槽钢,许用应力[] = 160MPa,杆BC为b h= 2的矩形截面木杆,其截面尺寸为b = 5cm, h = 10cm,许用应力[] = 8MPa,承受载荷F = 128kN,试求: (1)校核结构强度;(2)若要求两杆的应力同时达到各自的许用应力,两杆的截面应取多大 12-6图示螺栓,拧紧时产生l = 的轴向变形,试求预紧力F,并校核螺栓强度。已知d1=8mm, d2=, d3=7mm, l1=6mm, l2=29mm, l3=8mm; E=210GPa, []=500MPa。 12-7图示传动轴的转速为n=500r/min,主动轮1输入功率P1=368kW,从动轮2和3分别输出功率P2=147kW 和P3=221kW。已知[]=212MPa,[ ]=1/m, G =80GPa。 <

材料力学性能试题集

判断 1.由内力引起的内力集度称为应力。(×) 2.当应变为一个单位时,弹性模量即等于弹性应力,即弹性模量是产生100%弹性变形所需的应力。(√) 3.工程上弹性模量被称为材料的刚度,表征金属材料对弹性变形的抗力,其值越大,则在相同应力条件下产生的弹性变形就越大。(×) 4.弹性比功表示金属材料吸收弹性变形功的能力。(√) 5.滑移面和滑移方向的组合称为滑移系,滑移系越少金属的塑性越好。(×) 6.高的屈服强度有利于材料冷成型加工和改善焊接性能。(×) 7.固溶强化的效果是溶质原子与位错交互作用及溶质浓度的函数,因而它不受单相固溶合金(或多项合金中的基体相)中溶质量所限制。(×) 8.随着绕过质点的位错数量增加,留下的位错环增多,相当于质点的间距减小,流变应力就增大。(√) 9.层错能低的材料应变硬度程度小。(×) 10.磨损、腐蚀和断裂是机件的三种主要失效形式,其中以腐蚀的危害最大。(×) 11.韧性断裂用肉眼或放大镜观察时断口呈氧化色,颗粒状。(×) 12.脆性断裂的断裂面一般与正应力垂直,断口平齐而光亮,长呈放射状或结晶状。(√) 13.决定材料强度的最基本因素是原子间接合力,原子间结合力越高,则弹性模量、熔点就越小。(×) 14.脆性金属材料在拉伸时产生垂直于载荷轴线的正断,塑性变形量几乎为零。(√) 15.脆性金属材料在压缩时除产生一定的压缩变形外,常沿与轴线呈45°方向产生断裂具有切断特征。(√) 16.弯曲试验主要测定非脆性或低塑性材料的抗弯强度。(×) 17.可根据断口宏观特征,来判断承受扭矩而断裂的机件性能。(√) 18.缺口截面上的应力分布是均匀的。(×) 19.硬度是表征金属材料软硬程度的一种性能。(√) 20.于降低温度不同,提高应变速率将使金属材料的变脆倾向增大。(×) 21.低温脆性是材料屈服强度随温度降低急剧下降的结果。(×) 22.体心立方金属及其合金存在低温脆性。(√) 23.无论第二相分布于晶界上还是独立在基体中,当其尺寸增大时均使材料韧性下降,韧脆转变温度升高。(√) 24.细化晶粒的合金元素因提高强度和塑性使断裂韧度K IC下降。(×) 25.残余奥氏体是一种韧性第二相,分布于马氏体中,可以松弛裂纹尖端的应力峰,增大裂纹扩展的阻力,提高断裂韧度K IC。(√) 26.一般大多数结构钢的断裂韧度K IC都随温度降低而升高。(×) 27.金属材料的抗拉强度越大,其疲劳极限也越大。(√) 28.宏观疲劳裂纹是由微观裂纹的形成、长大及连接而成的。(√) 29.材料的疲劳强度仅与材料成分、组织结构及夹杂物有关,而不受载荷条件、工作环境及表面处理条件的影响。(×) 30.应力腐蚀断裂并是金属在应力作用下的机械破坏与在化学介质作用下的腐蚀性破坏的叠加所造成的。(×) 31.氢蚀断裂的宏观断口形貌呈氧化色,颗粒状。(√) 32.含碳量较低且硫、磷含量较高的钢,氢脆敏感性低。(×)

材料力学讲稿:第13章 动荷载

第十五章动荷载 一、教学目标和教学内容 1、教学目标 通过本章学习,唤起学生对动荷载问题的注意。 让学生知道动荷载问题的两个方面,目前应当掌握在较简单的工程问题中,动荷载引起杆件的应力、应变和位移的计算。对于材料在动荷载下的力学行为,以后根据工作的需要再进一步补充学习。 让学生掌握动荷载问题的基本知识,如杆件作等加速运动时的应力计算,作等速旋转圆盘的应力分析,简单的自由落体冲击和水平冲击,以及循环应力问题的有关概念。 能够深刻认识动荷系数概念,并能够熟练地进行杆件作等加速运动时的应力计算,作等速旋转圆盘的应力分析,完成简单的自由落体冲击和水平冲击的计算。 2、教学内容 介绍杆件作等加速运动拉伸、压缩及弯曲时的应力计算。 介绍等角速度旋转的动荷应力计算。 讲解简单冲击时,能量守恒的基本方程,分别导出自由落体冲击和水平冲击时的动荷系数公式,及杆件经受冲击时的应力计算公式。 二、重点难点

重点:建立三类动荷载概念。 掌握杆件作等加速运动时的应力计算。 作等速旋转圆盘的应力分析。 简单的自由落体冲击和水平冲击问题的计算 难点:对动静法和动荷系数的理解。 对于动荷载问题与静荷载问题的联系与区别。 在简单冲击问题中,被冲击杆件冲击点的相应静荷位移的理解和计算,特别是水平冲击时的静荷位移的理解和计算。 三、教学方式 采用启发式教学,通过提问,引导学生思考,让学生回答问题。 四、建议学时 3学时 五、实施学时 六、讲课提纲 (一)概念(动荷载的概念) 1、静荷载: 作用在构件上的荷载由零开始,逐渐(平缓、慢慢)地增长到最终值,以致在加载过程中,构件各点的加速度很小,可以不计;荷载加到最终值保持不变或变动的不显著的荷载,称之为静荷载。

材料力学第八章复习题

第八章 应力状态分析 1.矩形截面简支梁受力如图(a )所示,横截面上各点的应力状态如图(b ) 所示。关于他们的正确性,现有种答案: (A )点1、2的应力状态是正确的;(B )点2、3的应力状态是正确的; (C )点3、4的应力状态是正确的;(D )点1、5的应力状态是正确的; 正确答案是 。 2.已知单元体AB 、BC 面上只作用有剪应力 τ ,现关于AC 面上应力有下 列四种答案: (A )2/ττ=AC ,0=AC σ; (B )2/ττ=AC ,2/3τσ=AC ; (C )2/ττ=AC ,2/3τσ-=AC ; (D )2/ττ-=AC ,2/3τσ=AC ; 正确答案是 。 3.在平面应力状态下,对于任意两斜截面上的正应力 βασσ= 成立的充分 必要条件,有下列四种答案: (A )y x σσ=,0≠xy τ; (B )y x σσ=,0=xy τ; (C )y x σσ≠,0=xy τ; (D )xy y x τσσ==; 正确答案是 。 C τ (a) (b)

4.对于图示三种应力状态(a )、(b )、(c )之间有下列四种答案 : (A )三种应力状态均相同; (B )三种应力状态均不同; (C )(b )和(c )相同; (D )(a )和(c )相同; 正确答案是 。 5.直径为d 的圆截面杆,两端受扭转力偶m 作用。设 ?=45α,关于下列结 论(E 、v 分别表示材料的弹性模量和泊松比) 1) 在A 、B 、C 点均有0==y x εε; 2) 在点C 处,() 3 /16d m πσα-=; 3) 在点C 处,)]/(16[]/)1[(3 d m E v πεα?+-=; 现有四种答案: (A )1)、2)正确; (B )2)、3)正确; (C )1)、3)正确; (D ) 全正确; 正确答案是 。 6.广义虎克定律适用范围,有下列四种答案: (A )脆性材料; (B )塑性材料; (C )材料为各向同性,且处于线弹性范围内; (D )任何材料; 正确答案是 。 τ (a) (b) (c) m A C

相关主题
文本预览
相关文档 最新文档