当前位置:文档之家› 第三章二阶线性偏微分方程的分类化简

第三章二阶线性偏微分方程的分类化简

二次根式的化简与计算

二次根式的化简与计算 【知识要点】 1.一般地,式子()0≥a a 叫做二次根式,这里的a 可以是数,也可以是代数式,它们都必须是非负数(即不小于0),a 的结果也是非负数. 2.二次根式的性质 (1) () ()02 ≥=a a a (2)()()()?? ? ??<-=>==000 02a a a a a a a (3)()0,0≥≥?=? b a b a b a (4) ()0,0>≥=b a b a b a 3.运算法则: (1)乘法运算:()0,0≥≥=?b a ab b a (2)除法运算: ()0,0>≥= b a b a b a 4.最简的二次根式: (1)被开方数因数是整数,因式是整式. (2)被开方数中不含有能开得尽方的因式或因数. 5.分母有理化 定义:把分母中的根号化去,叫做分母有理化. 方法:①单项 a =来确定. ②两项二次根式:利用平方差公式()()22b a b a b a -=-+来确定. 如 : a 与a - 【经典例题】 例1.判断下列各式,是否是二次根式: ,12,4,,4,27,824233 +--a a a 2,21122 +?? ? ?? < -a a a

例2.计算下列各题: (1) () 2 7 (2)2 43??? ? ?? (3)() 2 23 (4)2 55??? ? ?? (5 (6 例4.把下列各式分母有理化 (1)12 1 (2) 2 33 (3) 12121 (4)50 3 51- 例5.化简 (1)121699?? (2)637? (3)221026- (4) ()()2512-?- 例6.计算 (1)??? ? ??-?32335 (2) ??? ? ??-?56215 (3)??? ? ??-?614123 (4)5433 1 12785??? -

二次根式的化简与计算

二次根式的化简与计算

————————————————————————————————作者:————————————————————————————————日期: ?

二次根式 【知识要点】 1.一般地,式子()0≥a a 叫做二次根式,这里的a 可以是数,也可以是代数式,它们都必须是非负数(即不小于0),a 的结果也是非负数. 2.二次根式的性质 (1)()()02≥=a a a (2)() ()() ?????<-=>==00002a a a a a a a (3)()0,0≥≥?=?b a b a b a (4)()0,0>≥=b a b a b a 3.运算法则: (1)乘法运算:()0,0≥≥=?b a ab b a (2)除法运算:()0,0>≥=b a b a b a 【化简以及分母有理化】 外移:2||a b a b = 内移:a b , 当0a >时,2a b a b = 当0a <时,2a b a b =- 4.最简的二次根式: (1)被开方数因数是整数,因式是整式. (2)被开方数中不含有能开得尽方的因式或因数. 5.分母有理化 定义:把分母中的根号化去,叫做分母有理化.

方法:①单项二次根式:利用a a a ?=来确定. ②两项二次根式:利用平方差公式()()22b a b a b a -=-+来确定. 如: a b +与a b -,a b a b +-与, a x b y a x b y +-与分别互为有理化因式。 a x b y a x b y +-与分别互为有理化因式。 例题. 化简:(1)3227a b = ; (2)32418a a ?= . 例题32 27= . 2 3649y x = ; 同类二次根式 (1)定义: 几个二次根式化成最简二次根式以后,如果被开方数相同,那么这几个二次根式叫做同类 二次根式。 (2)判断方法: 注意以下三点: ①都是二次根式,即根指数都是2; ②必须先化成最简二次根式; ③被开方数相同. 【重难点解析】 1.化简二次根式:尽量把根号里的数写成几个数的平方的形式。 如:21223=?= 23 21832=?= 32 25052=?= 52 2.根号里的数比较大时,使用短除法把这个数分解成质数的幂的形式。 如29482379=??= 2379?,24202553=?= 253? 3.根号内有字母或代数式,观察它们所能分解出来的最小偶次数。如: 542 x x x x x =?=、()()()3232111x x x x x x +=++=()()11x x x x ++ 4.单项的分母有理化,可以直接分子分母同时乘以分母再约分。 如:11333333?==? 、 2223233233823233 ?====??

各种类型的微分方程及其相应解法教程文件

各种类型的微分方程及其相应解法 专业班级:交土01班 姓名:高云 学号:1201110102 微分方程的类型有很多种,解题时先判断微分方程是哪种类型,可以帮助我们更快解题,所以我们有必要归纳整理一下各类型(主要是一阶和二阶)的微分方程及其相应解法。 一、一阶微分方程的解法 1.可分离变量的方程 dx x f dy y g )()(=,或)()(y g x f dx dy = 其特点是可以把变量x 和y 只分别在等式的两边,解法关键是把变量分离后两边积分。 例1.求微分方程ydy dx y xydy dx +=+2的通解. 解 先合并dx 及dy 的各项,得dx y dy x y )1()1(2-=- 设,01,012≠-≠-x y 分离变量得 dx x dy y y 1112-=- 两端积分??-=-dx x dy y y 1112得 ||ln |1|ln |1|ln 2 112C x y +-=- 于是 2212)1(1-±=-x C y 记,21C C ±=则得到题设方程的通解 .)1(122-=-x C y 2.齐次方程 (1))(x y f dx dy = (2) )(c by ax f dx dy ++=(a ,b 均不等于0) 例2求解微分方程.2222xy y dy y xy x dx -=+- 解 原方程变形为=+--=2222y xy x xy y dx dy ,1222?? ? ??+--??? ??x y x y x y x y 令,x y u =则,dx du x u dx dy +=方程化为,1222u u u u dx du x u +--=+ 分离变量得?? ????-+--??? ??--112212121u u u u ,x dx du = 两边积分得 ,ln ln ln 2 1)2ln(23)1ln(C x u u u +=----

最新二次根式的化简与计算

二次根式的化简与计算 1 【知识要点】 2 1.定义:一般地,式子()0≥a a 叫做二次根式,这里的a 可以是数,也可以是代数 3 式,它们都必须是非负数(即不小于0),a 的结果也是非负数. 4 2.二次根式的性质 5 (1) () ()02 ≥=a a a 6 (2)() ()()?? ? ??<-=>==000 02a a a a a a a 7 (3)()0,0≥≥?=?b a b a b a 8 (4) ()0,0>≥=b a b a b a 9 3.运算法则: 10 (1)乘法运算:()0,0≥≥=?b a ab b a 11 (2)除法运算: ()0,0>≥= b a b a b a 12 4.最简的二次根式: 13 (1)被开方数因数是整数,因式是整式. 14 (2)被开方数中不含有能开得尽方的因式或因数. 15 5.分母有理化 16 定义:把分母中的根号化去,叫做分母有理化. 17 方法:①单项 a =来确定. 18

②两项二次根式:利用平方差公式()()22b a b a b a -=-+来确定. 19 如: a b +与a b -,a b a b +-与, 20 a x b y a x b y +-与分别互为有理化因式。 21 练习: 22 1.判断下列各式,是二次根式有_________________. 23 ,12,4,,4,27,824233+--a a a 2,21122+??? ? ? <-a a a 24 2.下列各组二次根式中是同类二次根式的是( ) 25 A . B . C . D . 26 3. 与最简二次根式是同类二次根式,则m=______. 27 28 4.若1<x <2,则的值为( ) 29 A .2x ﹣4 B .﹣2 C .4﹣2x D .2 30 5.实数a ,b 在数轴上对应点的位置如图所示,化简|a|+ 的结果是( ) 31 32 A .﹣2a+b B .2a ﹣b C .﹣b D .b 33 6.若式子有意义,则x 的取值范围为( ) 34 A .x ≥2 B .x ≠3 C .x ≥2或x ≠3 D .x ≥2且x ≠3 35

二次根式的概念及其化简教案

2.7二次根式 第1课时二次根式的概念及其化简【学习目标】 1.理解二次根式概念及性质. 2.会用公式ab=a·b(a≥0,b≥0),a b= a b (a≥0,b>0)进行二次根式的化简运算. 【学习重点】 二次根式乘除法法则. 【学习难点】 二次根式乘除法法则的灵活运用. 学习行为提示:让学生通过阅读教材后,独立完成“自学互研”的所有内容,并要求做完了的小组长督促组员迅速完成. 学习行为提示:教会学生看书,独学时对于书中的问题一定要认真探究,书写答案. 教会学生落实重点. 说明:学生亲自计算,通过观察、猜想,借助计算器验证得出结论,这比教师讲无数遍的效果要好得多,同时也为后面归纳二次根式的基本性质作了很好的引导.情景导入生成问题

观察下列代数式: 5,11,7.2,49 121,(c+b)(c-b)(其中b=24,c=25). 这些式子都是我们在前面已经学习过的,它们有什么共同特征呢? 【说明】通过学生观察、总结归纳这些式子的特点,为给二次根式下定义做好准备.【归纳结论】它们都含有开方运算,并且被开方数都是非负数. 一般地,形如a(a≥0)的式子叫做二次根式,a叫做被开方数. 二次根式有些什么性质呢?让我们一起去研究吧! 自学互研生成能力 知识模块一二次根式积的算术平方根与商的算术平方根 先阅读教材第41页“做一做”的内容,然后完成下面的问题. 做一做: (1)计算下列各式,你能得到什么猜想? 4×9=________,4×9=________; 4 9=________,4 9 =________; 25 49=________,25 49 =________; (2)根据上面的猜想,估计下面每组两个式子是否相等,借助计算器验证,并与同伴进行交流. 6×7与6×7,6 7与 6 7 . 【归纳结论】ab=a·b(a≥0,b≥0),a b= a b (a≥0,b>0).即积的算术平方根,等于各个因式算术平 方根的积,商的算术平方根,等于被除数的算术平方根除以除数的算术平方根.注意:a、b的取值范围不能忽略. 知识模块二二次根式的化简 先独立完成下面例1的化简,然后再对照教材第42页例1的规范解答自评自解.例1:化简: (1)81×64;(2)25×6;(3)5 9.

二阶线性偏微分方程的分类与小结

第六章 二阶线性偏微分方程的分类与小结 一 两个自变量的二阶线性方程 1 方程变换与特征方程 两个自变量的二阶线性偏微分方程总表示成 f cu u b u b u a u a u a y x yy xy xx =+++++212212112 ① 它关于未知函数u 及其一、二阶偏导数都是线性的,其中f u c b b a a a ,,,,,,,21221211都是自变量y x ,的已知函数,假设它们的一阶偏 导数在某平面区域D 内都连续,而且221211a a a ,,不全为0 。 设),(000y x M 是D 内给定的一点,考虑在0M 的领域内对方程进行简化。取自变量变换 ),(y x ξξ=,),(y x ηη= 其中它们具有二连续偏导数,而且在0M 处的雅可比行列式。 = ??),(),(y x ηξy x y x ηηξξ =x y y x ηξηξ- 根据隐函数存在定理,在0M 领域内存在逆变换, ),(ηξx x =,),(ηξy y = 因为 x x x u u u ηξξξ+=,y y y u u u ηξξξ+=

xx xx x x x x xx u u u u u u ηξηηξξηξηηξηξξ++++=222 yy yy y y y y yy u u u u u u ηξηηξξηξηηξηξξ++++=222 xy xy y x x y y x x x xy u u u u u u ηξηηηξηξξξηξηηξηξξ+++++=)( 将代入①使其变为 F Cu u B u B u A u A u A =+++++ηξηηξηξξ212212112 经过变换后,方程的阶数不会升高,由变换的可逆性,方程的阶数也不会降低,所以221211,,A A A 不全为0。并可验证 222112122211212))((x y y x a a a A A A ηξηξ--=- 这表明,在可逆变换下2 22112 12A A A -与22112 12 a a a -保持相同的正负号。 定理 在0M 的领域内,不为常数的函数),(y x ?是偏微分方程022*******=++y y x x a a a ????之解的充分必要条件是: C y x ≡),(?是常微分方程的 0)(2)(22212211=++dx a dxdy a dy a 通解。 2 方程的类型及其标准形式 根据以上结论简化方程的问题归结为寻求其特征曲线。为此将特征方程分解成两个方程: 11 22 11 2 12 12 a a a a a dx dy -+=,11 22 11 2 12 12 a a a a a dz dy --= (1) 若在0M 的邻域内022112 12>-a a a 时,方程可以化为

二次根式的化简与计算(讲义及答案)

二次根式的化简与计算(讲义) ? 课前预习 1. 回顾实数的相关概念,并完成下列各题. (1)二次根式: ①定义:一般地,形如___________的式子叫做二次根式. ②性质: 2=_______(a ≥0=_______(a ≥0). =_______(a ≥0,b ≥0=______(a ≥0,b >0). ③乘除法则: =_____(a ≥0,b ≥0=_____(a ≥0,b >0). ④加减法则: 先化成最简二次根式,再合并_______________. (2)实数混合运算顺序: 先算__________,再算______,最后算______.同级运算,从左向右进行.如果有括号,先算括号里面的. 2. 成立的x 的取值范围是( ) A .x ≥1 B .x ≥2 C .1≤x ≤2 D .x ≤2 ? 知识点睛 1. 二次根式的双重非负性: a ____00. 2. 二次根式双重非负性的常见应用: (120b c +=,则a =______,b =______,c =_____. (2a =______. 3. 实数混合运算处理方法: ①观察________,划________; ②有序操作,依________; ③每步推进一点点.

做运算时往往需要估计工作量 .....,观察式子结构,巧用公式,可以大大简化运算.4.二次根式与数形结合: 被开方数中出现平方形式,可通过构造直角三角形借助勾股定理 .............解决问题. ?精讲精练 1.若x,y 为实数,且满足10 x-=,则xy=______. 2.若x,y,z 2 (3)20 y x z -++= ,则 =_______. 3.若实数x,y 2210 y y ++=,则x y=_______. 4.若实数a,b (0 b-=,则a2+2b的平方根为________. 5.若实数x,y 满足3 y=,则2xy=________. 6.若实数x,y 满足1 y= =____. 7.已知a,b为一等腰三角形的两边长,且a,b 满足等式4 b =-,则此等腰三角形的周长为______. 8.计算: (1 2 1 3 - ? ? ---+ ? ???

数学物理方法之二阶线性偏微分方程的分类

第十三章二阶线性偏微分方程 的分类 本章将介绍二阶线性偏微分方程的基本概念、分类方法和偏微分方程的标准化. 特别对于常系数的二阶线性偏微分方程的化简方法也进行了详细讨论,这对后面的偏微分方程求解是十分有用的.

13.1 基本概念 (1)偏微分方程含有未知多元函数及其偏导数的方程,如 22222(,,,,,,,,,,)0u u u u u F x y u x y x y x y ??????????????=??????其中(,,)u x y ???是未知多元函数,而,,x y ???是未知变量;,,u u x y ???????为u 的偏导数. 有时为了书

写方便,通常记 2 2,,,,x y xx u u u u u u x y x ???==???=??????(2)方程的阶偏微分方程中未知函数偏导数的最高阶数称为方程的阶.(3)方程的次数偏微分方程中最高阶偏导数的幂次数称为偏微分方程的次数.

(4)线性方程一个偏微分方程对未知函数和未知函数的所有偏导数的幂次数都是一次的,就称为线性方程,高于一次以上的方程称为非线性方程. (5)准线性方程一个偏微分方程,如果仅对方程中所有最 高阶偏导数是线性的,则称方程为准线性方程. (6)自由项在偏微分方程中,不含有未知函数及其偏导数的项称为自由项.

例13.1.2:方程的通解和特解概念 二阶线性非齐次偏微分方程2xy u y x =?的通解为 2 21(,)()()2u x y xy x y F x G y =?++其中(),()F x G y 是两个独立的任意函数.因为方程为 例13.1.1:偏微分方程的分类(具体见课本P268)

一阶线性偏微分方程

第七章 一阶线性偏微分方程 研究对象 一阶线性齐次偏微分方程 0),,,(),,,() ,,,(2122121211=??++??+??n n n n n x u x x x X x u x x x X x u x x x X 1基本概念 1) 一阶线性齐次偏微分方程 形如 0),,,(),,,(),,,(2122121211=??++??+??n n n n n x u x x x X x u x x x X x u x x x X (7.1) 的方程,称为一阶线性齐次偏微分方程,其中n x x x ,,,21 是自变量,u 是n x x x ,,,21 的未知函数,n X X X ,,,21 是域n R D ?内的已知函数,并设n X X X ,,,21 在域D 内不同时为零。 2) 一阶拟线性偏微分方程 形如 );,,,();,,,();,,,(21211211z x x x Z x z z x x x Y x z z x x x Y n n n n n =??++?? (7.2) 的方程,称为一阶拟线性偏微分方程,其中Z Y Y Y n ;,,,21 是1+n 个变元z x x x n ;,,,21 的已知函数。n Y Y Y ,,,21 在其定义域1+?'n R D 内不同时为零。 所谓“拟线性”是指方程仅对未知函数的各个一阶偏导数是线性的,以下总设n Y Y Y ,,,21 和Z 在域D '内连续可微。 3) 特征方程组 常微分方程组 n n X dx X dx X dx === 2211 (7.3) 称为一阶线性齐次偏微分方程(7.1)的特征方程组。 常微分方程组

二次根式及其化简【公开课教案】【公开课教案】

2.7 二次根式 第1课时 二次根式及其化简 1.了解二次根式的定义及最简二次根式;(重点) 2.运用二次根式有意义的条件解决相关问题.(难点) 一、情境导入 问题:(1)如图,在Rt △ABC 中,AC =3,BC =2,∠C =90°,那么AB 边的长是多少?(2)面积为S 的正方形的边长是多少?(3)要修建一个面积为6.28平方米的圆形水池,它的半径是多少米?(π取3.14) 上述结果有什么共同特征? 二、合作探究 探究点一:二次根式的相关概念 【类型一】 二次根式的定义 下列式子中,哪些是二次根式,哪些不是二次根式? (1)2;(2)4;(3)3 3;(4)1x +y ; (5)x +y (x≥0,y ≥0);(6)3a 2 +8; (7)-x 2 -12. 解:(1)(2)(5)(6)是;(3)(4)(7)不是. 方法总结:在判断一个代数式是不是二次根式时,应该在原始形式的基础上进行判断,不能先化简再作判断,如本题4=2,4是二次根式,但2不是二次根式. 【类型二】 二次根式有意义的条件 当x________,x +3+ 1 x +1 在实数范围内有意义. 解析:要使x +3+1 x +1在实数范围内有意义,必须同时满足被开方数x +3≥0和分母 x +1≠0,解得x ≥-3且x≠-1. 方法总结:使一个代数式有意义的未知数的取值范围通常要考虑三种情况:一是分母不

为零,二是偶次方根的被开方数是非负数,三是零次幂的底数不为零.探究点二:二次根式的性质及化简 化简下列二次根式. (1)48;(2)8a3b(a≥0,b≥0); (3)(-36)×169×(-9). 解析:本题主要考查运用 ab=a·b(a≥0,b≥0)及a2=a(a≥0)进行化简.解:(1)48=16×3=16×3=43; (2)8a3b=22·a2·2ab=(2a)2·2ab=2a2ab; (3)(-36)×169×(-9)=36×169×9=6×13×3=234. 方法总结:(1)若被开方数中含有负因数,则应先化成正因数,如(3)题.(2)将二次根式尽量化简,使被开方数(式)中不含能开得尽方的因数(因式),即化为最简二次根式(后面学到). 探究点三:最简二次根式 在二次根式8a, c 9 ,a2+b2,a2 中,最简二次根式共有( ) A.1个 B.2个 C.3个 D.4个 解析:8a中有因数4; c 9 中有分母9;a3中有因式a2.故最简二次根式只有a2+b2.故选A. 方法总结:只需检验被开方数是否还有分母,是否还有能开得尽方的因数或因式. 三、板书设计 二次根式 ?? ? ??定义???形如a(a≥0)的式子 有意义的条件:a≥0 性质:(a)2=a(a≥0),a2=a(a≥0) 最简二次根式 本节经历从具体实例到一般规律的探究过程,运用类比的方法,得出实数运算律和运算法则,使学生清楚新旧知识的区别和联系,加深学生对运算法则的理解,能否根据问题的特点,选择合理、简便的算法,能否确认结果的合理性等等. 4.4一次函数的应用 第1课时确定一次函数的表达式

二阶线性微分方程解的结构

附录A 线性常微分方程 本课程的研究内容与常微分方程理论有非常密切的联系,因此在本附录里,我们将对线性常微分方程的知识——包括解的存在性、解的结构和求解方法做一些回顾和总结。 把包含未知函数和它的j 阶导数()j y (的方程称为常微分方程。线性常微分方程的标准形式 ()(1)110()()'()()n n n y p x y p x y p x y f x --++++=L (A.1) 其中n 称为方程的阶数,()j p x 和()f x 是给定的函数。可微函数()y y x =在区间 I 上满足方程(A.1),则称其为常微分方程(A.1)在 I 上的一个解。,()f x 称为方程(A.1)的自由项,当自由项()0f x ≡时方程(A.1)称为是齐次方程,否则称为非齐次方程。一般来说常微分方程的解是不唯一的,我们将方程的全部解构成的集合称为解集合,解集合中全部元素的一个通项表达式称为方程的通解,而某个给定的解称为方程的特解。 在本附录里,我们重点介绍一阶和二阶常微分方程的相关知识。 A.1 一阶线性常微分方程 一阶线性常微分方程表示为 '()()y p x y f x x I +=∈,. (A.2) 当()0f x ≡,方程退化为 '()0y p x y +=, (A.3) 假设()y x 不恒等于零,则上式等价于 而()'ln 'y y y =,从而(A.3)的通解为 ()d ()p x x y x Ce -?= ( A.4) 对于非齐次一阶线性常微分方程(A.2),在其两端同乘以函数()d p x x e ?

注意到上面等式的左端 因此有 两端积分 其中C 是任意常数。进一步有 综上有如下结论 定理A.1 假设()()p x f x I 和在上连续,则一阶线性非齐次常微分方程(A.1)的通解具有如下形式 ()d ()d ()d ()()d p x x p x x p x x y x Ce e e f x x --? ??=+?‘ (A.5) 其中C 是任意常数。 观察(A.4)式和(A.5)式,我们发现一阶线性非齐次常微分方程(A.1)的解等于 一阶线性齐次常微分方程( A.2)的通解()d p x x Ce -?加上函数()d ()d *()()d p x x p x x y x e e f x x -??=?。容易验证,*()y x 是方程(A.1)的一个特解。这符合线性方程解的结构规律。 例1 求解一阶常微分方程 解 此时()2()1p x f x =-=,,由(A.5)式,解为 其中C 是任意常数。 A.2 二阶线性常微分方程 将具有以下形式的方程 "()'()()y p x y q x y f x x I ++=∈,, (A.6) 称为二阶线性常微分方程,其中(),(),()p x q x f x 都是变量x 的已知连续函数。称 "()'()0y p x y q x y x I ++=∈,, (A.7) 为与(A.6)相伴的齐次方程. A .2.1 二阶线性微分方程解的结构 首先讨论齐次方程(A.7)解的结构。

二次根式的化简

【二次根式化简】 1、被开方数是小数的二次根式化简 例1、化简5.1 分析:被开方数是小数时,常把小数化成相应的分数,后进行求解。 解:5.1=262 62223232==??=。 评注:化简时通常分子、分母同时乘以分数的分母,使分母上数或者式子成为完全平方数或者完全平方式。 2、被开方数是分数的二次根式化简 例2、化简125 1 分析:因为,125=5×5×5=52×5,所以,只需分子、分母同乘以5就可以了。 解:1251=25 5555551=????。 评注:化简时,通常分子、分母同时乘以分数分母的一个恰当因数或因式,使分母上数或者式子成为完全平方数或者完全平方式。 3、被开方数是非完全平方数的二次根式化简 例3、化简48 分析:因为,48=16×3=42 ×3, 所以,根据公式b a ab ?=(a≥0,b≥0),就可以把积的是完全平方数或平方式的部分从二次根号下开出来,从而实现化简的目的。 解:48=34343163162=?=?=?。 评注:将被开方数进行因数分解,是化简的基础。 4、被开方数是多项式的二次根式化简 例4、化简3)(y x + 分析:当指数是奇数时,保持底数不变,设法把指数化成是一个偶数和一个奇数的积。 解:3)(y x +=y x y x y x y x y x y x ++=+?+=++)()()()(22。 评注:当多项式从二次根号中开出来的时候,一定要注意添加括号。否则,就失去意义。

5、被开方数是隐含条件的二次根式化简 例5、把 根号外的因式移到根号内,得( ). A . B . C . D . 【答案】C. 由二次根式的意义知x <0,则 . 【总结升华】反过来将根号外的因式移到根号内时,也必须向里移非负数。如此例中x <0,所以只能向根号里移x -,到根号里面要变成()2 x -. 练习1.化简二次根式2 2a a a +-的结果是( ) (A )2--a (B)2---a (C)2-a (D)2--a 2. 化简a a 1-的结果是: A )a B )a - C )a - D )a -- 3. 已知?xy 0,化简二次根式_________. 【化简】 例1. 已知a 、b 、c 为△ABC 的三边长,化简 【答案与解析】∵a 、b 、c 为△ABC 的三边长, ∴原式

第一章 偏微分方程和一阶线性偏微分方程解

第一章 偏微分方程和一阶线性偏微分方程解 本章介绍典型的几个偏微分方程。给出了最简单的偏微分方程(一阶线性偏微分方程)解的特征线方法。 典型的偏微分方程:扩散方程t xx u ku =,t u k u =?;波动方程2tt xx u c u =,2tt u c u =?。这是本课程讨论的主要两类方程。 偏微分方程的各类边值条件也是本章讨论的一个重点。 §1.1 一维空间中的偏微分方程 例1 (刚性污染流的方程) 假设均匀直线管道中的水流含污染物质的线密度是(,)u x t (即x 处在时刻t 的污染物的密度) 。如果流速是c ,问题:(,)u x t 满足什么样的方程? 解 如图,在[,]x x x +?内的流体,经过时间t ?,一定处于[,]x c t x x c t +?+?+?。所含污染物应相同,即 (,)(,)x x x x c t x x c t u t d u t t d ξξξξ+?+?+?+?= +?? ? , 由此 (,)(,)u x t u x c t t t =+?+?, 从而, 0t x u cu +=。 【End 】 可见偏微分方程是一个至少为两元的函数及其偏导数所满足的方程。 例2 (扩散方程) 假设水流静止,在t ?时间内,流经x 处的污染物质(不计高阶无穷小)与该处浓度的方向导数(浓度变化)成正比,比例系数为k : ()x u dm t k dt ku dt x ?==?, 所以,在时间段12[,]t t 内,通过12[,]x x 的污染物为 2 1 2 1 [(,)(,)]t x x t k u x t u x t dt -?。 在时刻1t 和2t ,在12[,]x x 内的污染物分别为2 1 1(,)x x u x t dx ?和2 1 2(,)x x u x t dx ? ,由物质守恒定律 2 2 2 1 1 1 2 1 2 1 (,)(,)[(,)(,)]x x t x x x x t u x t dx u x t dx k u x t u x t dt -=-??? 由1t ,2t 的任意性,

二阶线性微分方程解的结构

附录A 线性常微分方程 本课程的研究内容与常微分方程理论有非常密切的联系,因此在本附录里,我们将对线性常微分方程的知识——包括解的存在性、解的结构和求解方法做一些回顾和总结。 把包含未知函数和它的j 阶导数()j y (的方程称为常微分方程。线性常微分方程的标准形式 ()(1)110()()'()()n n n y p x y p x y p x y f x --++++= (A.1) 其中n 称为方程的阶数,()j p x 和()f x 是给定的函数。可微函数()y y x =在区间 I 上满足方程(A.1),则称其为常微分方程(A.1)在 I 上的一个解。,()f x 称为方程(A.1)的自由项,当自由项()0f x ≡时方程(A.1)称为是齐次方程,否则称为非齐次方程。一般来说常微分方程的解是不唯一的,我们将方程的全部解构成的集合称为解集合,解集合中全部元素的一个通项表达式称为方程的通解,而某个给定的解称为方程的特解。 在本附录里,我们重点介绍一阶和二阶常微分方程的相关知识。 A.1 一阶线性常微分方程 一阶线性常微分方程表示为 '()()y p x y f x x I +=∈,. (A.2) 当()0f x ≡,方程退化为 '()0y p x y +=, (A.3) 假设()y x 不恒等于零,则上式等价于 '()y p x y =-

而()'ln 'y y y =,从而(A.3)的通解为 ()d ()p x x y x Ce -?= ( A.4) 对于非齐次一阶线性常微分方程(A.2),在其两端同乘以函数()d p x x e ? ()d ()d ()d '()()p x x p x x p x x e y p x e y e f x ???+= 注意到上面等式的左端 ()d ()d ()d ''()p x x p x x p x x e y p x e y e y ?????+= ??? ‘ 因此有 ()d ()d '()p x x p x x e y e f x ????= ??? ‘ 两端积分 ()d ()d ()d p x x p x x e y C e f x x ??=+?‘ 其中C 是任意常数。进一步有 ()d ()d ()d p x x p x x y e C e f x x -??? ?=+ ??? ?‘ 综上有如下结论 定理A.1 假设()()p x f x I 和在上连续,则一阶线性非齐次常微分方程(A.1)的通解具有如下形式 ()d ()d ()d ()()d p x x p x x p x x y x Ce e e f x x --???=+?‘ (A.5) 其中C 是任意常数。 观察(A.4)式和(A.5)式,我们发现一阶线性非齐次常微分方程(A.1) 的解等于一阶线性齐次常微分方程(A.2)的通解()d p x x Ce -?加上函数

二次根式的化简习题

二次根式的化简 1.若-10时,化简的结果是 A.x B.-x C.x D.-x 9.实数a,b在数轴上对应点的位置如图所示,则化简的结果为 A.-b B.2a-b C.b-2a D.b 10.计算等于 A.5-2 B.1 C.2-5 D.2-1 11.下列二次根式中,是同类二次根式的是 A. B.与 C.与 D.与 二、填空题 1.化简=____.

2.= . 3.得 . 4.若三角形的三边a?b?c满足a2-4a+4+=0,则笫三边c的取值范围是_____________. 5.判断题 (1)若=a,则a一定是正数.( ) (2)若=-a,则a一定是负数.( ) (3)=π-3.14.( ) (4)∵(-5)2=52,∴.( ) (5)( ) (6)当a>1时,|a-1|+=2a-2.( ) (7)若x=1,则2x-=2x-(x-2)=x+2=1+2=3.( ) (8)若=-xy≠0,则x、y异号.( ) (9)m<1时,(m-1)=1.( ) (10)=x+1.( ) (11)=0.( ) (12)当m>3时,-m=-3.( ) 6.如果等式=-x成立,则x的取值范围是________. 7.当x_______时,=x-1. 8.若=x+2,则x__________. 9.若m<0,则|m|+. 10.当=________. 11.若x与它的绝对值之和为零,则. 12.当a_________时,|-3a|=-4a.

第二章 二阶线性偏微分方程的分类

第二章 二阶线性偏微分方程的分类 1.把下列方程化为标准形式: (1)02=+++++u cu bu au au au y x yy xy xx 解:因为 02 22112 12=?-=-a a a a a a 所以该方程是抛物型方程,其特征方程为 12 2 =-± =a a a a dx dy 。 它只有一族实的特征线 c x y =- 在这种情况下,我们设x y -=ξ,x =η(或令y =η,总之,此处η是与ξ无关的任一函数,当然宜取最简单的函数形式x =η或y =η)。 方法一:用抛物型方程的标准形式 ][12122 F Cu u B u B A +++- =ηξηηη 先算出: ? ??? ? ? ?? ? ? ?-====?+?+?+?+?=++++=?+-+?+?+?=++++==?+?+=++=b c C b c b a a a b b a a a B c b a a a b b a a a B a a a a a a a A y x yy xy xx y x yy xy xx y y x x 0F ,1010020 2 1)1(0020 2 002 2212212112 2122121112 221221122ηηηηηξξξξξηηηη ∴])[(1 u bu u c b a u +++--=ηξηη 即 01=+ + -+ u a u a b u a b c u ηξηη 方法二:应用特征方程,作自变量变换,求出 ??? ??=+-=+-=+--==+-= ,2 ,ξξηξξξηηξηξξηηηξξηξξξηξu u u u u u u u u u u u u u u u u u yy xy xx y x 代入原方程得,0)(=++-+u bu u b c au ηξξη

二次根式的化简及计算

二次根式的化简及计算 、学习准备: 1平方根:如果x 2= a,那么x叫做a的平方根。若a _ 0,则a的平方根记为___________________ . 2、算术平方根:正数a的正的平方根,叫做a的算术平方根。若a 3 0,则a的算术平方根记为 __________ 3、填空:① J100表示100的_________ ,结果为 ______ ? ②49表示49的 __________ ,结果为 _____ ? ,64 64 ③0.81的算术平方根记为_____________ ,结果为 _________ ? ④计算:阿+736 = _____________ , T004 —T025 = _____________ ? 二、阅读理解 4、二次根式的概念: 对于形如100^,81,-、a 这样的式子,我们将符号“ja ”叫做二次根式,根号下的数叫做被开方数。 在实数范围内,负数没有平方根,所以被开方数只能是正数或零,即被开方数只能是非负数。 5、积的算术平方根 计算..= = . _______ .4 .9 x_= ______________ ,所以盲 一般地,-.晶“菱电(a_0,b_0)(注意:公式中a,b必须都是非负数) 积的算术平方根,等于 ___________________________________ ? 想一想:.、(《) (-9)= 二?一匚9成立吗?为什么?、.(-4) (-9)应该等于多少? 例1、化简:(1) .16 81 (2) 2000 (3)27 15 (4) . 16ab2 (a - 0,b - 0) 即时练习:计算(1) 49 121 (2) 18 ( 3) 3x3(4)、27m2n3

(整理)一阶线性偏微分方程.

第七章 一阶线性偏微分方程 例7-1 求方程组 ()()()yz B A Cdz xz A C Bdy yz C B Adx -=-=- 通积分,其中C B A ,,为互不 相等的常数。 解 由第一个等式可得 xyz ydy A C B xyz xdx C B A -=-, 即有 0=---ydy A C B xdx C B A , 两边积分得方程组的一个首次积分 122,C y A C B x C B A z y x Φ=---= ),(。 由第二个等式可得 xyz zdz B A C xyz ydy A C B -=-, 即有 0=---zdz B A C ydy A C B , 两边积分得方程组的另一个首次积分 222,C z B A C y A C B z y x Ψ=---= ),(。 由于,雅可比矩阵 ? ???? ?????------=????? ???? ????ψ??ψ??ψ ??Φ??Φ ??Φ ?=?ψΦ?z B A C y A C B y A C B x C B A y y x z y x z y x 002),,(),( 的秩为2,这两个首次积分相互独立,于是原方程组的通积分为 122C y A C B x C B A =--- 222C z B A C y A C B =--- 。

评注:借助于方程组的首次积分求解方程组的方法称为首次积分法。要得到通积分需要求得n 个独立的首次积分,n 为组成方程组的方程个数。用雅可比矩阵的秩来验证首次积分的独立性。 例7-2 求方程组 () () ???????-+--=-+-=11d 222 2y x y x dt dy y x x y dt x 的通解。 解 由原方程组可得 )1)((2222-++-=+y x y x dt dy y dt dx x 即 dt y x y x y x d )1)((2)(2 2 2 2 2 2 -++-=+ 这个方程关于变量t 和2 2 y x +是可以分离的,因此易求得它的通积分为 122 2221),,(C e y x y x t y x t =+-+=Φ 这是原方程组的一个首次积分。 再次利用方程组,得到 )(22y x dt dx y dt dy x +-=-, 即有 1arctan -=?? ? ?? x y dt d 由此得到原方程组的另一个首次积分 2arctan ),,(C t x y t y x =+=ψ 。 由于,雅可比矩阵为 ()( ) ???? ? ?????? ?++-++=????????? ????ψ??ψ ??Φ??Φ ?=?ψΦ?2222 222 222 2222),(),(y x x y x y e y x y e y x x y x y x y x t t ,

二次根式化简的几种方法

二次根式化简的几种方法 1、被开放数是小数的二次根式化简 例1、化简5.1 分析:被开放数是小数时,常把小数化成相应的分数,后进行求解。 解:5.1=26262223232 ==??=。 评注:化简时通常分子、分母同时乘以分数的分母,使分母上数或者式子成为完全平方数或者完全平方式。 2、被开放数是分数的二次根式化简 例2、化简125 1 分析:因为,125=5×5×5=52×5,所以,只需分子、分母同乘以5就可以了。 解:1251=25 5555551=????。 评注:化简时,通常分子、分母同时乘以分数分母的一个恰当因数或因式,使分母上数或者式子成为完全平方数或者完全平方式。 3、被开放数是非完全平方数的二次根式化简 例3、化简48 分析: 因为,48=16×3=42×3, 所以,根据公式b a ab ?=(a ≥0,b ≥0),就可以把积的是完全平方数或平方式的部分从二次根号下开出来,从而实现化简的目的。 解:48=34343163162=?=?=?。 评注:将被开放数进行因数分解,是化简的基础。 4、被开放数是多项式的二次根式化简

例4、化简3)(y x + 分析:当指数是奇数时,保持底数不变,设法把指数化成是一个偶数和一个奇数的积。 解:3)(y x +=y x y x y x y x y x y x ++=+?+=++)()()()(22。 评注:当多项式从二次根号中开出来的时候,一定要注意添加括号。否则,就失去意义。 5、被开放数是隐含条件的二次根式化简 例5、化简a a 1-的结果是: A )a B )a - C )a - D )a -- 分析:含字母的化简,通常要知道字母的符号。而字母的符号又常借被开方数的非负性而隐藏。因此,化简时要从被开方数入手。 解:∵a a 1-有意义∴a 1-≥0,∴-a >0 ∴原式=a a a a a a a a a a a a a a a a --=--=--=--=---=-||) ())(()()(12故选(C )。

相关主题
文本预览
相关文档 最新文档