当前位置:文档之家› 一阶偏微分方程基本知识

一阶偏微分方程基本知识

一阶偏微分方程基本知识
一阶偏微分方程基本知识

一阶偏微分方程基本知识

这一章我们来讨论一阶线性偏微分方程和一阶拟线性偏微分方程的解法,因为它们都可以化为常微分方程的首次积分问题,所以我们先来介绍常微分方程的首次积分。

1一阶常微分方程组的首次积分

1.1首次积分的定义

从第三章我们知道,n 阶常微分方程

()()()

1,,'',',-=n n y y y x f y , ( 1.1)

在变换

(

)

1'12,,,,n n y y y y y y -=== ( 1.2)

之下,等价于下面的一阶微分方程组

()()()1

112221212,,,,,,,,,,,,,,.

n n

n n n dy f x y y y dx dy f x y y y dx

dy f x y y y dx

?=??

?=????

?=?

? ( 1.3) 在第三章中,已经介绍过方程组( 1.3)通解的概念和求法。但是除了常系数线性方程组外,求一般的( 1.3)的解是极其困难的。然而在某些情况下,可以使用所谓“可积组合”法求通积分,下面先通过例子说明“可积组合”法,然后介绍一阶常微分方程组“首次积分”的概念和性质,以及用首次积分方法来求解方程组( 1.3)的问题。先看几个例子。

例1 求解微分方程组

()()22221,1.dx

dy

y x x y x y x y dt dt

=-+-=--+- ( 1.4) 解:将第一式的两端同乘x ,第二式的两端同乘y ,然后相加,得到 ()()

12222-++-=+y x y x dt

dy y dt dx x ,

()()()2222221

12

d x y x y x y dt +=-++-。 这个微分方程关于变量t 和()22x y +是可以分离,因此不难求得其解为

122

2221C e y x y x t

=+-+, ( 1.5)

1C 为积分常数。( 1.5)叫做( 1.4)的首次积分。

注意首次积分( 1.5)的左端(),,V x y t 作为x ,y ,和t 的函数并不等于常数;从上面的推导可见,当(),()x x t y y t ==时微分方程组( 1.4)的解时,(),,V x y t 才等于常数1C ,这里的常数1C 应随解而异。因为式( 1.4)是一个二阶方程组,一个首次积分( 1.5)不足以确定它的解。为了确定( 1.4)的解,还需要找到另外一个首次积分。

将第一式两端同乘y ,第二式两端同乘x ,然后用第一式减去第二式,得到

22y x dt

dy

x dt dx y

+=-, 即

()

22y x dt

dx y dt dy x

+-=-, 亦即

1arctan -=??

? ??

dt

x y d 。

积分得

2arctan C t x

y

=+, ( 1.6)

其中2C 为积分常数。

利用首次积分( 1.5)和( 1.6)可以确定( 1.4)的通解。为此,采用极坐标cos ,sin x r y r θθ==,这样由( 1.5)和( 1.6)推得

212211,.t e C t C r θ??-=+= ???

或 t C e

C r t

-=-=

-221,11θ.

因此我们得到方程组( 1.4)的通解为 ()t

e

C t C x 2121cos ---=

,()t

e

C t C y 2121sin ---=

. ( 1.7)

例2 求解微分方程组 ()()(),,.du

vw dt dv

wu dt dw

uv dt αβγβγαγαβ?=-???=-???=-?? ( 1.8)

其中0αβγ>>>是给定的常数。 解 利用方程组的对称性,可得 0du dv dw

u v w dt dt dt

αβγ++=, 从而得到首次积分

2221u v w C αβγ++=, ( 1.9) 其中积分常数10C ≥。同样我们有 2220du dv dw

u v w dt dt dt

αβγ++=, 由此又得另一个首次积分

2222222u v w C αβγ++=, ( 1.10)

其中积分常数20C ≥。有了首次积分( 1.9)和( 1.10),我们就可以将u 和v 用w 表示,代入原方程组( 1.8)的第三式,得到

dw dt =, ( 1.11)

其中常数a ,b 依赖于常数12C C 和,而常数 ()()()

()

0,0.A B γβγγαγααββαβ--=

>=>--

注意( 1.11)是变量可分离方程,分离变量并积分得到第三个首次积分

3t C αβ

γ

--

=, ( 1.12) 其中3C 是积分常数。因为方程组( 1.8)是三阶的,所以三个首次积分( 1.9)、( 1.10)和( 1.12)在理论上足以确定它的通解

()()()123123123,,,,,,,,,,,.u t C C C v t C C C w t C C C ?ψχ=== 但是由于在式( 1.12)中出现了椭圆积分,因此不能写出上述通解的具体表达式。

现在我们考虑一般的n 阶常微分方程

()n i i

y y y x f dx dy ,,,,21 =,()n i ,2,1=, ( 1.13) 其中右端函数()n i y y y x f ,,,,21 在1+?n R D 对()12,,,

,n x y y y 连续,而且对

n y y y ,,,21 是连续可微的。

定义1设函数()12,,,

,n V V x y y y =在D 的某个子域G 连续,而且对

12,,,

,n x y y y 是连续可微的。又设()12,,,

,n V x y y y 不为常数,但沿着微分方程

( 1.3)在区域G 的任意积分曲线

()()()()1122:,,

,n n y y x y y x y y x x J Γ===∈

函数V 取常值;亦即

()()()()()

()12,,,

n V x y x y x y x C x J =∈常数,

或当12(,,,

,)n x y y y ∈Γ时,有

()12,,,,n V x y y y =常数,

这里的常数随积分曲线Γ而定,则称

()12,,,,n V x y y y =C ( 1.14)

为微分方程( 1.13)在区域G 的首次积分。其中C 是一个任意常数,有时也称这里的函数()12,,,

,n V x y y y 为( 1.13)的首次积分。

例如( 1.5)和( 1.6)都是微分方程( 1.4)在某个区域的首次积分。这里对区域G 有限制,是要求首次积分( 1.5)和( 1.6)必须是单值的连续可微函数。因此区域G 不能包括原点,而且也不能有包含原点的回路。同理,式( 1.9)、( 1.10)和( 1.12)都是方程( 1.8)的首次积分。

对于高阶微分方程( 1.1),只要做变换( 1.2),就可以把它化成一个与其等价的微分方程组。因此,首次积分的定义可以自然地移植到n 阶方程( 1.1)。而其首次积分的一般形式可以写为

()(

)

1',,,

,n V x y y y C -=。 ( 1.15)

例如,设二阶微分方程组

()222sin 0

0d x

a x a dt

+=>为常数,

dx

dt

乘方程的两端,可得 22

2

sin 0dx d x dx a x dt dt dt

+=, 然后积分,得到一个首次积分

2

21cos 2dx a x C dt ??

-= ???

一般的,n 阶常微分方程有n 个独立的首次积分,如果求得n 阶常微分方程组的n 个独立的首次积分,则可求n 阶常微分方程组的通解。 1.2首次积分的性质和存在性

关于首次积分的性质,我们不加证明地列出下面的定理。 定理1设函数()12,,,,n x y y y Φ 在区域G 是连续可微的,而且它不是常

数,则

()12,,,

,n x y y y C Φ= ( 1.16)

是微分方程( 1.13)在区域G 的首次积分的充分必要条件是 11

0n n

f f x y y ?Φ?Φ

+++

=??? ( 1.17) 是关于变量()12,,,

,n x y y y G ∈的一个恒等式。

这个定理实际上为我们提供了一个判别一个函数是否是微分方程( 1.13)首次积分的有效方法。因为根据首次积分的定义,为了判别函数()

12,,,

,n V x y y y 是否是微分方程( 1.13)在G 的首次积分,我们需要知道( 1.13)在G 的所有积分曲线。这在实际上是由困难的。而定理1避免了这一缺点。

定理 2 若已知微分方程( 1.13)的一个首次积分( 1.14),则可以把微分方程( 1.13)降低一阶。

设微分方程组( 1.13)有n 个首次积分 ()()12,,,

,1,2,,i n i x y y y C i n Φ==, ( 1.18)

如果在某个区域G 它们的Jacobi 行列式

()

()

1212,,,0,,,n n D D y y y ΦΦΦ≠, ( 1.19)

则称它们在区域G 是相互独立的。

定理3设已知微分方程( 1.13)的n 个相互独立的首次积分( 1.18),则可由它们得到( 1.13)在区域G 的通解

()()12,,,

,1,2,,i i n y x C C C i n ?==, ( 1.20)

其中12,,

,n C C C 为n 个任意常数(在允许围),而且上述通解表示了微分方程

( 1.13)在G 的所有解。

关于首次积分的存在性,我们有 定理4 设()00

001,,

,n p x y y G =∈,则存在0p 的一个邻域0G G ?,使得微分

方程( 1.13)在区域0G 有n 个相互独立的首次积分。

定理5 微分方程( 1.13)最多只有n 个相互独立的首次积分。

定理6 设( 1.18)是微分方程( 1.13)在区域G 的n 个相互独立的首次积分,则在区域G 微分方程( 1.13)的任何首次积分

()12,,,

,n V x y y y =C ,

可以用( 1.18)来表达,亦即 ()()()1211212,,,,,,,

,,,,,,

,n n n n V x y y y h x y y y x y y y =ΦΦ????,

其中[]*,

,*h 是某个连续可微的函数。

为了求首次积分,也为了下一节的应用,人们常把方程组( 1.3)改写成对称的形式

12

12

1

n n dy dy dy dx

f f f ===, 这时自变量和未知函数的地位是完全平等的。更一般地,人们常把上述对称式写成

()()()

12

11221212,,,,,,,,,,n

n n n n dy dy dy Y y y y Y y y y Y y y y ==

( 1.21)

并设12,,,n n Y Y Y G R ?在区域部不同时为零,例如如果设0,n Y ≠ 则( 1.21)等

价于

()()

()1212,,,1,2,,1,,,i n i n n n Y y y y dy i n dy Y y y y =

=-。 ( 1.22)

请注意,式( 1.22)中的n y 相当于自变量,()1,2,,1i x i n =-相当于未知函数,

所以在方程组( 1.21)中只有n--1个未知函数,连同自变量一起,共有n 个变元。

不难验证,对于系统( 1.21),定理1相应地改写为:设函数()

12,,,n y y y ?连续可微,并且不恒等于常数,则()12,,,n y y y ?=C 是( 1.21)的首次积分的

充分必要条件是关系式

()()()

()1121212121

,,

,,,,,,

,,,,0n n n n n n

Y y y y y y y Y y y y y y y y y ???

?

+

+=??

( 1.23) 在G 成为恒等式。如果能得到( 1.21)的n -1个独立的首次积分,则将它们联立,就得到( 1.21)的通积分。

方程写成对称的形式后,可以利用比例的性质,给求首次积分带来方便。 例3 求

dx dy dz

y x z

==的通积分。 解 将前两个式子分离变量并积分,得到方程组的一个首次积分

221x y C -= ( 1.24) 其中1C 是任意常数,再用比例的性质,得

偏微分方程数值解实验报告

偏微分方程数值解实验报告

1、用有限元方法求下列边值问题的数值解:''()112x -y +y =2s i n ,0∈∈??∈(0,)?, 其中取1ν= 要求画出解曲面。迭代格式如下: 1221212111111111122142212n n n n n n j j j j j j n n n n n n j j j j j j V V V V V V h h V V V V V V h h τ++++++++++-+-??-()-()()-()??++?????? ??-+-+??=+??????

1、 %Ritz Galerkin方法求解方程 function u1=Ritz(x) %定义步长 h=1/100; x=0:h:1; n=1/h; a=zeros(n-1,1); b=zeros(n,1); c=zeros(n-1,1); d=zeros(n,1); %求解Ritz方法中内点系数矩阵 for i=1:1:n-1 b(i)=(1/h+h*pi*pi/12)*2; d(i)=h*pi*pi/2*sin(pi/2*(x(i)+h))/2+h*pi*pi/2*sin(pi/2*x(i+1))/2; end %右侧导数条件边界点的计算 b(n)=(1/h+h*pi*pi/12); d(n)=h*pi*pi/2*sin(pi/2*(x(i)+h))/2; for i=1:1:n-1 a(i)=-1/h+h*pi*pi/24; c(i)=-1/h+h*pi*pi/24; end %调用追赶法 u=yy(a,b,c,d) %得到数值解向量 u1=[0,u] %对分段区间做图 plot(x,u1) %得到解析解 y1=sin(pi/2*x); hold on plot(x,y1,'o') legend('数值解','解析解') function x=yy(a,b,c,d) n=length(b); q=zeros(n,1); p=zeros(n,1); q(1)=b(1); p(1)=d(1); for i=2:1:n

分数阶微分方程-课件

分数阶微分方程 第三讲分数阶微分方程基本理论 一、分数阶微分方程的出现背景及研究现状 1、出现背景 分数阶微积分是关于任意阶微分和积分的理论,它与整数阶微积分是统一的,是整数阶微积分的推广。 整数阶微积分作为描述经典物理及相关学科理论的解析数学工具已为人们普遍接受,很多问题的数学模型最终都可以归结为整数阶微分方程的定解问题,其无论在理论分析还是数值求解方面都已有较完善的理论。但当人们进入到复杂系统和复杂现象的研究时,经典整数阶微积分方程对这些系统的描述将遇到以下问题: (1)需要构造非线性方程,并引入一些人为的经验参数和与实际不符的假设条件; (2)因材料或外界条件的微小改变就需要构造新的模型; (3)这些非线性模型无论是理论求解还是数值求解都非常繁琐。 基于以上原因,人们迫切期待着有一种可用的数学工具和可依据的基本原理来对这些复杂系统进行建模。分数阶微积分方程非常适合于刻画具有记忆和遗传性质的材料和过程,其对复杂系统的描述具有建模简单、参数物理意义清楚、描述准确等优势,因而成为复杂力学与物理过程数学建模的重要工具之一。 2、研究现状 在近三个世纪里,对分数阶微积分理论的研究主要在数学的纯理论领域里进行,似乎它只对数学家们有用。然而在近几十年来,分数阶微分方程越来越多的被用来描述光学和热学系统、流变学及材料和力学系统、信号处理和系统识别、控制和机器人及其他应用领域中的问题。分数阶微积分理论也受到越来越多的国内外学者的广泛关注,特别是从实际问题抽象出来的分数阶微分方程成为很多数学工作者的研究热点。随着分数阶微分方程在越来越多的科学领域里出现,无论对分数阶微分方程的理论分析还是数值计算的研究都显得尤为迫切。然而由于分数阶微分是拟微分算子,它的保记忆性(非局部性)对现实问题进行了优美刻画的同时,也给我们的分析和计算造成很大困难。 在理论研究方面,几乎所有结果全都假定了满足李氏条件,而且证明方法也和经典微积分方程一样,换句话说,这些工作基本上可以说只是经典微积分方程理论的一个延拓。对分数阶微分方程的定性分析很少有系统性的结果,大多只是给出了一些非常特殊的方程的求解,且常用的求解方法都是具有局限性的。 在数值求解方面,现有分数阶方程数值算法还很不成熟,主要表现为: (1)在数值计算中一些挑战性难题仍未得到彻底解决,如长时间历程的计算和大空间域的计算等; (2)成熟的数值算法比较少,现在研究较多的算法主要集中在有限差分方法与有限单元法; (3)未形成成熟的数值计算软件,严重滞后于应用的需要。

差分法求解偏微分方程MAAB

南京理工大学 课程考核论文 课程名称:高等数值分析 论文题目:有限差分法求解偏微分方程 姓名:罗晨 学号: 成绩: 有限差分法求解偏微分方程 一、主要内容 1.有限差分法求解偏微分方程,偏微分方程如一般形式的一维抛物线型方程:具体求解的偏微分方程如下: 2.推导五种差分格式、截断误差并分析其稳定性; 3.编写MATLAB程序实现五种差分格式对偏微分方程的求解及误差分析;

4.结论及完成本次实验报告的感想。 二、推导几种差分格式的过程: 有限差分法(finite-differencemethods )是一种数值方法通过有限个微分方程近似求导从而寻求微分方程的近似解。有限差分法的基本思想是把连续的定解区域用有限个离散点构成的网格来代替;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。 推导差分方程的过程中需要用到的泰勒展开公式如下: ()2100000000()()()()()()()......()(()) 1!2!! n n n f x f x f x f x f x x x x x x x o x x n +'''=+-+-++-+-(2-1) 求解区域的网格划分步长参数如下: 11k k k k t t x x h τ ++-=?? -=?(2-2) 2.1古典显格式 2.1.1古典显格式的推导 由泰勒展开公式将(,)u x t 对时间展开得 2,(,)(,)( )()(())i i k i k k k u u x t u x t t t o t t t ?=+-+-?(2-3) 当1k t t +=时有 21,112,(,)(,)( )()(())(,)()() i k i k i k k k k k i k i k u u x t u x t t t o t t t u u x t o t ττ+++?=+-+-??=+?+?(2-4) 得到对时间的一阶偏导数 1,(,)(,)()=()i k i k i k u x t u x t u o t ττ+-?+?(2-5) 由泰勒展开公式将(,)u x t 对位置展开得 223,,21(,)(,)()()()()(())2!k i k i k i i k i i u u u x t u x t x x x x o x x x x ??=+-+-+-??(2-6) 当11i i x x x x +-==和时,代入式(2-6)得

一阶线性偏微分方程

第七章 一阶线性偏微分方程 研究对象 一阶线性齐次偏微分方程 0),,,(),,,() ,,,(2122121211=??++??+??n n n n n x u x x x X x u x x x X x u x x x X 1基本概念 1) 一阶线性齐次偏微分方程 形如 0),,,(),,,(),,,(2122121211=??++??+??n n n n n x u x x x X x u x x x X x u x x x X (7.1) 的方程,称为一阶线性齐次偏微分方程,其中n x x x ,,,21 是自变量,u 是n x x x ,,,21 的未知函数,n X X X ,,,21 是域n R D ?内的已知函数,并设n X X X ,,,21 在域D 内不同时为零。 2) 一阶拟线性偏微分方程 形如 );,,,();,,,();,,,(21211211z x x x Z x z z x x x Y x z z x x x Y n n n n n =??++?? (7.2) 的方程,称为一阶拟线性偏微分方程,其中Z Y Y Y n ;,,,21 是1+n 个变元z x x x n ;,,,21 的已知函数。n Y Y Y ,,,21 在其定义域1+?'n R D 内不同时为零。 所谓“拟线性”是指方程仅对未知函数的各个一阶偏导数是线性的,以下总设n Y Y Y ,,,21 和Z 在域D '内连续可微。 3) 特征方程组 常微分方程组 n n X dx X dx X dx === 2211 (7.3) 称为一阶线性齐次偏微分方程(7.1)的特征方程组。 常微分方程组

偏微分方程数值解实验报告

精品文档 偏微分方程数值解 上 机 实 验 报 告 (一)实验一 一、上机题目: 用线性元求解下列边值问题的数值解:

精品文档 ′′22?? ?? ??,0

精品文档 (二)实验二 四、上机题目: 求解 Helmholtz 方程的边值问题: u k 2u 1 ,于(0,1)*(0,1) u0,于1{ x0,0y1} U{0x1, y 1} 1{ x0,0y1} U{0x1, y1} u 0,于2{0x1, y 0} U { x1,0y1} n 其中 k=1,5,10,15,20 五、实验程序:

一阶偏微分方程基本知识资料

一阶偏微分方程基本 知识

一阶偏微分方程基本知识 这一章我们来讨论一阶线性偏微分方程和一阶拟线性偏微分方程的解法,因为它们都可以化为常微分方程的首次积分问题,所以我们先来介绍常微分方程的首次积分。 1一阶常微分方程组的首次积分 1.1首次积分的定义 从第三章我们知道,n 阶常微分方程 ()()() 1,,'',',-=n n y y y x f y , ( 1.1) 在变换 ( ) 1'12,, ,,n n y y y y y y -=== ( 1.2) 之下,等价于下面的一阶微分方程组 ()()()1 112221212,,,,,,,,,,,,,,. n n n n n dy f x y y y dx dy f x y y y dx dy f x y y y dx ?=?? ?=???? ?=? ? ( 1.3) 在第三章中,已经介绍过方程组( 1.3)通解的概念和求法。但是除了常系数线性方程组外,求一般的( 1.3)的解是极其困难的。然而在某些情况下,可以使用所谓“可积组合”法求通积分,下面先通过例子说明“可积组合”法,然后介绍一阶常微分方程组“首次积分”的概念和性质,以及用首次积分方法来求解方程组( 1.3)的问题。先看几个例子。 例1 求解微分方程组

()()22221,1.dx dy y x x y x y x y dt dt =-+-=--+- ( 1.4) 解:将第一式的两端同乘x ,第二式的两端同乘y ,然后相加,得到 ()() 12222-++-=+y x y x dt dy y dt dx x , ()()()2222221 12 d x y x y x y dt +=-++-。 这个微分方程关于变量t 和()22x y +是可以分离,因此不难求得其解为 122 2221C e y x y x t =+-+, ( 1.5) 1C 为积分常数。( 1.5)叫做( 1.4)的首次积分。 注意首次积分( 1.5)的左端(),,V x y t 作为x ,y ,和t 的函数并不等于常数;从上面的推导可见,当(),()x x t y y t ==时微分方程组( 1.4)的解时,(),,V x y t 才等于常数1C ,这里的常数1C 应随解而异。因为式( 1.4)是一个二阶方程组,一个首次积分( 1.5)不足以确定它的解。为了确定( 1.4)的解,还需要找到另外一个首次积分。 将第一式两端同乘y ,第二式两端同乘x ,然后用第一式减去第二式,得到 22y x dt dy x dt dx y +=-, 即 () 22y x dt dx y dt dy x +-=-, 亦即 1arctan -=?? ? ?? dt x y d 。 积分得

偏微分方程数值及matlab实验报告.docx

偏微分方程数值实验报告八 实验题目:利用有限差分法求解 u ( x) u(x) f (x), u( 1) 0, u(1) 0. 真解为 u( x) e x 2 (1 x 2 ) 实现算法:对于两点边值问题 d 2u f , x l , dx 2 (1) u(a),u(b) , 其中 l ( a, b) (a b), f 为 l [ a,b] 上的连续函数, , 为给定常数 . 其相应的有限差分法的算法如下: 1.对求解区域做网格剖分,得到计算网格 .在这里我们对区间 l 均匀剖分 n 段,每个剖分单元 b a 的剖分步长记为 h . n 2.对微分方程中的各阶导数进行差分离散,得到差分方程 .运用的离散方法有: 方法一 :用待定系数和泰勒展开进行离散 d 2u( x i ) i 1 u( x i 1) i u( x i ) i 1 u( x i 1) d( x i )2 方法二:利用差商逼近导数 d 2u( x i ) u( x i 1 ) 2u( x i ) u( x i 1 ) d( x i )2 h 2 将(2) 带入 (1)可以得到 u(x i 1) 2u(x i ) u(x i 1 ) ) R i (u) , h 2 f ( x i 其中 R i (u) 为无穷小量,这时我们丢弃 R i (u) ,则有在 x i 处满足的计算公式: u(x i 1) 2u( x i ) u( x i 1 ) 1,..., n 1 h 2 f ( x i ), i 3.根据边界条件,进行边界处理 .由 (1)可得 u 0 , u n (2) (3) (4) 称(3)(4)为逼近 (1) 的差分方程,并称相应的数值解向量 U n 1 为差分解, u i 为 u( x i ) 的近似值 . 4.最后求解线性代数方程组,得到数值解向量U n 1 .

一阶偏微分方程基本知识

一阶偏微分方程基本知识 这一章我们来讨论一阶线性偏微分方程和一阶拟线性偏微分方程的解法,因为它们都可以化为常微分方程的首次积分问题,所以我们先来介绍常微分方程的首次积分。 1一阶常微分方程组的首次积分 1.1首次积分的定义 从第三章我们知道,n 阶常微分方程 ()()() 1,,'',',-=n n y y y x f y Λ, ( 1.1) 在变换 ()1'12,,,,n n y y y y y y -===L ( 1.2) 之下,等价于下面的一阶微分方程组 ()()()1 112221212,,,,,,,,,,,,,,. n n n n n dy f x y y y dx dy f x y y y dx dy f x y y y dx ?=?? ?=???? ?=??L L M M M M L ( 1.3) 在第三章中,已经介绍过方程组( 1.3)通解的概念和求法。但是除了常系数线性方程组外,求一般的( 1.3)的解是极其困难的。然而在某些情况下,可以使用所谓“可积组合”法求通积分,下面先通过例子说明“可积组合”法,然后介绍一阶常微分方程组“首次积分”的概念和性质,以及用首次积分方法来求解方程组( 1.3)的问题。先看几个例子。

例1 求解微分方程组 ()()22221,1.dx dy y x x y x y x y dt dt =-+-=--+- ( 1.4) 解:将第一式的两端同乘x ,第二式的两端同乘y ,然后相加,得到 ()() 12222-++-=+y x y x dt dy y dt dx x , ()()()2222221 12 d x y x y x y dt +=-++-。 这个微分方程关于变量t 和()22x y +是可以分离,因此不难求得其解为 122 2221C e y x y x t =+-+, ( 1.5) 1C 为积分常数。( 1.5)叫做( 1.4)的首次积分。 注意首次积分( 1.5)的左端(),,V x y t 作为x ,y ,和t 的函数并不等于常数;从上面的推导可见,当(),()x x t y y t ==时微分方程组( 1.4)的解时,(),,V x y t 才等于常数1C ,这里的常数1C 应随解而异。因为式( 1.4)是一个二阶方程组,一个首次积分( 1.5)不足以确定它的解。为了确定( 1.4)的解,还需要找到另外一个首次积分。 将第一式两端同乘y ,第二式两端同乘x ,然后用第一式减去第二式,得到 22y x dt dy x dt dx y +=-, 即 () 22y x dt dx y dt dy x +-=-, 亦即 1arctan -=?? ? ?? dt x y d 。 积分得

偏微分方程与特征线

偏微分方程与特征线 1函数空间的矢量场 给定一个矢量场i x i v ?=)(x v ,就在空间定义了曲线簇。比如,经过0x 点的积分曲线就可以描述为下列常微分方程的初值问题 )(x i i v x = ,n i ,...,1= 0)0(x x = 这些积分曲线就构成了曲线簇。如果形式地写出这个曲线来就是 x vt x t v t v vt t x t x t x x t x )exp(...)! 3!21(...!3!2)(33223 2=++++=++++= 此处x 是0时刻位置,v 是作用于x 的微分算符。 这些曲线,将空间点分成了类,也就是说每条曲线上的点属于一类。曲线集合的维数是n-1维。 矢量场的可积性 那么给定两个矢量场,就会产生两簇曲线,这两簇曲线能否组成面簇呢?我们先 看看从一点出发的曲线是否在一个曲面上的条件:从x 点出发的依此沿两簇直线运动的点若能回到来,就可以认为可以组成面。即 x x vd uc vb ua =)exp()exp()exp()(exp 如果a,b,c,d 都是1级以上的小量,这个表达式有二级以上的精度,就可以找到这样的a,b,c,d,使得方程精确满足。 按照各级展开,有 一级 0a 1111=+=+d b c 二级 v d b u c a vu uv b a )()()(222211+++=- … 由此,得到条件 v u vu uv v u βα+=-=],[

这就是两个矢量能够构成2维子空间(曲面)的条件,著名的Frobenius 定理。 n 个矢量积分形成n 维积分只空间的条件是,任意两个矢量的对易可以写成这n 个矢量组合。 可以按照下图进行直观理解 给定m 个矢量场,他们线性组合能够形成新的矢量场。组成的矢量场空间一般称为分布。 },{是任意函数i i i i a v a ∑=? 这个分布中任意两个矢量场对易仍然在这个分布之内,这样满足Frobenius 定理的分布称为闭分布, ????],[ 他们积分可以给出m 维积分子流形。 单参数李群 一个矢量场可以构造单参数李群,一个闭分布可以构造李群。 我们先看一下单参数李群的表现,它将1维参数空间(物理上经常是时间),映射为群空间。群元素可以形式地写为算符形式 )exp(vt g t = 在表示空间中也可以写为函数变换 ),(t x x g t ?= 这个函数变换是常微分方程的初值问题的解 x x t x v t x t ==?)0,() ,(),(??? 当然这个函数满足如下关系

分数阶微分方程_课件

分数阶微分方程 一、 预备知识 1、 分数阶微积分经典定义回顾 作为分数阶微积分方程的基础,本书在第二章中对分数阶微积分的定义及性质做了系统的介绍,为了接下来讨论的需要,我们首先对其进行一个简要的回顾。 (1)分数阶微积分的主要思想 如上图所示,分数阶微积分的主要思想是推广经典的整数阶微积分,从而将微积分的概念延拓到整个实数轴,甚至是整个复平面。但由于延拓的方法多种多样,因而根据不同的需求人们给出了分数阶微积分的不同定义方式。然而这些定义方式不仅只能针对某些特定条件下的函数给出,而且只能满足人们的某些特定需求,迄今为止,人们仍然没能给出分数阶微积分的一个统一的定义, 这对分数阶微积分的研究与应用造成了一定的困难。 1、分数阶微分的定义 为了满足实际需要,下面我们试图从形式上对分数阶微积分给出一种统一的表达式。 分数阶微积分的主要思想是推广经典的累次微积分,所有推广方法的共同目标是以非整数参数p 取代经典微积分符号中的整数参数n ,实际上,任意的n 阶微分都可以看成是一列一阶微分的叠加: ()()n n n d f t d d d f t dt dt dt dt = (1) 由此,我们可以给出一种在很多实际应用中十分重要的分数阶微积分的推广方 式。首先,我们假设已有一种合适的推广方式来将一阶微分推广为α(01α≤≤) 阶微分,即d D dt α→是可实现的。那么类似地可得到(1)的推广式为: ()()n n D f t D D D f t αααα= (2) 这种推广方式最初是由..K S Miller 和.B Ross 提出来的,其中D α采用的是R L -分数阶微分定义,他们称之为序列分数阶微分。序列分数阶微分的其他形式可以通过将D α替换为G L -分数阶微分、Caputo 分数阶微分或其他任意形式

第一章 偏微分方程和一阶线性偏微分方程解

第一章 偏微分方程和一阶线性偏微分方程解 本章介绍典型的几个偏微分方程。给出了最简单的偏微分方程(一阶线性偏微分方程)解的特征线方法。 典型的偏微分方程:扩散方程t xx u ku =,t u k u =?;波动方程2tt xx u c u =,2tt u c u =?。这是本课程讨论的主要两类方程。 偏微分方程的各类边值条件也是本章讨论的一个重点。 §1.1 一维空间中的偏微分方程 例1 (刚性污染流的方程) 假设均匀直线管道中的水流含污染物质的线密度是(,)u x t (即x 处在时刻t 的污染物的密度) 。如果流速是c ,问题:(,)u x t 满足什么样的方程? 解 如图,在[,]x x x +?内的流体,经过时间t ?,一定处于[,]x c t x x c t +?+?+?。所含污染物应相同,即 (,)(,)x x x x c t x x c t u t d u t t d ξξξξ+?+?+?+?= +?? ? , 由此 (,)(,)u x t u x c t t t =+?+?, 从而, 0t x u cu +=。 【End 】 可见偏微分方程是一个至少为两元的函数及其偏导数所满足的方程。 例2 (扩散方程) 假设水流静止,在t ?时间内,流经x 处的污染物质(不计高阶无穷小)与该处浓度的方向导数(浓度变化)成正比,比例系数为k : ()x u dm t k dt ku dt x ?==?, 所以,在时间段12[,]t t 内,通过12[,]x x 的污染物为 2 1 2 1 [(,)(,)]t x x t k u x t u x t dt -?。 在时刻1t 和2t ,在12[,]x x 内的污染物分别为2 1 1(,)x x u x t dx ?和2 1 2(,)x x u x t dx ? ,由物质守恒定律 2 2 2 1 1 1 2 1 2 1 (,)(,)[(,)(,)]x x t x x x x t u x t dx u x t dx k u x t u x t dt -=-??? 由1t ,2t 的任意性,

偏微分方程数值及matlab实验报告

偏微分方程数值实验报告八 实验题目:利用有限差分法求解 . 0)1(,0)1(),()()(==-=+''-u u x f x u x u 真解为 ) 1()(22 x e x u x -=-实现算法:对于两点边值问题 , )(,)(,,d 22βα==∈=-b u a u l x f dx u (1) 其中),(b a l =f b a ),(<为],[b a l =上的连续函数,βα,为给定常数. 其相应的有限差分法的算法如下: 1.对求解区域做网格剖分,得到计算网格.在这里我们对区间l 均匀剖分n 段,每个剖分单元的剖分步长记为n a b h -= .2.对微分方程中的各阶导数进行差分离散,得到差分方程.运用的离散方法有:方法一:用待定系数和泰勒展开进行离散 )()()()(d ) (d 11112 2++--++≈i i i i i i i i x u x u x u x x u ααα方法二:利用差商逼近导数 2 112 2) ()(2)()(d )(d h x u x u x u x x u i i i i i -++-≈(2) 将(2)带入(1)可以得到 )()() ()(2)(2 11u R x f h x u x u x u i i i i i +=+-- -+, 其中)(u R i 为无穷小量,这时我们丢弃)(u R i ,则有在i x 处满足的计算公式: 1,...,1)() ()(2)(2 11-==+-- -+n i x f h x u x u x u i i i i ,(3) 3.根据边界条件,进行边界处理.由(1)可得 β α==n u u ,0(4) 称(3)(4)为逼近(1)的差分方程,并称相应的数值解向量1-n U 为差分解,i u 为)(i x u 的近似值.4.最后求解线性代数方程组,得到数值解向量1 -n U .

偏微分方程实验1

《偏微分方程数值解》 课程实验报告(一)

1 实验题目 给定初值问题(注:共两次上机时间4学时) 1 02 )0(42'≤≤?? ?=--=x y x y y 其精确解为 12)(2+-=-x e x y x 。取h=0.1, 分别用显式Euler 法、隐式梯形法、二级二阶Runge-Kutta 、三级三阶Runge-Kutta 、四级四阶Runge-Kutta 计算数值解,并与精确解比较。 2 求解方法 1、每种方法的迭代公式: (1)显式Euler 法 p[i]=p[i-1]+h*(*f)(x[i-1],p[i-1]); (2)隐式梯形法 p[i]=p[i-1]+h*(*f)(x[i-1],p[i-1]);; (3)二级二阶Runge-Kutta K1=(*f)(x[i-1],p[i-1]); K2=(*f)(x[i-1]+h/2,p[i-1]+h*K1/2); p[i]=p[i-1]+h*K2; (4)三级三阶Runge-Kutta K1=(*f)(x[i-1],p[i-1]); K2=(*f)(x[i-1]+h/2,p[i-1]+h*K1/2); K3=(*f)(x[i-1]+h/2,p[i-1]+h*K2/2); K4=(*f)(x[i-1]+h,p[i-1]+h*K3); p[i]=p[i-1]+h*(K1+2*K2+2*K3+K4)/6; (5)四级四阶Runge-Kutta K1=(*f)(x[i-1],p[i-1]);

K2=(*f)(x[i-1]+h/2,p[i-1]+h*K1/2); K3=(*f)(x[i-1]+h/2,p[i-1]+h*K2/2); K4=(*f)(x[i-1]+h,p[i-1]+h*K3); p[i]=p[i-1]+h*(K1+2*K2+2*K3+K4)/6; 3 程序源代码 #include #include #define N 11 double fun(double x,double y) //微分方程{ return -2*y-4*x; } double p_fun(double x) //原函数 { return exp(-2*x)-2*x+1; } double* Exact(double x0, double h) //精确解{ int i; double *p=new double[N]; for(i=0;i

(整理)一阶线性偏微分方程.

第七章 一阶线性偏微分方程 例7-1 求方程组 ()()()yz B A Cdz xz A C Bdy yz C B Adx -=-=- 通积分,其中C B A ,,为互不 相等的常数。 解 由第一个等式可得 xyz ydy A C B xyz xdx C B A -=-, 即有 0=---ydy A C B xdx C B A , 两边积分得方程组的一个首次积分 122,C y A C B x C B A z y x Φ=---= ),(。 由第二个等式可得 xyz zdz B A C xyz ydy A C B -=-, 即有 0=---zdz B A C ydy A C B , 两边积分得方程组的另一个首次积分 222,C z B A C y A C B z y x Ψ=---= ),(。 由于,雅可比矩阵 ? ???? ?????------=????? ???? ????ψ??ψ??ψ ??Φ??Φ ??Φ ?=?ψΦ?z B A C y A C B y A C B x C B A y y x z y x z y x 002),,(),( 的秩为2,这两个首次积分相互独立,于是原方程组的通积分为 122C y A C B x C B A =--- 222C z B A C y A C B =--- 。

评注:借助于方程组的首次积分求解方程组的方法称为首次积分法。要得到通积分需要求得n 个独立的首次积分,n 为组成方程组的方程个数。用雅可比矩阵的秩来验证首次积分的独立性。 例7-2 求方程组 () () ???????-+--=-+-=11d 222 2y x y x dt dy y x x y dt x 的通解。 解 由原方程组可得 )1)((2222-++-=+y x y x dt dy y dt dx x 即 dt y x y x y x d )1)((2)(2 2 2 2 2 2 -++-=+ 这个方程关于变量t 和2 2 y x +是可以分离的,因此易求得它的通积分为 122 2221),,(C e y x y x t y x t =+-+=Φ 这是原方程组的一个首次积分。 再次利用方程组,得到 )(22y x dt dx y dt dy x +-=-, 即有 1arctan -=?? ? ?? x y dt d 由此得到原方程组的另一个首次积分 2arctan ),,(C t x y t y x =+=ψ 。 由于,雅可比矩阵为 ()( ) ???? ? ?????? ?++-++=????????? ????ψ??ψ ??Φ??Φ ?=?ψΦ?2222 222 222 2222),(),(y x x y x y e y x y e y x x y x y x y x t t ,

偏微分方程上机实验报告.doc

上机实验2:五点差分格式法 偏微分方程(Matlab )实验报告 ——五点差分格式法 一、 实验题目 设G 是形如下图的十字形域,由五个相等的单位正方形组成,用五点差分格式求下列边值问题的数值解: 22 2 21,u u G x y ??+=-???于u=0,于G 二、 实验原理 取定沿X 轴和Y 轴方向的步长1h 和2h ,() 12 22 1 2 h h h =+,作两族与坐 标轴平行的直线:x=i 1h ,y=j 2h ,,0,1,2,i j =±± 若(,i j x y )为正则内点,沿x,y 方向分别用二阶中心差商代替 xx yy u u 和则得 1,1,,1,1 2 212 22[ ]i j ij i j i j ij i j ij u u u u u u f h h +-+--+-+-+ = 特别取正方形网格:12h h h ==,则原差分方程可简化为 2 1,,11,,11()44 ij i j i j i j i j ij h u u u u u f --++-+++= 三、 实验程序 1)function uxy = EllIni2Uxl(x,y) format long ;

uxy = 0; 2)function uxy = EllIni2Uxr(x,y) format long; uxy = y*(2-y); 3)function uxy = EllIni2Uyl(x,y) format long; uxy = 0; 4)function uxy = EllIni2Uyr(x,y) format long; if x < 1 uxy = x; else uxy = 2 - x; end 5)function u = peEllip5(nx,minx,maxx,ny,miny,maxy) format long; hx = (maxx-minx)/(nx-1); hy = (maxy-miny)/(ny-1); u0 = zeros(nx,ny); for j=1:ny u0(j,1) = EllIni2Uxl(minx,miny+(j-1)*hy); u0(j,nx) = EllIni2Uxr(maxx,miny+(j-1)*hy); end for j=1:nx u0(1,j) = EllIni2Uyl(minx+(j-1)*hx,miny); u0(ny,j) = EllIni2Uyr(minx+(j-1)*hx,maxy); end A = -4*eye((nx-2)*(ny-2),(nx-2)*(ny-2)); b = ones((nx-2)*(ny-2),1).*(-1); for i=1:(nx-2)*(ny-2) if mod(i,nx-2) == 1 if i==1 A(1,2) = 1; A(1,nx-1) = 1; b(1) = - u0(1,2) - u0(2,1); else if i == (ny-3)*(nx-2)+1 A(i,i+1) = 1; A(i,i-nx+2) = 1;

偏微分中心差分格式实验报告(含matlab程序)

二阶常微分方程的中心差分求解 学校:中国石油大学(华东)理学院 姓名:张道德 一、 实验目的 1、 构造二阶常微分边值问题: 22,(),(), d u Lu qu f a x b dx u a u b αβ?=-+=<

11122 222222333222122112 100121012010012 00N N N u f q h h u f q h h h u f q h h h q u f h h ---???? ??+-???? ??? ???? ???????-+-? ?????? ???????????=-+? ?????? ???????????-???? ????????-+????? ?? ????? 可以看出系数矩阵为三对角矩阵,而对于系数矩阵为三对角矩阵的方程组可以用“追赶法”求解,则可以得出二阶常微分方程问题的数值解。 四、 举例求解 我们选取的二阶常微分方程边值问题为: 2 22242,01 (0)1,(1), x d u Lu x u e x dx u u e ?=-+=-<

偏微分方程数值及matlab实验报告(8)

偏微分方程数值及m a t l a b 实验报告(8) -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

偏微分方程数值实验报告八 实验题目:利用有限差分法求解 . 0)1(,0)1(),()()(==-=+''-u u x f x u x u 真解为 ) 1()(22 x e x u x -=-实现算法:对于两点边值问题 , )(,)(,,d 22βα==∈=-b u a u l x f dx u (1) 其中),(b a l =f b a ),(<为],[b a l =上的连续函数,βα,为给定常数. 其相应的有限差分法的算法如下: 1.对求解区域做网格剖分,得到计算网格.在这里我们对区间l 均匀剖分n 段,每个剖分单元的剖分步长记为n a b h -= .2.对微分方程中的各阶导数进行差分离散,得到差分方程.运用的离散方法有:方法一:用待定系数和泰勒展开进行离散 )()()()(d ) (d 11112 2++--++≈i i i i i i i i x u x u x u x x u ααα方法二:利用差商逼近导数 2 112 2) ()(2)()(d )(d h x u x u x u x x u i i i i i -++-≈(2) 将(2)带入(1)可以得到 )()() ()(2)(2 11u R x f h x u x u x u i i i i i +=+-- -+, 其中)(u R i 为无穷小量,这时我们丢弃)(u R i ,则有在i x 处满足的计算公式: 1,...,1)() ()(2)(2 11-==+-- -+n i x f h x u x u x u i i i i ,(3) 3.根据边界条件,进行边界处理.由(1)可得 β α==n u u ,0(4) 称(3)(4)为逼近(1)的差分方程,并称相应的数值解向量1-n U 为差分解,i u 为)(i x u 的近似值.4.最后求解线性代数方程组,得到数值解向量1 -n U .

微分方程数值解实验报告

微分方程数值解法课程设计报告 班级:_______ 姓名: ___ 学号:__________ 成绩: 2017年 6月 21 日

摘要 自然界与工程技术中的很多现象,可以归结为微分方程定解问题。其中,常微分方程求解是微分方程的重要基础内容。但是,对于许多的微分方程,往往很难得到甚至不存在精确的解析表达式,这时候,数值解提供了一个很好的解决思路。,针对于此,本文对常微分方程数值解法进行了简单研究,主要讨论了一些常用的数值解法,如欧拉法、改进的欧拉法、Runge—Kutta方法、Adams法以及椭圆型方程、抛物型方程的有限差分方法等,通过具体的算例,结合MATLAB求解画图,初步给出了一般常微分方程数值解法的求解过程。同时,通过对各种方法的误差分析,让大家对各种方法的特点和适用范围有一个直观的感受。 关键词:微分方程数值解、MATLAB

目录 摘要 (2) 目录 (3) 第一章常微分方程数值解法的基本思想与原理 (4) 1.1 常微分方程数值解法的基本思路 (4) 1.2用matlab编写源程序 (4) 1.3 常微分方程数值解法应用举例及结果 (5) 第二章常系数扩散方程的经典差分格式的基本思想与原理 (6) 2.1 常系数扩散方程的经典差分格式的基本思路 (6) 2.2 用matlab编写源程序 (7)

2.3 常系数扩散方程的经典差分格式的应用举例及结果 (8) 第三章椭圆型方程的五点差分格式的基本思想与原理 (10) 3.1 椭圆型方程的五点差分格式的基本思路 (10) 3.2 用matlab编写源程序 (10) 3.3 椭圆型方程的五点差分格式的应用举例及结果 (12) 第四章总结 (12) 参考文献 (12)

最新分数阶微分方程课件

分数阶微分方程课件

分数阶微分方程 第三讲分数阶微分方程基本理论 一、分数阶微分方程的出现背景及研究现状 1、出现背景 分数阶微积分是关于任意阶微分和积分的理论,它与整数阶微积分是统一的,是整数阶微积分的推广。 整数阶微积分作为描述经典物理及相关学科理论的解析数学工具已为人们普遍接受,很多问题的数学模型最终都可以归结为整数阶微分方程的定解问题,其无论在理论分析还是数值求解方面都已有较完善的理论。但当人们进入到复杂系统和复杂现象的研究时,经典整数阶微积分方程对这些系统的描述将遇到以下问题: (1)需要构造非线性方程,并引入一些人为的经验参数和与实际不符的假设条件; (2)因材料或外界条件的微小改变就需要构造新的模型; (3)这些非线性模型无论是理论求解还是数值求解都非常繁琐。 基于以上原因,人们迫切期待着有一种可用的数学工具和可依据的基本原理来对这些复杂系统进行建模。分数阶微积分方程非常适合于刻画具有记忆和遗传性质的材料和过程,其对复杂系统的描述具有建模简单、参数物理意义清楚、描述准确等优势,因而成为复杂力学与物理过程数学建模的重要工具之一。 2、研究现状 在近三个世纪里,对分数阶微积分理论的研究主要在数学的纯理论领域里进行,似乎它只对数学家们有用。然而在近几十年来,分数阶微分方程越来越多的被用来描述光学和热学系统、流变学及材料和力学系统、信号处理和系统识别、控制和机器人及其他应用领域中的问题。分数阶微积分理论也受到越来越多的国内外学者的广泛关注,特别是从实际问题抽象出来的分数阶微分方程成为很多数学工作者的研究热点。随着分数阶微分方程在越来越多的科学领域里出现,无论对分数阶微分方程的理论分析还是数值计算的研究都显得尤为迫切。然而由于分数阶微分是拟微分算子,它的保记忆性(非局部性)对现实问题进行了优美刻画的同时,也给我们的分析和计算造成很大困难。 在理论研究方面,几乎所有结果全都假定了满足李氏条件,而且证明方法也和经典微积分方程一样,换句话说,这些工作基本上可以说只是经典微积分方程理论的一个延拓。对分数阶微分方程的定性分析很少有系统性的结果,大多只是给出了一些非常特殊的方程的求解,且常用的求解方法都是具有局限性的。 在数值求解方面,现有分数阶方程数值算法还很不成熟,主要表现为: (1)在数值计算中一些挑战性难题仍未得到彻底解决,如长时间历程的计算和大空间域的计算等; (2)成熟的数值算法比较少,现在研究较多的算法主要集中在有限差分方

相关主题
文本预览
相关文档 最新文档