当前位置:文档之家› 2008-nature06834-Chemical compass model of avian magnetoreception

2008-nature06834-Chemical compass model of avian magnetoreception

LETTERS

Chemical compass model of avian magnetoreception

Kiminori Maeda 1*,Kevin B.Henbest 1*,Filippo Cintolesi 2,Ilya Kuprov 2,Christopher T.Rodgers 2,Paul A.Liddell 3,Devens Gust 3,Christiane R.Timmel 1&P.J.Hore 2

Approximately 50species,including birds,mammals,reptiles,amphibians,fish,crustaceans and insects,are known to use the Earth’s magnetic field for orientation and navigation 1.Birds in particular have been intensively studied,but the biophysical mechanisms that underlie the avian magnetic compass are still poorly understood.One proposal,based on magnetically sensitive free radical reactions 2,3,is gaining support 4–11despite the fact that no chemical reaction in vitro has been shown to respond to mag-netic fields as weak as the Earth’s (50m T)or to be sensitive to the direction of such a field.Here we use spectroscopic observation of a carotenoid–porphyrin–fullerene model system to demonstrate that the lifetime of a photochemically formed radical pair is chan-ged by application of #50m T magnetic fields,and to measure the anisotropic chemical response that is essential for its operation as a chemical compass sensor.These experiments establish the fea-sibility of chemical magnetoreception and give insight into the structural and dynamic design features required for optimal detec-tion of the direction of the Earth’s magnetic field.

Two principal mechanisms for animal magnetoreception have been put forward (reviewed in ref.1),based on specialized deposits of magnetic iron minerals and magnetically sensitive photochemical reactions,respectively.The latter,the radical pair mechanism,is well established as the source of a variety of magnetic effects on free radical reactions in vitro 12,13.It has been suggested that the avian compass mechanism relies on magneto-sensitive radical pairs formed by photoinduced intramolecular electron transfer reactions in an array of aligned photoreceptors located in the retina 2,3.A promising can-didate radical pair comprises the reduced flavin cofactor and an oxidized tryptophan residue in a cryptochrome flavoprotein 3,8,10.Such a photochemical process could,in principle,account for two fundamental behavioural characteristics of the avian compass:its dependence on the wavelength of the ambient light 14and the fact that birds respond to the inclination,rather than the polarity,of the geomagnetic field 15.This proposal has been corroborated,in part,by the detection of cryptochromes in the retinae of migratory birds 5,6,and the finding that these proteins are expressed when the birds perform magnetic orientation 6,and by the observation of light-dependent,cryptochrome-mediated magnetic field effects on plant growth 11.Theoretical work has also confirmed the principle and clarified some of the details 7–10.Further compelling evidence for the involvement of radical pairs has come from the observation that weak radiofrequency magnetic fields,which can have profound effects on radical pair reactions in vitro 16,can disrupt the ability of birds to orient in the Earth’s magnetic field 4,17.

Despite numerous studies 12,it has never been demonstrated that a static magnetic field as weak as that of the Earth can produce detect-able changes in chemical reaction rates or product yields.Nor has a radical pair reaction been shown to respond to the direction of such a field,an essential requirement for a compass sensor.For this,it is

essential that at least one of the radicals is immobilized so that its anisotropic magnetic interactions are preserved 2.

Here we demonstrate,as a proof-of-principle,that a photochemical reaction can act as a magnetic compass.The molecule selected for this purpose is a triad composed of linked carotenoid (C),porphyrin (P)and fullerene (F)groups (Fig.1)18.Green-light irradiation efficiently produces the spin-correlated electronic singlet state of the radical pair (or biradical)S [C N 1–P–F N 2]by sequential intramolecular electron transfers (Fig.1).S [C N 1–P–F N 2]undergoes reverse electron transfer,either directly to the ground state,with rate constant k S ,or to the excited triplet state T C–P–F,with rate constant k T ,having first converted to the triplet radical pair,T [C N 1–P–F N 2].This last process is controlled by the magnetic interactions of the two unpaired electrons and is the magnetic-field-sensitive step.As has been observed for related triads 19,20,an applied field alters the observed lifetime of [C N 1–P–F N 2]by modifying the singlet–triplet character of its spin states,so changing the relative contributions of k S and k T to the overall kinetics.

We began by characterizing the effects of applied magnetic fields on the disappearance kinetics of the radical pair in isotropic solution.The transient absorption signal of C N 1in [C N 1–P–F N 2]at 133K (Fig.2a,top),which has a lifetime of ,190ns in zero field,was markedly increased to ,380ns in an 8-mT field.The amplitude of the magnetic field effect decreased as the temperature increases and the difference signals were biphasic below ,200K (Fig.2a,bottom).Both of these properties are characteristic of a singlet-born radical pair with k T ,k S ,undergoing spin-lattice relaxation at a rate com-parable to its recombination 21.

The magnetic field dependence of the [C N 1–P–F N 2]transient absorption at 119K (Fig.2b)shows the biphasic magnetic field res-ponse expected for a long-lived radical pair 22.The change in sign below ,1mT is the ‘low field effect’:normally observed for the product yields of radical reactions in solution 12,13,it was manifested here as a change in the radical pair kinetics.The effect of the applied field on the radical pair absorption was opposite at 100and 400ns,as expected from the biphasic time dependence in Fig.2a (bottom).Finally,experiments performed in magnetic fields comparable to that of the Earth (Fig.2c)revealed changes in radical pair absorption of up to ,1.5%.The biphasic time dependence observed at higher fields (Fig.2a)was inverted here because of the low field effect (Fig.2b).Thus,for t .400ns,[C N 1–P–F N 2]recombined more rapidly in a ,50-m T field than it did in zero field,which was in turn faster than when the field exceeded 1mT.This seems to be the first observation of a chemical effect of a magnetic field as weak as ,50m T.The electron Zeeman interaction in such a magnetic field is more than a million times smaller than the thermal energy,k B T ,implying a negligible effect on the position of a chemical equilibrium or the kinetics of an activated reaction.However,such considerations are irrelevant for the interconversion of singlet and triplet states of radical pairs,a process that is activationless and far from equilibrium.

*These authors contributed equally to this work.

1

Department of Chemistry,University of Oxford,Inorganic Chemistry Laboratory,South Parks Road,Oxford OX13QR,UK.2Department of Chemistry,University of Oxford,Physical and Theoretical Chemistry Laboratory,South Parks Road,Oxford OX13QZ,UK.3Department of Chemistry and Biochemistry,Arizona State University,Tempe,Arizona 85287,USA.Vol 453|15May 2008|doi:10.1038/nature06834

387

To function as a chemical compass,a radical pair magnetoreceptor must respond anisotropically to an external magnetic field.We demonstrated this property for[C N1–P–F N2]using an aligned sample,obtained by freezing C–P–F in the nematic phase of a liquid crystal in the presence of a strong(800mT)magnetic field.Transient absorption signals,A(h),were recorded in a3.1-mT magnetic field, the orientation of which(defined by the angle h;Fig.3a)was varied with respect to the alignment axis.The measured[C N1–P–F N2] absorption(Fig.3b)shows a clear dependence on h which,similar to the avian magnetic compass,is invariant to inversion of the field direction;that is,A(h)~A(h z p).

To obtain additional insight,the anisotropy was also measured by a transient absorption photoselection method(Fig.3a)using unpo-larized laser pump pulses,polarized probe light and a frozen solution of randomly orientated molecules.Calculations(see Supplementary Information)show that the transition dipole moment of the C N1 absorption at980nm is almost parallel to the long axis of C–P–F, so that molecules aligned with the polarization axis are preferentially detected.The h-dependence of the[C N1–P–F N2]absorption,A0(h), where h is now the angle between the polarization axis and the mag-netic-field vector,is essentially identical to that observed in the aligned sample(Fig.3b,c).

A consideration of the orientational averaging involved in these two experiments(see Supplementary Information)suggests that in both cases,the observed signal should be a weighted sum of even powers of sin h,but that in the photoselection measurement all terms beyond sin2h vanish;that is:

A(h)!

X?

n~0

a2n sin2n h;A0(h)!a00z a02sin2h

Within experimental error,both A(h)and A9(h)have a sin2h depen-dence,consistent with a2n<0for all n.1and a simple orientation dependence of the underlying magnetic field effect(see Supple-mentary Information).

Our demonstration that a radical pair can act as a chemical com-pass yields valuable information on the design of a sensitive in vivo magnetoreceptor.Although not ideal as a compass,[C N1–P–F N2] does have several favourable properties—it is rapidly and efficiently formed by absorption of light and is long enough lived to allow a ,50m T magnetic field to have a detectable effect on its spin dynamics.Furthermore,the radical centres are sufficiently separated (which minimizes interference from radical–radical exchange and dipolar interactions22),whereas their fixed relative orientations and restricted molecular motion in frozen solution result in minimal static and dynamic averaging of the crucial anisotropic magnetic interactions.A further attractive feature of[C N1–P–F N2]is its highly unsymmetrical distribution of magnetic nuclei(Fig.1),a feature associated with optimum isotropic and anisotropic magnetic field effects23.However,both its recombination and spin relaxation, jointly responsible for the biphasic time dependence(Fig.2a,c), are fast enough(even at113K)to attenuate the,50-m T signal (Fig.2c).Responses closer to the theoretical maximum of20–40% (ref.22),expected for spin correlation lifetimes$1m s would have allowed the anisotropy measurements(Fig.3)to be performed at much lower fields than,3mT.An additional factor responsible for a reduction in the magnetosensitivity of[C N1–P–F N2]is the extent of delocalization of the unpaired electron in C N1and the associated cancellation of the anisotropic effects of the many,differ-ently aligned,magnetic hyperfine tensors8.

In principle,greater sensitivity to weak magnetic fields would be possible for radical pairs formed in a specialized photoreceptor such as cryptochrome3,10.By analogy with photosynthetic charge separa-tion24,efficient sequential electron transfer along a chain of trypto-phan residues to the flavin cofactor in cryptochrome could produce a well-separated($2nm)radical pair with weak inter-radical interac-tions25within10ns(allowing negligible loss of spin correlation),with slow back electron transfer($1m s)10.A suitably aligned and immo-bilized array of such photoreceptors could,at physiological tempera-tures,have the dynamical properties required for slow spin relaxation ($1m s),a condition that is only approached by[C N1–P–F N2]at the lowest temperatures studied here.For example,flavin–tyrosine radical pairs that retain their spin correlation for up to20m s have been detected in photolyase(a flavoprotein closely related to crypto-chrome)at278K(ref26).In addition,the radicals formed in a photoactive protein may have just a few dominant hyperfine inter-actions with tensor properties that lead to reinforcement,rather

than

C

?+

T C–P–F

C–P–F

C–S P–F

S[C–P?+–F?–]

Figure1|C–P–F triad.Structure(top)and reaction scheme(bottom)of the

C–P–F triad used to demonstrate the principle of a chemical compass.The

interconversion of the singlet(S)and triplet(T)states of the radical pair

[C N1–P–F N2]is driven by magnetic hyperfine interactions and is modulated

by the Zeeman interaction with an external magnetic field.[C N1–P–F N2]can

recombine spin-selectively,with rate constants k S and k T.As the hyperfine

interactions are anisotropic,and k S?k T,the lifetime of the radical pair

reaction depends on its orientation with respect to the external magnetic

field.The inset at top left is a representation of the anisotropic hyperfine

interactions in C N1;22of the46protons in this radical have isotropic

hyperfine couplings larger than100m T.F N2,by contrast,is almost devoid of

hyperfine couplings.h n:light excitation.

LETTERS NATURE|Vol453|15May2008 388

cancellation,of the anisotropic effects,as seems to be the case for two of the nitrogen atoms in the radical form of the flavin adenine dinucleotide cofactor,FADH N (ref.8).The favourable asymmetric distribution of hyperfine interactions in [C N 1–P–F N 2]might also be found in a cryptochrome.For example,reoxidation of the photo-chemically reduced flavin cofactor in flavoproteins is mediated by

molecular oxygen 27.Both O 2and its reduced form,superoxide O 2N 2

,are paramagnetic,have no hyperfine interactions,and if paired with FADH N might allow the reoxidation kinetics to be magnetic field

dependent,although it is not clear whether O 2N 2

,in particular,would meet the requirement of slow spin relaxation.

These possibilities could be tested in vitro in a variety of ways.Spectroscopic measurements of the kind described here could be performed on isolated cryptochromes subject to applied magnetic fields.Radiofrequency magnetic fields could also be used as a diag-nostic test for the formation of transient radical pairs and might allow their identification 28.The involvement of O 2could be established by

spin-trapping of O 2N 2

or by a 17O magnetic isotope effect 29.

a

b

c

4

32

1

Time (μs)

0.60.50.4

0.30.20.10.0

A (

B 0

)

1.0

0.5

0.0

–0.5

–1.0

0.02

0.01

0.00

–0.013

2

1

0Magnetic field, B 0

(mT)

A (

B 0)–A (0)

A (

B 0)–A (0)

Time (μs)

103 [A (B 0)–A (0)]

Figure 2|Isotropic magnetic field effects on C –P –F.Transient absorption data recorded for frozen solutions of C–P–F showing the magnetic field-dependence of the recombination of the radical pair state,[C N 1–P–F N 2].Apart from the upper part of a ,all data are field-on minus field-off

differences:A (B 0)2A (0).a ,Top:absorption with and without an 8-mT applied field at 133K.Bottom:difference signals as a function of

temperature.All signals rise with the instrumental time constant (,50ns).

b ,Changes in the transient absorption of [C N 1–P–F N

2]at 119K averaged over a 50-ns period centred at 100ns and 400ns after its formation.

c ,Changes in the transient absorption of [C N 1–P–F N

2]at 113K caused by 39-m T and 49-m T applied magnetic fields.Error bars,61s.d.

90

45

315

270

225180

135

P r o b e

P u m

p

x

z

y

q

8

6420–2

50

100

150

200

250

300350

q (degree)

100 [A (q )–A (0)]/A (0)

a

b

c

Figure 3|Operation of C –P –F as a chemical compass.a ,Schematic of the experimental arrangement used to measure the anisotropy of the magnetic field effect on the disappearance kinetics of [C N 1–P–F N 2].The direction of the applied magnetic field generated by two orthogonal pairs of Helmholtz coils is varied in 15u steps in the x –y (horizontal)plane.The pump laser pulses and continuous probe light propagate along the x and y axes,

respectively.The central blue arrow on the x axis represents the direction of the alignment axis in the experiments on C–P–F dissolved in a frozen nematic liquid crystal,and the probe light polarization axis in the

photoselection measurements.h is the angle between the magnetic field vector and the x axis.b ,Polar plot of the anisotropy of the magnetic field effect,?A (h ){A (0) =A (0)(as a function of h ,in degrees),on the transient absorption of [C N 1–P–F N 2]detected using an aligned sample (purple,3.1mT,193K)and by photoselection (red,3.4mT,88K).The maximum magnetic field effects in the two cases were ,1.5%and ,5%,respectively.The data for the aligned sample have been doubled for clarity.The anisotropy is smaller in the liquid crystal measurement than in the

photoselection experiment mainly because of the faster spin relaxation at the higher temperature of the former.c ,Data from the photoselection measurements.The red dots show the dependence of the [C N 1–P–F N 2]absorption on the direction of the magnetic field,h .The solid line is the best fit to a sin 2h form.Also shown (blue)are the signals detected when the polarization axis of the probe light was z (that is,vertical).No h -dependence is expected or seen.Error bars,61s.d.

NATURE |Vol 453|15May 2008LETTERS

389

METHODS SUMMARY

The C–P–F triad was synthesized according to previously described proce-dures18.Isotropic magnetic field effects were measured using100m M frozen solutions of C–P–F in2-methyl-tetrahydrofuran.C–P–F was excited at 532nm with7-ns,5-mJ,10-Hz repetition rate pulses from a frequency-doubled Nd:YAG laser and the radical pair was detected by means of the C N1absorption band at950nm using light from a xenon arc lamp.Anisotropic magnetic field effects were measured on an aligned sample and on a frozen isotropic sample using photoselection.For the aligned sample,the conditions were C–P–F (100m M)aligned in E7liquid crystal(Merck),with the alignment axis parallel to the x axis(Fig.3a).The magnetic field strength was3.1mT.The C N1absorp-tion was monitored at900nm with unpolarized light(xenon arc lamp)and averaged over the period4006200ns.Measurements were performed at193 K.For the frozen isotropic sample,the Nd:YAG pump pulses(x direction)were depolarized.The probe light(y direction)was supplied by a diode laser (l5980nm,100mW),and was polarized in the x or z direction(see Fig.3a). The magnetic field strength was3.4mT.Measurements were performed at88K. For the liquid crystal and photoselection experiments,the magnetic field was generated by means of two sets of orthogonal Helmholtz coils aligned with the x and y directions(Fig.3a).They had the same number of turns but different diameters(125mm and85mm,respectively)and carried different currents. Full Methods and any associated references are available in the online version of the paper at https://www.doczj.com/doc/4b10461257.html,/nature.

Received29October2007;accepted11February2008.

Published online30April2008.

1.Johnsen,S.&Lohmann,K.J.The physics and neurobiology of magnetoreception.

Nature Rev.Neurosci.6,703–712(2005).

2.Schulten,K.,Swenberg,C.E.&Weller,A.A biomagnetic sensory mechanism

based on magnetic field modulated coherent electron spin motion.Z.Phys.Chem.

NF111,1–5(1978).

3.Ritz,T.,Adem,S.&Schulten,K.A model for photoreceptor-based

magnetoreception in birds.Biophys.J.78,707–718(2000).

4.Ritz,T.,Thalau,P.,Phillips,J.B.,Wiltschko,R.&Wiltschko,W.Resonance effects

indicate a radical-pair mechanism for avian magnetic compass.Nature429,

177–180(2004).

5.Mo¨ller,A.,Sagasser,S.,Wiltschko,W.&Schierwater,B.Retinal cryptochrome in a

migratory passerine bird:A possible transducer for the avian magnetic compass.

Naturwissenschaften91,585–588(2004).

6.Mouritsen,H.et al.Cryptochromes and neuronal-activity markers colocalize in

the retina of migratory birds during magnetic orientation.Proc.Natl https://www.doczj.com/doc/4b10461257.html,A 101,14294–14299(2004).

7.Weaver,J.C.,Vaughan,T.E.&Astumian,R.D.Biological sensing of small field

differences by magnetically sensitive chemical reactions.Nature405,707–709 (2000).

8.Cintolesi,F.,Ritz,T.,Kay,C.W.M.,Timmel,C.R.&Hore,P.J.Anisotropic

recombination of an immobilized photoinduced radical pair in a50-m T magnetic field:A model avian photomagnetoreceptor.Chem.Phys.294,385–399(2003).

9.Wang,K.,Mattern,E.&Ritz,T.On the use of magnets to disrupt the physiological

compass of birds.Phys.Biol.3,220–231(2006).

10.Solov’yov,I.A.,Chandler,D.E.&Schulten,K.Magnetic field effects in Arabidopsis

thaliana cryptochrome-1.Biophys.J.92,2711–2726(2007).

11.Ahmad,M.,Galland,P.,Ritz,T.,Wiltschko,R.&Wiltschko,W.Magnetic intensity

affects cryptochrome-dependent responses in Arabidopsis thaliana.Planta225, 615–624(2007).

12.Brocklehurst,B.Magnetic fields and radical reactions:Recent developments and

their role in nature.Chem.Soc.Rev.31,301–311(2002).

13.Timmel,C.R.&Henbest,K.B.A study of spin chemistry in weak magnetic fields.

Phil.Trans.R.Soc.Lond.A362,2573–2589(2004).

14.Wiltschko,W.&Wiltschko,R.Light-dependent magnetoreception in birds:The

behaviour of European robins,Erithacus rubecula,under monochromatic light of various wavelengths and intensities.J.Exp.Biol.204,3295–3302(2001).15.Wiltschko,W.&Wiltschko,R.Magnetic compass of European robins.Science176,

62–64(1972).

16.Rodgers,C.T.,Henbest,K.B.,Kukura,P.,Timmel,C.R.&Hore,P.J.Low-field

optically detected EPR spectroscopy of transient photoinduced radical pairs.

J.Phys.Chem.A109,5035–5041(2005).

17.Thalau,P.,Ritz,T.,Stapput,K.,Wiltschko,R.&Wiltschko,W.Magnetic compass

orientation of migratory birds in the presence of a1.315MHz oscillating field.

Naturwissenschaften92,86–90(2005).

18.Kodis,G.,Liddell,P.A.,Moore,A.L.,Moore,T.A.&Gust,D.Synthesis and

photochemistry of a carotene-porphyrin-fullerene model photosynthetic reaction https://www.doczj.com/doc/4b10461257.html,.Chem.17,724–734(2004).

19.Kuciauskas,D.,Liddell,P.A.,Moore,A.L.,Moore,T.A.&Gust,D.Magnetic

switching of charge separation lifetimes in artificial photosynthetic reaction

centers.J.Am.Chem.Soc.120,10880–10886(1998).

20.Liddell,P.A.et al.Photoinduced charge separation and charge recombination to a

triplet state in a carotene-porphyrin-fullerene triad.J.Am.Chem.Soc.119,

1400–1405(1997).

21.van Dijk,B.,Carpenter,J.K.H.,Hoff,A.J.&Hore,P.J.Magnetic field effects on the

recombination kinetics of radical pairs.J.Phys.Chem.B102,464–472(1998).

22.Timmel,C.R.,Till,U.,Brocklehurst,B.,McLauchlan,K.A.&Hore,P.J.Effects of

weak magnetic fields on free radical recombination reactions.Mol.Phys.95,

71–89(1998).

23.Rodgers,C.T.,Norman,S.A.,Henbest,K.B.,Timmel,C.R.&Hore,P.J.

Determination of radical re-encounter probability distributions from magnetic field effects on reaction yields.J.Am.Chem.Soc.129,6746–6755(2007). 24.Poluektov,O.G.,Paschenko,S.V.,Utschig,L.M.,Lakshmi,K.V.&Thurnauer,

M.C.Bidirectional electron transfer in Photosystem I:Direct evidence from high-frequency time-resolved EPR spectroscopy.J.Am.Chem.Soc.127,11910–11911 (2005).

25.Efimova,O.E.&Hore,P.J.The role of exchange and dipolar interactions in the

radical pair model of the avian magnetic compass.Biophys.J.94,1565–1574 (2008).

26.Weber,S.Light-driven enzymatic catalysis of DNA repair:A review of recent

biophysical studies on photolyase.Biochim.Biophys.Acta1707,1–23(2005). 27.Prabhakar,R.,Siegbahn,P.E.M.,Minaev,B.F.&Agren,H.Activation of triplet

dioxygen by glucose oxidase:spin-orbit coupling in the superoxide ion.J.Phys.

Chem.B106,3742–3750(2002).

28.Henbest,K.B.,Kukura,P.,Rodgers,C.T.,Hore,P.J.&Timmel,C.R.Radio

frequency magnetic field effects on a radical recombination reaction:A diagnostic test for the radical pair mechanism.J.Am.Chem.Soc.126,8102–8103(2004).

29.Buchachenko,A.L.,Kouznetsov,D.A.,Orlova,M.A.&Markarian,A.A.Magnetic

isotope effect of magnesium in phosphoglycerate kinase phosphorylation.Proc.

Natl https://www.doczj.com/doc/4b10461257.html,A102,10793–10796(2005).

Supplementary Information is linked to the online version of the paper at https://www.doczj.com/doc/4b10461257.html,/nature.

Acknowledgements We thank M.Ahmad,D.Carbonera,M.di Valentin,

G.Giacometti,C.W.M.Kay,P.Raynes,T.Ritz and R.Wiltschko for discussions; N.Baker for technical assistance;and the Oxford Supercomputing Centre for allocation of CPU time.P.J.H.,C.R.T.and co-workers are funded by the Engineering and Physical Sciences Research Council,the Human Frontier Science Program,the EMF Biological Research Trust and the Royal Society.D.G.and co-workers are funded by the US National Science Foundation.I.K.is a Fellow by Examination at Magdalen College,Oxford.

Author Contributions K.M.,K.B.H.and F.C.performed the experiments.K.M., K.B.H.and C.R.T analysed the data.P.A.L.and D.G.synthesized the triad molecule.

C.T.R.and P.J.H.analysed the orientational averaging.I.K.performed ab initio calculations.F.C.,C.R.T.and P.J.H.designed the study.C.R.T.co-ordinated the study.P.J.H.wrote the paper.All authors discussed the results and commented on the manuscript.

Author Information Reprints and permissions information is available at

https://www.doczj.com/doc/4b10461257.html,/reprints.Correspondence and requests for materials should be addressed to P.J.H.(peter.hore@https://www.doczj.com/doc/4b10461257.html,)or C.R.T.

(christiane.timmel@https://www.doczj.com/doc/4b10461257.html,).

LETTERS NATURE|Vol453|15May2008 390

METHODS

Isotropic magnetic field effects.Transient absorption signals of C N 1in 2-methyl-tetrahydrofuran (MTHF)were detected with an Oriel 77250Series 1/8m monochromator,a grating optimized for maximum reflectivity at 1,000nm and a Hamamatsu photomultiplier R5108.The magnetic field was produced by a pair of Helmholtz coils (radius 125mm).Alternate measurements with and without the applied magnetic field were performed in synchrony with the laser.The temperature of the sample,held in a cryostat,was controlled with flowing nitrogen gas.The cryostat and field coils were enclosed in a mu-metal box to shield the sample from the Earth’s magnetic field.The field inside the box was 0610m T (measured with high-sensitivity one-and three-dimensional Hall transducers).

Anisotropic magnetic field effects.C–P–F (100m M)was dissolved in E7liquid crystal (Merck)and aligned in a 800-mT magnetic field by cycling the temper-ature three times between 20u C and 60u C (between the nematic and isotropic phases,respectively).The aligned sample was allowed to cool in the magnetic field and was then transferred into the cryostat and cooled further to 193K.The solution was sufficiently viscous that the cooling and subsequent transfer could be done without loss of alignment.

For the photoselection experiments,a Halbo Optics WDQ15M depolarizer was used to depolarize the Nd:YAG pump pulses.A Thorlabs L980P100diode laser supplied the probe light,which was polarized using a Glan Thompson polarizer.

Transient absorption data were measured for each of 24equally spaced values of h (Fig.3a)in random order and sorted according to h in the computer memory.This process was repeated 300times for the photoselection experi-ments or 1,500times for the liquid crystal sample with a different sampling order each time,and the resulting signals averaged for each h .In all other respects,the experiments were performed essentially as described for the MTHF solutions.To confirm the anisotropic behaviour of the magnetic field effect,the experi-ment was repeated with a 2.6-mT field in the x –z plane,and the probe light still directed along the y axis.When the polarization axis of the probe light was rotated by 645u in the x –z plane,the absorption was phase-shifted by 645u (Supplementary Fig.1).

Magnetic fields.Calibration measurements on the two sets of orthogonal Helmholtz coils used for the liquid crystal and photoselection experiments revealed that a 46%larger current was required in the x coils to achieve the same magnetic field strength as the y coils.The currents through the two coils were:

I x (h n )~1:46I 0cos h n I y (h n )~I 0sin h n

where h n ~n d ,d 515u and n 50,1,…23.

The magnetic fields produced by the two sets of coils were measured with a 3D Hall probe and are shown as the dashed lines in Supplementary Fig.2.The black

dashed line is ?????????????????????????????I 2x (h n )z I 2y (h n )q .The slight variation in this quantity with h n was

reduced by modifying the currents using a table of correction factors g n :

I x ~1:46I 0cos h n =g n I y ~I 0sin h n =g n

The values of g n were in the range 0.996–1.027.The resulting current (Supplementary Fig.2,solid black line)showed a reduced variation with h .The averaged magnetic field for the photoselection experiments was 3.4mT,with a standard deviation of 0.02mT.

doi:10.1038/nature06834

分子力学模拟力场比较

MM1 由Allinger’s group 及其合作者贡献 1974(MM1)~1996(MM4)的力场发展 MM1(1974)(组成势6项)不包括静电相互作用 V tot =V vdw +V bnd +V ang +V bnd/ang +V tor +V ang/tor/ang 参数化原子2个 H ,C(SP 3) 势函数的具体表述 )3cos 1(2 13ω+=tor tor K V mul Kcul K tor /53.03= 613.6/P v d w v d w v d w v d w v d w V k K P k K e -'=+ 单位约数 力常数 25.2-=K 51028.8?='K k 是ε的几何平均:2/1)(j I vdw k εε= )(063.0H I =ε )(041.03 SP j C =ε P 是距离比值,IJ J I r r r P ) 0()0(+= 500.1)0(=I r (?)(H) 750.1)0(=j r (?)(C) MM2(1997) (7项) 最大的贡献 引入静电项 28个参数化原子 elec vdw tor V V V ++= )]3cos 1()2cos 1()cos 1([2 1321ωωω++-++=tor tor tor tor K K K V )(/50.126P vdw vdw vdw vdw e K P K k V -'+= 25.2-=vdw K 51090.2?='vdw K )(047.0H I =ε 30.044[()]j C S P ε=- MM3(9项) 引入2个交叉项 152参数化原子类型 b a b a bnd tor vdw tor V V V V ///+++= )(/00.126P vdw vdw vdw vdw e K P K k V -'+= 指数项由MM1 –13.0 → MM2 –12.50 → MM3 –12.00 下降 vdw K '由551084.11090.2?→? MM4(最新力场)组分15项 除了MM3引入的参数,已增加了一些形成氢键的C@112 五员环中的C(SP 3) @113 t t a t a a t b b b t im a b a a e v t a b tot V V V V V V V V V V V V V V ////////++++++++++++=

井眼轨道设计与轨迹控制培训教材习题集

井眼轨道设计与轨迹控制培训教材习题集 四、简答题 1. 井眼轨迹的基本参数有哪些?为什么将它们称为基本参数? 答:井眼轨迹基本参数包括:井深、井斜角、井斜方位角。这三个参数足够表明井眼中一个测点的具体位置。 2. 方位与方向的区别何在?请举例说明。井斜方位角有哪两种表示方法?二 者之间如何换算? 答: 方位都在某个水平面上,而方向则是在三维空间内(当然也可能在水平面上)。 方位角表示方法:真方位角、象限角。 3. 水平投影长度与水平位移有何区别?视平移与水平位 移有何区别?答:水平投影长度是指井眼轨迹上某点至井口的长度在水平

面上的投影,即井深在水平面上的投影长度。水平位移是指轨迹上某点至井口所在铅垂线的距离,或指轨迹上某点至井口的距离在水平面上的投影。在实钻井眼轨迹上,二者有明显区别,水平长度一般为曲线段,而水平位移为直线段。 视平移是水平位移在设计方位上的投影长度。 4. 狗腿角、狗腿度、狗腿严重度三者的概念有何不同?答:狗腿角是指测段上、下二测点处的井眼方向线之间的夹 角(注意是在空间的夹角)。狗腿严重度是指井眼曲率,是井眼轨迹曲线的曲率。 5. 垂直投影图与垂直剖面图有何区别? 答:垂直投影图相当于机械制造图中的侧视图,即将井眼轨迹投影到铅垂平面上;垂直剖面图是经过井眼轨迹上的每一点做铅垂线所组成的曲面,将此曲面展开就是垂直剖面图。 6. 为什么要规定一个测段内方位角变化的绝对值不得超 过180 实际资料中如果超过了怎么办? 答:因为假设一个测段内方位角沿顺时针变化超过180° 时,沿逆时针其变化则小于180°,所以一个测段内方位角变化的绝对值不得 超过180°。实际资料中超过了,则可用如下方法计算: 当4- 4-1 > 180°时, △①i =O i -①i-1 -360 当①i-①i-i v -180 o时, △①i=O i-①i-i +360 o 7.测斜计算,对一个测段来说,要计算那些参数?对一个测点来说,需要

最新COMPASS使用手册,兰德马克说明书

1 COMPASS for Windows 5.3.1 2 COMPASS for Windows of Landmark Graphics Co. 3 简明使用手册 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

目录 37 38 一、COMPASS WELLPLAN FOR WINDOWS 功能简介 39 二、COMPANY SETUP - CREATE NEW COMPANY:公司设置-建立新的公司 40 三、FIELD SETUP- CREATE NEW FIELD:油气田设置-建立新的油气田 41 四、SITE SETUP- CREATE NEW SITE:区块设置-建立新的区块 42 五、TEMPLATE EDITOR:槽口模板编辑器 43 六、WELLSETUP-CREATE NEW WELL:单井设置-建立新井 44 七、WELLPATH SETUP-CREATE NEW WELLPATH:轨迹设置-建立新的轨迹 45 八、TARGET EDITOR:靶点编辑器 46 九、NEW PLAN & OPEN PLAN:井眼轨迹设计 47 十、NEW SERVEY& OPEN SERVEY:实测数据建立与编辑 48

十一、A NTICOLLISION:防碰计算 49 十二、W ALL PLOT COMPOSER:挂图制作 50 十三、常用功能简介 51 52 53 54 COMPASS WELLPLAN FOR WINDOWS 功能简介 55 56 COMPASS(指南针)有三个核心功能: 57 PLANNING(设计)按计划井眼形状设计井眼轨迹 58 SURVEY(实测计算)已钻井眼实测数据的计算及轨迹预测59 ANTICOLLISION(防碰计算)井眼轨迹之间的距离计算 60 61 除此之外,COMPASS还有以下功能: 62 COMPANY SETUP 允许你为不同的公司设置COMPASS 63

分子模拟软件简介

3D分子图形显示工具 (RasMol and OpenRasMol)(免费) AMBER (分子力学力场模拟程序) autodock (分子对接软件)(免费) GROMACS (分子动力学软件)(免费) GULP (General Utility Lattice Program)(免费) NIH分子模拟中心的化学软件资源导航(Research Tools on the Web) X-PLOR (大分子X光晶体衍射、核磁共振NMR的3D结构解析)(免费) 高通量筛选软件PowerMV (统计分析、分子显示、相似性搜索 等)(免费) 化合物活性预测程序PASS(部分免费) 计算材料科学Mathub C4:Cabrillo学院化学可视化项目以及相关软件(免费) Databases and Tools for 3-D Protein Structure Comparison and Alignment(三维蛋白质结构对比)(免费) Democritus (分子动力学原理演示软件) DPD应用软件cerius2(免费) EMSL Computational Results DataBase (CRDB) MARVIN'S PROGRAM (表面与界面模拟)(免费) XLOGP(计算有机小分子的脂水分配系数)(免费) 量子化学软件中文网 美国斯克利普斯研究院:金属蛋白质结构和设计项目(免费) https://www.doczj.com/doc/4b10461257.html,/(免费) 3D Molecular Designs (蛋白质及其他3D分子物理模型快速成型技术) 3D-Dock Suite Incorporating FTDock, RPScore and MultiDock (3D 分子对接)(免费)

钻井工程:第五章井眼轨道设计与轨迹控制.

第五章井眼轨道设计与轨迹控制 1.井眼轨迹的基本参数有哪些?为什么将它们称为基本参数?08 答: 井眼轨迹基本参数包括:井深、井斜角、井斜方位角。这三个参数足够表明井眼中一个测点的具体位置,所以将他们称为基本参数。 2.方位与方向的区别何在?请举例说明。井斜方位角有哪两种表示方法?二者之间如何换算? 答: 方位都在某个水平面上,而方向则是在三维空间内(当然也可能在水平面上)。 方位角表示方法:真方位角、象限角。 3.水平投影长度与水平位移有何区别?视平移与水平位移有何区别? 答: 水平投影长度是指井眼轨迹上某点至井口的长度在水平面上的投影,即井深在水平面上的投影长度。水平位移是指轨迹上某点至井口所在铅垂线的距离,或指轨迹上某点至井口的距离在水平面上的投影。在实钻井眼轨迹上,二者有明显区别,水平长度一般为曲线段,而水平位移为直线段。 视平移是水平位移在设计方位上的投影长度。 4.狗腿角、狗腿度、狗腿严重度三者的概念有何不同? 答: 狗腿角是指测段上、下二测点处的井眼方向线之间的夹角(注意是在空间的夹角)。狗腿严重度是指井眼曲率,是井眼轨迹曲线的曲率。 5.垂直投影图与垂直剖面图有何区别? 答: 垂直投影图相当于机械制造图中的侧视图,即将井眼轨迹投影到铅垂平面上;垂直剖面图是经过井眼轨迹上的每一点做铅垂线所组成的曲面,将此曲面展开就是垂直剖面图。 6.为什么要规定一个测段内方位角变化的绝对值不得超过180 ?实际资料中如果超过了怎么办? 答: 7.测斜计算,对一个测段来说,要计算那些参数?对一个测点来说,需要计算哪些参数?测段计算与测点计算有什么关系? 答: 测斜时,对一个测段来说,需要计算的参数有五个:垂增、平增、N坐标增量、E坐标增量和井眼曲率;对一个测点来说,需要计算的参数有七个:五个直角坐标值(垂深、水平长度、N坐标、E坐标、视平移)和两个极坐标(水平位移、平移方位角)。

如何选择力场-力场与拓扑之二

力场与拓扑之二:如何选择力场 已有9886 次阅读 2015-12-9 13:01 |系统分类:科研笔记 2015-12-08 22:27:19 待补充, 参考Sobereva力场瞎总结, 磷脂膜模拟的力场 瞎总结. 性能 模拟有机小分子热力学性质用Charmm generalized >= OPLS-AA >= GAFF,但实际上GAFF已经很好了。它 们计算各种有机分子的密度、蒸发焓都很准确,但是介 电常数、等温压缩系数计算得都一般。GAFF对于带有 硝基的分子不好。OPLS和GAFF对于苯甲醛、甲酸, 以及有两个及以上Br或Cl相距较近的情况都不好。 对蛋白质构象的模拟: ff99SB+ildn+nmr > CHARMM27 >OPLS ?f99。 ?Berger:专门用于磷脂的力场 ?PFF=Polarizable Force Field ?VAMM=Virtual atom molecular mechanics 材料力场 ?cvff(consistent valence forcefield):参数用于有机分子、蛋白质模拟,函数形式略复杂。cvff_aug是对其扩展, 可以用于研究硅酸盐、铝硅酸盐、磷酸盐、泥土

?CFF(consistent family of forcefield):包括CFF91和CFF95。适用面很广,涵盖有机无机小分子、聚合物、 多糖和生物大分子,还支持金属。函数形式挺复杂。 参数由从头算获得,非键参数从CVFF弄来,不适合 凝聚相模拟。 ?pcff:基于CFF91,适用范围做了扩展,主要用于聚合物和有机材料,也能用于无机材料,还有糖、核酸、 脂的参数。 ?COMPASS=Condensed-phase Optimized Molecular Potentials for Atomistic Simulation Studies:在pcff基 础上改进的新版本,同样由从头算获得参数,在凝聚 相模拟方面大有改善。适用于有机和一些无机分子、 高分子,常用于材料领域的各种性质计算,不支持生 物分子。模拟超临界水不错。能够适应很宽范围的压 强和温度。MS中COMPASS(即 2.8)>COMPASS2.7>COMPASS2.6。在MaterialStudio 中御用,参数是加密不公开的,虽然lammps也能用, 但是参数不全。 普适力场 ?Dreiding:普适型力场,但支持的元素有限,并非涵盖整个周期表。可以用于有机、生物、主族无机分子。

自动控制原理课程设计题目(1)

自动控制原理课程设计题目及要求 一、单位负反馈随动系统的开环传递函数为 ) 101.0)(11.0()(++= s s s K s G k 1、画出未校正系统的Bode 图,分析系统是否稳定 2、画出未校正系统的根轨迹图,分析闭环系统是否稳定。 3、设计系统的串联校正装置,使系统达到下列指标 (1)静态速度误差系数K v ≥100s -1 ; (2)相位裕量γ≥30° (3)幅频特性曲线中穿越频率ωc ≥45rad/s 。 4、给出校正装置的传递函数。 5、分别画出校正前,校正后和校正装置的幅频特性图。计算校正后系统的穿越频率ωc 、相位裕量γ、相角穿越频率ωg 和幅值裕量K g 。 6、分别画出系统校正前、后的开环系统的奈奎斯特图,并进行分析。 7、应用所学的知识分析校正器对系统性能的影响(自由发挥)。 二、设单位负反馈随动系统固有部分的传递函数为 ) 2)(1()(++= s s s K s G k 1、画出未校正系统的Bode 图,分析系统是否稳定。 2、画出未校正系统的根轨迹图,分析闭环系统是否稳定。 3、设计系统的串联校正装置,使系统达到下列指标: (1)静态速度误差系数K v ≥5s -1 ; (2)相位裕量γ≥40° (3)幅值裕量K g ≥10dB 。 4、给出校正装置的传递函数。 5、分别画出校正前,校正后和校正装置的幅频特性图。计算校正后系统的穿越频率ωc 、相位裕量γ、相角穿越频率ωg 和幅值裕量K g 。 6、分别画出系统校正前、后的开环系统的奈奎斯特图,并进行分析。 7、应用所学的知识分析校正器对系统性能的影响(自由发挥)。 三、设单位负反馈系统的开环传递函数为 ) 2(4 )(+= s s s G k 1、画出未校正系统的根轨迹图,分析系统是否稳定。 2、设计系统的串联校正装置,要求校正后的系统满足指标: 闭环系统主导极点满足ωn =4rad/s 和ξ=。 3、给出校正装置的传递函数。 4、分别画出校正前,校正后和校正装置的幅频特性图。计算校正后系统的穿越频率ωc 、相位裕量γ、相角穿越频率ωg 和幅值裕量Kg 。 5、分别画出系统校正前、后的开环系统的奈奎斯特图,并进行分析。

COMPASS使用手册,兰德马克说明书

COMPASS for Windows for Windows of Landmark Graphics Co. 简明使用手册

目录 一、COMPASS WELLPLAN FOR WINDOWS能简介 二、 COMPA NY SETUP - CREATE NEW COMP:公司设置-建立新的公司 三、FIELD SETUP- CREATE NEW Fl:曲气田设置-建立新的油气田 四、SITE SETUP- CREATE NEW SITE块设置-建立新的区块 五、TEMPLATE EDITOR槽口模板编辑器 六、WELLSETUP-CREATE NEW W E单井设置-建立新井 七、WELLPATH SETUP-CREATE NEW WELLPAT迹设置-建立新的轨迹 八、TARGET EDITOR?巴点编辑器 九、NEW PLAN & OPEN PLAN井眼轨迹设计 十、NEW SERVE Y& OPEN SERVE实测数据建立与编辑 ANTICOLLISIO N防碰计算 十WALL PLOT COMPOSERS 图制作 十三、常用功能简介

COMPASS WELLPLAN FOR WINDO功S B简介 COMPAS(S 指南针)有三个核心功能: PLANNING (设计)按计划井眼形状设计井眼轨迹 SURVEY(实测计算)已钻井眼实测数据的计算及轨迹预测ANTICOLLISION:防碰计算)井眼轨迹之间的距离计算 除此之外,COMPAS还有以下功能: COMPANY SETUP 允许你为不同的公司设置COMPASS FIELD SETUP 为同一油田的所有平台定义通用的水平或垂直参考系统 TARGET EDITOR 靶点编辑器,设置靶点位置及靶区形状 TEMPLATE EDITOR 槽口编辑器,用于丛式井井口坐标计算 REFERENCE DATUM ELEVATIONS^不同的海拔高度参照基准 MAGNETIC CALCULATO R算不同磁场模型的磁场值 GEODETIC CALCULATORS同地质坐标系之间的数值转换计算 SURVEY TOOLS 定义不同测量工具的测量误差

自动课程设计

课程设计任务书 院部名称机电工程学院 专业自动化 班级 M11自动化 指导教师陈丽换 金陵科技学院教务处制

摘要 MATLAB是一个包含大量计算算法的集合。其拥有600多个工程中要用到的数学运算函数,可以方便的实现用户所需的各种计算功能。函数中所使用的算法都是科研和工程计算中的最新研究成果,而前经过了各种优化和容错处理。在通常情况下,可以用它来代替底层编程语言,如C和C++ 。在计算要求相同的情况下,使用MATLAB的编程工作量会大大减少。MATLAB的这些函数集包括从最简单最基本的函数到诸如矩阵,特征向量、快速傅立叶变换的复杂函数。函数所能解决的问题其大致包括矩阵运算和线性方程组的求解、微分方程及偏微分方程的组的求解、符号运算、傅立叶变换和数据的统计分析、工程中的优化问题、稀疏矩阵运算、复数的各种运算、三角函数和其他初等数学运算、多维数组操作以及建模动态仿真等。 此次课程设计就是利用MATLAB对一单位反馈系统进行滞后-超前校正。通过运用MATLAB的相关功能,绘制系统校正前后的伯德图、根轨迹和阶跃响应曲线,,能够利用不同的分析法对给定系统进行性能分析,能根据不同的系统性能指标要求进行合理的系统设计,并调试满足系统的指标。学会使用MATLAB语言及Simulink动态仿真工具进行系统仿真与调试。 关键字:超前-滞后校正 MATLAB 仿真

1.课程设计应达到的目的 1. 掌握自动控制原理的时域分析法,根轨迹法,频域分析法,以及各种补偿(校正)装置的作用及用法,能够利用不同的分析法对给定系统进行性能分析,能根据不同的系统性能指标要求进行合理的系统设计,并调试满足系统的指标。 2. 学会使用MATLAB 语言及Simulink 动态仿真工具进行系统仿真与调试。 2.课程设计题目及要求 题目: 已知单位负反馈系统的开环传递函数, 试用频率法设计串 联滞后——超前校正装置,使之满足在单位斜坡作用下,系统的速度误差系数1v K 10s -=,系统的相角裕量045γ≥,校正后的剪切频率 1.5C rad s ω≥。 设计要求: 1. 首先, 根据给定的性能指标选择合适的校正方式对原系统进行校正,使其满足工作要求。要求程序执行的结果中有校正装置传递函数和校正后系统开环传递函数,校正装置的参数T ,α等的值。 2.. 利用MATLAB 函数求出校正前与校正后系统的特征根,并判断其系统是否 稳 定 , 为 什 么 ? 3. 利用MATLAB 作出系统校正前与校正后的单位脉冲响应曲线,单位阶跃响应曲线,单位斜坡响应曲线,分析这三种曲线的关系。求出系统校正前与校正后的动态性能指标σ%、tr 、tp 、ts 以及稳态误差的值,并分析其有何变化。 4. 绘制系统校正前与校正后的根轨迹图,并求其分离点、汇合点及与虚轴 交点的坐标和相应点的增益K *值,得出系统稳定时增益K * 的变化范围。绘制系 统校正前与校正后的Nyquist 图,判断系统的稳定性,并说明理由。 5. 绘制系统校正前与校正后的Bode 图,计算系统的幅值裕量,相位裕量,幅值穿越频率和相位穿越频率。判断系统的稳定性,并说明理由。 ()(1)(2) K G S S S S = ++

第六章井眼轨迹设计与控制第一次作业答案

第六章井眼轨迹设计与控制 第一次作业 1、已知某井的几个测段数据如下表所示(测段长均为30m),试计算每个测段的井眼曲率。分别用最小曲率法和空间曲线法计算,并加以对比。 解: 此处前二个测段采用的是最小曲率法,后二个测段的是采用空间曲线法。因此解题并不完整. (1)采用最小曲率法计算前二个测段井眼曲率 由公式:K=cos-1[cosαA cos B+sinαA sinαB cos(φB-φA)]*30/(L B-L A)(°/30m) 并注意到测段长均为30m,可得: 对于第一个测段:K=cos-1[cos35cos38+sin35sin38cos8]*30/30=5.62(°/30m)对于第二个测段:K=cos-1[cos25cos30+sin25sin30cos0]*30/30=5.00(°/30m) (2)采用空间曲线法计算后二个测段井眼曲率 由公式:Δα=αB-αA(°) αV=(αA+αB)/2(°) K=[Δα2+Δφ2sin2αV]1/2/ΔL*30(°/30m) 并注意到测段长均为30m,可得: 对于第三个测段: Δα=15-10=5(°) Δφ=80(°) αV=(10+15)/2=12.5(°) K=[52+802sin212.5]1/2/30*30=18.02(°/30m) 对于第四个测段: Δα=56-60=-4(°) Δφ=79(°) αV=(60+56)/2=58(°) K=[(-4)2+792sin258]1/2/30*30=67.12(°/30m) 答:该四个测段的井眼曲率依次为5.62°/30m、5.00°/30m、18.02°/30m、67.12°/30m。

力场简介

1分子(或原子)间相互作用势简介 分子(或原子)间相互作用势的准确性对计算结果的精度影响极大,但总的来说,原子之间的相互作用势的研究一直发展得很缓慢,从一定程度上制约了分子动力学在实际研究中的应用.原子间势函数概念本身已把电子云对势函数的贡献折合在内了,原子间势函数的发展经历了从对势,多体势的过程.对势认为原子之间的相互作用是两两之间的作用,与其他原子的位置无关,而实际上,在多原子体系中,一个原子的位置不同,将影响空间一定范围内的电子云分布,从而影响其他原子之间的有效相互作用,故多原子体系的势函数更准确地须用多体势表示. 2 力场简介

图1 键伸缩势示意图图2键伸缩势示意图

图3二面角扭曲势示意图 在分子动力学模拟的初期,人们经常采用的是对势.应用对势的首次模拟是Alder和Wainwright在1957年的分子动力学模拟中采用的间断对势.Rahman在1964年应用非间断的对势于氩元素的研究,他和Stillinger在1971年也首次模拟了液体HzO分子,并对分子动力学方法作出了许多重要的贡献,比较常见的对势有以下几种: (a)间断对势 Alder和Wainwrigh在1957年使用间断对势 这个势函数虽然很简单,但模拟结果给人们提供了许多有益的启示.后来他们又采取了另一种形式的间断对势。 (b)连续对势 对势一般表示非键结作用,如范德瓦耳斯作用;常见的表达方式有以下几种:

ij ij 其中,Lennard —Jones 势是为描述惰性气体分子之间相互作用力而建立的,因此它表达的作用力较弱,描述的材料的行为也就比较柔韧.也有人用它来描述铬、钼、钨等体心立方过渡族金属.Born-Lande 势是用来描述离子晶体的. Morse 势与Johnson 势经常用来描述金属固体,前者多用于Cu ,后者多用于 Fe .Morse 势的势阱大于Johnson 势的势阱,因此前者描述的作用力比后者强,并且由于前者的作用力范围比后者长,导致Morse 势固体的延性比Johnson 势固体好.对势虽然简单,得到的结果往往也符合某些宏观的物理规律,但其缺点是必然导致Cauchy 关系,即Cl2=C44,而一般金属并不满足Cauchy 关系,因此对势实际上不能准确地描述晶体的弹性性质

定向井设计暨compass操作指南

第六章定向井设计暨c o m p a s s操作指南 一、定向井设计需要的基本数据 1、单井 (1) 所钻井井口的大地坐标,靶点的大地坐标并给出相应的经纬度,以及定向井的靶区描述(如定向 井靶点半径,水平井等)。 (2) 井身结构及套管程序(给定垂深),以及所用套管的型号和单位重量。 (3)若下抽油泵,请给定垂深和该垂深下的前后井段。 (4) 该井所在地区的详细地质资料(包括地质分层,岩性及风险提示等)。 (5) 该井分段所用的泥浆比重,塑性粘度,切力,屈服值等。 (6) 钻机的游动系统重量,以及泥浆泵型号及功率和提供的工作排量。 2 ,二、 少钻井工序,降低摩阻,减少钻井时复杂情况和事故发生的可能性。 (2).井身结构 根据地质要求和钻井目的,决定选用何种井身结构。 (3).造斜点 造斜点应选在稳定、均质、可钻性较高的地层。造斜点深度的选择应考虑如下几点: A.相邻井的造斜点上下至少要错开15米以上,通常错开30~50米,防止井眼间窜通和磁干扰; B.中间井口用于位移小的井,造斜点较深。外围井口用于位移较大的井,造斜点较浅; C.如果设计的最大井斜角超过采油工艺或常规测井的限制或要求,应将造斜点提高或增加设计造斜率。 (4).造斜率 在丛式井中,通常设计各井的造斜率为7~16°米。

(5).最大井斜角 在保证油田开发要求的前提下,尽量不使井斜角太大,以避免钻井作业时,扭矩和摩阻太大,并保证其它作业的顺利进行,如电测、下套管作业等。常规测井工具通过的井段其最大井斜为62°。如果初始设计出最大井斜角达60°以上,则应适当调整造斜点和造斜率,使最大井斜不超过60°。当然,在一个丛式井平台上,可选择几口边缘井打水平井,以充分地利用平台,扩大采油面积。 (6).井口分配 井口分配应考虑如下几点: A.用外围的井口打位移大的井,用中间的井口打位移较小的井。 B.按整个井组的各井方位,尽量均布井口,使井口与井底连线在水平面上的投影图尽量不相交,且成放射状分布,以方便轨迹跟踪。 C.考虑到钻井平台的最大额定载荷分布,将井斜大、位移大、井深较深的井安排在平台额定载荷大的地方。 D.如果按照(1)、(2)、(3)的顺序仍有不能错开的井,可以通过调整造斜点或造斜率的方法来解决。 ( 7).防止井眼相碰 直井段的井身要符合要求,762毫米(30英寸)套管要求倾斜度小于0.5~l°。同排井在方位上要错开,避免干扰。邻井采用不同造斜率。 表层套管下深要错开,斜井段在空间交叉的井,最小距离为20米,直井段安全圆柱半径为15米。 (8).合理安排钻井顺序 首先要按地质、开发部门有关注水配产要求和进一步对地层情况的掌握来进行。可采用先外排井,后内排井的顺序,防止内排岩屑堆集须进行清理;或由底盘一侧向另一侧推进的方式。 选择好一条合理的钻台井架移动路线,可省时省力。 (9).使用优质钻井液,减少摩阻。对于井斜过大、水平位移过大的井,采用顶部驱动钻井装置来改善钻井作业。 (10).上部井段采用集束钻井或集中打表层方式,可节约时间,提高钻井速度。 三、钻井平台位置优选 对于丛式井来说,优选平台位置,比一口定向井的设计更重要,且影响更大。除了考虑钻井工程方面的情况以外,还要考虑输油管道的建设、井场的地貌情况等,单从定向钻井的角度来优选,通常采用两种优选方式,一是累计水平位移最小,二是累计井深最少。 1.累计水平位移最小的平台位置优选 无论平台位置如何,靶点位置是一定的。因此,计算平台位置与靶点的距离,并使累计值最小就是这种优选方式的关键。 靶点位置通常以座标值给定,即(X,Y)值,值得注意的是X值是南北方向的座标值,Y值是东西方向的座标值,即X值相当于北南位移,Y值相当于东西位移,水平位移的计算可依据两点间的距离公式来求到: 2.累计井深最少的位置优选 采用这种优选方式,首先要依照井底和井口位置进行试算。把所有井的轨迹全部设计出来,计算出累计的井深,然后改变井口位置,重新作轨迹设计,直到设计出最小的累计井深。 无论哪一种平台位置优选方式,在确定其优选的井口位置时,必须保证所有井都能打成。因此,第一是平台上的少数井的水平位移不能特别大;第二是少数井的总井深不能特别深;第三是为了有利于进行丛式井作业,应尽可能少地进行绕障作业,至少在丛式井设计中,基本上不存在绕障问题。

自动控制原理课程设计

课程设计报告 (2014--2015年度第一学期) 名称:《自动控制理论》课程设计 题目:基于自动控制理论的性能分析与校正院系:自动化 班级:自动化 学号: 学生姓名: 指导教师: 设计周数:1周 成绩: 日期:2015年1月9日

目录 第一部分、总体步骤 (3) 一、课程设计的目的与要求 (3) 二、主要内容 (3) 三、进度计划 (4) 四、设计成果要求 (4) 五、考核方式 (4) 第二部分、设计正文 (5) 一控制系统的数学模型 (5) 二控制系统的时域分析 (9) 三控制系统的根轨迹分析 (15) 四控制系统的频域分析 (19) 五控制系统的校正 (22) 六非线性系统分析 (38) 第三部分、课程设计总结 (40)

第一部分、总体步骤 一、课程设计的目的与要求 本课程为《自动控制理论A》的课程设计,是课堂的深化。设置《自动控制理论A》课程设计的目的是使MATLAB成为学生的基本技能,熟悉MATLAB这一解决具体工程问题的标准软件,能熟练地应用MATLAB软件解决控制理论中的复杂和工程实际问题,并给以后的模糊控制理论、最优控制理论和多变量控制理论等奠定基础。作为自动化专业的学生很有必要学会应用这一强大的工具,并掌握利用MATLAB对控制理论内容进行分析和研究的技能,以达到加深对课堂上所讲内容理解的目的。通过使用这一软件工具把学生从繁琐枯燥的计算负担中解脱出来,而把更多的精力用到思考本质问题和研究解决实际生产问题上去。 通过此次计算机辅助设计,学生应达到以下的基本要求: 1.能用MATLAB软件分析复杂和实际的控制系统。 2.能用MATLAB软件设计控制系统以满足具体的性能指标要求。 3.能灵活应用MATLAB的CONTROL SYSTEM工具箱和SIMULINK仿真软件,分析系统的性能。 二、主要内容 1.前期基础知识,主要包括MATLAB系统要素,MATLAB语言的变量与语句,MATLAB的矩阵和矩阵元素,数值输入与输出格式,MATLAB系统工作空间信息,以及MATLAB的在线帮助功能等。 2.控制系统模型,主要包括模型建立、模型变换、模型简化,Laplace变换等等。 3.控制系统的时域分析,主要包括系统的各种响应、性能指标的获取、零极点对系统性能的影响、高阶系统的近似研究,控制系统的稳定性分析,控制系统的稳态误差的求取。 4.控制系统的根轨迹分析,主要包括多回路系统的根轨迹、零度根轨迹、纯迟延系统根轨迹和控制系统的根轨迹分析。 5.控制系统的频域分析,主要包括系统Bode图、Nyquist图、稳定性判据和系统的频域响应。 6.控制系统的校正,主要包括根轨迹法超前校正、频域法超前校正、频域法滞后校正以及校正前后的性能分析。 三、进度计划

井眼轨迹的三维显示

中文摘要 井眼轨迹的三维显示 摘要 本文介绍了国内外井眼轨迹三维显示技术的研究现状,归纳了常规二维定向井轨道设计原则和几种轨道类型的计算方法,以及井眼轨迹测斜计算的相关规定、计算模型假设和轨迹计算方法。从井位、井下测量和计算三个方面对井眼轨迹误差进行了讨论并简要说明了不同的井眼轨迹控制。在此基础之上,利用VB和MATLAB软件编制了井眼轨迹的三维显示软件,并简要介绍了该软件的设计流程、主要功能和难点处理,指出了软件的不足之处,展示了井眼轨迹三维绘图的所有运行界面,并附上软件说明书。最后,对井眼轨迹三维显示开发的研究方向进行了展望。 关键字井眼轨迹三维显示 MATLAB Visual Basic 轨迹计算轨道设计误差分析

重庆科技学院本科生毕业设计英文摘要 Abstract In this paper, at home and abroad well trajectory 3-D display technology of the status quo,Summarized the conventional two-dimensional directional well the track design principles and track several types of calculation method,And the well trajectory inclinometer terms of the relevant provisions, the model assumptions and trajectory calculation. From the wells, underground measurement and calculation of the three aspects of the well trajectory error was discussed and a brief description of the different well trajectory control. On this basis, using VB and MATLAB software produced a hole trajectory of the three-dimensional display software, and gave a briefing on the software design process, and difficulties in dealing with the main function, pointed out the inadequacy of the software, demonstrated the well trajectory 3-D graphics interface all the running, along with software manuals. Finally, the well trajectory 3-D display development direction of the prospect. Keyword:Well trajectory;3-D display;MATLAB ;Visual Basic;trajectory calculation ;trajectory design ;Error Analysis

定向井设计暨compass操作的指南

第六章定向井设计暨compass操作指南 一、定向井设计需要的基本数据 1、单井 (1) 所钻井井口的坐标,靶点的坐标并给出相应的经纬度,以及定向井的靶区描述(如 定向井靶点半径,水平井等)。 (2) 井身结构及套管程序(给定垂深),以及所用套管的型号和单位重量。 (3)若下抽油泵,请给定垂深和该垂深下的前后井段。 (4) 该井所在地区的详细地质资料(包括地质分层,岩性及风险提示等)。 (5) 该井分段所用的泥浆比重,塑性粘度,切力,屈服值等。 (6) 钻机的游动系统重量,以及泥浆泵型号及功率和提供的工作排量。 (7) 可提供的钻杆和加重钻杆钢级、公称尺寸,震击器型号,钻头类型等等。 (8) 给定工程设计标准及特殊要求。 (9) 该区域已钻井的定向井资料。 2、丛式井 (1) 平台的槽口分布,槽口间距,平台结构北角,该平台的中心坐标(坐标)和经纬度,以及覆盖区所有已钻井(包括探井)的井眼轨迹数据(井斜、方位等)。 (2) 丛式井的井口和靶点坐标及靶点垂深,定向井的靶区描述(如定向井靶点半径,水平 井等),以及油底垂深和口袋长度等。 (3) 井身结构及套管程序(给定垂深),所用套管的型号和单位重量等。. (4) 若下抽油泵,请给定垂深和该垂深下的前后井段。 (5) 该井所在地区的详细地质资料(包括地质分层,岩性及风险提示等)。 (6) 该井分段所用的泥浆比重、塑性粘度、切力、屈服值等。 (7) 钻机的游动系统重量,以及泥浆泵型号及功率和提供的工作排量等。 (8) 可提供的钻杆和加重钻杆钢级、公称尺寸,震击器型号,钻头类型等等。 (9) 该区域已钻井的定向井资料。 (10) 给定工程设计标准及特殊要求。 二、丛式井设计 1.丛式井的概念 丛式井是指一组定向井(水平井),它们的井口是集中在一个有限围,如海上钻井平台、沙漠中钻井平台、人工岛等。丛式井的广泛应用是由于它与钻单个定向井相比较,大大减少钻井成本,并能满足油田的整体开发要求。 2.丛式井设计应考虑的问题 (1).井身剖面 在满足油田开发要求的前提下,尽量选择最简单剖面,如典型的“直一增一稳”三段制,这样将减少钻井工序,降低摩阻,减少钻井时复杂情况和事故发生的可能性。 (2).井身结构 根据地质要求和钻井目的,决定选用何种井身结构。

自动控制根轨迹课程设计(精髓版)

西安石油大学 课程设计 电子工程学院自动化专业 1203班题目根轨迹法校正的设计 学生郭新兴 指导老师陈延军 二○一四年十二月

目录 1. 任务书.........................................1 2.设计思想及内容.................................2 3.编制的程序.....................................2 3.1运用MATLAB编程............................ 2 3.2由期望极点位置确定校正器传递函数...........4 3.3 校正后的系统传递函数.......................5 4.结论...........................................7 5.设计总结.......................................8 6.参考文献.......................................8

《自动控制理论》课程设计任务书

2.设计内容及思想 : 1) 内容:已知单位负反馈系统被控对象传递函数为: ) 25(2500 )(0 0+=s s K s G ,试用根轨迹几何设计法对系统进行滞后串联校正 设计,使之满足: (1)阶跃响应的超调量:σ%≤15%; (2)阶跃响应的调节时间:t s ≤0.3s ; (3)单位斜坡响应稳态误差:e ss ≤0.01。 2)思想: 首先绘出未校正系统得bode 图与频域性能,然后利用MATLAB 的SISOTOOL 软件包得到系统的根轨迹图,对系统进行校正,分析系统未校正前的参数,再按题目要求对系统进行校正,计算出相关参数。最后观察曲线跟题目相关要求对比看是否满足要求,并判断系统校正前后的差异。 3 编制的程序: 3.1运用MATLAB 编程: 根据自动控制理论,对 I 型系统的公式可以求出静态误差系数 K 0=1。再根据要求编写未校正以前的程序 %MATLAB PROGRAM L1.m K=1; %由稳态误差求得; n1=2500;d1=conv([1 0],[1 25]); %分母用conv 表示卷积;

MS简介

Materials Studio 目录[隐藏] Materials studio简介 模块详细介绍 Materials studio简介 1. 1、诞生背景 2. 2、软件概况 3. 3、模块简介 4. 4、比Cer ius2更具有优点 模块详细介绍 1. 基本环境 2. 分子力学与分子动力学 3. 晶体、结晶与X射线衍射 4. 量子力学 5. 高分子与介观模拟 6. 定量结构-性质关系 [编辑本段] Materials studio简介 1、诞生背景 美国A ccelrys公司的前身为四家世界领先的科学软件公司――美国Molecular Simulations Inc.(MSI)公司、Genet ics Computer G roup(G CG)公司、英国Synop sys Scient ific系统公司以及Oxfo rd Molecular Group(OMG)公司,由这四家软件公司于2001年6月1日合并组建的Accel rys公司,是目前全球范围内唯一能够提供分子模拟、材料设计以及化学信息学和生物信息学全面解决方案和相关服务的软件供应商。 A ccelrys材料科学软件产品提供了全面完善的模拟环境,可以帮助研究者构建、显示和分析分子、固体及表面的结构模型,并研究、预测材料的相关性质。A ccelrys的软件是高度模块化的集成产品,用户可以自由定制、购买自己的软件系统,以满足研究工作的不同需要。A ccelrys软件用于材料科学研究的主要产品包括运行于UNIX工作站系统上的C erius2软件,以及全新开发的基于PC平台的Material s Studio软件。Accelrys材料科学软件被广泛应用于石化、化工、制药、食品、石油、电子、汽车和航空航天等工业及教育研究部门,在上述领域中具有较大影响的世界各主要跨国公司及著名研究机构几乎都是Accelrys产品的用户。 2、软件概况 Mate rials Studio是专门为材料科学领域研究者开发的一款可运行在PC上的模拟软件。它可以帮助你解决当今化学、材料工业中的一系列重要问题。支持Windows 98、2000、NT、Unix以及Linux等多种操作平台的Materials Stu dio使化学及材料科学的研究者们能更方便地建立三维结构模型,并对各种晶体、无定型以及高分子材料的性质及相关过程进行深入的研究。 多种先进算法的综合应用使Material s Studio成为一个强有力的模拟工具。无论构型优化、性质预测和X射线衍射分析,以及复杂的动力学模拟和量子力学计算,我们都可以通过一些简单易学的操作来得到切实可靠的数据。

APM中文使用手册Word版

一、介绍 ArduPilotMega自动驾驶仪(简称APM 自驾仪)是一款非常优秀而且完全开源的自动驾驶控制器,可应用于固定翼、直升机、多旋翼、地面车辆等,同时还可以搭配多款功能强大的地面控制站使用。地面站中可以在线升级固件、调参,使用一套全双工的无线数据传输系统在地面站与自驾仪之间建立起一条数据链,即可组成一套无人机自动控制系统,非常适合个人组建自己的无人机驾驶系统。 二、性能特点 ?免费的开源程序,支持多种载机。ArduPlane模式支持固定翼飞机,Arducoper模式支持直升机与多旋翼 (包括三轴、四轴、六轴、八轴等),ArduRover模式支持地面车辆; ?人性化的图形地面站控制软件,通过一根Micro_USB线或者一套无线数传连接,鼠标点击操作就可以进行设置和下载程序到控制板的MCU 中,无需编程知识和下载线等其它硬件设备。但如果你想更深入的了解APM 的代码的话,你仍旧可以使用Arduino 来手动编程下载; ?地面站的任务规划器支持上百个三维航点的自主飞行设置,并且只需要通过鼠标在地图上点击操作就行; ?基于强大的MAVLink协议,支持双向遥测和实时传输命令; ?多种免费地面站可选,包括Mission Planner ,HK GCS 等,还可以使用手机上的地面站软件,地面站中可实现任务规划,空中参数调整,视频显示,语音合成和查看飞行记录等; ?可实现自动起飞,自动降落,航点航线飞行,自动返航等多种自驾仪性能; ?完整支持Xplane和Flight Gear 半硬件仿真 三、硬件构成 o核心MCU采用ATMEL的8bit ATMEGA2560 o 整合三轴陀螺仪与三轴加速度的六轴MEMS传感器MPU6000 o 高度测量采用高精度数字空气压力传感器MS-5611 o 板载16MB的AT45DB161D存储器o 三轴磁力计HMC5883 o8路PWM控制输入 o 11路模拟传感器输入 o 11路PWM输出(8路电调电机+3路云台增稳) o GPS 模块可选MTK 3329及支持ublox输出的NEO-6M、7M、LEA-6H等o 可屏蔽板载PPM解码功能,外接PPM解码板或者外接PPM接收机 o 可屏蔽板载罗盘通过I2C接口使用外置扩展罗盘 o (可选)OSD模块,将无人机姿态、模式、速度、位置等重要数据叠加到图像上实时回传o (可选)空速传感器 o (可选)电流电压传感器 o (可选)超声波测距传感器o (可选)光流定点传感器 o(可扩展)其它UART、I2C、SPI 设备

相关主题
文本预览
相关文档 最新文档