当前位置:文档之家› 高温双酶法液化与糖化工艺综述

高温双酶法液化与糖化工艺综述

高温双酶法液化与糖化工艺综述
高温双酶法液化与糖化工艺综述

高温双酶法液化与糖化工艺综述

【摘要】本文主要讲述了玉米发酵法生产酒精工艺中的高温蒸煮液化与糖化工艺,研究了在各种不同的温度、酸碱度等条件下,对淀粉液化糖化效率的影响。

【关键词】淀粉酶;糖化酸;液化;糖化;温度;PH;底物浓度

酒精已被作为再生能源广泛应用到各个领域。我国的酒精生产工艺主要是淀粉质原料的发酵,淀粉的液化糖化在发酵法生产酒精中占有很重要的地位,它直接决定了淀粉的利用率及淀粉质原料的成本,以下以玉米味原料探讨淀粉的液化糖化工艺。

一、液化糖化工艺中拌料浓度与温度

1、料浆的浓度

料浆浓度的高低直接会影响到发酵成熟醪所含酒精的多少,发酵醪越稀,生产每吨酒精排放的废糟就越多,处理酒糟的设备,投资就越大,醪液越浓,对酒精的处理投资就越小,但对酒母的生长是不利的,当前大多数厂的粉水比为1:3~4,少数厂已降到1:2.6左右,采用高温双酶法液化糖化工艺料水比可以降到1:2.0(我们厂在实际操作中控制在1:1.8~2.0,这样才最有利于液化,达到最好经济效益)。

2、料浆温度

由于拌料用水一般多为后序工段生产过程中产生的废热水,废热水的温度过高会对使浓度高的料浆粘度增加并出现结团的现象,造成拌料不匀和输送困难。对于高浓度料浆,温度不宜超过60℃。

二、淀粉酶及液化条件和液化方法

1、a—淀粉酶水解淀粉可得到葡萄糖和麦芽糖

a—淀粉酶能水解淀粉及产物分子中的a—1,4葡萄糖键)生成产物的还原糖末端。(不能水解纤维素中的β-1.4,糖苷键酶的主体异构特异性表明,酶与底物的结合,至少存在三个结合点)

2、淀粉液化的方法有升温液化、高温液化及喷射液化

(1)升温液化法将原料浆调整到一定浓度,调整PH6.0~7.0,加入CaO 或CaCL2至一定浓度,投入适量的淀粉酶,在剧烈搅拌下,由60℃加热到85℃~93℃,并保持30~60min,达到所需的液化程度后,升温到100℃,灭菌10min。

(完整版)年产5000吨糖化酶发酵车间设计

南阳理工学院 本科生毕业设计 学院(系):生物与化学工程学院 专业:生物工程 学生: ******* 指导教师:李慧星 完成日期 2010 年 5 月

南阳理工学院本科生毕业设计 年产5000吨糖化酶发酵车间设计 The design of annual output of 5000 tons of glucoamylase fermentation factory workshop 总计:毕业设计(论文)28页 表格: 5 个 插图: 1 幅

南阳理工学院本科毕业设计 年产5000吨糖化酶发酵车间设计 The design of annual output of 5000 tons of glucoamylase fermentation factory workshop 学院(系):生物与化学工程学院 专业:生物工程 学生姓名:郭留洋 学号:***** 指导教师:****** 评阅教师: 完成日期:2010年5月 南阳理工学院 Nanyang Institute of Technology

年产5000吨糖化酶发酵车间的工艺设计 生物工程专业郭留洋 【摘要】糖化酶是工业生产的主要酶制剂之一,广泛用于酿酒、葡萄糖、果葡糖浆、抗菌素、乳酸、有机酸、味精、棉纺厂等各方面。本设计以玉米淀粉为主要原料,利用黑曲霉,采用机械搅拌通风罐进行发酵生产,完成生产5000吨糖化酶发酵车间工艺设计,通过工艺流程设计、工艺衡算、设备选型和车间布置设计,设计出生产5000吨糖化酶发酵车间采用3个75m3发酵罐和3个6m3种子罐等,并依据生物工程工厂车间布置原则,对发酵罐车间进行合理布置,绘制了工艺流程图和车间布置图,工艺设计的结果为糖化酶的生产提供一定参考。 【关键字】糖化酶工厂设计深层发酵黑曲霉

生产工艺流程图及说明

(1)电解 本项目电解铝生产采用熔盐电解法:其主要生产设备为预焙阳极电解槽,项目设计采用大面六点进电SY350型预焙阳极电解槽。铝电解生产所需的主要原材料为氧化铝、氟化铝和冰晶石,原料按工艺配料比例加入350KA 预焙阳极电解槽中,通入强大的直流电,在945-955℃温度下,将一定量砂状氧化铝及吸附了电解烟气中氟化物的载氟氧化铝原料溶解于电解质中,通过炭素材料电极导入直流电,使熔融状态的电解质中呈离子状态的冰晶石和氧化铝在两极上发生电化学反应,氧化铝不断分解还原出金属铝——在阴极(电解槽的底部)析出液态的金属铝。 电解槽中发生的电化学反应式如下: 2323497094032CO Al C O Al +?-+℃ ℃直流电 在阴极(电解槽的底部)析出液态的金属铝定期用真空抬包抽出送往铸造车间经混合炉除渣后由铸造机浇铸成铝锭。电解过程中析出的O 2同阳极炭素发生反应生成以CO 2为主的阳极气体,这些阳极气体与氟化盐水解产生的含氟废气、粉尘等含氟烟气经电解槽顶部的密闭集气罩收集后送到以Al 2O 3为吸附剂的干法净化系统处理,净化后烟气排入大气。被消耗的阳极定期进行更换,并将残极运回生产厂家进行回收处置。吸附了含氟气体的截氟氧化铝返回电解槽进行电解。 电解槽是在高温、强磁场条件下连续生产作业,项目设计采用大面六点进电SY350型预焙阳极电解槽,是目前我国较先进的生产设备。电解槽为6点下料,交叉工作,整个工艺过程均自动控制。电解槽阳极作业均由电解多功能机组完成。多功能机组的主要功能为更换阳极、吊运出铝抬包出铝、定期提升阳极母线、打壳加覆盖料等其它作业。 (2)氧化铝及氟化盐贮运供料系统 氧化铝及氟化盐贮运系统的主要任务是贮存由外购到厂的氧化铝和氟化盐 ,并按需要及时将其送到电解车间的电解槽上料箱内。

米曲霉生产糖化酶工艺

1.米曲霉是一种好气性真菌,菌丝一般呈黄绿色,米曲霉的菌丝由多细胞组成,是一类产复合酶的菌株,除产蛋白酶外,还可产淀粉酶、糖化酶、纤维素酶、植酸酶等。在淀粉酶的作用下,将原料中的直链、支链淀粉降解为糊精及各种低分子糖类,如麦芽糖、葡萄糖等;在蛋白酶的作用下,将不易消化的大分子蛋白质降解为蛋白胨、多肽及各种氨基酸,而且可以使辅料中粗纤维、植酸等难吸收的物质降解,提高营养价值、保健功效和消化率,广泛应用于食品、饲料、生产曲酸、酿酒等发酵工业。 米曲霉在工业上的应用:用于发酵生产豆豉、豆酱;与黑曲霉、绿色木霉复合发酵用于酱油生产;用于饲料工业;用于酿酒制曲、生产低醇乳糖饮料。 2.葡萄糖淀粉酶又称γ一淀粉酶, 简称糖化酶,糖化酶是一种含有甘露糖、葡萄糖、半乳糖和糖醛酸的糖蛋白,在工业中应用的糖化酶主要是从黑曲霉、米曲霉、根霉等丝状真菌和酵母中获得,从细菌中也分离到热稳定的糖化酶, 人的唾液、动物的胰腺中也含有糖化酶生产方法: a.黑曲霉固体发酵法 工艺流程:试管菌种→三角瓶款曲扩大培养→帘子曲种→通风制曲→成品。 b.液体深层发酵法. 工艺流程:试管斜面种子→种子扩大培养→发酵→过滤→浓缩→干燥→粗酶制剂。

糖化酶成品提取工艺 成品糖化酶可分为液体酶和固体酶2 种, 而固体酶的制备方法又可 分为盐析法、有机溶剂沉淀法和附吸法等, 采用一条合理的提取工艺, 可制备系列酶产品以满足不同行业的需求及降低成品的成本. 目前国外糖化酶生产一般采用液体深层培养, 发酵罐最大可达200m , 罐体都采用不锈钢制造, 冷却系统采用罐外冷却盘管关键阀门都采 用隔膜阀, 培养基可在罐内灭菌, 也可用薄板冷却器作连续灭菌, 并装有节能器, 发酵过程中的控制参数有搅拌功率、溶解氧、空气 中的二氧化碳与氧气量以及温度、P H 等。 糖化酶处理技术: 糖化酶的处理工艺过程分为预处理、固液分离、液体浓缩、酶的沉淀干燥四个工序。国外采用的无机絮凝剂有硫酸铝、碱式氯化铝、氯化铁、锌盐等能在水中形成各种氢氧化物凝胶;采用的有机高分子絮凝剂有聚苯乙烯磺酸、聚丙烯酸(或钠盐) 、聚甲基丙烯酸、聚丙烯酞胺等。国内外最普遍采用的固液分离设备是板框压滤机, 除此以外, 国外还有管式、多室式、碟式及篮式离心机, 国内主要采用篮式离心机, 也有少数管式离心机的厂家。国内外糖化酶的浓缩方式已从蒸发浓缩发展到超滤浓缩。目前采用的超滤装置有搅拌室式、浅道式系统、套筒膜式和中空纤维。沉淀酶方式, 国内外仍普遍用硫酸钱或硫酸钠等中性盐类盐析糖化酶。 3.植酸提高米曲霉产糖化酶能力:

糖化血清蛋白测定试剂盒(酶法)产品技术要求美高仪

糖化血清蛋白测定试剂盒(酶法) 适用范围:用于体外定量测定人血清中糖化血清蛋白(GSP)含量。 1.1包装规格 a) 试剂1:1×20ml,试剂2:1×5ml; b) 试剂1:1×25ml,试剂2:1×5ml; c) 试剂1:1×30ml,试剂2:1×10ml; d) 试剂1:2×40ml,试剂2:2×10ml; e) 试剂1:2×45mL,试剂2:2×15mL; f) 试剂1:2×50ml,试剂2:2×10ml。 1.2试剂主要组成成分 试剂1主要组成成分 试剂2主要组成成分

2.1 外观和性状 2.1.1 试剂盒各组分应齐全、完整、液体无渗漏;外包装完好、无破损,标签完好、字迹清晰。 2.1.2 试剂1应为无色或淡黄色液体,无沉淀、无悬浮物、无絮状物。 2.1.3 试剂2应为无色或淡黄色液体,无沉淀、无悬浮物、无絮状物。 2.2 净含量 液体试剂的净含量应不少于标示值。 2.3 试剂空白吸光度 试剂空白吸光度,应≤0.3。 2.4 分析灵敏度 测试300μmol/L的被测物时,吸光度变化(ΔA)应不低于0.03。 2.5 准确性 与比对试剂盒同时测试40例线性范围内的不同浓度的血清样本,样本浓度在(20,1500)μmol/L范围内,其相关系数(r)≥0.975;测试浓度在(0~200] μmol/L范围内绝对偏差不超过±30μmol/L;测试浓度在(200~1500) μmol/L范围内相对偏差不超过±15%。 2.6 重复性 采用两个浓度样品重复测定不少于10次,变异系数(CV)≤5%。 2.7 线性 2.7.1在(20,1500)μmol/L区间内,线性相关系数r应不低于0.990; 2.7.2 在(200,1500)μmol/L区间内,相对偏差不超过±10%;(20,200] μmol/L区间内,绝对偏差不超过±20μmol/L。

玉米秸秆的酶水解糖化

玉米秸杆的酶水解糖化 李俊英张桂陈学武苗芳侯建革 玉米秸杆的酶水解糖化 摘要:玉米秸杆属植物纤维废料,研究玉米秸杆酶水解糖化的目的在于寻求一条玉米秸杆的合理利用新途径,加工成食品、燃料、化工产品等,具有较好的发展前途。从玉米秸杆的化学结构出发,阐述玉米秸杆酶水解、糖化的机理及研究概况,玉米秸杆所含成分复杂,需要经过预处理,破坏其结晶性,提高水解性能,从而得以很好利用,具有重要的现实意义。关键词:玉米秸杆;酶水解;糖化 1 玉米秸杆的化学组分 玉米秸杆的主要成分是纤维素、半纤维素、木质素、粗蛋白和水等。 1.1 纤维素 玉米秸杆纤维素结构单元是由β-D葡萄糖基1,4-糖苷键联结而成的线性高分子化合物。每个纤维素分子由800--1200个葡萄糖分子组成,据戈林(D.A.J.Goring)等研究,在纤维细胞中的次生壁中,微细纤维、木素、半纤维素中组分均呈不连续的层状结构,彼此粘结又互相间断。微细纤维是构成细胞壁的骨架,木素、半纤维素则是微细纤维之间的填充剂和粘结剂。纤维素分子中的葡萄糖(和其它糖)残基的多少,或者称之为聚合程度的高低,因植物种属不同、时空和空间关系的变化而有变异。玉米秸杆纤维素属于次生壁一类的纤维素分子,其平均聚合度为1000左右。其中大约30到100个纤维素分子“并肩”排列,在分子内和分子间氢键作用下,形成结晶的(crystalline)或类结晶的(paracrystalline)微纤丝。微纤丝的结晶区即β-1,4葡聚糖区,而中央的非结晶区则可能是甘露糖或木糖的存在部位,非结晶的或结晶程度差的表面区包围着中央的结晶核(Crystal nucleus)〔2,3〕。从以上分析,纤维素类分子相互间以特定化学键相联系,形成牢固结构,使其难于分离。 1.2 半纤维素 半纤维素的结构单元是木糖、阿拉伯糖、葡萄糖等以及这些糖甲基化、乙酯化单位和醛酸衍生物。半纤维素的分子量较低,聚合度小于200,且分子往往带有支链。不同来源的半纤维素各种结构单元比例不同,但木糖是玉米秸杆的主要糖、其次是阿拉伯糖。其中木糖间以β-1,4糖苷键连接,分支度较高。 1.3 木素 木素是一种天然的高分子聚合物。是由苯丙基丙烷单元通过醚键和碳-碳键联接而成、具有三维结构的芳香族高分子化合物。玉米秸杆的木素含量为19%-23%。木素中含碳量达60%-66%,含氢5%-6.5%。木素含碳量高,含氢量低,玉米秸杆木素的分子量低,降低了木素的化学稳定性,使玉米秸杆较易蒸煮。 玉米秸杆中组分除含以上物质外,尚含有粗蛋白、灰分、水等等。 2 玉米秸杆的预处理 正是由于玉米秸杆组成成分复杂、稳定,使得其生物降解难于迅速进行。生物工作者从土壤、有病害的植物、牛胃、牛粪等分离筛选活力高的微生物,但至今也未找到能迅速降解的

包装机械生产工艺流程图及说明

钣金件工艺 机加工生产加工工艺 钣金车间工艺要求流程 (1)钣金车间可根据图纸剪板下料,在相应位置冲孔和剪角剪边。以前工序完成后进行折弯加工;第一步必须进行调整尺寸定位,经检查后进行下一步折弯工艺。折弯后经检查合格组焊;组焊要求必须在工装和模型具下进行组焊。根据图纸要求焊接深度和点处焊接。焊点高度不得超过设计要求、焊机工艺要求;2mm以下必须用二氧化碳保护焊和氩弧焊接。不锈钢板必须用氩弧焊。焊接件加工成形后进行校整,经检查符合图纸要求后进行下一步打磨拉丝。打磨必须以

量角样板进行打磨,不得有凸出和凹缺。拉丝面光吉度必须按图纸要求进行。 (2)外协碳钢件表面处理喷漆工艺要求:喷沙或氧化面积不得小于总面积的95%,除去沙和氧化液进行表面防锈喷漆和电镀处理。经底部处理后再进行表漆加工,表漆加工必须三次进行完成。喷塑厚度不得小于0.35mm。钣金件经检验合格后进厂入半成品库待装。 (3)入库件摆放要求:小件要求码齐入架存放。大件必须有间隔层,可根据种类整齐存放。 机加件加工流程: (1)机加工件工艺要求;原材料进厂由质检部进行检验,根据国家有关数据进行检测,进厂材料必须检测厚度、硬度、和其本几何尺寸。 (2)下料;根据图纸几何尺寸加其本加工量下料,不得误差太大。 (3)机床加工;根据零件图纸选择基本定位面进行粗加工、精加工,加工几何尺寸保留磨量。 (4)铣床加工;根据零件图纸选择基本刀具装入刀库,在加工过程中注意更换刀库刀具,工件要保整公差。 (5)钳工;机加件加工完成后根要求进行画线钳工制做,在加工过程中必须用中心尖定位。大孔首先打小孔定位再用加工大孔。螺纹加工要在攻丝机进加工,不得有角度偏差。螺纹孔加工后螺栓要保

味精的生产工艺流程简介教程文件

1味精的生产工艺流程简介 味精的生产一般分为制糖、谷氨酸发酵、中和提取及精制 等4个主要工序。 1.1液化和糖化 因为大米涨价,目前大多数味精厂都使用淀粉作为原材 料。淀粉先要经过液化阶段。然后在与B一淀粉酶作用进入糖 化阶段。首先利用一淀粉酶将淀粉浆液化,降低淀粉粘度并 将其水解成糊精和低聚糖,应为淀粉中蛋白质的含量低于原来 的大米,所以经过液化的混合液可直接加入糖化酶进入糖化阶 段,而不用像以大米为原材料那样液化后需经过板筐压滤机滤 去大量蛋白质沉淀。液化过程中除了加淀粉酶还要加氯化钙, 整个液化时间约30min。一定温度下液化后的糊精及低聚糖在 糖化罐内进一步水解为葡萄糖。淀粉浆液化后,通过冷却器降 温至60℃进入糖化罐,加入糖化酶进行糖化。糖化温度控制在60℃左右,PH值4.5,糖化时间18-32h。糖化结束后,将糖化罐加热至80 85℃,灭酶30min。过滤得葡萄糖液,经过压滤 机后进行油水分离(一冷分离,二冷分离),再经过滤后连续消 毒后进入发酵罐。 1.2谷氨酸发酵发酵 谷氨酸发酵过程消毒后的谷氨酸培养液在流量监控下进入谷氨酸发酵罐,经过罐内冷却蛇管将温度冷却至32℃,置入 菌种,氯化钾、硫酸锰、消泡剂及维生素等,通入消毒空气,经一

段时间适应后,发酵过程即开始缓慢进行。谷氨酸发酵是一个 复杂的微生物生长过程,谷氨酸菌摄取原料的营养,并通过体 内特定的酶进行复杂的生化反应。培养液中的反应物透过细胞 壁和细胞膜进入细胞体内,将反应物转化为谷氨酸产物。整个 发酵过程一般要经历3个时期,即适应期、对数增长期和衰亡期。每个时期对培养液浓度、温度、PH值及供风量都有不同的 要求。因此,在发酵过程中,必须为菌体的生长代谢提供适宜的生长环境。经过大约34小时的培养,当产酸、残糖、光密度等指标均达到一定要求时即可放罐。 1.3 谷氨酸提取与谷氨酸钠生产工艺 该过程在提取罐中进行。利用氨基酸两性的性质,谷氨酸 的等电点在为pH3.0处,谷氨酸在此酸碱度时溶解度最低,可经长时间的沉淀得到谷氨酸。粗得的官司谷氨酸经过于燥后分 装成袋保存。 1.4谷氨酸钠的精制 谷氨酸钠溶液经过活性碳脱色及离子交换柱除去C a 、 Mg 、F e 离子,即可得到高纯度的谷氨酸钠溶液。将纯净的 谷氨酸钠溶液导入结晶罐,进行减压蒸发,当波美度达到295 时放入晶种,进入育晶阶段,根据结晶罐内溶液的饱和度和结 晶情况实时控制谷氨酸钠溶液输入量及进水量。经过十几小时 的蒸发结晶,当结晶形体达到一定要求、物料积累到80%高度时,将料液放至助晶槽,结晶长成后分离出味精,送去干燥和筛

生产工艺流程图和工艺描述

生产工艺流程图和工艺描述 香肠工艺流程图 辅料验收原料肉验收 原料暂存肥膘解冻 精肉解冻水切丁辅料暂存分割热水漂洗1 漂洗2 加水绞肉 肠衣验收、暂存(处理)灌装、结扎 (包括猪原肠衣和蛋白肠衣) 咸水草、麻绳验收、暂存浸泡漂洗3 冷却 内包装 装箱、入库 出货

香肠加工工艺说明 加工步骤使用设备操作区域加工工艺的描述与说明 原料肉验收、暂存化验室、仓库 按照原料肉验收程序进行,并要求供应商 提供兽药残留达标保证函及兽医检疫检 验证明 辅料验收、暂 存 化验室、仓库按验收规程进行验收肥膘验收、暂 存 化验室、仓库按验收规程进行验收肠衣验收化验室按验收规程进行验收 肠衣处理腊味加工间天然猪肠衣加工前需用洁净加工用水冲洗,人造肠衣灌装前需用洁净加工用水润湿 咸水草、麻绳 验收 化验室按验收规程进行验收暂存仓库 浸泡腊味加工间咸水草、麻绳加工前需用洁净加工用水浸泡使之变软 解冻解冻间肉类解冻分 割间 ≤18℃、18~20h恒温解冻间空气解冻 分割分割台、刀具肉类解冻分 割间 将原料肉筋键、淋巴、脂肪剔除、并分割 成约3cm小肉块 加工步骤使用设备操作区域加工工艺的描述与说明 漂洗2 水池肉类解冻分 割间 加工用水漂洗,将肉的污血冲洗干净 绞肉绞肉机肉类解冻分 割间 12℃以下,采用Φ5mm孔板 肥膘切丁切丁机肉类解冻分 割间 切成0.5cm长的立方

漂洗1 水池肉类解冻分 割间 水温45-60℃,洗去表面游离油脂、碎肉 粒 灌装、结扎灌肠机香肠加工间按产品的不同规格调节肠体长度,处理量800~1200kg/h ,温度≦12℃ 漂洗3 水池香肠加工间水温45~60℃,清洗肠体表面油脂、肉碎 冷却挂肠杆预冷车间12℃下冷却0.5~1小时,中心温度≦25℃ 内包装真空机、电子 秤、热封口机 内包装间 将待包装腊肠去绳后按不同规格称重,装 塑料袋、真空包装封口 装箱、入库扣扎机、电子 秤 外包装间、成 品仓库 将真空包装的产品装彩袋封口,按不同规 格装箱、核重、扣扎放入成品库并挂牌标 识。

啤酒产糖化车间工艺流程设计

《发酵工艺设计》 30200t/a啤酒厂糖化车间工艺流程设计 设计人:汪海宾 学校:开封大学 专业:生物化工工艺 班级:09生化1 学号:2009051098 指导老师:胡斌杰 2011年10月

目录 一、绪论······················································ 1.1 设计的目的 1.2设计思想 1.3 啤酒酿造业存在的问题 二、设计任务书················································ 三、生产工艺流程图及生产过程·································· 3.1啤酒糖化的流程与说明 (5) 3.2 原辅料预处理 (6) 3.3麦芽汁的制备 (8) 3.3.1 糊 化 (8) 3.3.2 糖 化 (9) 3.3.3 过 滤 (10) 3.3.4 麦汁煮沸与酒花的添 加 (10) 3.3.5 麦汁热凝固物的沉 淀 (11) 3.3.6 麦芽汁冷 (11)

四、30200t/a啤酒厂糖化车间的物料衡算······················· 4.1工艺技术指标及基础数据11 4.2 100kg原料(75%麦芽,25%大米)生产12°淡色啤酒的物料衡算 (12) 4.3生产100L 12°淡色啤酒的物料衡算 (13) 4.4.30200t/a啤酒厂糖化车间的物料衡算 五、啤酒厂糖化车间生产设备的设计与选型························ 5 1.啤酒厂糖化设备的组合方式 5.2.糊化设备 5.2.1.功能用途 5.2.2糊化锅容积的确定 5.2.3糊化锅的主要尺寸 5.2.4换热面积 5.3糖化设备 5.3.1糖化锅容积的确定 5.3.2糖化锅的主要尺寸 5.3.3加热面积 5.4过滤槽 5.5煮沸锅 5.6回旋沉淀槽 ········································ 六、环境保护(啤酒工厂三废处理)········································ 6.1、三废概况················································

高温双酶法液化与糖化工艺综述

高温双酶法液化与糖化工艺综述 【摘要】本文主要讲述了玉米发酵法生产酒精工艺中的高温蒸煮液化与糖化工艺,研究了在各种不同的温度、酸碱度等条件下,对淀粉液化糖化效率的影响。 【关键词】淀粉酶;糖化酸;液化;糖化;温度;PH;底物浓度 酒精已被作为再生能源广泛应用到各个领域。我国的酒精生产工艺主要是淀粉质原料的发酵,淀粉的液化糖化在发酵法生产酒精中占有很重要的地位,它直接决定了淀粉的利用率及淀粉质原料的成本,以下以玉米味原料探讨淀粉的液化糖化工艺。 一、液化糖化工艺中拌料浓度与温度 1、料浆的浓度 料浆浓度的高低直接会影响到发酵成熟醪所含酒精的多少,发酵醪越稀,生产每吨酒精排放的废糟就越多,处理酒糟的设备,投资就越大,醪液越浓,对酒精的处理投资就越小,但对酒母的生长是不利的,当前大多数厂的粉水比为1:3~4,少数厂已降到1:2.6左右,采用高温双酶法液化糖化工艺料水比可以降到1:2.0(我们厂在实际操作中控制在1:1.8~2.0,这样才最有利于液化,达到最好经济效益)。 2、料浆温度 由于拌料用水一般多为后序工段生产过程中产生的废热水,废热水的温度过高会对使浓度高的料浆粘度增加并出现结团的现象,造成拌料不匀和输送困难。对于高浓度料浆,温度不宜超过60℃。 二、淀粉酶及液化条件和液化方法 1、a—淀粉酶水解淀粉可得到葡萄糖和麦芽糖 a—淀粉酶能水解淀粉及产物分子中的a—1,4葡萄糖键)生成产物的还原糖末端。(不能水解纤维素中的β-1.4,糖苷键酶的主体异构特异性表明,酶与底物的结合,至少存在三个结合点) 2、淀粉液化的方法有升温液化、高温液化及喷射液化 (1)升温液化法将原料浆调整到一定浓度,调整PH6.0~7.0,加入CaO 或CaCL2至一定浓度,投入适量的淀粉酶,在剧烈搅拌下,由60℃加热到85℃~93℃,并保持30~60min,达到所需的液化程度后,升温到100℃,灭菌10min。

啤酒生产流程图及说明

啤酒生产工艺流程 啤酒生产工艺流程可以分为制麦、糖化、发酵、包装四个工序。现代化的啤酒厂一般已经不再设立麦芽车间,因此制麦部分也将逐步从啤酒生产工艺流程中剥离。) 一个典型的啤酒生产工艺流程图如下(不包括制麦部分): 注:本图来源于中国轻工业出版社出版管敦仪主编《啤酒工业手册》一书。 图中代号所表示的设备为: 1、原料贮仓 2、麦芽筛选机 3、提升机 4、麦芽粉碎机 5、糖化锅 6、大米筛选机 7、大米粉碎机 8、糊化锅 9、过滤槽 10、麦糟输送 11、麦糟贮罐 12、煮沸锅/回旋槽 13、外加热器 14、酒花添加罐 15、麦汁冷却器 16、空气过滤器 17、酵母培养及添加罐 18、发酵 罐 19、啤酒稳定剂添加罐 20、缓冲罐 21、硅藻土添加罐 22、硅藻土过滤机 23、啤酒精滤机 24、清酒罐 25、洗瓶机 26、灌装机 27、杀菌机 28、贴标机 29、装箱机 (一)制麦工序 大麦必须通过发芽过程将内含的难溶性淀料转变为用于酿造工序的可溶性糖类。大麦在收获后先贮存2-3月,才能进入麦芽车间开始制造麦芽。 为了得到干净、一致的优良麦芽,制麦前,大麦需先经风选或筛选除杂,永磁筒去铁,比重去石机除石,精选机分级。 制麦的主要过程为:大麦进入浸麦槽洗麦、吸水后,进入发芽箱发芽,成为绿麦芽。绿麦芽进入干燥塔/炉烘干,经除根机去根,制成成品麦芽。从大麦到制成麦芽需要10天左右时间。 制麦工序的主要生产设备为:筛(风)选机、分级机、永磁筒、去石机等除杂、分级设备;浸麦槽、发芽箱/翻麦机、空调机、干燥塔(炉)、除根机等制麦设备;斗式提升机、螺旋/刮板/皮带输送机、除尘器/风机、立仓等输送、储存设备。 (二)糖化工序 麦芽、大米等原料由投料口或立仓经斗式提升机、螺旋输送机等输送到糖化楼顶部,经过去石、除铁、定量、粉碎后,进入糊化锅、糖化锅糖化分解成醪液,经过滤槽/压滤机过滤,然后加入酒花煮沸,去热凝固物,冷却分离 麦芽在送入酿造车间之前,先被送到粉碎塔。在这里,麦芽经过轻压粉碎制成酿造用麦芽。糊化处理即将粉碎的麦芽/谷粒与水在糊化锅中混合。糊化锅是一个巨大的回旋金属容器,装有热水与蒸汽入口,搅拌装置如搅拌棒、搅拌桨或

葡萄糖生产工艺流程图和工艺说明

葡萄糖生产工艺流程图和工艺说明

葡萄糖生产工艺说明 1、第一关键步骤是液化,目的是将水解淀粉的α一1,4糖苷键,属于随机剪切模式,反应后形成麦芽糊精。由于液化酶耐高温,PH 值位于5.5-7之间,因此液化之前需要提高温度到105摄氏度左右,太高温度不划算,太低温度不利于液化酶的效率,105摄氏度最为合适。由于淀粉乳加工过程中,使用了过量的酸,在液化前的调乳阶段需要加入纯碱。 2、第二关键步骤是糖化,目的是将麦芽糊精继续剪切成葡萄糖,使用的淀粉酶是糖化酶,其不仅可以水解淀粉的α一1,4糖苷键,还可以水解淀粉的α一1,6糖苷键,由于糖化酶的最佳温度是55-60摄氏度,PH好滋味4.0-4.5,因此在糖化工艺中,需要进行降温,并加入盐酸以调整PH值到合理的区间。值得注意的是:糖化步骤前需要降温,而液化步骤前需要升温,因此液化工艺和糖化工艺之间有一个换热的过程,糖化降温的热量为液化升温的物料进行预热。 3、第三个关键步骤是过滤脱色,严格来说这是一个步骤,转鼓过滤机的转鼓上涂布了硅藻土,葡萄糖浆经过转鼓时,大部分杂质被硅藻土吸附,葡挞糖浆得以净化,除去了大颗粒的杂质。小颗粒带颜色的杂质继续进入脱色反应釜进行脱色处理,使用活性炭吸收小颗粒颜色杂质后,对活性炭进行过滤。 4、第四个关键步骤是离子交换。对前期加入的氯化钠、盐酸等所含的钠离子、氯离子进行脱离,使用离交柱子,离交柱子吸附钠离子和氯离子之后会失效,这时候需要停止进料,使用备用离交柱子走料,失效的离交柱子使用盐酸和液碱(火碱)进行再生处理。 5、第五个关键步骤是蒸发浓缩,利用蒸汽通入真空蒸发器,进行物料浓缩处理,使得物料达到结晶前粘稠状态。 6、提溜个关键步骤是结晶和离心。投入晶种的目的是为了诱导粘稠物料结晶成型,降温的目的是诱导物料中的晶型在达到结晶温度的同时逐步析出,达到离心的条件。需要注意的是,离心后的母液仍然含有大量的糖,同时,有可能含有部分离子,因此配置在立交之前,而洗水是离心中对晶体洗涤用水,含有离子和过程杂质较少,所以配置在蒸发浓缩工艺中继续回收利用。

液体葡萄糖的生产工艺流程

液体葡萄糖的生产工艺流程
主要淀粉糖品的生产工艺流程: 主要淀粉糖品的生产工艺流程:液体葡萄糖 一、性质及应用 液体葡萄糖是我国目前淀粉糖工业中最主要的产品,广泛应用于糖果、糕点、饮料、冷饮、 焙烤、罐头、果酱、果冻、乳制品等各种食品中,还可作为医药、化工、发酵等行业的重要原料。 该产品甜度低于蔗糖,黏度、吸湿性适中。用于糖果中能阻止蔗糖结晶,防止糖果返砂, 使糖果口感温和、细腻。 葡萄糖浆杂质含量低,耐储存性和热稳定性好,适合生产高级透明硬糖; 该糖浆黏稠性好、渗透压高,适用于各种水果罐头及果酱、果冻中,可延长产品的保存期。 液体葡萄糖浆具有良好的可发酵性,适合面包、糕点生产中的使用。 二、主要生产工艺 工艺有酸法、酸酶法和双酶法。 工艺有酸法、酸酶法和双酶法。 1、酸法工艺 酸法工艺是以酸作为水解淀粉的催化剂,淀粉是由多个葡萄糖分子缩合而成的碳水化合 物,酸水解时,随着淀粉分子中糖苷键断裂,逐渐生成葡萄糖、麦芽糖和各种相对分子质量较低 的葡萄糖多聚物。该工艺操作简单,糖化速度快,生产周期短,设备投资少。 1) 工艺流程 酸法工艺流程如图所示: 淀粉——调浆——糖化——中和——第一次脱色过滤——离子交换—— 第一次浓缩——第二次脱色——过滤——第二次浓缩——成品

图 2) 操作要点 (1)淀粉原料要求
酸法工艺流程
常用纯度较高的玉米淀粉,次之为马铃薯淀粉和甘薯淀粉。
(2)调浆在调浆罐中,先加部分水,在搅拌情况下,加入粉碎的干淀粉或湿淀粉,投料完 毕,继续加入 80℃左右的水,使淀粉乳浓度达到 22~24 波美度(生产葡萄糖淀粉乳浓度为 12~ 14 波美度),然后加入盐酸或硫酸调 pH 值为 1.8。调浆需用软水,以免产生较多的磷酸盐使糖 液混浊。 (3)糖化调好的淀粉乳,用耐酸泵送入耐酸加压糖化罐。边进料边开蒸汽,进料完毕后, 升压至(2.7~2.8)×104pa(温度 142~144℃),在升压过程中每升压 0.98×104pa,开排气阀 约 0.5 min,排出冷空气,待排出白烟时关闭,并借此使糖化醪翻腾,受热均匀,待升压至要 求压力时保持 3~5 min 后,及时取样测定其 DE 值,达 38~40 时,糖化终止。 (4)中和糖化结束后,打开糖化罐将糖化液引人中和桶进行中和。用盐酸水解者,用 10% 碳酸钠中和,用硫酸水解者用碳酸钙中和。前者生成的氯化钙,溶存于糖液中,但数量不多,影 响风味不大,后者生成的硫酸钙可于过滤时除去。 糖化液中和的目的,并非中和到真正的中和点 pH 值 7,而是中和大部分盐酸或硫酸,调节 pH 值到蛋白质的凝固点,使蛋白质凝固过滤除去,保持糖液清晰。糖液中蛋白质凝固最好 pH 值 为 4.75,因此,一般中和到 pH 值 4.6~4.8 为中和终点。中和时,加入干物质量 0.1%的硅 藻土为澄清剂,硅藻土分散于水溶液中带负电荷,而酸性介质中的蛋白质带正电荷,因此澄清效 果很好。 (5)脱色过滤 中和糖液冷却到 70~75℃,调 pH 值至 4.5,加入于物质量 0·25%的粉末
活性炭,随加随搅拌约 5 min,压人板框式压滤机或卧式密闭圆桶形叶滤机过滤出清糖滤液。 (6)离子交换 盐提纯。 (7)第一次浓缩 将提纯糖液调 pH 值至 3.8~4.2,用泵送入蒸发罐保持真空度 66. 661 将第一次脱色滤出的清糖液,通过阳一阴一阳一阴 4 个离子交换柱进行脱
Pa 以上,加热蒸汽压力不超过 0.98×10。Pa,浓缩到 28~31 波美度,出料,进行第二次脱色。 (8)第二次脱色过滤第二次脱色与第一次相同。第二次脱色糖浆必须反复回流过滤至无活

糖化血红蛋白(HbA1c)测定试剂盒(酶法)产品技术要求上泰

1.性能指标 1.1外观 外观应符合以下要求: a)试剂盒应组分齐全,完整,液体无渗漏;包装标签文字符号应清晰。 b)样本处理夜:无色液体。 c)试剂1(R1):淡黄色至黄色液体。 d)试剂2(R2):黄色至棕黄色液体。 e)校准品/质控品:红色冻干粉。 1.2装量 液体试剂装量要求不低于标示量。 1.3分析灵敏度 测试浓度为6%的样本时,吸光度差值△A 应≥0.020。 1.4线性范围

1.4.1 糖化血红蛋白浓度在[4,12]%范围内,线性相关系数r≥0.990。 1.4.2 在[4,5] %范围内,线性绝对偏差应不超过±0.5%;在(5,12]%范围内, 线性相对偏差应不超过±10%。 1.5精密度 1.5.1日间重复性 测试两个不同浓度水平的样本,变异系数CV 结果均应≤3%。 1.5.2日内重复性 测试两个不同浓度水平的样本,变异系数CV 结果均应≤3%。 1.6批间差 三个不同批号试剂盒测试相同样本,相对极差R 应≤10%。 1.7准确度

相对偏差应不超过±10%。 1.8分析特异性 当胆红素≤15mg/dL、脂肪乳≤0.5%、葡萄糖≤4000mg/dL、抗坏血酸≤12mg/dL、血红蛋白≤2.1g/dL、尿酸≤30mg/dL,尿素≤80mg/dL,类风湿因子≤200IU/mL、氰酸钠≤3000mg/dL、阿司匹林≤3000mg/dL 时,对HbA1c 试剂检测结果的偏差影响在±10%以内。 1.9校准品/质控品水分含量 水分含量应不超过5%。 1.10校准品正确度 量值传递的正确度应符合E ≤1。 n 1.11质控品赋值准确度 在用校准品校准后的生化分析仪上测试定值质控品,结果应在制造商指定的赋值范围内。 1.12校准品/质控品均匀性 应不大于8%。 1.1 2.1瓶内均匀性:CV 瓶内 应不大于10%。 1.1 2.2瓶间均匀性:CV 瓶间 1.13校准品赋值结果及其不确定度的表示方式 应使用规范的表示方式,主要表示方式可选择: a)赋值结果±扩展不确定度; b)赋值结果,扩展不确定度。

糖化酶的生产流程设计方案

糖化酶的生产流程设计方案 糖化酶即葡萄糖淀粉酶(1 ,4 - α- 葡聚糖葡聚糖水解酶, EC. 3. 2. 1. 3) ,是淀粉糖化工艺的主要酶类,被广泛地应用于 食品、医药、发酵等工业。目前,糖化酶的生产菌种主要为黑曲霉。根据使用的生产菌种不同及发酵工艺不同,工业 生产中,糖化酶的发酵生产水平在35 000~55 000UPmL 不等。糖化酶的工业化生产从过去的固体发酵沿革到上世纪90 年代初,液体发酵工艺逐步取代了原固体发酵工艺。液体发酵工艺的建立与应用极大地改善了发酵产品质量并大幅度提升了糖化酶的发酵生产水平。但现有糖化酶发酵生产技术共同存在不足之处,其中种子制备周期和发酵生产周期很长是一个较突出的问题,如实验室的种子制备需要15d 以上,发酵周期通常200h 以上。 生产流程图 一、试验菌种的分纯

1、培养基 (1)固体培养基,察氏培养基+1%酵母膏+1%蛋白胨;(2)初筛培养基,玉米粉:麸皮:米糠:硫酸胺=7:3:2:0.16 (3)诱变后 培养基,玉米粉:麸皮:米糠:硫酸胺=8:3:1.5:2:0.16,水80ml。(2)原料:玉米粉、麸皮等 (3)菌种分纯 将麸皮采集菌种取出一部分,置入装有10mL生理盐水和若干玻璃珠的小三角瓶内,振荡15分钟,将上清液一次稀释成10-1、10-2、10-3,各取0.1mL做平板划线,29℃培养5~6天,分别挑取单个菌落接入斜面,29℃培养一周。 以大连某厂的生产用菌B-11为对照,对分离菌株做摇床发酵试验,96h后测定糖化力,配合镜检,确定诱变的出发菌株。 二、试验菌株的诱变 用生理盐水洗下成熟出发株的孢子、倒入5mL麦汁种1%酵母膏的三角瓶中,振荡1.5h,使孢子活化,后3500r/min.离心分离15分钟,用pH7.2磷酸缓冲液洗涤一次,再用缓冲液5ML洗转入小三角瓶内(内有数枚无菌玻璃珠),振荡10分钟,使孢子分散均匀,过滤,制成单孢子悬浮液,将浓度调至106个/ml 取10ml孢子悬浮液于9cm平板中,紫外线(UV)照射诱变2分钟(避光操作),紫外线动率15W,室温,搅拌,照射距离30cm。 向经紫外线处理的菌液中加入硫酸二乙酯(DES)稀液(原液1ml,95%乙醇4ml配制)0.1ml,32℃恒温处理15分钟,不断摇动平

生物工程设备设计任务书---年产X吨糖化酶发酵车间工艺设计

生物工程设备课程设计任务书 -----年产X吨糖化酶发酵车间工艺设计一、课程教学目标 生物工程课程设计是生物工程专业学生在毕业设计(论文)前进行的一次综合训练。通过本课程设计培养学生综合运用所学知识解决工程问题的能力,为毕业设计(论文)打好应有的理论基础。通过生物工程课程设计的训练,学生要达到的基本要求如下: 1、进一步巩固加深所学《生物工艺学》、《生物工程设备》、《生物分离工程》、《生物工程设备及工厂设计》、《机械制图》、《化工原理》等专业课程的基本理论和知识,使之系统化、综合化。树立正确的设计思想,掌握生物工程设备及工厂设计的基本方法和步骤,为今后创造性设计生物工程设备和相关技术改造工作打下一定的基础。 2、培养学生综合运用基础理论和专业知识解决工程实际问题的能力。 3、培养学生熟悉、查阅并综合运用各种有关的设计手册、规范、标准、图册等设计技术资料;进一步培养学生识图、制图、运算、编写设计说明书等基本技能;完成作为工程技术人员在机械设计方面所必备的设计能力的基本训练。二、课程设计题目(任选一) 年产X吨味精发酵车间设计:2000吨、3000吨、4000吨、5000吨、6000吨 三、课程设计任务: 1、根据设计任务,查阅有关资料、文献,搜集必要的技术资料及工艺参数,进行生产方法的选择与比较,工艺流程与工艺条件的确定和论证,确定工艺过程的重要参数。 2、工艺流程图,按工艺流程图绘制要求完成有一定控制工点的流程详图,包括设备、物料管线、主要管件、控制仪表等内容。 3、发酵罐主要结构尺寸、搅拌装置及冷却装置计算,根据工艺要求选取相应发酵罐类型,进行发酵罐种子罐数量计算,发酵罐几何结构尺寸计算,同时完成发酵罐搅拌装置及冷却装置的选型和计算。 4、根据计算结果按相应比例尺寸绘制发酵罐及冷却装置示意图,并完成发酵

生产工艺流程图和工艺说明

1 9 10 12 2 11 13 3 14 4 15 5 16 17 8 7 6 18 至提升机工艺流程设备编号及名称 编号名称 1 永磁筒 2 圆筒初清筛 3 电动三通 4 锤片粉碎机 5 吸尘罩 6 栅筛 7 下料斗 8 斗式提升机 9 风帽 10 组合脉冲除尘器 11 叶轮式闭风机 12 双轴桨叶混合机 13 自动闸门 14 料位器 15 手动闸门 16 螺旋喂料器 17 电子秤 18 刮板输送机 工艺流程图

19 23 20 24 21 25 22 26 工艺流程设备编号及名称编号名称 19 环模制粒机 20 空压机 21 双层冷却器 22 对辊破碎机 23 振动分级筛 24 离心通风机 25 离心集尘器 26 自动打包机 集尘袋

生产流程图工艺说明 一.原料粉碎 需粉碎原料经栅筛除去较大杂质后,投放到下料斗经吸尘罩吸,其目的是降低粉尘浓度。由提升机送到永磁筒除去磁性铁杂质,再经圆筒初清筛得到合格的原料经粉碎储备仓进入粉碎机粉碎至需要大小粒度的粉料 小学少先队组织机构 少先队组织由少先队大队部及各中队组成,其成员包括少先队辅导员、大队长、中队长、小队长、少先队员,为了健全完善我校少先队组织,特制定以下方案: 一、成员的确定 1、大队长由纪律部门、卫生部门、升旗手、鼓号队四个组织各推荐一名优秀学生担任(共四名),该部门就主要由大队长负责部门内的纪律。 2、中、小队长由各班中队公开、公平选举产生,中队长各班一名(共11名),一般由班长担任,也可以根据本班的实际情况另行选举。小队长各班各小组先选举出一名(共8个小组,就8名小队长)然后各班可以根据需要添加小队长几名。 3、在进行班级选举中、小队长时应注意,必须把卫生、纪律部门的检查学生先选举在中、小队长之内,剩余的中、小队长名额由班级其他优秀学生担任。 4、在班级公开、公平选举出中、小队长之后,由班主任老师授予中、小队长标志,大队长由少先队大队部授予大队长标志。 二、成员的职责及任免 1、大、中、小队长属于学校少先队组织,各队长不管是遇见该班的、外班的,不管是否在值勤,只要发现任何人在学校内出现说脏话、乱扔果皮纸屑、追逐打闹、攀爬栏杆、乱写乱画等等一些违纪现象,都可以站出来制止或者报告老师。 2、班主任在各中队要对中、小队长提出具体的责任,如设置管卫生的小队长,管纪律的小队长,管文明礼貌的、管服装整洁的等等,根据你班的需要自行定出若干相应职责,让各位队长清楚自己的职权,有具体可操作的事情去管理,让各位队长成为班主任真正的助手,让学生管理学生。各中队长可以负责全班的任何违纪现象,并负责每天早上检查红领巾与校牌及各小队长标志的佩戴情况。 3、大、中、小队长标志要求各队长必须每天佩戴,以身作则,不得违纪,如有违纪现象,班主任可根据中、小队长的表现撤消该同学中、小队长的职务,另行选举,大队长由纪律、卫生部门及少先队大队部撤消,另行选举。 4、各班中、小队长在管理班级的过程中负责,表现优秀,期末评为少先队部门优秀干部。

液体葡萄糖的生产工艺流程

液体葡萄糖的生产工艺流程 ! j i I ! i i 主要淀粉糖品的生产工艺流程:液体葡萄糖 一、性质及应用 液体葡萄糖是我国目前淀粉糖工业中最主要的产品,广泛应 用于糖果、糕点、饮料、冷饮、焙烤、罐头、果酱、果冻、乳制品等各种食品中,还可作为医药、化工、发酵等行业的重要原料。 该产品甜度低于蔗糖,黏度、吸湿性适中。用于糖果中能阻 止蔗糖结晶,防止糖果返砂,使糖果口感温和、细腻。 葡萄糖浆杂质含量低,耐储存性和热稳定性好,适合生产高级透明硬糖; 该糖浆黏稠性好、渗透压高,适用于各种水果罐头及果酱、果冻中,可延长产品的保存期。 液体葡萄糖浆具有良好的可发酵性,适合面包、糕点生产中 的使用。 二、主要生产工艺 工艺有酸法、酸酶法和双酶法。 1、酸法工艺

酸法工艺是以酸作为水解淀粉的催化剂,淀粉是由多个葡萄糖分子缩合而成的碳水化合物,酸水解时,随着淀粉分子中糖苷键断裂,逐渐生成葡萄糖、麦芽糖和各种相对分子质量较低的葡萄糖多聚物。该工艺操作简单,糖化速度快,生产周期短,设备投资少。 1) 工艺流程 酸法工艺流程如图所示: 淀粉——调浆——糖化——中和——第一次脱色过滤——离子交换—— 第一次浓缩——第二次脱色——过滤——第二次浓缩——成品 图酸法工艺流程 2) 操作要点 (1) 淀粉原料要求常用纯度较高的玉米淀粉,次之为马铃薯淀粉和甘薯淀粉。 (2) 调浆在调浆罐中,先加部分水,在搅拌情况下,加入粉 碎的干淀粉或湿淀粉,投料完毕,继续加入80C左右的水,使淀粉乳浓度达到22?24波美度(生产葡萄糖淀粉乳浓度为12?14波美度),然后加入盐酸或硫酸调值为 1 .8。调浆需用软水,以免产生较多的磷酸盐使糖液混浊。 (3) 糖化调好的淀粉乳,用耐酸泵送入耐酸加压糖化罐。边

糖化血红蛋白(HbA1c)测定试剂盒(酶法)产品技术要求利德曼

糖化血红蛋白(HbA1c)测定试剂盒(酶法) 适用范围:本产品用于体外定量测定人全血中糖化血红蛋白的含量。 1.1规格 溶血剂:1×50ml、试剂1a(R1a):1×23ml、试剂1b(R1b):1×10mL、试剂2(R2):1×15mL; 溶血剂:2×50ml、试剂1a(R1a):1×46ml、试剂1b(R1b):2×10mL、试剂2(R2):2×15mL; 溶血剂:1×60ml、试剂1a(R1a):1×40ml、试剂1b(R1b):2×10mL、试剂2(R2):1×12mL; 溶血剂:1×60ml、试剂1a(R1a):2×15ml、试剂1b(R1b):2×15mL、试剂2(R2):1×12mL。 溶血剂:1×100ml、试剂1a(R1a):1×46ml、试剂1b(R1b):1×20mL、试剂2(R2):1×30mL; 溶血剂:1×40ml、试剂1a(R1a):2×9.2ml、试剂1b(R1b):2×4mL、试剂2(R2):2×6mL; 溶血剂:1×100ml、试剂1a(R1a):5×9.2ml、试剂1b(R1b):5×4mL、试剂2(R2):5×6mL; 溶血剂:2×100ml、试剂1a(R1a):10×9.2ml、试剂1b(R1b):10×4mL、试剂2(R2):10×6mL。 1.2组成: 试剂盒由溶血剂、试剂1a(R1a)、试剂1b(R1b)和试剂2(R2)组成。 溶血剂:CHES:20mmol/L (pH7.4);Brij 35:10g/L;

R1a:MES缓冲液:10mmol/L;金属蛋白酶4KU/L; R1b:2-(4-碘代苯)-3-(2,4-二硝基苯基)-5-(2,4-二硫代苯)-2H-四唑盐,单钠盐:2mmol/L; R2:Tris-HCl:300mmol/L;过氧化物酶:78KU/L;DA64:0.1mol/L;果糖基氨基酸氧化酶:26KU/L。 2.1 外观 液体三试剂:溶血剂:无色澄清液体;R1a:无色澄清液体;R1b:无色澄清液体;R2:无色至淡黄色澄清液体。 2.2 净含量 液体试剂的净含量不得低于标示体积。 2.3 空白吸光度 在37℃、(700nm+10%范围内的)波长、1cm光径条件下,用去离子水或生理盐水作为样品加入试剂测试时,试剂空白吸光度应<0.5ABS。 2.4 分析灵敏度:浓度为5%时,吸光度变化>0.03ABS。 2.5 线性范围:在[4%,12%]范围内,线性相关系数r≥0.996;测定结果在[5%,12%]范围内,相对偏差应≤15%,测定结果在[4%,5%)范围内,绝对偏差应<0.75%。2.6 重复性:重复性 CV<8%。 2.7 批间差:相对偏差<10%。 2.8 准确度 用国际标准品作为样本进行检测,其测量结果的相对偏差应在±10%范围内。2.9 效期稳定性

相关主题
文本预览
相关文档 最新文档