当前位置:文档之家› (完整版)年产5000吨糖化酶发酵车间设计

(完整版)年产5000吨糖化酶发酵车间设计

(完整版)年产5000吨糖化酶发酵车间设计
(完整版)年产5000吨糖化酶发酵车间设计

南阳理工学院

本科生毕业设计

学院(系):生物与化学工程学院

专业:生物工程

学生: *******

指导教师:李慧星

完成日期 2010 年 5 月

南阳理工学院本科生毕业设计

年产5000吨糖化酶发酵车间设计

The design of annual output of 5000 tons of glucoamylase

fermentation factory workshop

总计:毕业设计(论文)28页

表格: 5 个

插图: 1 幅

南阳理工学院本科毕业设计

年产5000吨糖化酶发酵车间设计

The design of annual output of 5000 tons of glucoamylase

fermentation factory workshop

学院(系):生物与化学工程学院

专业:生物工程

学生姓名:郭留洋

学号:*****

指导教师:******

评阅教师:

完成日期:2010年5月

南阳理工学院

Nanyang Institute of Technology

年产5000吨糖化酶发酵车间的工艺设计

生物工程专业郭留洋

【摘要】糖化酶是工业生产的主要酶制剂之一,广泛用于酿酒、葡萄糖、果葡糖浆、抗菌素、乳酸、有机酸、味精、棉纺厂等各方面。本设计以玉米淀粉为主要原料,利用黑曲霉,采用机械搅拌通风罐进行发酵生产,完成生产5000吨糖化酶发酵车间工艺设计,通过工艺流程设计、工艺衡算、设备选型和车间布置设计,设计出生产5000吨糖化酶发酵车间采用3个75m3发酵罐和3个6m3种子罐等,并依据生物工程工厂车间布置原则,对发酵罐车间进行合理布置,绘制了工艺流程图和车间布置图,工艺设计的结果为糖化酶的生产提供一定参考。

【关键字】糖化酶工厂设计深层发酵黑曲霉

The Design of Annual Output of 5000 Tons of

Glucoamylase Fermentation Factory

Workshop

Abstract:Glucoamylase is the main enzyme of industrial production which is widely used in wine, glucose, fructose syrup, antibiotics, lactic acid, organic acid, monosodium glutamate, cotton and so on.The design use corn starch as main raw material, using Aspergillums Niger, and apply mechanical ventilation it that can be fermented production. This industrial workshop design can complete the process of industrial design, the accounting, equipment selection facility layout design. This workshop can make production of 5,000 tons of glucoamylase fermentation using three 75 m3 and 3 based fermentation tank 6m3 seed set and so on, The fermentation plant has a reasonable layout which according to thefactory workshop’s layout of bio-engineering principles, With drawing a flow chart and workshop’s layout, the result of industrial design provide a reference to the production of glucoamylase.

Keywords:Glucoamylase Plant Design

Fermentation Aspergillus Niger

目录

1前言 (1)

1.1糖化酶的简介 (1)

1.2糖化酶的应用现状 (1)

1.3糖化酶在国内外的研究进展及前景 (1)

1.4设计内容及意义 (3)

2本论 (5)

2.1糖化酶生产中所用黑曲霉的特性 (5)

2.2菌种培养工艺 (5)

2.2.1菌种活化 (6)

2.2.2一级种子培养 (6)

2.2.3二级种子培养 (6)

2.3工艺计算 (6)

2.3.1工艺技术指标及基础数据 (6)

2.3.2发酵工艺流程图 (8)

2.3.3物料衡算 (8)

2.3.4热量衡算 (10)

2.3.5水平衡的计算 (13)

2.3.6无菌空气用量的计算 (14)

2.4设备的设计与选型 (14)

2.4.1发酵罐的设计与选型 (14)

2.4.2种子罐的设计与选型 (17)

2.5 车间布置设计 (18)

2.5.1车间布置设计的目的和重要性 (18)

2.5.2 车间布置的有关技术要求和参数 (19)

2.5.3设备的安全距离 (19)

2.5.4设备布置原则 (20)

3结论 (21)

参考文献 (22)

致谢 (23)

1前言

1.1 糖化酶的简介

糖化酶又称葡萄糖淀粉酶,糖化酶是一种习惯上的名称,学名为α-1,4-葡萄糖水解酶。糖化酶是由曲霉优良菌种(Aspergilusniger)经深层发酵提炼而成。糖化酶,又称葡萄糖淀粉酶[Glucoamylase,(EC.3.2.1.3.)]它能把淀粉从非还原性未端水介a-1.4葡萄糖苷键产生葡萄糖,也能缓慢水解a-1.6葡萄糖苷键,转化为葡萄糖。糖化酶随作用的温度升高而活力增大,超过65℃,又随温度升高而活力急剧下降,糖化酶最适作用温度是60℃,最适作用PH值在4.0-4.5 左右。糖化酶广泛用于生产白酒、黄酒、酒精、啤酒、乳酸钙作糖化剂,用于以葡萄糖作发酵培养基的各种抗生素、有机酸、氨基酸、维生素的发酵,也可用于分解低聚糖,糖化酶还大量用于生产各种规格的葡萄糖。总之,凡对淀粉、糊精、低聚糖进行酶水解的工业上,都可适用。

1.2 糖化酶的应用现状

我国食品深加工企业近几年发展很快,随着啤酒、白酒、酒精等项目的增多,糖化酶、淀粉酶等生物酶的需求量随之增大。

糖化酶又称葡萄糖淀粉酶,糖化酶广泛应用于酒精、淀粉糖、味精、抗菌素、柠檬酸、啤酒等工业生产中;用于以葡萄糖做发酵培养基的各种抗生素、维生素的发酵等。糖化酶无任何毒副作用。淀粉酶一般作用于可溶性淀粉、直链淀粉、糖元等.1,4一葡聚糖,水解一1,4.糖苷键的酶。根据作用的方式可分为淀粉酶与p一淀粉酶。淀粉糖是我国食品工业的重要原料,是人们日常消费食糖的有益补充。酶制剂被允许进入淀粉糖行业并全面生产新产品后,淀粉糖行业从此发生了翻天覆地的变化。糖化酶在淀粉糖工业中的应用有广阔的市场前景和发展。

1.3糖化酶在国内外的研究进展及前景

糖化酶也是工业上应用最广泛的酶类之一,我国生产糖化酶已有20多年历史,作为葡萄糖生产及发酵工业的重要酶种,其产量占全国酶制剂产量的60 %以上且产销量逐年递增。除了利用糖化酶水解淀粉为葡萄糖而用于制糖业外,现在人们越来越多地开发糖化酶的新型用途,糖化酶在酿酒工业中也有广泛的应用[1] ,传统白酒生产用曲的微生物是依靠自然界带入的,其糖化力较低,耐酸耐热性都较差。糖化酶作用的pH范围为 3. 0~5. 5,最适作用范围为 4. 0~4. 5,这使得白酒酿造过程中酸度不断增加,适宜发酵。糖化酶的应用,使粮醅入酵后发酵升温快,升温幅度大,提高原料的出酒率,缩短发酵周期,降低生产成本[2]。在

食用醋生产中,应用TH2 AATY和糖化酶,可以解决企业自制酒母质量不稳定和夏季高温等生产难题,使食用醋生产正常进行,它不仅降低了原材料的消耗,减轻了工人的劳动强度,而且显著提高了淀粉利用率和出醋率,具有较好的经济效- 5 -益。固定糖化酶应用于糖结晶过程,可以提高糖的产出率,糖化酶将会被应用于更为广阔的空间。

国内外对糖化酶的研究集中在开发复合糖化酶制剂及其应用上,而对于菌种的选育,Novo公司自上世纪90年代以来已利用基因工程技术构建了性能优异的工程菌并应用于生产,将酶活力大幅度地提高.自1994年以来,无锡酶制剂厂引进国外糖化酶生产菌种以后,国内糖化酶厂先后采用引进菌种.目前国内酶制剂厂的糖化酶发酵水平大都在30 000~40 000 u/mL之间,少数厂家达到40 000—50 000 u/mol.1980年以后,国内不少研究者也筛选出了多株性能不错的黑曲霉变异株,酶活力也有较大幅度的提高,其中以上海市工业微生物研究所梁天锡等人对此研究的较多,成功选育出了SP56菌株,另外邬敏辰,李剑芳等人诱变选育的WMC-15菌株,工艺优化后发酵160 h酶活力也可达30 000 u/mol以上,代表了国内糖化酶菌种的最高水平.河南天冠企业集团使用的黑曲霉菌株虽是变异株,但已有不少研究者曾以该变异株为出发菌株进行诱变筛选,选育出了性能更为优良的变异株,如上海市工业微生物研究所粱天锡等人选育的a一471菌株,无锡轻工业学院选育的AN-149菌株,WMC-15菌株等.尽管如此,我国的糖化酶发酵水平与国际先进水平还有不小的差距,有待于进一步提高[4,5,6]。

20世纪80年代,对于糖化酶的研究发展极快,主要集中于糖化酶菌株的分离及其纯化工作.长期研究证明,糖化酶广泛地分布在微生物中,主要存在于黑曲霉、米曲霉、根霉等丝状真菌和酵母中,同时也存在于人的唾液、动物胰腺及细菌中.已报道的产糖化酶真菌微生物有23个属35个种;细菌有3属3种.几十年来我国科研工作者为提高糖化酶的活力进行了不懈的努力,常规的物理及化学诱变的方法仍然是方便有效的途径.谷海先等对黑曲霉AN一149菌进行自然分离、紫外线和NTG的复合诱变处理,得到了一株高产糖化酶的菌株WG一93,经3O L发酵罐试验,酶活力达29 key/ml(原糖化酶生产发酵水平为12 key

/m1).1993年,李俊刚等对生淀粉糖化菌黑曲霉S一1原生质体采用( l=260 nm,2=266 Tim)能量为8的激光直接照射,得到高酶活力的生淀粉糖化酶突变株,比出发株酶活力平均提高37.4%,最高突变株酶活力达到74.5 u,比出发株提高91%.1998年,李俊刚等又以黑曲霉523原生质体为对象,经激光、紫外线和亚硝基胍复合诱变,选育出生淀粉糖化酶高产突变株黑曲霉NL一3,其生淀粉酶活力为156 u/m1.王海洪等通过分离和筛选,得到一株分解小麦生淀粉能力较强的黑曲霉,其生淀粉糖化酶活力为171.5 u/g,a一淀粉酶活力为6.347u/g.DNA重组技术发展以来,有人尝试将糖化酶基因克隆到埃希大肠杆菌和酵母

菌中,构建了糖化酶高产工程菌[7,8].近几年来,罗进贤等人将酵母Ty转座子的8序列,黑曲霉糖化酶Edna及C,418抗性基因tie重组进酵母整和型质粒Yiplae128获得含LEU2,tie双标记基因,糖化酶Edna的高整和型表达载体YI128D.17N,转化cRF18(YI128D.17N)糖化酶基因在该菌株获得高效表达,产物分泌到胞外.吴晓萍等人“将切除了5’端非编码区50碱基对片段的黑曲霉糖化酶GA I Edna与大麦a 一淀粉酶基因重组进埃希大肠杆菌一酵母穿梭载体,构建重组表达质粒pMAG11,转化酿酒酵母GRF18,获得含a一淀粉酶和糖化酶双基因的酵母工程菌GRF18(magi),在酵母PGK基因启动子和终止信号的调控下,a一淀粉酶和糖化酶基因获得高效表达,99%的表达产物分泌至胞外.糖化酶的基因的研究对黑曲霉糖化酶基因的研究有了不断的进展,尤其是对其结构基因和调控序列.主要研究不同真菌中糖化酶的基因克隆、表达和糖化酶的性质,在挖掘糖化酶资源方面做了大量工作[9,10].

虽然对糖化酶的研究已有多年,但是仍有许多问题尚待进一步探索.基础研究领域将主要集中在糖化酶的结构研究,如糖链在糖化酶活性、稳定性及构象状态中所起的作用,进一步阐明糖化酶的多型性原因及糖化酶的热稳定性机制[11].应用研究之一仍将是进一步提高糖化酶的活力,利用诱变、DNA重组技术或其他方法获得优良菌株,提高糖化酶基因在受体菌中的表达水平等,进一步优化糖化酶纯化工艺及保存条件;另一方面,诱变筛选耐热糖化酶产生菌或克隆耐热糖化酶基因,将是一个重要方向,因为耐热糖化酶在发酵业的应用将会大大降低能源消耗,从而降低生产成本,将给糖化酶在工业中的应用开辟更为广阔的前景1.4 设计内容及意义

酶制剂是一种生态型高效催化剂,具有高效、安全、节能、生态和环保等特点,能够有效带动相关领域技术水平的提高,对应用产业开发新产品,提高质量、节能降耗、保护环境具有重要意义,产生了巨大的社会效益和经济效益。酶制剂产业已经成为生物技术领域的前卫产业和21世纪最有希望的新兴产业之一。国家十一五期间已将酶制剂列为重点发展的领域,将投资几十亿到该产业,建立生产、研发、出口、检测、菌种保藏基地,使中国成为世界酶制剂生产基地和研发基地,引领世界酶制剂市场.

而酶制剂中的糖化酶主要应用领域为酒精、白酒、淀粉糖、味精等行业,目前我国酒精年生产能力为897万吨,年需万单位糖化酶242000吨,白酒企业年需糖化酶20000吨,淀粉糖和味精企业需求25000吨左右,而国内现有企业糖化酶产量才207000吨,远远不能满足市场需求。但是酒精企业的扩建,造成粮食短期供应紧张,酒精企业有297万吨产量未能达产,少消耗糖化酶80000吨,因此缓解了市场供求矛盾。随着世界能源的日趋紧张,世界各国都在大力发展可再生能

源,因此,以后糖化酶的生产将会有很大的空间[12]。

本设计以玉米淀粉为主要原料,利用黑曲霉,采用机械搅拌通风罐进行发酵生产,完成年产5000吨糖化酶发酵车间工艺设计,通过工艺流程设计、工艺衡算、设备选型和车间布置设计,设计出年产5000吨糖化酶发酵车间,并依据生物工程工厂车间布置原则,对发酵罐车间进行合理布置,绘制了工艺流程图和车间布置图,工艺设计的结果为糖化酶的生产提供一定参考。

2 本论

2.1 糖化酶生产中所用黑曲霉的特性

黑曲霉在液体培养基中32℃摇瓶培养96h,粗提酶液经进一步分离提取,得到同时具有液化和糖化两种酶活力的新型酶制剂,最适PH值为4.6。耐酸性α—淀粉酶活性的最适温度为60℃,糖化酶活性的最适温度为50℃。在pH4.6酸性条件下,该液化糖化酶在50℃保温1h,仍具有原酶活性。黑曲霉广泛分布于世界各地的粮食、植物性产品和土壤中。是重要的发酵工业菌种,可生产淀粉酶、酸性蛋白酶、纤维素酶、果胶酶、葡萄糖氧化酶、柠檬酸、葡糖酸和没食子酸等。有的菌株还可将羟基孕甾酮转化为雄烯。生长适温37℃,最低相对湿度为88%,能引致水分较高的粮食霉变和其他工业器材霉变。

2.2菌种培养工艺

糖化酶发酵罐中必须用纯培养接物种,并且接种量要求相当大,目的是使发酵迅速安全地进行,因此生产上需要有菌种扩大培养的操作。扩大培养可按下述步骤进行:

试管原种→10mL.试管→500 mol三角瓶→1-2L三角瓶→10-20L罐→100-200L 罐→1000-2000L罐。

2.2.1 菌种活化

将保存的原菌种先转接到10mL 10°Box麦芽汁的试管中,在34℃下培养24h。这时可以看到培养液混浊,镜检观察有无杂菌污染。此时的检查十分重要。这将是关系到整批发酵成功的关键。可适当转接多次。

2.2.2 一级种子培养

将上述的培养的种子液转移接入一级种子罐中。培养液的的组成为(g/l):培养基在100Kpa表压下灭菌30min。在34℃下培养5-6天。

玉米粉60;玉米浆20;黄豆粉20;KNO3 3; MgSO4*7H2O 1.2; KH2PO4 2.7; PH自然

2.2.3 二级种子培养

将上述一级种子罐培养出来的种子液接入装有更多培养液的二级种子罐中,在100Kpa表压下灭菌15min,煮沸灭菌后立即冷却至培养温度在34℃左右,培养7-10天。培养时观察到整个表面孢子着色均匀,显出成熟特征的颜色即可。

后续每一步培养液的量扩大10~15倍,在30~34℃下培养。

一般工厂中,菌种的扩大培养只是生产开始时进行一次,而正常生产中采用连续法接种,即将一部分旺盛的发酵液作为接种物,接入新配好的培养液中进行发酵。只有在发现发酵异常、菌种不纯或退化、影响生产时,才重新开始扩大培养一次。

2.3 工艺计算

2.3.1工艺技术指标及基础数据

(1).工艺技术指标及基础数据

表2—1 黑曲霉产糖化酶发酵工厂技术指标

指标系数单位指标数指标系数单位指标数生产规模t/a 5000 发酵辅助时间h 24

生产方法液体深层发酵菌种培养时间h 24

年生产天数d/a 300 菌种培养辅助时间h 15

产品日产量Kg/d 15625 接种量% 10

产品质量u/ml 20000 发酵罐装料系数% 80

倒灌率% 2 放罐发酵单位u/ml 12000 发酵周期h 120 提取总收率% 80

( 2 ) 种子培养基(g/l):玉米粉60;玉米浆20;黄豆粉20;KNO3 3;MgSO4*7H2O 1.2;KH2PO4 2.7;PH自然

(3)发酵初始培养基(g/l):玉米粉50;玉米浆20;黄豆粉20;麸皮30;料:水=1:7,接种量10%

(4)采用间歇发酵培养

2.3.2发酵工艺流程图:

图2.1 糖化酶发酵生产工艺流程图

2.3.3物料衡算

1. 首先计算生产1000kg活度为20000u/ml的糖化酶,产品需要耗用的原材料及其他物料量:

(1)放罐成熟发酵液放罐单位为12000u/ml,生产1000kg产品发酵液量为:VO=1000*20000*1000/12000*1000*1000*8%*98%=2.13m3

式中

80%──糖化酶总提取率

98%──除去倒灌率2%的发酵成功率

(2)房管成熟发酵液量Vo分为三部分组成:

底料 V1=Vo*80%=1.70 m3

种液量 V2=Vo910%=0.213 m3

底料物料用量:发酵培养基配方*V1

种液的物料用量:种子培养基配方*V2

(3)配制发酵液底料所需黄豆粉量

M1=20V1=34.02kg

(4)种子培养液所需黄豆粉量

M2=20V2=4.26kg

(5)生产1000kg糖化酶共需黄豆粉量

M=M1+M2=38.28kg

依此类推,可以计算出生产1000kg糖化酶所需要其他无聊的量

(6)玉米粉的用量

M3=50V1+60V2=97.83kg

(7)玉米浆的用量

M4=20(V1+V2)=38.28kg

(8)KNO3的用量

M5=3V2=0.64kg

(9)MgSO4?7H2O的用量

M6=1.2V2=0.26kg

(10)KH2PO4的用量

M7=2.7V2=0.58kg

(11)麸皮的用量

M8=30V1=51.03kg

(12)淀粉酶耗用量

应用酶活度为20000U/g的α—淀粉酶,淀粉酶用量50U/g:

M9=(M+M3)*50/20000=0.34kg

2.5000t/a糖化酶发酵车间的物料衡算

由上述生产1000kg活度为20000u/ml的糖化酶产品,需要耗用的原材料及其他物料衡算结果,可求得5000t/a该糖化酶发酵车间的物料衡算,计算结果具体如下:

表2—2 5000t/a糖化酶发酵车间的物料衡算表

物料名称生产1t糖化酶

的物料量生产5000t/a糖化酶

的物料量

每日物料量

糖化酶/kg 1000 5000000 16666.67

发酵液量/ m3 1.70 8500 28.33

种液量/ m30.213 650 2.17

黄豆粉量/kg 38.28 191400 638

玉米粉量/kg 97.83 489150 1630.5

玉米浆/kg 38.28 191400 638

麸皮/kg 51.03 255150 850.5

KNO3/kg 0.64 3200 10.67

MgSO4?7H2O/kg 0.26 1300 4.33

KH2PO4/kg 0.58 2900 9.67

α—淀粉酶/kg 0.34 1700 5.67

2.3.4热量衡算

现已生产1000kg糖化酶来计算此工艺过程中的热量衡算。

1.用水耗热量So

根据工艺,糊化锅加水量为:M1=(38.28+97.83+51.03)*7=1310kg

38.28──黄豆粉用量

97.83──玉米粉用量

51.03──麸皮用量

故糊化锅用水量为M1=1310kg自来水平均温度取t1=18℃,而配料用水温为50℃,故耗热量:So=CwM1(t2-t1)

=4.18*1310*32

=175000KJ

有糖化工艺流程可知:Q=Q’+Q”+Q”’

糊化锅内玉米醪由初温to加热至100℃耗热Q’

Q’=M玉米醪C玉米醪(100-to)

(1)计算玉米醪的比热容C玉米醪,根据经验公式,C谷物=0.0.1[(100-ω)+4.18ω]进行计算,式中ω为含水量百分率,Co为谷物比热容,取Co=1.55KJ/(kg/k)

C玉米粉=0.01[(100-13)*1.55+4.18*13]=1.89 KJ/(kg*k)

C 黄豆粉=0.01[(100-8)*1.55+4.18*8]=1.76 KJ/(kg*k) C 麸皮=0.01[(100-6)*1.55+4.18*6]=1.71 KJ/(kg*k) C 玉米浆=0.01[(100-30)*1.55+4.18*30=2.34 KJ/(kg*k)

(2)设玉米醪的初温to ,设原料的初温为18℃,热水为50℃,则:

式中 M 玉米醪=1497.12kg

(3) 把上述结果代回Q ’= C 玉米醪M 玉米醪(100-to ) Q ’=1497.12*3.885*51.88 =302000KJ

(4 )煮沸过程蒸汽带出的热量Q ”

设煮沸时间为30min ,蒸汽量为每小时5%,则蒸发量为: MV1=M 玉米醪*5%*30/60=37.43kg

Q ”=-MV1=37.43*2258.2=84500KJ

式中 I ──煮沸温度下水的汽化热(KJ/kg ) (4) 热损失

(5) 玉米醪升温和第一次煮沸过程的热损失约为前二次耗热量的15%,即: Q ’”=15%(Q ’+ Q ”) =58000KJ (6) 有上述结果得Q

Q=1.15(Q ’+ Q ”) =445000KJ 2.计算灭菌时的耗热量Q1 Q1=Q 玉米醪 +Q 玉米浆

C 玉米醪=

C 玉米粉M 玉米粉+ C 黄豆粉M 黄豆粉+ C 麸皮M 麸皮+M1Cw M 玉米粉+M 黄豆粉+M 麸皮+M1

=3.885 KJ/ (kg*k)

(C 玉米粉M 玉米粉+ C 黄豆粉M 黄豆粉+ C 麸皮M 麸皮)*18+M1Cw50

To= C 玉米醪M 玉米醪

= 48.12℃

Q玉米醪=C玉米醪(M玉米醪-47.43)(121-90)

=175000KJ

Q玉米浆=[ C玉米浆M玉米浆+Cow(M水+47.43)](121-18)

=141000KJ

Q1=Q玉米醪+Q玉米浆

=316000KJ

3.洗糟水耗热量Q2

设洗糟水平均温度为80℃,每100kg原料用水450kg,则用水量为:M洗=225.42*450/100=1014.4kg

Q2=Cam洗(80-18)=263000KJ

4.生产1000kg糖化酶总耗热量为

Q总=Qo+Q1+Q+Q2

=175000+316000+445000+263000

=1200000KJ

5.生产1000kg耗用蒸汽量D

使用表压为0.3MPa的饱和蒸汽,h=2725.3 KJ/(kg*k),则

Mo=Q总/(h-i)μ=583.76kg

式中i──相应冷凝水的焓(561.47KJ/kg)

μ──蒸汽的热效率;取μ=95%

6.每小时最大蒸汽耗量Qmax

在整个过程中,液化耗能量最大,且知煮沸为30min,热效率为95% Qmax=Q/0.5*95%=937000(KJ/h)

相应的最大蒸汽耗量为:Mmax=Qmax/(h-i)=432.96KJ/h

7.蒸汽单耗

根据设计,共生产5000t/a的糖化酶,年耗蒸汽总量为:

Mt=5000*583.76=2918800kg

每吨糖化酶耗蒸汽Mo=583.76kg

每昼夜耗蒸汽量为:M1=9121.25kg(M1=Mt/320)

8.耗能表如下:

表2—3 5000t/a糖化酶车间总热量衡算表

名称 压力 /MPa

每吨产品消耗定额/kg 每小时最大用量/(kg/h) 每天消耗量/(kg/h ) 年消耗量/(kg/a ) 蒸汽 0.3

583.76

937000

9121.25

2918800

3.4 水平衡的计算

此平衡计算是按生产1000kg 糖化酶产品来计算。 1. 糊化过程用水量M1

M1=(38.28+97.83+51.03)*7=1310kg

2. 糊化后的玉米醪温度要在85-95℃加入淀粉酶,此过程不考虑用冷却水冷却,

3. 液化之后加入玉米浆,需用水量 M2=38.28*7=267.96kg

4. 灭菌后的醪液冷却到32℃,这部分的用水量为M3

5. 洗糟水用量M4按每100kg 用水量450kg

6. 生产1000kg 糖化酶,发酵车间的总用水量 Mo=M1+M2+M3+M4 =3919.36kg

7. 生产5000t/a 发酵车间的总用水量 M=Mo*5000=19600000kg 每天用量:M ’=M/300=650000kg 每小时用量:M ”=M ’/24=2722kg

表2—4 水平衡计算结果如下表

M3=

Cw (40-18)

=1327

M4=

100

=1014.4kg

(M 玉米粉+M 黄豆粉+M 麸皮+M 玉米浆)*450

(C 玉米粉M 玉米粉+ C 黄豆粉M 黄豆粉+ C 麸皮M 麸皮+MCw )(121-32)

名称每吨产品消耗

量t/t 每小时用量

kg/h

每天用量t/d 年耗量t/a

冷水 1.02 2722 650 19600

2.3.5无菌空气用量的计算

黑曲霉的扩培和糖化酶的生成需在有氧条件下进行,所以在糖化酶培养过程中通入适量的无菌空气以满足生产的需要。在生产中,1m3的发酵醪每小时通入2 m3的无菌空气就可以满足生产的需要了。

发酵罐需要的无菌空气量为:V1=85000×2=170000m3

种子罐需要的无菌空气量为:V2=650×2=1200m3

则在生产5000吨糖化酶的过程中共需要无菌空气量为:

V

= V1+ V2 =171200m3

2.4设备的设计与选型

2.4.1发酵罐的设计与选型

(1)发酵罐生产能力的计算:

生产每吨糖化酶的发酵液量为V o=2.13 m3 故生产5000t/a的发酵液量V=5000V o=10650,每年发酵天数为300天,发酵周期为5d,每个周期的发酵体积V1=V/300/5=177.5 m3,若取发酵罐的填充系数φ=80%,则每次发酵罐总容量V2为:V2=V1/0.8=222 m3

现已单罐公称容量75 m3的机械搅拌通风管为例,每天需要75 m3的发酵罐No个

No=V2/75=3个

(2)主要尺寸的计算:

按生产75 m3的发酵罐计算:

V全=V柱+2V封=75

封头折边忽略不计,以方便计算。则

V全=V柱+2V封=0.785D2*1.9D+πD3*2/24=75

H=1.95D,解方程的:1.49D2+0.26D3=75

D=3.5m 取3.5m

H=1.9D=6.65m

圆柱部分容积:V1=0.785*3.5*3.5*H=64 m3

上,下封头体积:V2=V3=πD3/24=5.6 m3

总容积:V全=V1+V2+V3=75 m3

取φ=80%,实际装液量为:75*80%=60

(3)冷却面积的确定

酶制剂冷却面积取1.0㎡/ m3

由上知填充系数φ=80%,则每一个75 m3

的发酵罐换热面积A=V全φψ=75*0.8*1.0=60㎡

(5)搅拌器的设计

1)由于糖化酶发酵过程中有中间补料操作,对混合要求较高,因此选用六

弯叶涡轮搅拌器,该搅拌器的各部尺寸与罐径D有一定比例关系,现将主要尺寸列下:

搅拌器叶径Di=D/3=1.17m

叶宽B=0.2Di=0.234m

弧长l=0.375Di=0.44m

底距C=D/3=1.17m

盘径di=0.75Di=0.44m

叶弦长L=0.25Di=0.3m

叶距Y=D=3.5m

弯叶板厚∮=14m

取两挡搅拌,搅拌速率为210r/min.

2)搅拌轴功率的确定则应选取

可按经验式进行计算确定,通常按1kw/ m3发酵罐,对于75 m3发酵罐,装液量为60 m3则应选取≥60 m3 kw的电机

(6)设备结构的工艺设计

1)求最高热负荷下的耗水量W

W=Q总/Cp(t2-t1)

式中Q总──每1m3醪液在发酵最旺盛时,1h的发热量与醪液总体积的乘积

Q总=4.18*6000*60=1500000(KJ/h)

Cp──冷却水的比热容,4.18 KJ/(kg*k)

T2──冷却水的终温t2=30℃

T1──冷却水的初温t1=20℃

将各值代入上式:

W=1500000/4.18*(30-20)=100kg/s

冷却水体积流量为0.1 m3/s,取冷却水在竖直管道中流速为1m/s,根据流体力学方程式,冷却管总截面积A总为:

A总=W/V

黑曲霉菌株发酵生产糖化酶发酵罐设计

目录 第一章绪论 (1) 第二章罐体几何尺寸的确定 (2) 2.1夹套反应釜的总体结构 (2) 2.2 几何尺寸的确定 (2) 第三章罐体主要部件尺寸的设计计算 (5) 3.1 罐体 (5) 3.2 罐体壁厚 (5) 3.5人孔和视镜 (6) 3.6接口管 (6) 3.6.1 管道接口(采用法兰接口) (6) 3.6.2 仪表接口 (7) 第四章冷却装置设计 (8) 4.1 冷却方式 (8) 4.2 装液量 (8) 4.3 冷却水耗量 (9) 4.4 冷却面积 (9) 第五章搅拌器轴功率的计算 (10) 5.1不通气条件下的轴功率P0 (10) 5.2通气搅拌功率Pg的计算 (11) 5.3电机及变速装置选用 (11) 第六章结论 (13) 参考文献 (13)

第一章绪论 我设计的是一台30M3机械搅拌通风发酵罐,发酵生产糖化酶。 糖化酶,也称葡萄糖淀粉酶(EC3.2.1.3),主要用途是作为淀粉糖化剂。它与a-淀粉酶结合可将淀粉酶转化为葡萄糖,可供葡萄糖工业,酿酒工业和氨基酸工业等应用,是工业生产中最重要的酶类之一,也是我国产量最大的酶制剂产品。黑曲霉A.S.3.4309是国内糖化酶活性最高的菌株之一。 糖化酶生产菌重要的有:雪白根霉,德氏根霉,河内根霉,爪哇根霉,台湾根霉,臭曲霉,黑曲霉,河枣曲霉,宇佐美曲霉,红曲霉,扣囊拟内孢霉,泡盛曲霉,头孢霉,甘薯曲霉,罗耳伏革菌。 综合温度、PH等因素选择黑曲霉A.S.3.4309菌株,该菌种最适发酵温度为32-34℃,pH为4.5,培养基为玉米粉2.5%,玉米浆2%,豆饼粉2%组成。 主要生产工艺过程为如下:菌种用蔡式蔗糖斜面于32℃培养6天后,移植在以玉米粉2.5%,玉米浆2%.组成的一级种子培养基中,与32℃摇瓶培养24-36h,再接入(接种量1%)种子罐(培养基成分与摇瓶发酵相同),并与32℃通气培养搅拌24-36h,然后再接入(接种量5%-7%)发酵罐。发酵培养基由玉米粉2.5%,玉米浆2%,豆饼粉2%组成(先用a-淀粉酶液化),发酵温度为32℃,在合适的通气搅拌条件下发酵96小时酶活性可达6000u·ml-1 。 发酵液滤去菌体,如有影响糖化效率的葡萄糖甘转移酶存在,则通过调节滤液PH 等方法使其除去,再通过浓缩将酶调整到一定单位,并加入防腐剂(如苯甲酸)。如制备粉状糖化酶,则可通过盐析或加酒精使酶沉淀,沉淀经过压滤,滤泥再通过压条烘干,粉碎,即可制成商品酶粉。 发酵罐主要由罐体和冷却蛇管,以及搅拌装置,传动装置,轴封装置,人孔和其它的一些附件组成。这次设计就是要对20M3通风发酵罐的几何尺寸进行计算;考虑压力,温度,腐蚀因素,选择罐体材料,确定罐体外形、罐体和封头的壁厚;根据发酵微生物产生的发酵热、发酵罐的装液量、冷却方式等进行冷却装置的设计、计算;根据上面的一系列计算选择适合的搅拌装置,传动装置,和人孔等一些附件的确定,完成整个装备图,完成这次设计。 这次设计包括一套图样,主要是装配图,还有一份说明书。而绘制装配图是生物工程设备的机械设计核心内容,绘制装配图要有合理的选择基本視图,和各种表达方式,

35000吨味精工厂发酵车间设计资料讲解

35000吨味精工厂发酵车间设计

武汉轻工大学 《发酵(制药)工厂设计》课程计 说明书 设计题目:年产35000吨味精工厂发酵车间工艺设计 姓名 学号 10021 院 (系) 生物与制药工程学院 专业生物工程 指导教师陶兴无 2014 年 1月 10 日 35000吨味精工厂发酵车间工艺设计 xxx (武汉轻工大学生物与制药工程学院武汉430023)

摘要: 味精,学名“谷氨酸钠(C5H8NO4Na)”。谷氨酸是氨基酸的一种,也是蛋白质的最后分解产物。我们每天吃的食盐用水冲淡400 倍,已感觉不出咸味,普通蔗糖用水冲淡200 倍,也感觉不出甜味了,但谷氨酸钠,用于水稀释3000倍,仍能感觉到鲜味,因而得名“味精”。味精是采用微生物发酵的方法由粮食制成的现代调味品。本设计为年产味精厂35000吨味精工艺设计;以玉米淀粉为原料水解生成葡萄糖、利用谷氨酸生产细菌进行碳代谢、生物合成谷氨酸、谷氨酸与碱作用生成谷氨酸钠即味精为主体工艺,进行物料衡算、热量衡算、水衡算和设备选型计算,并绘制了发酵车间连续消毒工序流程图以及设备布置图。 关键词:味精,发酵车间,连消工序,工艺设计

Abstract: The design is an annual output of 40000 tons of monosodium glutamate for material balance calculation , heat balance calculation, water balance calculation and the selection calculation of fermentor, process design; To hydrolysis of corn starch as raw materials to generate glucose, glutamic acid producing bacteria to use carbon metabolism, biosynthesis of glutamic acid , glutamic acid and alkali to form a sodium glutamate or MSG is the main process, for material balance calculation , heat balance calculation, water balance calculation and the selection calculation of fermentor, and mapped the structure of fermentation tank,fermentation process with control point map, the factory floor plan ,saccharification process map and the process map of extraction and purification . Key words: MSG, fermentation workshop, continuous disinfection processes,process design

18m跨厂房普通钢屋架设计.

《钢结构》课程设计任务书 1.题目:18m跨厂房普通钢屋架设计 2.目的 通过钢结构课程设计,进一步了解钢结构的结构型式、结构布置、受力特点和构造要求等;综合应用钢结构的材料、连接和基本构件的基本理论、基本知识,进行钢屋架的设计计算。 3.设计资料 某厂房跨度为18m,总长度90m,柱距6m;厂房内设有两台300/50kN中级工作制桥式吊车,地区计算温度高于-200C,无侵蚀性介质,地震设防烈度为6度;屋架采用梯形钢屋架,屋架下弦标高为18m,两端铰支在钢筋混凝土柱上,混凝土柱上柱截面尺寸为400×400mm,混凝土强度等级为C30,屋面坡度i=1/10;采用1.5×6.0m预应力混凝土屋板,屋架采用的钢材为Q235B,焊条为E43型;屋架形式、几何尺寸及内力系数(节点荷载P=1.0作用下杆件的内力)如附图所示。 荷载:①屋架及支撑自重:按经验公式g k=0.12+0.011L,L为屋架 为屋架及支撑自重,以kN/ 跨度,以m为单位,g k m2为单位; ②屋面活荷载:屋面活荷载标准值为0.5k N/m2,雪荷载标 =0.35kN/m2,屋面活荷载与雪荷载不同时考虑, 准值为s k 取两者的较大值;积灰荷载0.9k N/m2根据不同学号按附 表取。 ③屋面各构造层的荷载标准值: 三毡四油(上铺绿豆砂)防水层0.4KN/m2 水泥砂浆找平层0.6KN/m2 保温层0.45KN/m2(按附表取) 一毡二油隔气层0.05KN/m2 水泥砂浆找平层0.3KN/m2 预应力混凝土屋面板 1.55KN/m2

屋架杆件的内力系数 1 02 .279 a . 18米跨屋架几何尺寸 b . 18米跨屋架全跨单位荷载 作用下各杆件的内力值A a c e g e 'c 'a ' +2 . 5 3 7 . 0- 4 . 3 7 1- 5 . 6 3 6- 4 . 5 5 1- 3 . 3 5 7- 1 . 8 5 00 . 0 - 4 . 7 5 4 - 1 . 8 6 2 + . 6 1 5 + 1 . 1 7 + 1 . 3 4 4 + 1 . 5 8 1 + 3 . 1 5 8 + . 5 4 - 1 . 6 3 2 - 1 . 3 5 - 1 . 5 2 - 1 . 7 4 8 -1 . 0-1 . + 0. 4 6 0. 0. -0 . 5 +5 . 3 2 5+5 . 3 1 2+3 . 9 6 7+2 . 6 3 7+0 . 9 3 3 B C D E F G F 'E 'D'C' B 'A ' 0 . 51 . 01 . 01 . 01 . 01 . 01 . c . 18米跨屋架半跨单位荷载作用下各杆件的内力值

两种曲霉糖化性质的比较

两种曲酶糖化性质的比较研究在国内传统的制酒行业中,由于黑曲霉含有丰富的酶系如液化酶、糖化酶、纤维素酶和蛋白酶等,自70年代大多都由米曲霉改为黑曲霉作糖化用菌种。但在日本迄今仍在采用米曲霉做糖化菌,说明其中必有原因。鉴于此,本实验以黑曲霉和米曲霉为研究对象,研究比较它们的液化酶和糖化酶(葡萄糖淀粉酶)生产性质。 黑曲霉是一种常见的真菌, 属于半知菌类曲霉属。黑曲霉对营养要求较低, 只要培养基中含有碳源、氮源及磷、钾、镁、硫等元素即能生长良好。黑曲霉可以产生许多种酶, 现已成为工业应用常见的菌种之一。根据bigelis1989年的统计, 25种主要商品酶制剂中就有15种来源于黑曲霉仁, 。它们分别是α-淀粉酶、过氧化氢酶、纤维素酶、葡萄糖酶、糖化酶、葡萄糖氧化酶、半纤维素酶、橙皮昔酶、脂肪酶、果胶酶、蛋白酶、单宁酶。美国准许使用的食品工业用酶生产菌种只有黑曲霉、酵母、枯草杆菌等约20种, 其中以黑曲霉所产酶类最多。我国酶制剂工业生产用菌种中, 黑曲霉占了17种中3种, 即黑曲霉变异株和,它们分别用于糖化酶、果胶酶和酸性蛋白酶的生产[1]。黑曲霉酶类在工业上具有重要的作用, 例如, 柠檬酸等有机酸的发酵生产、食品及饮料加工以及用于轻化工业、纺织工业、饲料加工和废物的处理等等。总之, 黑曲霉生产的酶制剂具有用量大、应用范围广、安全性好的特点, 已愈来愈受到人们的重视。 米曲霉的菌丝由多细胞组成,是一类产复合酶的菌株,除产蛋白酶外,还可产淀粉酶、糖化酶、纤维素酶、植酸酶等。在淀粉酶的作用下,将原料中的直链、支链淀粉降解为糊精及各种低分子糖类,如麦芽糖、葡萄糖等;在蛋白酶的作用下,将不易消化的大分子蛋白质降解为蛋白胨、多肽及各种氨基酸,而且可以使辅料中粗纤维、植酸等难吸收的物质降解,提高营养价值、保健功效和消化率,广泛应用于食品、饲料、生产曲酸、酿酒等发酵工业。 1 材料与方法 1.1材料 菌种:黑曲霉UV-48;米曲霉-4 1.2培养基 种子培养基(土豆汁培养基;察式培养基);发酵培养基(麸皮培养基;液

(完整版)年产5000吨糖化酶发酵车间设计

南阳理工学院 本科生毕业设计 学院(系):生物与化学工程学院 专业:生物工程 学生: ******* 指导教师:李慧星 完成日期 2010 年 5 月

南阳理工学院本科生毕业设计 年产5000吨糖化酶发酵车间设计 The design of annual output of 5000 tons of glucoamylase fermentation factory workshop 总计:毕业设计(论文)28页 表格: 5 个 插图: 1 幅

南阳理工学院本科毕业设计 年产5000吨糖化酶发酵车间设计 The design of annual output of 5000 tons of glucoamylase fermentation factory workshop 学院(系):生物与化学工程学院 专业:生物工程 学生姓名:郭留洋 学号:***** 指导教师:****** 评阅教师: 完成日期:2010年5月 南阳理工学院 Nanyang Institute of Technology

年产5000吨糖化酶发酵车间的工艺设计 生物工程专业郭留洋 【摘要】糖化酶是工业生产的主要酶制剂之一,广泛用于酿酒、葡萄糖、果葡糖浆、抗菌素、乳酸、有机酸、味精、棉纺厂等各方面。本设计以玉米淀粉为主要原料,利用黑曲霉,采用机械搅拌通风罐进行发酵生产,完成生产5000吨糖化酶发酵车间工艺设计,通过工艺流程设计、工艺衡算、设备选型和车间布置设计,设计出生产5000吨糖化酶发酵车间采用3个75m3发酵罐和3个6m3种子罐等,并依据生物工程工厂车间布置原则,对发酵罐车间进行合理布置,绘制了工艺流程图和车间布置图,工艺设计的结果为糖化酶的生产提供一定参考。 【关键字】糖化酶工厂设计深层发酵黑曲霉

车间设备项目建设方案及规划设计

车间设备项目建设方案及规划设计 一、项目基本情况 (一)项目建设背景 (二)项目概况 项目名称:车间设备生产建设项目。 承办单位名称:张家口某某有限公司。 (三)项目选址方案 本期工程项目计划在张家口某某经济开发区建设,项目拟定建设区域属于工业项目建设占地规划区,建设区总用地面积58042.34平方米(折合约87.02亩),净用地面积58042.34平方米(红线范围折合约87.02亩),项目建设遵循“合理和集约用地”的原则,按照车间设备行业生产规范和要求进行科学设计、合理布局,符合车间设备制造和经营的规划建设要求。 (四)项目用地控制指标 该工程规划建筑系数64.64%,建筑容积率1.70,建设区域绿化覆盖率6.20%,固定资产投资强度207.19万元/亩,建设场区土地综合利用率100.00%;根据测算,本期工程项目建设完全符合《工业项目建设用地控制指标》(国土资发【2008】24号)文件规定的具体要求。

本期工程项目净用地面积58042.34平方米,建筑物基底占地面积37518.57平方米,总建筑面积98671.98平方米,其中:规划建设主体工程70103.67平方米,项目规划绿化面积6114.80平方米,土地综合利用面积58042.34平方米。 (五)项目节能分析 “车间设备项目”在设计过程中,对生产工艺、电气设备、建筑等方面采取有效节能措施,年用电量576071.28千瓦时,年总用水量19765.23立方米,项目年综合总耗能量(当量值)72.49吨标准煤/年。根据测算,与其他备选生产工艺技术相比,达纲年综合节能量22.89吨标准煤/年,项目总节能率24.41%,因此,该项目属于能源利用效果较好的项目。 (六)绿色生产 (七)项目总投资及资金构成 按照《投资项目可行性研究指南》的要求,本期工程项目总投资包括固定资产投资和流动资金两部分,根据谨慎财务测算,本期工程项目预计总投资21020.01万元,其中:固定资产投资(固定资产投资)万元,占项目总投资的85.77%;流动资金2990.34万元,占项目总投资的14.23%。 (八)经济效益分析 1、项目达纲年预期营业收入(SP):29440.00万元(含税)。 2、年总成本费用(TC):22274.27万元。 3、税金及附加:124.94万元。

啤酒发酵车间设计

年产10万吨啤酒的发酵车间设计

目录 一、绪论 (3) (一)设计题目 (3) (二)参数 (3) (三)内容简介 (3) 二、生产工艺简介 (4) (一)全厂工艺流程图 (4) (二)原料 (5) (三)麦芽汁制备工艺 (7) (四)啤酒发酵 (11) 三、车间物料衡算 (15) (一)工艺计算 (15) (二)车间物料衡算表 (17) 四、车间热量衡算 (18) (一)工艺流程示意图 (18) (二)工艺计算 (19) (三)热量衡算表 (20) 五、车间用水量衡算 (20) 六、设备计算与选型 (22) 七、设备装配图 (25) 八、车间设备布置 (27) 九、设计总结 (29) 十、参考文献 (30)

一、绪论 (一)设计题目 年产10万吨啤酒的发酵车间设计 (二)参数 1、每年生产300天,产品啤酒10o 2、定额指标: 原料利用率 % 麦芽水分 5 % 大米水分 12 % 无水麦芽出芽率 75% 无水大米浸出率 95 % 3、各生产阶段损失率: 麦芽汁冷却澄清损失:热麦芽汁量的5 % 主发酵损失:冷麦汁量的% 过滤和灌装损失:啤酒量的2 % (三)内容简介 随着中国经济的快速发展,人们生活水平的提高,啤酒作为含酒精量最低的饮料酒,由于其营养丰富且价廉物美已受到越来越多消费者的喜爱,已经逐步成为人们大众最喜爱的饮料之一。从1903年啤酒进入中国市场到今天,我国啤酒产量逐年增加,已成为世界啤酒产量最大的国家,由此可见啤酒在我国的发展速度之迅猛。然而,我国啤酒产量却仅以每年10%的速度增加,这说明啤酒在我国还无法完全满足人们日益增长的物质文化需求,中国啤酒市场拥有非常广阔的前

大麦_淀粉酶和黑曲霉糖化酶在酿酒酵母中的表达和分泌

大麦α2淀粉酶和黑曲霉糖化酶在 酿酒酵母中的表达和分泌 3罗进贤 李政海 李文清 (中山大学生物化学系及生物工程中心,广州510275) 摘要 将大麦α2淀粉酶和黑曲霉糖化酶cDNA 重组进同一大肠杆菌2酵母穿梭质粒构建含双基因的表达分泌载体pMA G 15.用原生质体转化法将pMA G 15引入酿酒酵母(S.cerevisiae GRF18),在酵母P GK 基因的启动子和转录终止信号及本身的信号序列的调控下,实现大麦α2淀粉酶和糖化酶的高效表达,99%以上的酶活力分泌至培养基中.构建的酿酒酵母菌株GRF18(pMA G 15)在含15%可溶性淀粉的培养基中,培养47h 能水解99%的淀粉,并能发酵产生酒精. 关键词 大麦α2淀粉酶 黑曲霉糖化酶 酿酒酵母 表达和分泌 酿酒酵母是酿酒工业、酒精和单细胞蛋白的生产菌,但由于其不具有淀粉水解酶的活力不能发酵淀粉.发酵前淀粉需先经过蒸煮、液化、糖化等工序变成葡萄糖后才能被利用.从80年代中期开始将各种来源的α2淀粉酶和糖化酶基因分别克隆进酿酒酵母,构建能分解淀粉的酵母菌株[1~5].只是由于构建菌株的酶活力不高,降解淀粉的速率较慢还不能用于生产.我们曾将地衣芽孢杆菌α2淀粉酶基因及黑曲霉糖化酶G AI 的cDNA 分别或同时转入酿酒酵母获得表达和分泌[6~9],其中含α2淀粉酶和糖化酶双基因的酿酒酵母GRF18(YEpMA G 27),酶的表达和分泌水平都很高,但淀粉水解的速率仍较低.本文报道用酶学性质与黑曲霉糖化酶比较接近的大麦α2淀粉酶取代细菌α2淀粉酶,构建含大麦α2淀粉酶和黑曲霉糖化酶双基因的酿酒酵母工程菌,实现α2淀粉酶和糖化酶的高表达和分泌,获得能快速分解淀粉的酵母工程菌. 1 材料和方法 111 材料 11111 菌株与质粒 本研究所用菌株与质粒如表1,其中pBAL 27是含大麦α2淀粉酶基因的大肠杆菌2酵母穿梭质粒,pMA G 69为含黑曲霉糖化酶G AI cDNA 的大肠杆菌2酵母穿梭质粒. 11112 培养基 大肠杆菌培养和转化用LB 培养基,酵母的培养和转化使用的YPD , 1996209208收稿,1996211205收修改稿 3广东省自然科学基金资助项目 中国科学 (C 辑) 第28卷 第1期SCIENCE IN CHINA (Series C )  1998年2月

生物工程发酵工厂设计概论

生物工程工厂设计概论(考试题) 一、名字解释 柱网:柱子的纵向和横向定位轴线垂直相交,在平面上排列所构成的网格线,称为柱网 柱距:柱距是由横向定位轴线间的尺寸表示的 跨度:跨度是由纵向定位轴线间的尺寸表示的,跨度在18m和18m以下时,应采用3m的倍数,跨度在18m以上时,应采用6m的倍数。设备布置图:设备布置图是用来表示设备与建筑物、设备与设备之间的相对位置,并能直接指导设备的安装的重要技术文件。 相对标高:相对标高是把室内首层地面高度为相对标高的零点,用于建筑物施工图的标高标注。 GMP:药品生产管理规范,是药品生产质量管理的基本准则,适用于药品制剂生产的全过程和原料药生产中影响成品质量的关键工序。公称直径:管子的公称直径是指管子的名义直径,即不是管子内径,也不是它的外径,而是与管子的外径相近又小于外径的一个数值。公称压力:通称压力,一般应大于或等于实际工作的最大压力。 清洁生产:是实现可持续发展战略的需要,它彻底改变了过去被动的、滞后的污染控制手段,从根本上扬弃了末端治理的弊端,强调在污染产生之前就予以削减,即在产品及其生产过程并在服务中减少污染物的产生和对环境的不利影响。 二、填空题 1、生物工程工厂生产车间一般由、、等部分组成。 2、厂房的框架结构是由和组成。 3、生物制药的车间布置设计必须达到对洁净厂房的要求。

4、空气洁净的含义,其一是指,其二是指。 5、生物工程工厂建筑物按厂房的层数分类,可分为,和厂房三类,主要由生产工艺特点和工艺设备布置要求所决定。 6、生物工程工厂厂房外形一般有、、、和型等数种。 7、生物工程工厂常用的管材有、、、。 8、管道布置设计的主要依据是带控制点的、、、等。 9、按锅炉燃用的燃料可分为:、和。 三、简答题 1、车间布置设计的任务 (1)确定车间火灾危险类别、爆炸和火灾危险性场所等级、GMP洁净度等级、卫生等级等 (2)确定车间的结型式及主要尺寸,并对生产区、辅助区、行政生活区位置进行布局; (3)确定车间所有设备在车间建筑平面和空间的相对位置。 2、车间布置设计的内容 (1)厂房整体布置和轮廓设计 厂房边墙的轮廓、车间建筑的轮廓、跨度、柱距等;门窗楼梯的位置;吊装孔、预留孔、地坑等位置尺寸;标高 (2)设备的排列和布置 设备外形的几何轮廓;设备的定位尺寸;操作台位置及标高

糖化酶

我国糖化酶的研究概况 糖化酶是世界上生产量最大应用范围最广的酶类,介绍了糖化酶的结构组成、特性、生产、提取、活力检测以及提高酶活力的研究。主要的内容包括:一、糖化酶的简介 糖化酶是应用历史悠久的酶类,1 500年前,我国已用糖化曲酿酒。本世纪2O年代,法国人卡尔美脱才在越南研究我国小曲,并用于酒精生产。50年代投入工业化生产后,到现在除酒精行业,糖化酶已广泛应用于酿酒、葡萄糖、果葡糖浆、抗菌素、乳酸、有机酸、味精、棉纺厂等各方面,是世界上生产量最大应用范围最广的酶类。 糖化酶是葡萄糖淀粉酶的简称(缩写GA或G)。它是由一系列微生物分泌的,具有外切酶活性的胞外酶。其主要作用是从淀粉、糊精、糖原等碳链上的非还原性末端依次水解a一1,4糖苷键,切下一个个葡萄糖单元,并像B一淀粉酶一样,使水解下来的葡萄糖发生构型变化,形成B—D一葡萄糖。对于支链淀粉,当遇到分支点时,它也可以水解a一1,6糖苷键,由此将支链淀粉全部水解成葡萄糖。糖化酶也能微弱水解a一1,3连接的碳链,但水解a一1.4糖苷键的速度最快,它一般都能将淀粉百分之百地水解生成葡萄糖。 二、糖化酶的结构组成及分类 糖化酶在微生物中的分布很广,在工业中应用的糖化酶主要是从黑曲霉、米曲霉、根霉等丝状真菌和酵母中获得,从细菌中也分离到热稳定的糖化酶,人的唾液、动物的胰腺中也含有糖化酶。不同来源的淀粉糖化酶其结构和功能有一定的差异,对生淀粉的水解作用的活力也不同,真菌产生的葡萄糖淀粉酶对生淀粉具有较好的分解作用。 糖化酶是一种含有甘露糖、葡萄糖、半乳糖和糖醛酸的糖蛋白,分子量在60 000 到1 000 000间,通常碳水化合物占4% 18%。但糖化酵母产生的糖化酶碳水化合物高达80%,这些碳水化合物主要是半乳糖、葡萄糖、葡萄糖胺和甘露糖。 三、糖化酶的特性 1、糖化酶的热稳定性 在糖化酶的热稳定性机理及筛选热稳定性糖化酶菌株上。工业上应用的糖化酶都是利用它的热稳定性。一般真菌产生的糖化酶热稳定性比酵母高,细菌产生

400ta土霉素生产车间发酵工段工艺设计要点

第一章绪论 1.1引言 目前,全世界的医药产品生产已有一半以上由生物技术合成,其中,抗生素、维生素、激素这三大类药物主要由微生物发酵生产。抗生素在世界范围内的应用十分广泛,从而有效地控制了许多传染疾病,同时也促进了发酵工业的发展。 1.1.1土霉素化学式及性状 土霉素(Terramycin)又称地霉素、氧四环素(Oxytetracycline),化学名:(4s,4аR,5S,5аR,6S,12аS)-N-4-二甲胺基-1,4,4а,5,5а,6,11,12а-八氢,5, 6,10,12,12а-六羟基-6-甲基-1,11-二氧代并四苯-2-甲酰胺,是四环素类抗生素的一种,因结构上含有四并苯基的母核而得名。化学式如下: 本品为灰白色至黄色的结晶粉末,无臭,味苦,熔点是180℃,在空气中性质稳定,在日光下颜色变暗在碱性溶液中易破坏失效。土霉素的盐酸盐为黄色结晶,味苦,熔点190~194℃,有吸湿性,但水分和光线不影响其效价,在室温下长期保存不变质,不失效。盐酸盐易溶于水,溶于甲醇,微溶于无水乙醇,不溶于三氯甲烷和乙醚,在酸性条件下不稳定。添加到饲料中,在室温下保存四个月,效价下降4%~9%,制粒时效价下降5%~7%。 1.1.2作用机理 本品为广谱抑菌剂,能特异性地与细菌核糖体30S亚基的A位置结合,抑制肽链的增长和影响细菌蛋白质的合成,能抑制动物肠道内的有害微生物,激活大肠中有利于营养物质合成的微生物。可使动物肠壁变薄,更有利于营养物质的

吸收和利用,从而提高肠道吸收效率。许多立克次体属、支原体属、衣原体属、螺旋体、阿米巴原虫和某些疟原虫也对本品敏感。肠球菌属对其耐药。其他如放线菌属、炭疽杆菌、单核细胞增多性李斯特菌、梭状芽孢杆菌、奴卡菌属、弧菌、布鲁菌属、弯曲杆菌、耶尔森菌等对本品敏感。 1.1.3土霉素的应用 土霉素为四环类抗生素,生产工艺简单、生产成本较低,可作为生产其它新型抗生素的原料。 土霉素价格低廉,可以作为饲料添加剂用于养殖业。实践表明:土霉素用于饲料添加剂,可以改善饲料转化效率,促进畜禽生长,提高畜禽抗疾病能力。 土霉素对多数革兰氏阳性菌(如肺炎球菌,溶血性链球菌,草绿色链球菌以及部分葡萄糖球菌,炭疽杆菌)和革兰氏阴性菌(如大肠杆菌,产气杆菌,破伤风,肺炎杆菌,流感杆菌,百日咳杆菌等)均有抗菌作用。临床上主要用于肺炎、败血症、斑疹、伤寒了、淋巴肉芽肿、砂岩及其他细菌性感染等,对伤寒有效,也可用于阿米巴痢疾和阴道滴虫病患者。此外还能抑制立克次体和砂岩病毒及淋巴肉芽肿病毒。 作为抗生素,上世纪六七十年代时,土霉素曾在抗菌药市场上占重要地位,但伴随着其它多种高效抗生素的诞生与发展,土霉素市场快速走向衰落。目前,土霉素已经极少用于临床了。 1.1.4 土霉素的生产 土霉素通常由龟裂链丝菌(streptomyces rimosus)发酵得到,目前国内提取工艺一般以草酸(或部分盐酸替代草酸)作酸化剂调节发酵液pH值,利用黄血盐钠和硫酸锌作净化剂生成普鲁士蓝沉淀协同去除Fe3+及高分子杂质,再经122-2树脂脱色,调节pH至4.6晶得干燥到土霉素成品[1]。

车间除尘设计方案

第一章总论 项目名称:车间粉尘治理工程 建设单位:新疆中油型材有限公司 设计施工单位:新疆旭日环保股份有限公司 第二章项目概况与设计依据 1.0 项目概况 新疆中油型材有限公司在“蓝天、碧水、绿地”的中国西部城市乌鲁木齐市(头屯河区)。车间需要对型材原料进行深加工,各种粉料掺杂扬尘而起,型材车间进行切割、钻削、刨削、打磨等,在生产过程中产生的粉尘扩散进入周围环境,严重影响了员工的工作环境及身心健康,因此,公司领导决定对该粉尘进行集中治理,特委托我公司为其生产工序所产生的废气进行治理方案设计,执行乌鲁木齐地方标准《大气污染物排放限制》和《工业企业厂界环境噪声排放标准》(GB12348-2008). 2.0 设计依据 2.0.1 贵公司提供的有关资料 2.0.2《中华人民共和国环境保护法》 2.0.3《机械设备安装工程施工及验收规范》(TJ231-87) 2.0.4《工业管道工程施工及验收规范》(GBJ235-82) 2.0.5《通风与空调工程施工及验收规范》(GBJ243-82) 2.0.6《建筑安装工程质量检验评定标准》(通用机械设备安装工 程)

(TJ305—75) 2.0.7《低压、配电装置及线路设计规范》(GBJ54-83) 2.0.8《通用用电设备配电规范》(GBJ50055-93) 2.0.9《三废处理工程技术手册》(废气卷) 2.0.乌鲁木齐地方标准《大气污染物排放限制》 第三章工程设计原则、设计范围和设计目标 1.0 工程设计原则 符合国家环境保护法有关标准规定; 采用成熟可靠、技术先进的工艺,在保证废气排放达标的前提下; 尽可能减少投资,降低成本; 外购设备选用国内知名品牌的优良产品; 非标设备应符合国家或行业相关规范、并保证性能稳定、外表美观; 设备应采用必要的防腐措施,延长使用寿命; 2.0工程设计范围 2.0.1工艺流程的选择和设计; 2.0.2非标设备的制造、安装与标准设备的选型; 2.0.3工程设备的运输、安装、调试及操作人员的培训; 2.0.4管网、电器、自控的设计与安装; 2.0.5 我方只负责由电控箱至风机的电源(甲方须提供电源至电 控箱内); 2.0.6 我方所安装、设计的设备及管道从车间内管道至风机出风

生物工程设备设计任务书---年产X吨糖化酶发酵车间工艺设计

生物工程设备课程设计任务书 -----年产X吨糖化酶发酵车间工艺设计一、课程教学目标 生物工程课程设计是生物工程专业学生在毕业设计(论文)前进行的一次综合训练。通过本课程设计培养学生综合运用所学知识解决工程问题的能力,为毕业设计(论文)打好应有的理论基础。通过生物工程课程设计的训练,学生要达到的基本要求如下: 1、进一步巩固加深所学《生物工艺学》、《生物工程设备》、《生物分离工程》、《生物工程设备及工厂设计》、《机械制图》、《化工原理》等专业课程的基本理论和知识,使之系统化、综合化。树立正确的设计思想,掌握生物工程设备及工厂设计的基本方法和步骤,为今后创造性设计生物工程设备和相关技术改造工作打下一定的基础。 2、培养学生综合运用基础理论和专业知识解决工程实际问题的能力。 3、培养学生熟悉、查阅并综合运用各种有关的设计手册、规范、标准、图册等设计技术资料;进一步培养学生识图、制图、运算、编写设计说明书等基本技能;完成作为工程技术人员在机械设计方面所必备的设计能力的基本训练。二、课程设计题目(任选一) 年产X吨味精发酵车间设计:2000吨、3000吨、4000吨、5000吨、6000吨 三、课程设计任务: 1、根据设计任务,查阅有关资料、文献,搜集必要的技术资料及工艺参数,进行生产方法的选择与比较,工艺流程与工艺条件的确定和论证,确定工艺过程的重要参数。 2、工艺流程图,按工艺流程图绘制要求完成有一定控制工点的流程详图,包括设备、物料管线、主要管件、控制仪表等内容。 3、发酵罐主要结构尺寸、搅拌装置及冷却装置计算,根据工艺要求选取相应发酵罐类型,进行发酵罐种子罐数量计算,发酵罐几何结构尺寸计算,同时完成发酵罐搅拌装置及冷却装置的选型和计算。 4、根据计算结果按相应比例尺寸绘制发酵罐及冷却装置示意图,并完成发酵

发酵工厂设计终极版

目录第一章前言 1.1设计目的 1.2设计意义 第二章选址 2.1厂址选择原则 2.2厂址选择具体条件 2.3选择厂址 第三章厂区规划 3.1全厂总平面设计 3.2车间内发酵设备的布置 3.3车间内蒸馏设备布置 第四章工艺计算 第五章设备选型 第六章环保工程 6.1 废物总类 6.2 废物利用 6.3废气处理 6.4废水和废渣处理

第七章技术经济分析7.1 项目概算 7.2总投资估算

正文 第一章前言 1.2设计意义: 随着经济的发展,究竟这种重要的工业原料被广泛用于化工、塑料、橡胶、农药、化妆品及军工等工业部门。且石油资源趋于缺乏、全球环境污染的日益加剧,各国纷纷开始开发新型能源。燃料乙醇是目前为止最理想的石油替代能源,它的生产方法以发酵为主。菌种的优劣对发酵效果的影响非常大,能够筛选出具有优良性状的菌株及对菌株进行改良,对于降低生产成本,乃至实现酒精的大规模工业化生产,解决能源危机都有着重大意义。 在我国石油年消费以13%的速度增长,2004年进口原油量超过1亿吨,是世界第二大的石油进口国。我国燃料乙醇起步虽然较晚,但发展迅速,以成为继巴西美国之后世界第三大燃料乙醇生产国。2001年4月,原国家计委发布了中国实施车用汽油添加燃料乙醇的相关办法,同时国家质量技术监督局颁布了“变性燃料乙醇”和“车用燃料乙醇汽油”2个国家标准。作为试点,国家耗资50余亿元建立4个以消化“陈化粮”为主要目标的燃料乙醇生产企业。2006年,我国燃料乙醇生产能力达到102万t,已实现年混配1020万t燃料乙醇汽油的能力。2002年车用汽油消耗量占汽油产量的87.9%,如果按10%比例添加生产燃料酒精换算,需要燃料酒精381万吨,而全年酒精总产量仅为20.7万吨,如果在不久将来,能用燃料酒精替代500万吨等量的汽油,就可以为我国节省外汇15亿美元。在目前中国人均石油开采储量仅为2.6吨的低水平条件下,开发新能源成为社会发展,推动经济增长的动力,燃料酒精作为国家战略部署的新型能源之一,在我国具有广阔的市场前景。 第二章选址

黑曲霉生产糖化酶及酶活测定_单海艳

第19卷 第7期 牡丹江大学学报 Vol.19 No.7 2010年7月 Journal of Mudanjiang University Jul. 2010 92 文章编号:1008-8717(2010)07-0092-03 黑曲霉生产糖化酶及酶活测定 单 海 艳 (牡丹江大学,黑龙江 牡丹江 157000) 摘 要:本文对黑曲霉突变株Uv11-48生产糖化酶液体深层发酵进行了全程生产工艺的研究,证实了黑曲霉突变株是一种产孢力强、抗污染能力强、易培养的糖化酶生产菌,经液体深层通风发酵可得出:只要充分利用突变株的有利条件,掌握好菌种特性,合理配制营养,控制好发酵条件,便可获得高酶活力的高产糖化酶。本实验还运用了几种酶活力测定方法,以资进行优劣探讨。 关键词:黑曲霉;液体通风发酵;糖化酶;酶活力 中图分类号:Q-331 文献标识码:B 一、前言 (一)黑曲霉菌种特性 1.黑曲霉的分类地位 黑曲霉在分类学上处于:真菌门、半知菌亚门、丝孢纲、丝孢目、丛梗孢科、曲霉属、黑曲霉群,拉丁学名:Aspergillus niger 。 2.黑曲霉形态、生理、生态特性 孢子头呈暗黑色,菌丝体由具横隔的分枝菌丝构成,菌丝黑褐色,顶囊球形,小梗双层,分生孢子球形,平滑或粗糙。一般进行无性生殖,其可育细胞称足细胞。 3.黑曲霉突变株的形态、生理、生态、特征 在查氏培养基上菌落曲型为炭黑色,有辐射沟纹,从菌落边缘向中心,分化为伸长部位,活性部位,成熟部位,老化部位几个区域即孢子萌发最早出现于中心部位是伸展部位,并逐渐形成密生部位,分生孢子部位,最后在中心出现的是成熟部位,菌落背面无色或稍黄。 (二)糖化酶的分类、地位、性质及用途 1.糖化酶在国际酶学委员会,在系统命名法中的地位 糖化酶是淀粉酶,在系统命名法中属水解酶类。 2.糖化酶的性质 糖化酶(glucamylase )又名糖化型淀粉酶(glueoamylase )或淀粉葡萄糖苷酶。其系统名称为淀粉α1.4-葡萄聚糖水解酶。糖化酶是一种胞外外切酶,但其专一性低,主要是从淀粉链的非还原性末端切开α-1.4-键。一般淀粉水解程度达80%。 (1)糖化酶中糖和蛋白组成 糖化酶是一种糖蛋白,通常碳水化合物占4%-18%,这些碳水化合物主要是半乳糖、葡萄糖、葡萄糖胺和甘露糖,糖化酶残基的排列在其热和酸碱稳定性上有特殊意义。 (2)糖化酶组分多型性 真菌产生的糖化酶组分多型性是常见的,市售的糖化酶中可分离出葡萄糖酶?和葡萄糖酶И两种组分。而市售黑曲霉生产的糖化酶曾分离出六种活性组分,每种均可从可溶性淀粉中释放出单一的β-D-葡萄糖。这六种组分的分子量,沉淀系数,化学组分,等电点,酶的动力学及其它性质各异。培养基成分和的生产条件对糖化酶组分多型性也有影响,天然糖化酶在微生物培养或酶的制备过程中可能受葡萄糖苷酶和蛋白酶的作用而成多型性的酶类。 (3)糖化酶的热稳性 工业用的糖化酶都是利用它的热稳性,α-环状糊精可提高糖化酶的热稳性,最适温度范围一般为50℃~60℃。 (4)从酶PH 稳定性上看: 糖化酶具较宽的PH 值适应范围,但最适PH 为4-5。 (5)Ca 离子与酶结合后可使结构变得松散些,更有利于催化反应。 (6)糖化酶与底物亲和性 收稿日期:2009-11-26 作者简介:单海艳(1977—),女,牡丹江大学化工系讲师,研究方向:生物教学。 DOI:10.15907/https://www.doczj.com/doc/104222447.html,ki.23-1450.2010.07.036

32000吨味精工厂发酵车间设计

武汉轻工大学 《发酵(制药)工厂设计》课程设计 说明书 设计题目:年产32000吨味精工厂发酵车间工艺设计 姓名 学号10021 院(系)生物与制药工程学院 专业生物工程 指导教师陶兴无江贤君 2014 年1月10 日 1

32000吨味精工厂发酵车间工艺设计 (武汉轻工大学生物与制药工程学院武汉430023) 摘要: 味精,学名为谷氨酸钠(C5H8NO4Na)。谷氨酸是氨基酸的一种,也是蛋白质的最后分解产物。我们每天吃的食盐用水冲淡400 倍,已感觉不出咸味,普通蔗糖用水冲淡200 倍,也感觉不出甜味了,但谷氨酸钠,用于水稀释3000倍,仍能感觉到鲜味,因而得名“味精”。 本文对味精发酵生产工艺及主要设备作简要介绍,以期有助于了解通气发酵工艺和主要设备的有关知识。 本设计为年产32000吨味精厂的生产工艺,设计内容为,了解味精生产中的原料预处理、发酵、提取部分的生产方法和生产流程,根据实际情况来选择发酵工段合适的生产流程,并对流程中的原料进行物料衡算、热量衡算及设备的选择。最后,画出发酵工段的工艺流程图和平面布置图。 整个设计内容大体分成三部分,第一部分主要是味精生产的工艺的物料衡算和热量衡算;第二部分设备的设计与选型;第三部分是工艺流程和平面布置图。 关键词:谷氨酸钠,发酵车间,工厂设计

Process Design of 32,000 tons Monosodium Glutamate Factory Fermentation Workshop Abstract: Monosodium glutamate (MSG)is the sodium salt of the non-essential amino acid glutamic acid,which is the final resolve product from protein. If we dilute the salt with 400 times water,we can’t taste salty any more. If we dilute the sucrose with 200 times water,we can’t taste sweetness too. But even if 3000 times water,Monosodium glutamate still taste flavor. In this paper,MSG fermentation process and a brief introduction of major equipment ,in order to help understand the fermentation process and the main ventilation equipment knowledge . According to the actual situation to choose the appropriate section in the production process of fermentation designed annual production capacity of 32,000 tons of the monosodium glutamate factory production process,design content ,understanding raw material pretreatment MSG production ,fermentation,extraction production methods and production processes part ,and the raw material for the process to select the material balance ,heat balance and equipment. Finally ,draw the fermentation section of the flow chart and floorplan . The whole design content roughly divided into three parts,the first part is mainly MSG production technology and equipment selection ; second part consists of fermentation tanks,seed tank and air filter of the design and selection ; third part is the process and floorplan . Key words:Sodium glutamate,fermentation workshop,plant desig

厂房监控系统设计方案

车间监控系统设计方案 一、车间监控项目需求 本项目视频监控系统,主要需要在车间厂区的主要道路、厂房周边以及厂房的出入口、楼梯口等共设立103个监控点,其中四个动点,其余全部为定点,要求根据现有的点位图,进行二次深化设计,确定选用的设备参数和型号,要求全部选用高清数字红外夜视摄像机。 监控控制台设置在车间一层,需要值班人员实时监控,视频资料需要保存至少一个月,有什么情况可以回放视频资料,并且回放的时候不影响实时录像。另外建立一个有6台55寸拼接屏,要求通过控制键盘和硬盘录像机都可以控制厂区内的动点和定点的切换。 车间各个监控点到监控室的线缆需要通过线槽或金属管敷设,部分为200x100的线槽,部分为Φ25的金属管,室外全部地埋敷设,室内的全部走顶内或沿墙壁敷设。 二、车间监控方案介绍 根据项目需求,本套车间视频监控系统基本可以分为前端部分、传输部分、控制存储和显示部分组成,还具有对图像信号的分配切换、存储、处理等功能。 2.1、前端部分 前端部分主要是摄像机以及其配套的产品等,包括电源、支架等,是整个系统的“眼睛”。它布置在车间的某一位置上,实时采集各个监控点

的视频画面,并通过传输部分传回监控室,进行处理。 根据车间的设计图纸和具体需求,本套视频监控系统共设计103个监控点,分别设计在车间各层、厂房周边、厂房各层的出入口、走廊以及仓库内等重要场所安装监控摄像机进行现场实时监控并录像,以保障车间的保安可以有效的杜绝安全隐患的发生,单位领导也可以随时随地了解到车间内工人的工作情况。 本车间的前端设备分布情况以及设备选型如下: 厂区共设计安装9个监控点,全部为室外监控,主要监看厂房、库房周边。设计4个动点,5个定点。其中在车间四角安装4只高清红外高速球,其内置30倍一体化变焦镜头,自带100米的红外灯,白天为彩色,晚上自动转换为黑白,并且自动启动红外灯进行补光;可360°连续旋转,方便快速跟踪可疑的人员和车辆;具有128个预置位,可以快速监看重要位置;适合于安装在室外,全天候工作。其余的5个定点摄像机均选用海康系列的50米高清红外一体摄像机,主要监看厂区出入口以及库房、厂房门口和周边的情况,全部为室外壁装。摄像机自带50米的红外灯,具有双滤光片自动切换功能,到晚上自动切换为黑白图像,并且自动启动红外灯,切换到红外滤光片模式,可以更好的接收红外光,使得晚上图像效果更佳。其防尘、防水,达到IP66的防护等级,可以直接室外安装。 车间需要监看到整体情况,设计安装94台海康的50米的红外一体摄像机,基本可以覆盖车间整个面积,达到监控的目的。其自带50米的红外灯,光线暗的时候自动启动,进行补光,达到没有灯光的时候,一样可以实时监看到现场的画面。其中电梯专用监控摄像机6部,用于监控电梯运

相关主题
文本预览
相关文档 最新文档