当前位置:文档之家› a-淀粉酶的简介

a-淀粉酶的简介

a-淀粉酶的简介
a-淀粉酶的简介

淀粉酶【拼音:diàn-fěn méi;英文:Amylase】是一种水解酶,是目前发酵工业上应用最广泛的一类酶。淀粉酶一般作用于可溶性淀粉、直链淀粉、糖原等α-1,4-葡聚糖,水解α-1,4-糖苷键的酶。根据作用的方式可分为α-淀粉酶(EC3.2.1.1.)与β-淀粉酶(EC3.2.1.2.)。

α-淀粉酶广泛分布于动物(唾液、胰脏等)、植物(麦芽、山萮菜)及微生物。微生物的酶几乎都是分泌性的。此酶以Ca2+为必需因子并作为稳定因子,既作用于直链淀粉,亦作用于支链淀粉,无差别地切断α-1,4-链。因此,其特征是引起底物溶液粘度的急剧下降和碘反应的消失,最终产物在分解直链淀粉时以麦芽糖为主,此外,还有麦芽三糖及少量葡萄糖。另一方面在分解支链淀粉时,除麦芽糖、葡萄糖外,还生成分支部分具有α-1,6-键的α-极限糊精。一般分解限度以葡萄糖为准是35-50%,但在细菌的淀粉酶中,亦有呈现高达70%分解限度的(最终游离出葡萄糖)。

β-淀粉酶与α-淀粉酶的不同点在于从非还原性末端逐次以麦芽糖为单位切断α-1,4-葡聚糖链。主要见于高等植物中(大麦、小麦、甘薯、大豆等),但也有报告在细菌、牛乳、霉菌中存在。对于象直链淀粉那样没有分支的底物能完全分解得到麦芽糖和少量的葡萄糖。作用于支链淀粉或葡聚糖的时候,切断至α-1,6-键的前面反应就停止了,因此生成分子量比较大的极限糊精。从上述的α-淀粉酶和β-淀粉酶的作用方式,分别提出α-1,4-葡聚糖-4-葡萄糖水解酶(α-1,4-glucan 4-glucanohydrolase)和α-1,4-葡聚糖-麦芽糖水解酶(α

-1,4-glucan maltohydrolase)的名称等而被使用。

α-淀粉酶是一种内切葡萄糖苷酶,属于淀粉酶α-淀粉酶催化水解淀粉会使淀粉黏度迅速下降,所以又称为液化淀粉酶。

理化性质:米黄色、灰褐色粉末。能水解淀粉中的α-1,4,葡萄糖苷键。能将淀粉切断成长短不一的短链糊精和少量的低分子糖类,从而使淀粉糊的黏度迅速下降,即起到降低稠度和“液化”的作用,所以此类淀粉酶又称为液化酶。作用温度范围60~90℃,最适宜作用温度为60~70℃,作用pH值范围5.5~7.0,最适pH值为6.0。Ca2+具有一定的激活、提高淀粉酶活力的能力,并且对其稳定性的提高也有一定效果。可催化水解α-1,4-糖苷键,但只能催化水解直链淀粉,生成α-麦芽糖和少量葡萄糖。主要存在于人的唾液和胰脏中,也存在于麦芽、蟑螂涎腺、芽胞杆菌、枯草杆菌、黑曲霉和米曲霉中。可由米曲霉、嗜酸性普鲁士蓝杆菌、淀粉液化杆菌、地衣芽孢杆菌和枯草杆菌分别经发酵、精制、干燥而得。

淀粉酶

一、淀粉 ?1、淀粉的性状及组成 ?淀粉为白色无定形结晶粉末 ?形状有圆形、椭圆形和多角形三种 ?一般含水分高、蛋白质少的植物的淀粉颗粒比较大些,多成圆形或椭圆形,如马铃薯、木薯等。 淀粉的性状及组成 ?碳44.4%,氢6.2%,氧49.4% ?分为直链淀粉和支链淀粉 ?普通谷类和薯类淀粉含直链淀粉17%~27%,其余为支链淀粉; ?而粘高粱和糯米等则不合直链淀粉,全部为支链淀粉。 ?直链淀粉聚合度约100~6000之间 ?遇碘反应是纯蓝色 淀粉的性状及组成 ?支链淀粉是由多个较短的α-1,4糖苷键直链结合而成。每2个短直链之间的连接为α-1,6糖苷键。 ?聚合度约1000~3000,000之间,一般在6000以上。 ?遇碘呈紫红色反应。 2、淀粉的特性 ?糊化:淀粉在热水中能吸收水分而膨胀,最后淀粉粒破裂,淀粉分子溶解于水中形成带有粘性的淀粉糊。 ?第一阶段:淀粉缓慢地可逆地吸收水分 ?第二阶段:当温度升到大约65℃时,淀粉颗粒经过不可逆地突然很快地吸收大量水分后膨胀,粘度增加很大。 ?第三阶段:当温度继续升高,淀粉颗粒变成无形空囊,可溶性淀粉浸出,成为半透明的均质胶体。 3、酶解法 酶解法是利用专一性很强的淀粉酶及糖化酶将淀粉水解为葡萄糖的方法。 酶解法可分为两步: 第一步,利用α-淀粉酶将淀粉液化; 第二步,利用糖化酶将糊精或低聚糖进一步水解转化为葡萄糖。生产上这两步分别称为液化和糖化。由于在该过程中淀粉的液化和糖化都是在酶的作用下进行的。因此酶解法又称为双酶法或多酶法。 ?优点:1、酶解法是在酶的作用下进行的,反应条件较温和,不需要耐高温高压或酸腐蚀的设备; ?2、酶作为催化剂的特点是专一性强,副反应少,故水解糖液纯度高,淀粉转化率高; ?3、可在较高的淀粉乳浓度下水解。 ?4、酸解法一般使用10-12Bx(含18%--20%淀粉)的淀粉乳,而酶解法可用20—23Bx (含34%--40%淀粉)的淀粉乳,并且可以采用粗原料。 ?5、用酶解法制得的糖液较纯净、颜色浅、无苦味、质量高,有利于糖液的充分利用。 ?6、双酶法工艺同样适用于大米或粗淀粉原料,可避免淀粉在加工过程中的大量流失,减少粮食消耗。 缺点:酶解法反应时间较长,设备要求较多,且酶是蛋白质,易引起糖液过滤困难。当然,随着酶制剂生产及应用技术的提高,酶解法制糖将逐渐取代酸解法制糖。 葡萄糖的分解反应 葡萄糖(失水)5`-羟甲基糠醛+甲酸

淀粉酶及其应用

淀粉酶及其应用 0 引言 淀粉酶分布非常广泛,是人们经常研究的一种酶。从纺织工业到废水处理,这些酶都有不同规模的应用。 淀粉酶是淀粉降解酶。它们广泛存在于微生物、植物和动物体中。它们将淀粉及相关的聚合物分解为带有具体淀粉分解酶特征的产品。最初,淀粉酶一词用来指可以水解直链淀粉、支链淀粉、肝糖及其降解产品中α-1,4-糖苷键的酶(本菲尔德(Bernfeld),1955年;费希尔(Fisher)和斯坦(Stein),1960年;迈拜克(Myrback)和纽慕勒(Neumuller),1950年)。它们水解相邻葡萄糖单体之间的键,产生带有具体用酶特征的产品。 近年来,人们发现了很多与淀粉及相关多糖结构降解有关的新型酶,并对其进行了研究(鲍伊(Boyer)和英格尔(Ingle),1972年;博诺考尔(Buonocore)等人,1976年;格里芬(Griffin)和福格蒂(Fogarty),1973年;福格蒂(Fogarty)和格里芬(Griffin),1975年)。 (1)有一些微生物源可以劈开这些结构中的α-1,4或α-1,4和/或α-1,6键,人们将现在已经或将来可能对这些微生物源工业化生产有重大影响的酶分为六种(福格蒂(Fogarty)和凯利(Kelly),1979年)。 (2)水解α-1,4键和绕过α-1,6键的酶,比如α-淀粉酶(内作用淀粉酶)。 (3)水解α-1,4键,但不能绕过α-1,6键的酶,比如β-淀粉酶(把麦芽糖当作一个重要的终端产品来生产的外作用淀粉酶)。 (4)水解α-1,4和α-1,6键的酶,比如淀粉葡糖苷酶(葡萄糖淀粉酶)和外作用淀粉酶。 (5)仅水解α-1,6键的酶,比如支链淀粉酶和其它一些脱支酶。 (6)优先水解其它酶对直链淀粉和支链淀粉所起的作用产生的短链低聚糖中α-1,4键的酶,比如α-葡萄糖苷酶。 (7)将淀粉水解为一连串非还原环状口葡糖基聚合物,称为环糊精或塞查丁格(Sachardinger)糊精的酶,比如浸麻芽孢杆菌(Bacillus macerans)淀粉酶(环糊精生成酶)。 1 淀粉 在描述淀粉分解酶的作用方式和性质前,有必要来讨论一下这种天然基一一淀粉的特性。淀粉是所有高等植物中主要储备碳水化合物的。在有些植物中,淀粉占整个未干植物的70%。淀粉是不溶于水的细小颗粒。这些颗粒的大小和形状常常由植物母体决定,具有植物品种的特征。当把淀粉颗粒置于水中加热时,颗粒中的连接氢键变弱,颗粒开始膨胀、凝胶化。最终,它们根据多糖的浓度或形成糊状物或形成弥散现象。淀粉来自于植物,比如玉米、小麦、高梁、稻米的种子,或木薯、马铃薯、竹芋的茎根,或来自于西谷椰子的木髓。玉 米是淀粉的主要商业原料,通过湿磨生产工艺便可获得商品淀粉(博考特(Berkhout),1976年)。直链淀粉和支链淀粉的特性见表1。 表1直链淀粉和支链淀粉的比较 性质 直链淀粉 支链淀粉 基本结构 基本直线 分岔 在水溶液中稳定性 回生 稳定 聚合度 C.103 C.104~105 平均链长 C.103 C.20~25 β淀粉酶水解 87% 54%

淀粉酶含量测定

淀粉酶(AMS)测定试剂盒说明书 (碘-淀粉比色法) 一、 原理: 淀粉酶能水解淀粉生成葡萄糖、麦芽糖及糊精,在底物浓度已知并且过量的情况下,家人碘液与未水解的淀粉结合生成蓝色复合物,根据蓝色的深浅可推算出水解的淀粉量,从而计算出AMS 的活力。 二、 试剂组成与配制:(100T ) 1、0.4mg/ml 底物缓冲液:60ml ×1瓶,4℃冰箱保存6个月。 2、0.1mol/L 碘贮备液:7ml ×1瓶,4℃避光保存6个月。 0.01mol/L 碘应用液的配制:将碘贮备液:蒸馏水=1:9稀释,现用现配4℃避光保存。 三、 操作表: 测定管(u 管) 空白管(0管) 底物缓冲液(ml )37℃预温5分钟 0.5 0.5 待测样本(ml ) 0.1 混匀,37℃水浴,准确反应7.5分钟 碘应用液(ml ) 0.5 0.5 蒸馏水(ml ) 3.0 3.1 混匀,660nm 波长,1cm 光径,蒸馏水调零,测各管吸光度。 *注:不同样本批量测试前需要做预实验,确定最佳取样浓度,将 (空白OD-测定OD 控制在0.05~0.150之间) 四、 计算: 1、 单位定义:100ml 血清(浆)中的AMS ,在37℃与底物作用30分钟,水解10mg 淀粉为1个单位。 2、公式: 样本测试前稀释倍数空白管吸光度 测定管吸光度空白管吸光度样本测试前稀释倍数分钟分钟空白管吸光度测定管吸光度空白管吸光度??-=?????-=801 .01005.730105.04.0dl AMSu (此公式适用于测定血清中淀粉酶)

血清淀粉酶的含量测定 一、实验准备: 1、实验器材:移液枪(100~1000ul、10~100ul、1000~5000ul、2~20ul)、5mlEP管、0.5mlEP 管、比色皿、100ml烧杯、漩涡仪、水浴箱,分光光度计、计时器。 2、实验药品:NaCl、蒸馏水、0.4mg/ml底物缓冲液、0.1mol/L碘贮备液。 二、实验步骤: 1、0.01mol/L碘应用液的配制: 将碘贮备液:蒸馏水=1:9稀释,现用现配4℃避光保存。 2、生理盐水的配置: 称取9gNaCl置100ml烧杯,加入100ml蒸馏水,溶解即得。 3、样品最佳取样浓度摸索: 取待测血清用生理盐水稀释成不同比例(2倍、4倍、8倍、16倍、32倍、64倍、128倍、256倍等倍数进行稀释),取0.1ml进行检测。 取两个5mlEP管,标记为空白、血清所稀释的倍数,分别加入底物缓冲液0.5ml,其中带有倍数的EP管加入相应的稀释好的血清0.1ml,于漩涡仪上混匀,同时放入37℃水浴箱反应7.5分钟,取出后各加入0.5ml 0.01mol/L 碘应用液,空白管加入3.1ml蒸馏水,带有倍数的EP管加入3.1ml蒸馏水,混匀,蒸馏水调零,迅速于660nm波长测定吸光度,控制空白OD-测定OD在0.05~0.150之间。 4、样品测定: 将所需测定样品按摸索确定的倍数稀释,同法测定吸光度,记录数据。 5、数据处理:按给定公式计算待测血清淀粉酶含量。 注:加入碘应用液后不能长时间放置,否则碘见光分解后影响测定结果

淀粉酶生产

淀粉酶生产 淀粉酶类的生产 淀粉酶属于水解酶类,是催化淀粉(包括糖原,糊精)中糖苷键水解的一类酶的统称。它是研究较多,生产最早,产量最大和应用最广泛的一种酶。几乎占整个总产量的50,以上。 根据淀粉酶对淀粉的作用方式不同,淀粉酶可分为四种主要类型,即a-淀粉酶,β-淀粉酶,葡萄糖淀粉酶和异淀粉酶。此外,还有一些应用不是很广泛,生产量不大的淀粉酶,如环状糊精生成酶,及α-葡萄糖苷酶等。 表5—1 淀粉酶的分类 常用名作用特性存在 E.C编号系统名称 不规则地分解淀粉唾液,胰脏,麦芽,α-1,4葡聚糖- α-淀粉酶,液化霉菌,细菌 E.C. 4-葡聚糖水解酶酶,淀粉-1, 4-糖原类物质的α-1 3.2.1.1 糊精酶,内断型4糖苷键 淀粉酶 E.C. α-1,4葡聚糖- Β-淀粉酶,淀粉从非还原性末端甘薯,大豆,大 3.2.1.2 4-麦芽糖水解酶 -1,4-麦芽糖苷以麦芽糖为单位麦,麦芽等高等 酶,外断型淀粉顺次分解淀粉,植物以及细菌等 酶糖原类物质的α微生物 -1,4糖苷键 E.C. α-1,4葡聚糖葡糖化型淀粉酶,从非还原性末端霉菌,细菌,酵 3.2.1.3 萄糖水解酶糖化酶,葡萄糖以葡萄糖为单位母等 淀粉酶,淀粉-1,顺次分解淀粉, 4-葡萄糖苷酶,糖元类物质的α

淀粉葡萄糖苷酶 -1,4糖苷键 E.C. 支链淀粉6-葡聚异淀粉酶,淀粉分解支链淀粉,植物,酵母,细 3.2.1.9 糖水解酶 -1,6-糊精酶,糖元类物质的α菌 R-酶,茁酶多糖-1,6糖苷键 酶,脱支酶 淀粉酶的种类不同,对直链淀粉和支链淀粉的作用方式也不一样。各种不同的淀粉酶对淀粉的作用有各自的专一性。 淀粉是自然界中分布极广的碳水化合物,它是由葡萄糖基相连接聚合而成的,根据连接方式不同一般可将其分为直链淀粉和支链淀粉两种。直链淀粉的葡萄糖基几乎都是以α-1,4键相互连接成的直连,聚合度为100—6000个葡萄糖单位不等,最近研究认为直链淀粉分子中也有极少量的分枝结构存在。支链淀粉则较复杂,除有较多的α-1,4键连接外,还在分子内有α-1,6键连接成树枝状,聚合度也比直链淀粉高。 表5—2 常见淀粉中直链与支链淀粉含量 淀粉品种直链淀粉/, 支链淀粉/, 玉米 27 73 马铃薯 23 77 甘薯 20 80 木薯 17 83 大米 17 83 糯玉米 0 100 糯高粱 0 100 糯米 0 100 5.1α-淀粉酶的生产 α-淀粉酶作用于淀粉时,可以随机的方式从分子内部切开α-1,4葡萄糖苷键而生成糊精和还原糖。其水解位于中间的α-1,4键的概率比水解位于分子末端的概率大,不能水解支链淀粉的α-1,6键,也不能水街紧靠1,6分支点的-α-1,4

实验七尿淀粉酶活性测定

实验七尿淀粉酶活性测定 淀粉酶(AMY或AMS在体内的主要作用是水解淀粉,它随机地作用于淀粉分子内的 a—1, 4糖苷键生成葡萄糖、麦芽糖、寡糖及糊精。血清中的淀粉酶主要有胰型(P型)和 唾液型(S型)及其亚型同工酶组成,P型淀粉酶主要来源于胰腺,S型淀粉酶主要来源于唾 液腺。正常淀粉酶因分子量小,故可从肾小球滤过而由尿中排出。 【目的】 1、验证淀粉酶的催化作用。 2、观察淀粉及其水解产物分别与碘反应呈现的颜色变化。 【原理】血清及尿中的淀粉酶来源于胰腺和唾液腺,正常血清与尿中有一定活性。 Winslow 氏法测定尿和血清中淀粉酶活性是将试样作等比稀释,观察一系列试样在规定的 37C、30分钟的条件下,恰好能将0.1%淀粉溶液1ml水解(指加入碘液后不再呈蓝色)的 酶量定为淀粉酶的一个活性单位,乘以尿的稀释倍数,即可得知每项ml 尿液中的淀粉酶活性。 【器材】 试管(10mn X 100mr)、试管架、电热恒温水浴箱、吸管、洗耳球、滴管。 【试剂】 1 、 9%NaCl 2、0.3%碘液 3、0.1%淀粉溶液 【操作】 1 、准备尿液(自备)。 2、取 10支试管,编号,用吸管向管中加入0.9%NaCl 1ml。 3、用1ml吸管(注意应用刻度到头的)向第一管加尿液1ml,混合,再将试管中的液 体吸起,然后任其流回试管,如此重复三次,以便全管混匀,并借此冲洗吸管内壁。吸出此混合液1ml 移入第二管中。 4、用同法处理第二管使之混匀,并取出1ml 置于第三管中。依此类推,如此继续稀释 至第九管后,吸出1ml混合液弃之,这样既可获得分别含原尿液为1/2ml,1/4ml,1/8ml, ... 1/512ml 的不同浓度的尿稀释液。第十管不加尿液作为对照管。 5、从第十管起依次向各管迅速准确加入0.1%淀粉液2ml,迅速摇匀(是否充分混匀往

血尿淀粉酶临床意义

血、尿淀粉酶检测的临床意义 贾思公 淀粉酶(AMY或AMS)全称是1,4-α-D-葡聚糖水解酶,催化淀粉及糖原水解,生成葡萄糖、麦芽糖及含有α1,6-糖苷键支链的糊精。淀粉酶主要由胰腺和唾液腺分泌,肺、肝、甲状腺、脂肪等组织亦含有此酶。 生理变异:成年人血中淀粉酶与性别、年龄、进食关系不大,新生儿淀粉酶缺乏,满月后才出现此酶,逐步升高,约在5岁时达到成年人水平,老年人淀粉酶开始下降,约低25%。 注意事项:血淀粉酶的检验结果与进食的关系并不大,因此检验前无需刻意空腹,但若有使用避孕药或者麻醉药等则可能使得测定的数值出现偏低的情况。 参考值:血清淀粉酶28—100u/L;尿液淀粉酶0—500u/L 临床意义:淀粉酶主要由唾液腺和胰腺分泌,可通过肾小球滤过。 (1)血清与尿中淀粉酶升高:流行性腮腺炎,特别是急性胰腺炎时,血和尿中淀粉酶显著增高。急性胰腺炎病人胰淀粉酶溢出胰腺外,迅速吸收入血,由尿排出,故血尿淀粉酶大为增加,是诊断本病的重要的化验检查。血清淀粉酶在发病后1~2小时即开始增高,8~12小时标本最有价值,至24小时达最高峰,并持续24~72小时,2~5日逐渐降至正常,而尿淀粉酶在发病后12~24小时开始增高,48小时达高峰,维持5~7天,下降缓慢。故胰腺炎后期测尿淀粉酶更有价值。一般情况下,血清淀粉酶在增高频率以及程度上都不及尿淀粉酶检测,当血清活性淀粉酶回归常态后,尿淀粉酶活性仍然可以持续6天左右,这也是尿淀粉酶检测的敏感度和特异度都高于血淀粉酶检测的原因所在。尿淀粉酶活性测定对于胰腺炎的诊

断非常有效,在患者未能及时就诊时更是如此,在条件允许的情况下,进行血尿淀粉酶联合测定效果更佳。对急性胰腺炎的诊断,血尿淀粉酶都有很高的敏感性。在遇到急腹症患者,特别是那些腹部持续剧痛,用解痉剂也无法缓解症状的病例,就应该及时给患者采取血尿点淀粉酶检测,如果病情不能确定,还可以采取CT 、B 超等手段辅助进行,早点确诊,以便下一步治疗。 急性阑尾炎、肠梗阻、胰腺癌、胆石症、溃疡病穿孔、慢性胰腺炎、胰腺癌、急性阑尾炎、肠梗阻、流行性腮腺炎、唾液腺化脓等血清淀粉酶均可升高,但升高幅度有限。肾功能障碍时,血淀粉酶升高,尿淀粉酶降低。 (2)血清与尿中淀粉酶降低:正常人血清中淀粉酶主要由肝脏产生,血清与尿淀粉酶同时减低主要见于肝炎、肝硬化、肝癌及急性和慢性胆囊炎等。肾功能障碍时血清淀粉酶也可降低。 血尿淀粉酶对于胰腺炎的诊断虽然很有效果,但也会存在一定的诊断不出甚至误诊的几率。胰腺炎是最为常见的急腹症,患者大多有持续性阵痛,与暴饮暴食和烟酒过度有一定关系。有一种以腹泻为主要症状的胆源性胰腺炎与急性肠胃炎临床症状极为相似,血尿淀粉酶也表现较高,容易误诊。胆结石的临床症状主要为腹疼、恶心以及呕吐、发热。常态下,存留于胰液中的胰蛋白是在十二指肠里,它变成活性胰蛋白酶需要胆汁中的肠激酶激活,这样才能够去消化蛋白质。急性胰腺炎很多都是由胆石症引起的,所以急性肠胃炎和胆结石在临床上极易被误诊为胰腺炎,需要重点关注。 总而言之,血尿淀粉酶的坚持是当前诊断胰腺炎的主要手段,其有效

淀粉酶检测试剂盒(碘-淀粉比色法)

淀粉酶(AMS)检测试剂盒(碘-淀粉比色法) 简介: 淀粉酶(Amylase ,AMS)又称1,4-α-D-葡聚糖水解酶,是水解淀粉和糖原的酶类总称。淀粉酶测定方法主要分为天然淀粉底物方法和确定底物方法,前者的方法有碘-淀粉法,后者有以麦戊糖底物的方法,以4-NP-G 为底物的方法。 Leagene 淀粉酶(AMS)检测试剂盒(碘-淀粉比色法)其检测原理是血清或血浆等样本中α-淀粉酶催化淀粉分子中的α-1,4糖苷键水解,产生葡萄糖、麦芽糖以及糊精等,碘液与未被水解的淀粉结合,生成蓝色复合。该试剂盒通过分光光度计检测660nm 处吸光度值,可用于检测细胞或组织的裂解液或匀浆液、血浆、血清、尿液等样品中内源性的淀粉酶活性。该试剂盒仅用于科研领域,不宜用于临床诊断或其他用途。 组成: 操作步骤(仅供参考): 1、 KI 工作液: 4℃避光可保存一个月。 2、 准备样品: ① 细胞或组织样品:取恰当细胞或组织裂解液,如果有必要需进行适当匀浆,低速离 心取上清,-80℃冻存,用于AMS 的检测。 ② 血浆、血清和尿液样品:血浆、血清按照常规方法制备,用生理盐水10倍稀释后, 可以直接用于本试剂盒的测定,尿液通常也可以直接用于测定,-80℃冻存,但为了消除样品本身颜色的干扰,需设置加了血浆或血清但不加底物的对照。 ③ 高活性样品:如果样品中含有较高活性的AMS ,可以使用生理盐水或PBS 等进行 稀释,也可以采用ALP Assay buffer 稀释。 ④ 样品准备完毕后可以用BCA 蛋白浓度测定试剂盒测定蛋白浓度,以便于后续计算 单位蛋白重量组织或细胞内的AMS 含量。 3、 AMS 检测:按照下表设置空白管、测定管、待测样本,溶液应按照顺序依次加入,并 注意避免产生气泡。如果样品中的淀粉酶活性过高,可以减少样品用量或适当稀释后再进行测定。样品的检测最好能设置平行孔。 如果使用分光光度计,反应体系设置如下: 编号 名称 TE0203 100T TE0203 200T Storage 试剂(A): AMS Assay buffer 50ml 100ml 4℃ 试剂(B): KI Solution 5ml 10ml 4℃ 避光 使用说明书 1份

a-淀粉酶的生产与应用

α-淀粉酶的合成与应用 谷君 摘要:酶, 发酵,生产,合成,应用 关键词:生产应用 一,淀粉酶的产生菌及酶的特性 (1)淀粉酶可由微生物发酵产生,也可从植物和动物中提取,目前I业生产上都以微生物发酵法进行大规模生产淀粉酶。在 1 9 0 8年和 1 9 1 7年德国的 B o k i i n 和 F A f r o n t [ 日先后由细菌中生产出 d .淀粉酶,用于纺织品脱浆。1 9 3 7年日本的福本口获得了产生a 一淀粉酶的括革杆菌。第二次世界大战后,由干抗生素的发明,使得微生物I业大步前进, 1 9 4 9年Ⅱ - 淀粉酶开始采用深层通风培葬法进行生产。1 9 7 3年耐热性淀粉酶投入了生产r 4 3 。随淀粉酶的用途日蓝扩大,产量日见增多,生产水平也逐步提高。近些年我们国家的酶制剂行业发展较快,从 1 9 6 5年开始应用解淀粉芽孢杆菌B F 一7 6 5 8生产淀粉酶,当时仅无锡酶制剂厂独家生产,近年在国内生产酶制剂的厂家已发展到 l 2 O多个,其中约有 4 O 左右的I厂生产淀粉酶,产品也由单一的常温I业用 d 一淀粉酶,发展到现在有I业用也有食品鼓,既有常温也有耐热的,剂型上有固体的也有液体淀粉酶。酶制剂I业现已成为近代I业生产中不可缺少的组成部门,它对社会的贡献远远超过酶I业本身。 (2)世界上许多国家都以枯草杆菌,地衣芽孢杆菌生产细菌淀粉酶和米曲霉生产的真苗淀粉酶为主要产品,在工业生产中使用的菌种,最初都是从自然中得到的,通过筛选和诱变育种工作,可改变菌种的特性,提高 n 一淀粉酶的活力。O n t t r u p 以地衣芽孢杆苗AT C C 9 7 9 8为出发菌株,用 Y射线, N T G以及 uV反复 7次 诱变,使其 n 一淀粉酶的产量为原苗株的 2 5 倍。A n d r e e v a 等将枯草杆菌孢子悬浮液经 5 0 ℃加热处理 3 0分钟,酶合成速度提高了 2 —2 、 7倍,可见采用诱变育种是行之有效的方法,但也有一定的局限性和缺点,由于发生平顶效应使之育种效果降低,利用转化法改良菌种,在枯草杆菌 n 一淀粉酶的生产苗上已 取得可喜的结果 K a z u m a s a 等采用转化和诱变结合的方法.使 n 一淀粉酶产量比亲株高 l 5 0 0 - -2 0 0 0倍近年来,随生物工程技术的发展,基因工程技术已应用到菌种的改造方面。 P a l v a r 2 等把解淀粉芽孢杆菌n 一淀粉酶基因克隆到枯草芽孢杆菌中,其 n 一淀粉酶活力比其原始的野生型苗株高 5 0 0倍。 H e n a c h a n 又把地衣芽孢杆菌耐热淀粉酶基因克隆到枯草芽孢杆苗中,美国 C P C国 际公冠的 Mo f f c t 研究中心,已获得美国食品药品管理局( F DA) 的批准,可用其研制的基因工程菌生产淀粉酶,这是第一个由 F D A 批准用基因工程菌生产的酶髑剂。。我国在利用基因重组构建耐热性一淀粉酶方面已取得一定的进展,何超刚[ 3 等将脂肪嗜热芽孢杆菌淀粉酶基因质粒带人大肠杆菌,使后者具有生 产高淀粉酶能力。任大明0 将带有淀粉酶基因的克隆片段,在枯草杆菌中得到表达。朱卫民将枯草杆菌 a淀粉酶基因在大肠杆苗中的得表达。

影响淀粉酶活性因素

温度、PH值、金属离子等均能影响酶的活度,具体表现在以下几个方面: ①温度: 由于酶对热是不稳定的,所以在不同的温度下,酶的活度是不同的。低温时,酶的活度很低,随着温度的升高,酶的活度逐渐增加,在某一温度下,酶的活度表现最高,此温度称为这种酶的最佳温度。 所谓稳定温度是指酶在该温度范围内是稳定的,不发生或极少发生失活现象。 每种酶都有它的稳定温度和作用最佳温度。酶退浆应选择所用酶的最佳温度,以使酶的活性及活性的稳定性都具有较大的数值。 胰酶的耐热性较差,稳定温度若低于35℃,高于55℃,则即失活,它的最佳温度为40~55℃,而BF-7658淀粉酶的耐热性高,40~85℃活性较高,20℃时也有较高的活性,当温度为100℃时,其活性尚未完全消失。酶的最佳温度可因加入某些活化剂而提高。同时可因与淀粉作用的时间不同而不同。 表BF-7658淀粉酶的最佳温度与作用时间的关系 与淀粉作用时间(min)作用最佳温度(℃) 60 70 30 80 15 90 2-3 100

由表可知,BF-7658淀粉酶的最佳温度随反应时间的缩短而提高。在实际生产中,经常采用短时间高温的处理工艺。如BF-7658淀粉酶在55~60℃轧酶后,再用汽蒸或热浴处理来求得快速退浆,使生产连续化,其机理是酶的破坏瞬间也是酶发挥最大作用的时间。 ②pH值: pH值对酶的活性影响很大,不同PH值下测得酶的活度及稳定性是不同的。 酶具有最大活性与最大稳定性所需的PH值是不同的,但适当选择可兼顾活度与稳定性。BF-7658淀粉酶在PH6.0~6.5范围内,其活度与稳定性可以兼顾。胰酶在PH为6.8~7.3范围内,其活度与稳定性可兼顾。 ③活化剂与抑制剂: 淀粉酶对淀粉的消化作用常受到一些药品的影响而变得活泼或迟钝,这种现象叫活化(激化)或阻化(抑制),这种化学药品称为活化(激化)剂或阻化(抑制)剂。例如一些轻金属盐类,都是活化剂,其中较常用的是氯化钠和氯化钙。所以为了提高酶的活性,酶退浆时可用适当的硬水(含有一定量的Ca+、Mg1+等离子),而不必加软水剂。而一些重金属盐类如Fe3+、Cu2+、Hg2+、Ag+、Zn2+等离子的盐类能使活化作用减弱,所以称为抑制剂。另外,离子型的表面活性剂对酶也有抑制作用,因此,酶退浆液中若要使用表面活性剂时,只能用非离子型表面活性剂,如渗透剂JFC等。 pH值是影响酶活的主要因素。它影响酶分子构象 的稳定性,影响酶分子极性基团的解离状态,也影响 底物的解离。pH值不是酶的特定常数,它可随底物的 浓度和种类、酶的纯度、缓冲液的种类和浓度、温度、 反应时间长短以及抑制物的作用等而改变。

万吨α淀粉酶生产车间的设计

万吨α淀粉酶生产车间 的设计 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

8万t/a α-淀粉酶生产车间的设计 摘要:本设计为年产80,000t α-淀粉酶的工厂设计,其通过枯草杆菌液体深层发酵、沉淀法提取达到分离纯化出菌体中α-淀粉酶的目的。本设计分别对α-淀粉酶的性质、用途、工艺流程及生产原理都做了相关的阐述,并对有关的物料和热量也作了相应的衡算,以及对标准设备的选型和计算,还对工艺指标、安全问题和环境保护都做了详细的阐述。通过设计得出结论:年产8万吨α-淀粉酶发酵工厂,共有18个500m3发酵罐,每月均放罐180罐,发酵周期为72小时,总提取率为82%,理论α-淀粉酶产量为吨/罐,实际α-淀粉酶产量为吨/罐。每月应投入生产总成本为3993万元,根据目前市场价格,年利润为万元。 关键词:α-淀粉酶;工厂设计;效益分析;发酵;发酵罐 Plant Design of Sixty thousand t/a α-Amylase Abstract:This project is designed by a factory which produces 60,000t α-Amylase a achieves the aim of filtration and purification of the α-Amylase by using the deep ferment of hay bacillus and settling design not only respectively illustrate the quality,use,technological process and production principle but also make a materials and heat balance,the type selection and calculation of the standard equipment,further more,illustrate the technic

血尿淀粉酶临床意义

血、尿淀粉酶检测得临床意义 贾思公 淀粉酶(AMY或AMS)全称就是1,4—α-D-葡聚糖水解酶,催化淀粉及糖原水解,生成葡萄糖、麦芽糖及含有α1,6—糖苷键支链得糊精。淀粉酶主要由胰腺与唾液腺分泌,肺、肝、甲状腺、脂肪等组织亦含有此酶。 生理变异:成年人血中淀粉酶与性别、年龄、进食关系不大,新生儿淀粉酶缺乏,满月后才出现此酶,逐步升高,约在5岁时达到成年人水平,老年人淀粉酶开始下降,约低25%。 注意事项:血淀粉酶得检验结果与进食得关系并不大,因此检验前无需刻意空腹,但若有使用避孕药或者麻醉药等则可能使得测定得数值出现偏低得情况。 参考值:血清淀粉酶28—100u/L;尿液淀粉酶0-500u/L 临床意义:淀粉酶主要由唾液腺与胰腺分泌,可通过肾小球滤过。 (1)血清与尿中淀粉酶升高:流行性腮腺炎,特别就是急性胰腺炎时,血与尿中淀粉酶显著增高。急性胰腺炎病人胰淀粉酶溢出胰腺外,迅速吸收入血,由尿排出,故血尿淀粉酶大为增加,就是诊断本病得重要得化验检查。血清淀粉酶在发病后1~2小时即开始增高,8~12小时标本最有价值,至24小时达最高峰,并持续24~72小时,2~5日逐渐降至正常,而尿淀粉酶在发病后12~24小时开始增高,48小时达高峰,维持5~7天,下降缓慢。故胰腺炎后期测尿淀粉酶更有价值。一般情况下,血清淀粉酶在增高频率以及程度上都不及尿淀粉酶检测,当血清活性淀粉酶回归常态后,尿淀粉酶活性仍然可以持续6天左右,这也就是尿淀粉酶检测得敏感度与特异度都高于血淀粉酶检测得原因所在。尿淀粉酶活性测定对于胰

腺炎得诊断非常有效,在患者未能及时就诊时更就是如此,在条件允许得情况下,进行血尿淀粉酶联合测定效果更佳.对急性胰腺炎得诊断,血尿淀粉酶都有很高得敏感性。在遇到急腹症患者,特别就是那些腹部持续剧痛,用解痉剂也无法缓解症状得病例,就应该及时给患者采取血尿点淀粉酶检测,如果病情不能确定,还可以采取CT 、B 超等手段辅助进行,早点确诊,以便下一步治疗。 急性阑尾炎、肠梗阻、胰腺癌、胆石症、溃疡病穿孔、慢性胰腺炎、胰腺癌、急性阑尾炎、肠梗阻、流行性腮腺炎、唾液腺化脓等血清淀粉酶均可升高,但升高幅度有限。肾功能障碍时,血淀粉酶升高,尿淀粉酶降低. (2)血清与尿中淀粉酶降低:正常人血清中淀粉酶主要由肝脏产生,血清与尿淀粉酶同时减低主要见于肝炎、肝硬化、肝癌及急性与慢性胆囊炎等。肾功能障碍时血清淀粉酶也可降低。 血尿淀粉酶对于胰腺炎得诊断虽然很有效果,但也会存在一定得诊断不出甚至误诊得几率。胰腺炎就是最为常见得急腹症,患者大多有持续性阵痛,与暴饮暴食与烟酒过度有一定关系.有一种以腹泻为主要症状得胆源性胰腺炎与急性肠胃炎临床症状极为相似,血尿淀粉酶也表现较高,容易误诊。胆结石得临床症状主要为腹疼、恶心以及呕吐、发热。常态下,存留于胰液中得胰蛋白就是在十二指肠里,它变成活性胰蛋白酶需要胆汁中得肠激酶激活,这样才能够去消化蛋白质。急性胰腺炎很多都就是由胆石症引起得, 所以急性肠胃炎与胆结石在临床上极易被误诊为胰腺炎,需要重点关注。 总而言之,血尿淀粉酶得坚持就是当前诊断胰腺炎得主要手段,其有效率高,操作也较为简便,能够更为快捷得发现胰腺炎患者,便于对症治

测定α-淀粉酶活力的方法

实验五激活剂、抑制剂、温度及PH 对酶活性的影响 一、目的要求通过实验加深对酶性质的认识,了解测定a-淀粉酶活力的方法。 二、实验原理 酶是生物体内具有催化作用的蛋白质,通常称为生物催化剂。酶催化的反应称为酶促反应。生物催化剂催化生化反应时具有:催化效率好、有高度的专一性、反应条件温和、催化活力与辅基,辅酶,金属离子有关等特点。 能提高酶活力的物质,称为激活剂。激活剂对酶的作用有一定的选择性,其种类多为无机离子和简单的有机化合物。使酶的活力中心的化学性质发生变化,导致酶的催化作用受抑制或丧失的物质称为酶抑制剂。氯离子为唾液淀粉酶的激活剂,铜离子为其抑制剂。应注意的是激活剂和抑制剂不是绝对的,有些物质在低浓度时为某种酶的激活剂,而在高浓度时则为该酶的抑制剂。如氯化钠达到约30%浓度时可抑制唾液淀粉酶的活性。 酶促反应中,反应速度达到最大值时的温度和PH值称为某种酶作用时的最适温度和PH值。 温度对酶反应的影响是双重的:一方面随着温度的增加,反应速度也增加,直至最大反应速度为止;另一方面随着温度的不断升高,而使酶逐步变性从而使反应速度降低。同样,反应中某一PH 范围内酶活力可达最高,在最适PH 的两侧活性骤然下降,其变化趋势呈钟形曲线变化。 食品级a - 淀粉酶是一种由微生物发酵生产而制备的微生物酶制剂,主要由枯草芽孢杆菌、 黑曲霉、米曲霉等微生物产生。但不同菌株产生的酶在耐热性、酶促反应的最适温度、PH、对 淀粉的水解程度,以及产物的性质等均有差异。a -淀粉酶属水解酶,作为生物催化剂可随机作用于直链淀粉分子内部的a -1,4 糖苷键,迅速地将直链淀粉分子切割为短链的糊精或寡糖,使淀粉的粘度迅速下降,淀粉与碘的反应逐渐消失,这种作用称为液化作用,生产上又称 a -淀 粉酶为液化淀粉酶。a -淀粉酶不能水解淀粉支链的 a -1,6糖苷键,因此最终水解产物是麦芽 糖、葡萄糖和a -1,6 键的寡糖。 本实验通过淀粉遇碘显蓝色,糊精按其分子量的大小遇碘显紫蓝、紫红、红棕色,较小的糊精(少于6 个葡萄糖单位)遇碘不显色的呈色反应,来追踪a -淀粉酶作用于淀粉基质的水解过程,从而了解酶的性质以及动力学参数。 三、激活剂和抑制剂对唾液淀粉酶活力的影响 (一)试剂及材料 1、1: 30唾液淀粉酶配置用蒸馏水漱口,1min后收集唾液,以1: 30倍蒸馏水稀释。

a-淀粉酶发酵的生产工艺

武汉轻工大学 设计α-淀粉酶的发酵生产工艺 系部食品科学与工程学院 专业粮食工程 班级粮工1002 姓名郑开旭 学号100107502 指导教师易阳 2013年6月9日

设计α-淀粉酶发酵的生产工艺 摘要:α-淀粉酶广泛分布于动物、植物和微生物中,能水解淀粉产生糊精、麦芽糖、低聚糖和葡萄糖等,是工业生产中应用最为广泛的酶制剂之一。目前,α- 淀粉酶已广泛应用于变性淀粉及淀粉糖、焙烤工业、啤酒酿造、酒精工业、发酵以及纺织等许多行业。本次设计的淀粉酶发酵,分别以玉米粉为碳源,以豆饼为氮源,以BF-7658枯草芽孢杆菌为生产菌种,同时做出了生产工艺流程图,详细的介绍了α-淀粉酶的生产工艺。 关键词:α-淀粉酶;工艺设计;发酵 正文: α-淀粉酶的生产工艺 1 α-淀粉酶的生产方法 1.1生产方法的选择 枯草杆菌BF7658是我国应用广泛的液化型α-淀粉酶菌种,国内普遍采用深层发酵法生产工业粗酶。我们从BF7658出发,用紫外光及化学药品反复交替诱变,选育适用于固体发酵的新菌体BF7658—1。该菌为短杆状,革兰氏阳性,两端钝园,在肉汁表面可生成菌膜,在培养基上菌落呈乳白色,表面光滑、湿润、略有光泽,用碘液试之,菌落周围呈透明圈。 ?固体培养枯草杆菌BF7658—1生产α-淀粉酶 将菌种接种于马铃薯琼脂斜面,37℃培养三天,然后转接到种子液体培养基上(豆饼粉、玉米粉、酵母膏、蛋白胨火碱、水等),摇瓶培养一定时间,当菌体进入对数生长期时,以0. 5%接种量接入固体培养基(麸皮、米糠、豆饼粉、火碱、水;ph=7左右,常压汽蒸一小时,冷却到38~40℃)在厚层通风制曲箱内,通风保持37~42℃,培养48小时出曲风干。 麸曲用1%食盐水3~4倍浸泡,3小时后过滤,调节滤液pH=8,加硫酸铵溶液沉淀酶,经离心,用浓酒精洗涤脱水,40℃烘干、磨粉即为成品。 ?深层发酵法生产α-淀粉酶

葡萄糖淀粉酶生产工艺图

葡萄糖淀粉酶生产工艺图 淀粉糖是指以淀粉为原料经水解、精制或再经深加工而获得的糖制品。淀粉分子是由成千上万个葡萄糖分子(C6H12O6)连接而成,一个葡萄糖分子有6个碳原子,与下一个葡萄糖分子相连时有三种连法:一是第4个碳原子与下一个葡萄糖分子的第1个碳原子相连;二是第6个碳原子与下一个葡萄糖分子的第1个碳原子相连;三是第4个碳原子与下一个葡萄糖分子的第1个碳原子相连,同时第6个碳原子与另一个葡萄糖分子的第1个碳原子相连。全部葡萄糖分子都以第一种连法连接的是直链淀粉,自然界很少存在;全部葡萄糖分子都以第二种连法连接无法形成长链,形不成淀粉;葡萄糖分子以三种连法混合连成的淀粉分子是自然界存在的淀粉的主流,其中以第三种连法连接的部位形成支叉,所以叫支链淀粉。 果糖与葡萄糖一样都是单糖,果糖的分子式也是C6H12O6,属于葡萄糖的同分异构体,通过异构酶的作用,葡萄糖的醛基变成酮基即得到果糖。蔗糖、麦芽糖及异麦芽糖都属于双糖,一个葡萄糖的第4个碳原子另一个葡萄糖分子的第1个碳原子相连即为麦芽糖,一个葡萄糖的第6个碳原子另一个葡萄糖分子的第1个碳原子相连即为异麦芽糖,而蔗糖则由一个葡萄糖分子与一个果糖分子连接而成。三个葡萄糖分子相连而成的三糖有麦芽三糖和潘糖。4~8个葡萄糖连成的短链糖品叫低聚糖,9个以上葡萄糖连成的中分子物质叫做糊精,其甜味已经不明显,大量的葡萄糖连在一起就形成了淀粉或者形成更大分子量的纤维素。 以淀粉为原料选用不同的酶来水解或控制不同的水解程度可以得到不同的淀粉糖品。以诺维信酶制剂为例: 1、用耐温淀粉酶Termamyl Supra将淀粉乳液化至DE6~10,经精制和喷雾干燥后可以制得糊精制品; 2、用耐温淀粉酶Termamyl Supra将淀粉乳液化至DE13~15,选用葡萄糖淀粉酶Dextrozyme DX糖化到DE40~50,可以获得食品行业常用的葡萄糖浆; 3、用耐温淀粉酶Termamyl Supra将淀粉乳液化至DE13~15,选用葡萄糖淀粉酶Dextrozyme DX糖化到DE99.5~101,可以得到葡萄糖含量97%以上的糖液。经过精制后在50℃以下结晶可以制取一水结晶葡萄糖,在50℃以上结晶可以制取无水结晶葡萄糖; 4、用耐温淀粉酶Termamyl Supra将淀粉乳液化至DE10~11,选用真菌淀粉酶FUNGAMYL 800L糖化到DE45~48,可以获得麦芽糖含量50~55%的普通麦芽糖浆; 5、用耐温淀粉酶Termamyl Supra将淀粉乳液化至DE10~11,选用β-淀粉酶Novozym WBA和普鲁兰酶Promozyme(适于水解糖链的支叉部位)糖化到DE43~46,可以获得麦芽糖含量60%以上的高麦芽糖浆或芽糖含量70%以上的超高麦芽糖浆。 以葡萄糖为原料,经固定化异构酶Sweetzyme IT异构化可以获得糖分组成中果糖约占42%的F42果葡糖浆,F42果葡糖浆经色谱分离可以获得糖分组成中果糖最多约占90%的F90超高果糖浆,F90超高果糖浆还可以通过结晶制得结晶果糖。 以葡萄糖为原料,经高压加氢可以制得山梨醇,通过结晶可以制得结晶山梨醇。

血清α-淀粉酶(AMS)测定

血清α-淀粉酶(AMS)测定 1. 实验原理 AMS测定采用酶动态比色测定法。所用底物为4,6-亚乙基-α,D-麦芽七糖苷-对硝基苯酚(EPS-G7)。样品中α-淀粉酶分解底物EPS-G7,生成对硝基苯酚(PNP),在405nm处比色,吸光度的上升速率与样品中α-淀粉酶的活力成正比。 2 亚乙基-G5 + 2 G2PNP 5EPS-G7+5H2O α-淀粉酶 2 亚乙基-G4 + 2 G3PNP 亚乙基-G3+G4PNP α-葡萄糖苷酶 2G2PNP+2G3PNP+G4PNP+14H2O 5PNP+14G (反应式中PNP:对硝基苯酚;G:葡萄糖) 2. 标本采集与处理:

2.1 病人准备:无特殊要求。 2.2 标本类型:血清、肝素或EDTA处理的血浆、尿液。 2.3 血清分离血清或血浆应在收集后尽快分离出来。未酸化的尿液,随机或限时收取。 3. 标本存放:不要用嘴吸取标本或对标本吹气,以免唾液污染标本唾液中的淀粉酶使结果升高。血清淀粉酶在20~25℃稳定一个星期,避免微生物降解作用;在2~8℃时稳定一个月。尿液样品在2~8℃可稳定10天,在15~25℃可稳定2天。对于尿液,酸性pH值可使淀粉酶的稳定性减弱,因此,储存前pH值应调至大约7.0。 4. 标本运输:常温条件下运输 5. 标本拒收标准:细菌污染、溶血的不能做测定。 6. 实验材料: 6.1 AMS测定试剂盒(试剂1 6×64 ml +试剂2 6×16 ml) 6.1.1 试剂组成 试剂1: GOOD’S 缓冲液pH 7.1 100mmol/L

氯化钠50mmol/L 氯化镁10mmol/L α-葡萄糖苷酶≥23KU/L 试剂2: EPS-G73mmol/L 6.1.2 试剂准备:试剂为即用式。 6.1.3 试剂稳定性与贮存:原试剂避光保存于2~8℃,若无污染,可稳定至失效期。试剂有效期为24个月。6.1.4变质指示:当试剂有浊度时,表明有细菌污染则试剂不能使用。 6.1.5注意事项:唾液和皮肤中含有α-淀粉酶,应避免用嘴吸取试剂,避免皮肤接触试剂。试剂中含叠氮钠,避免接触皮肤及粘膜。 6.2 校准品:参见生化检验校准品和质控品.SOP文件 6.3 质控品:参见生化检验校准品和质控品.SOP文件 7. 仪器:奥林巴斯AU2700生化分析仪 8. 操作步骤 8.1 项目基本参数:参见生化检验奥林巴斯AU2700生化

a-淀粉酶的简介

淀粉酶【拼音:diàn-fěn méi;英文:Amylase】是一种水解酶,是目前发酵工业上应用最广泛的一类酶。淀粉酶一般作用于可溶性淀粉、直链淀粉、糖原等α-1,4-葡聚糖,水解α-1,4-糖苷键的酶。根据作用的方式可分为α-淀粉酶(EC3.2.1.1.)与β-淀粉酶(EC3.2.1.2.)。 α-淀粉酶广泛分布于动物(唾液、胰脏等)、植物(麦芽、山萮菜)及微生物。微生物的酶几乎都是分泌性的。此酶以Ca2+为必需因子并作为稳定因子,既作用于直链淀粉,亦作用于支链淀粉,无差别地切断α-1,4-链。因此,其特征是引起底物溶液粘度的急剧下降和碘反应的消失,最终产物在分解直链淀粉时以麦芽糖为主,此外,还有麦芽三糖及少量葡萄糖。另一方面在分解支链淀粉时,除麦芽糖、葡萄糖外,还生成分支部分具有α-1,6-键的α-极限糊精。一般分解限度以葡萄糖为准是35-50%,但在细菌的淀粉酶中,亦有呈现高达70%分解限度的(最终游离出葡萄糖)。 β-淀粉酶与α-淀粉酶的不同点在于从非还原性末端逐次以麦芽糖为单位切断α-1,4-葡聚糖链。主要见于高等植物中(大麦、小麦、甘薯、大豆等),但也有报告在细菌、牛乳、霉菌中存在。对于象直链淀粉那样没有分支的底物能完全分解得到麦芽糖和少量的葡萄糖。作用于支链淀粉或葡聚糖的时候,切断至α-1,6-键的前面反应就停止了,因此生成分子量比较大的极限糊精。从上述的α-淀粉酶和β-淀粉酶的作用方式,分别提出α-1,4-葡聚糖-4-葡萄糖水解酶(α-1,4-glucan 4-glucanohydrolase)和α-1,4-葡聚糖-麦芽糖水解酶(α -1,4-glucan maltohydrolase)的名称等而被使用。 α-淀粉酶是一种内切葡萄糖苷酶,属于淀粉酶α-淀粉酶催化水解淀粉会使淀粉黏度迅速下降,所以又称为液化淀粉酶。 理化性质:米黄色、灰褐色粉末。能水解淀粉中的α-1,4,葡萄糖苷键。能将淀粉切断成长短不一的短链糊精和少量的低分子糖类,从而使淀粉糊的黏度迅速下降,即起到降低稠度和“液化”的作用,所以此类淀粉酶又称为液化酶。作用温度范围60~90℃,最适宜作用温度为60~70℃,作用pH值范围5.5~7.0,最适pH值为6.0。Ca2+具有一定的激活、提高淀粉酶活力的能力,并且对其稳定性的提高也有一定效果。可催化水解α-1,4-糖苷键,但只能催化水解直链淀粉,生成α-麦芽糖和少量葡萄糖。主要存在于人的唾液和胰脏中,也存在于麦芽、蟑螂涎腺、芽胞杆菌、枯草杆菌、黑曲霉和米曲霉中。可由米曲霉、嗜酸性普鲁士蓝杆菌、淀粉液化杆菌、地衣芽孢杆菌和枯草杆菌分别经发酵、精制、干燥而得。

淀粉酶活力的测定方法

淀粉酶活力的测定方法 淀粉酶主要包括α-淀粉酶、β-淀粉酶、葡萄糖淀粉酶和R-酶,它们广泛存在于动物、植物和微生物界。不同来源的淀粉酶,性质有所不同。植物中最重要的淀粉酶是α -淀粉酶和β-淀粉酶。 α -淀粉酶随机作用于直链淀粉和支链淀粉的直链部分α -1,4糖苷键,单独使用时最终生成寡聚葡萄糖、α-极限糊精和少量葡萄糖。Ca 2+能使α-淀粉酶活化和稳定,它比较耐热但不耐酸,pH 3.6 以下可使其钝化。 β-淀粉酶从非还原端作用于α-1,4糖苷键,遇到支链淀粉的α -1,6键时停止。单独作用时产物为麦芽糖和β-极限糊精。β-淀粉酶是一种巯基酶,不需要Ca 2+ 及Cl —等辅助因子,最适pH偏酸,与α -淀粉酶相反,它不耐热但觉耐酸,60 ℃保温15min 可使其钝化。 通常提取液中α -淀粉酶和β-淀粉酶同时存在。可以先测定(α + β)淀粉酶总活力,然后在60 ℃加热15 min ,钝化β-淀粉酶,测出α -淀粉酶活力,用总活力减去α - 淀粉酶活力,就可求出β- 淀粉酶活力。 淀粉酶活力大小可用其作用于淀粉生成的还原糖与3,5- 二硝基水杨酸的显色反应来测定。还原糖作用于黄色的3,5- 二硝基水杨酸生成棕红色的3- 氨基-5- 硝基水杨酸,生成物颜色的深浅与还原糖的量成正比。以每克样品在一定时间内生成的还原糖(麦芽糖)量表示酶活大小。 1 酶活测定方法 (1)标准曲线的制作(见下表) ①取7支20 ml具塞刻度试管,预先洁净灭菌干燥,编号,按表加入试剂。②摇匀,至沸水浴中煮沸5 min。取出后流水冷却,加蒸馏水定容至20 ml,以1号管作为空白调零点,在520 nm的波长下比色测定吸光度值。并建立通过吸光度值求麦芽糖含量的回归方程。 表1 标准麦芽糖溶液成分表及OD测定值 试剂 1 2 3 4 5 6 7 麦芽糖标准液(mL)0 0.2 0.6 1.0 1.4 1.8 2.0 H2O(mL) 2.0 1.8 1.4 1.0 0.6 0.2 0 3,5-二硝基水杨酸(mL) 2.0 2.0 2.0 2.0 2.0 2.0 2.0 麦芽糖含量(mg)0 0.2 0.6 1.0 1.4 1.8 2.0 OD520 (2)粗酶液淀粉酶活力测定 ①待测粗酶液的制备: 发酵24 h后发酵液4000 r/ min离心10 min,去除菌体,在上清液中加入65%饱和度的硫酸铵,待硫酸铵充分溶解后于4℃盐析2h,然后5000r/min离心20min,得到初步

相关主题
文本预览
相关文档 最新文档