当前位置:文档之家› 催化剂表征与测试

催化剂表征与测试

催化剂表征与测试
催化剂表征与测试

纳米材料的测试与表征

纳米材料的测试与表征 目录 一、纳米材料分析的特点 二、纳米材料的成分分析 三、纳米材料的结构分析 四、纳米材料的形貌分析 一、纳米材料分析的特点 纳米材料具有许多优良的特性诸如高比表面、高电导、高硬度、高磁化率等; 纳米科学和技术是在纳米尺度上(0.1nm~100nm之间)研究物质(包括原子、分子)的特性和相互作用,并利用这些特性的多学科的高科技。 纳米科学大体包括纳米电子学、纳米机械学、纳米材料学、纳米生物学、纳米光学、纳米化学等领域。 纳米材料分析的意义 纳米技术与纳米材料属于高技术领域,许多研究人员及相关人员对纳米材料还不是很熟悉,尤其是对如何分析和表征纳米材料,获得纳米材料的一些特征信息。 主要从纳米材料的成分分析,形貌分析,粒度分析,结构分析以及表面界面分析等几个方面进行了检测分析。 通过纳米材料的研究案例来说明这些现代技术和分析方法在纳米材料表征上的具体应用。 二、纳米材料的成分分析 ●成分分析的重要性 ?纳米材料的光电声热磁等物理性能与组成纳米材料的化学成分和结构具有密切关 系 ?TiO2纳米光催化剂掺杂C、N ?纳米发光材料中的杂质种类和浓度还可能对发光器件的性能产生影响据报;如通过 在ZnS中掺杂不同的离子可调节在可见区域的各种颜色。 ?因此确定纳米材料的元素组成测定纳米材料中杂质种类和浓度是纳米材料分析的 重要内容之一。 ●成分分析类型和范围 ?纳米材料成分分析按照分析对象和要求可以分为微量样品分析和痕量成分分 析两种类型; ?纳米材料的成分分析方法按照分析的目的不同又分为体相元素成分分析、表面 成分分析和微区成分分析等方法; ?为达此目的纳米材料成分分析按照分析手段不同又分为光谱分析、质谱分析、 能谱分析 ●纳米材料成分分析种类 ?光谱分析:主要包括火焰和电热原子吸收光谱AAS,电感耦合等离子体原

纳米材料的制备与表征摘录(打印)

纳米材料的制备与表征方法摘录 作者姓名:彭家仁 单位:五邑大学广东江门 摘要:被誉为“21世纪最有前途的材料”的纳米材料同信息技术和生物技术一样已经成为21世纪社会经济发展的三大支柱之一和战略制高点。由于纳米材料的特殊结构以及所表现出来的特异效应和性能,使得纳米材料具有不同于常规材料的特殊用途。本文就纳米材料的结构特性和性能、应用及制备方法与表征进行了综述。旨在为纳米材料的应用及其制备提供理论指导。 关键词:纳米材料;结构特性;特异效应;应用;制备方法 Methods of Preparation and Characterization of nano-materials Kevin Peng (WUYI University Jiangmen Guangdong) Abstract:The nano-materials known as“the most promising material in the21st century”along with the information technology and the biotechnology has become one of the three pillars of the socio-economic development and the strategic high ground in the21st century.Because of the special structure of the nano-materials,as well as its specific effects and performance,thenano-materials have the special purposes other than the conventional materials. In this paper,we search for the structural properties,specific effect and the performance and the Synthesis and Characterization of nano-materials.The purpose is to provide theoretical guidance for the application and preparation of nano-materials. Keywords:nano-materials;structural properties;specific effect;applications;preparation methods 0前言 从人类认识世界的精度来看,人类的文明发展进程可以划分为模糊时代(工业革命之前)、毫米时代(工业革命到20世纪初)、微米和纳米时代(20世纪40年代开始至今)。自20世纪80年代初,德国科学家Gleiter提出“纳米晶体材料”的概念,随后采用人工制备首次获得纳米晶体,并对其各种物性进行系统的研究以来,纳米材料已引起世界各国科技界及产业界的广泛关注。纳米材料是指特征尺寸在纳米数量级(通常指1~100nm)的极细颗粒组成的固体材料。从广义上讲,纳米材料是指三维空间尺寸中至少有一维处于纳米量级的材料。通常分为零维材料(纳米微粒),一维材料(直径为纳米量级的纤维),二维材料(厚度为纳米量级的薄膜与多层膜),以及基于上述低维材料所构成的固体。从狭义上讲,则主要包括纳米微粒及由它构成的纳米固体(体材料与微粒膜)。纳米材料的研究是人类认识客观世界的新层次,是交叉学科跨世纪的战略科技领域。

纳米材料的制备以及表征教学总结

纳米材料的制备以及表征 纳米科技作为21世纪的主导科学技术,将会给人类带来一场前所未有的新的工业革命。纳米科技使我们人类认识和改造物质世界的手段和能力延伸到原子和分子。纳米材料是目前材料科学研究的一个热点,纳米材料是纳米技术应用的基础。科学家们正致力于研究对纳米材料的组成、结构、形态、尺寸、排列等的控制,以制备符合各种预期功能的纳米材料。 低维纳米材料因其具有独特的物理化学特性以及在各个同领域的广泛应用 而受到国内外许多科研小组的广泛关注。钒氧化物纳米材料因为具有良好的催化性能、传感特性及电子传导特性而成为研究低维纳米材料物理化学现象的理想体系。尤其是对钒氧化合物纳米线、纳米带、纳米管的结构与性能的研究日益深入。另外,稀土正硼酸盐纳米材料因其独特的发光性能、电磁性能引起了广大科研小组的浓厚兴趣,是低维纳米材料领域研究的一个热点内容。 1.绪论 1.1纳米材料的发展概况 早在60年代,东京大学的久保良吾(Kubo)就提出了有名的“Kubo效应”, 认为金属超微粒子中的电子数较少,而不遵守Femri统计,并证实当结构单元变得比与其特性有关的临界长度还小时,其特性就会发生相应的变化。70年代末80年代初,随着干净的超微粒子的制取及研究,“Kubo效应”理论日趋完善, 为日后纳米技术理论研究打下了基础。人们对纳米颗粒的结构、形态和特性进行了比较系统的研究,描述金属微粒费密面附近电子能级状态的久保理论日趋完善,并且用量子尺寸效应成功地解释了超微粒子的某些特性[3]。最早使用纳米颗粒 制备三维块体试样的是德国萨尔兰大学教授H.Gletier,他于1984年用惰性气体蒸发、原位加压法制备了具有清洁表面的纳米晶Pd、cu、Fe等[4],并从理论及性能上全面研究了相关材料的试样,提出了纳米晶材料的概念,成为纳米材料的创始者。1987年美国Argon实验室sigeel博士课题组用相同方法制备了纳米陶 瓷TIOZ多晶体。纳米技术在80年代末和90年代初得到了长足发展,并逐步成为一个纳米技术体系。1990年7月,第一届国际纳米科技会议在美国巴尔的摩 召开,标志着纳米科学技术的正式诞生;正式提出了纳米材料学、纳米生物学、

纳米材料的表征方法

纳米材料的表征及其催化效果评价方式纳米材料的表征主要目的是确定纳米材料的一些物理化学特性如形貌、尺寸、粒径、等电点、化学组成、晶型结构、禁带宽度和吸光特性等。 纳米材料催化效果评价方式主要是在光照(紫外、可见光、红外光或者太阳光)条件下纳米材料对一些污染物质(甲基橙、罗丹明B、亚甲基蓝和Cr6+等)的降解或者对一些物质的转化(用于选择性的合成过程)。评价指标为污染物质的去除效率、物质的转化效率以及反应的一级动力学常数k的大小。

1 、结构表征 XRD,ED,FT-IR, Raman,DLS 2 、成份分析 AAS,ICP-AES,XPS,EDS 3 、形貌表征 TEM,SEM,AFM 4 、性质表征-光、电、磁、热、力等 … UV-Vis,PL,Photocurrent

1. TEM TEM为透射电子显微镜,分辨率为~,放大倍数为几万~百万倍,用于观察超微结构,即小于微米、光学显微镜下无法看清的结构。TEM是一种对纳米材料形貌、粒径和尺寸进行表征的常规仪器,一般纳米材料的文献中都会用到。 The morphologies of the samples were studied by a Shimadzu SSX-550 field-emission scanning electron microscopy (SEM) system, and a JEOL JEM-2010 transmission electron microscopy (TEM)[1]. 一般情况下,TEM还会装配High-Resolution TEM(高分辨率透射电子显微镜)、EDX(能量弥散X射线谱)和SAED(选区电子衍射)。High-Resolution TEM用于观察纳米材料的晶面参数,推断出纳米材料的晶型;EDX一般用于分析样品里面含有的元素,以及元素所占的比率;SAED用于实现晶体样品的形貌特征与晶体学性质的原位分析。

催化剂表征与测试

Sieving 筛分法Optical microscopy 光学显微镜法Scanning electron microscopy 扫描电镜法Transmission electron microscopy (TEM) 透射电镜法Scanning TEM (STEM) 扫描透射电镜法Scanning tunneling microscopy (STM) 扫描隧道显微镜Scanning force microscopy (SFM) 扫描力显微镜Gravitaional sedimentation 重力沉降法Resistive pulsed 电阻法 Light obscuration 光透法Fraunhofer diffraction 夫琅和费衍射法Cetrifugal sedimentation 离心沉降法Photon correlation spectroscopy(PCS) 光子相关光谱分析法Hydrodynamic chromatography(HCD) 流动色层分析法Field flow fractionation(FFF) 场流分离法 BET method BET法 Small angle X-ray scatiering(XSAS) X-射线小角度散射法Chemisorption 化学吸附法Adsorption-Titration method 吸附-滴定法Mercury porosimetry 压汞法

Incipient wetness 初湿含浸法Permeametry 渗透测粒法Counterdiffusion 反扩散法 Small angle neutron scatiering(NSAS) 中子小角散射法Volumetric adsorption 体积吸附法Gravimetric adsorption 重量吸附法Dynamic adsorption 动态吸附法Calorimetry 量热法 IR-spectroscopy 红外光谱法Raman spectroscopy 拉曼光谱法 UV-Vis spectroscopy 紫外-可见光光谱法Mass spectrometry 质谱 Atomic absorption spectroscopy (AAS)原子吸收光谱Auger electron spectroscopy (AES) 俄歇电子能谱Electron spectroscopy for chemical analysis (ESCA) 化学分析电子能谱 X-ray photoelectron spectroscopy (XPS)X 射线电子能谱 Uv-photoelectron spectroscopy (UPS)紫外光电子能谱Energy dispersive spectroscopy (EDS) 能量色散谱Wavelength dispersive spectroscopy (WDS) 波长分散谱Mossbauer spectroscopy 穆斯堡尔谱Electron spin resonance (ESR) 电子自旋共振Electron Paramagnetic Resonance(EPR) 电子顺磁共振

纳米材料的测试与表征

报告 课程名称纳米科学与技术专业班级电气1241 姓名张伟 学号32 电气与信息学院 和谐勤奋求是创新

纳米材料的测试与表征 摘要:介绍了纳米材料的特性及测试与表征。综合使用各种不同的分析和表征方法,可对纳米材料的结构和性能进行有效研究。 关键词:测试技术;表征方法;纳米材料 引言 纳米材料具有许多优良的物理及化学特性以及一系列新异的力、光、声、热、电、磁及催化特性,被广泛应用于国防、电子、化工、建材、医药、航空、能源、环境及日常生活用品中,具有重大的现实与潜在的高科技应用前景。纳米材料的化学组成及其结构是决定其性能和应用的关键因素,而要探讨纳米材料的结构与性能之间的关系,就必须对其在原子尺度和纳米尺度上进行表征。其重要的微观特征包括:晶粒尺寸及其分布和形貌、晶界及相界面的本质和形貌、晶体的完整性和晶间缺陷的性质、跨晶粒和跨晶界的成分分布、微晶及晶界中杂质的剖析等。如果是层状纳米结构,则要表征的重要特征还有:界面的厚度和凝聚力、跨面的成分分布、缺陷的性质等。总之,通过对纳米材料的结构特性的研究,可为解释材料结构与性能的关系提供实验依据。 纳米材料尺度的测量包括:纳米粒子的粒径、形貌、分散状况以及物相和晶体结构的测量;纳米线、纳米管的直径、长度以及端面结构的测量和纳米薄膜厚度、纳米尺度的多层膜的层厚度的测量等。适合纳米材料尺度测量与性能表征的仪器主要有:电子显微镜、场离子显微镜、扫描探测显微镜Χ光衍射仪和激光粒径仪等。 紫外和可见光谱是纳米材料谱学分析的基本手段,分为吸收光谱、发射光谱和荧光光谱。吸收光谱主要用于监测胶体纳米微粒形成过程;发射光谱主要用于对纳米半导体发光性质的表征,荧光光谱则主要用来对纳米材料特别是纳米发光材料的荧光性质进行表征。红外和喇曼光谱的强度分别依赖于振动分子的偶极矩变化和极化率的变化,因而,可用于揭示纳米材料中的空位、间隙原子、位错、晶界和相界等方面的信息。纳米材料中的晶界结构比较复杂,与材料的成分、键合类型、制备方法、成型条件以及热处理过程等因素均有密切的关系。喇曼频移与物质分子的转动和振动能级有关,不同的物质产生不同的喇曼频移。喇曼频率特征可提供有价值的结构信息,利用喇曼光谱可以对纳米材料进行分子结构、键态特征分析和定性鉴定等。喇曼光谱具有灵敏度高、不破坏样品、方便快速等优点,是研究纳米材料,特别是低维纳米材料的首选方法。 目前对纳米微观结构的分析表征手段主要有扫描探针显微技术,它包括扫描隧道电子显微镜、原子力显微镜、近场光学显微镜等。利用探针与样品的不同相互作用,在纳米级至原子级水平上研究物质表面的原子和分子的几何结构及与电子行为有关的物理、化学性质。例如用STM不仅可以观察到纳米材料表面的原子或电子结构,还可以观察表面存在的原子台阶、平台、坑、丘等结构缺陷。高分辨电子显微镜用来观察位错、孪晶、晶界、位错网络等缺陷,核磁共振技术可以用来研究氧缺位的分布、原子的配位情况、运动过程以及电子密度的变化;用核磁共振技术可以研究未成键电子数、悬挂键的类型、数量以及键的结构特征等。 测试技术的发展 纳米测试技术的研究大致分为三个方面:一是创造新的纳米测量技术,建立新理论、新方法;二是对现有纳米测量技术进行改造、升级、完善,使它们能适应纳米测量的需要;三是多种不同的纳米测量技术有机结合、取长补短,使之能适应纳米科学技术研究的需要。纳米测试技术是多种技术的综合,如何将测试技术与控制技术相融合,将探测、定位、测量、控制、信号处理等系统结合在一起构成一个大系统,开发、设计、制造出实用新型的纳米测量系统,是亟待解决的问题,也是今后发展的方向。随着纳米材料科学的发展和纳米制备技术的进步,将需要更新的测试技术和手段来表征、评价纳米粒子的粒径、形貌、分散和团聚

催化剂表征方法

表征方法仪器设备规格及使用条件在课题中的作用 物相分析(XRD)X光衍射仪采用D/Max2500VB2+/PC型X光衍射 仪,工作电流为200mA,工作电压40 kV,Cu靶。 1.在不同焙烧温度下(如550、800℃)对新鲜催化剂进行晶相分析, 对不同的新鲜催化剂进行晶相分析。 2.对添加了不同助剂的催化剂进行晶相分析。 3.根据其晶相衍射峰,衍射峰越窄,催化剂的结晶度越大。 新鲜催化剂的晶粒分 析(TEM) 透射电子显微镜 (TEM)在日立H-800型透射电子显微 镜下进行,新鲜催化剂首先在 50%H2/N2气氛下,800℃温度下还原 3小时后在透镜下直接观察催化剂的 表面镍晶粒,随机测量数百颗镍晶粒 最大直径,用统计的方法算出算术平 均直径作为镍晶粒的平均粒径。 对新鲜催化剂金属镍粒径大小进行分析。较小的镍粒径,有利于提 高催化剂的分散度,减少积碳的形成。 比表面分析(BET) 比表面分析仪(BET)在mireomerities-Tristar3000型 表面分析仪进行,采用液氮温度下N2 吸附法测得表面积。 采用BET对不同的新鲜催化剂(不同温度下的同种催化剂、不同种 类的催化剂、是否添加助剂)的比表面积进行表征,催化剂的比表 面积越大,其催化反应的活性就越高。 表面分析(XPS) X射线光电子能谱仪采用ESCALAB 250型X 射线光电子 能谱仪上进行,AlKα射线为激发源, 以污染碳C1s 电子结合能(E b=284.8 eV)为内标进行校正。 对不同焙烧温度下(主要为550、370、570℃)的催化剂进行扫描, 知道催化剂表面的主要组成元素,对照相应的TPO图,根据催化剂 表面C1s的XPS谱,可得出其电子结合能,以此分析催化剂表面的 积碳组成成分。 升温氧化/积碳差热分析(TPO/DTA)TGA-2050型热分析 仪、DTAS型热分析 仪 (TPO)在TGA–2050型热分析仪进行, 测定时样品在空气氛围中以10 ℃ /min 速率升温至920 ℃。 (DTA)在DTAS型热分析仪进行,测定 时样品在空气/氮气氛围中以10℃ /min的速率升温至800℃。 对反应30min后的催化剂(不同温度下的同种催化剂、不同种类的 催化剂、是否添加助剂)表面进行TPO实验,根据催化剂的TPO 曲线和在空气/氮气下的DTA曲线,对照其DTG曲线,研究积碳的 形成机理。

TiO2纳米材料的制备与表征

TiO 2纳米材料的制备与表征 医药化工学院 化学教育专业 学生:xxx 指导老师:xxx 1前言 纳米TiO 2在各个领域中的应用,如:制造氧敏元件、电子陶瓷材料、防晒剂、防紫外线透明塑料薄膜、农用塑料薄膜、防紫外纤维和抗菌纤维、抗菌涂料、抗菌釉面砖、效应颜料、光催化剂和催化剂载体、超双亲性玻璃等。这些材料在电子工业、涂料工业、轿车工业、建筑工业、纺织工业、食品包装、化妆品、环境保护、废水处理等领域中有着广泛的用途。 2实验部分 2.1 实验目的 了解TiO2纳米材料制备的方法;掌握用溶胶-凝胶法制备TiO2纳米材料的原理和过程;掌握纳米材料的标准手段和分析方法 2.2 实验原理 水解缩聚陈化涂层、成纤、成型干燥热处理金属醇盐 溶剂、水 抑制剂溶胶湿凝胶干凝胶 成品 Ti(OC4H9)4 + H2O ----> TiO2 + C4H9OH 实验装置图 2.3 实验仪器和试剂 2.3.1 主要仪器 常用常压化学合成仪器一套,电磁搅拌器,烘箱,马弗炉,粒度分布测定仪,比表面仪,差热-热重分析仪

2.3.2实验试剂 钛酸正丁酯,无水乙醇,乙酰丙酮,强酸 2.4 实验方法 2.4.1溶胶-凝胶法制备TiO 2 (1)水浴加热集热式恒温磁力搅拌器至65℃左右,安装三颈烧瓶装置、温度计和滴液漏斗,量取60ml的无水乙醇置于三颈烧瓶中。 (2)将30ml的钛酸四丁酯(Ti(OC4H9)4)装入滴液漏斗,自滴液漏斗缓慢滴加钛酸四丁酯(Ti(OC4H9)4)至装有无水乙醇三颈烧瓶中,保持反应温度为65℃左右,约0.5h滴加完毕。(3)滴加完毕后,将3ml乙酰丙酮装入入滴液漏斗,自滴液漏斗缓慢滴加乙酰丙酮至三颈烧瓶中,滴加完毕。再搅拌0.5小时。 (4)将1.1ml硝酸、9ml去离子水、32ml的无水乙醇预先混合,装入滴液漏斗,再缓慢加入到三颈烧瓶中,0.5小时滴加完毕,再搅拌3小时,得到二氧化钛溶胶,陈化12小时。(5)制备的二氧化钛溶胶至于60℃的真空干燥箱中干燥24小时,得到二氧化钛凝胶。(6)将制备的凝胶至于坩埚中,按照一定的升温曲线,600℃烧成保温2小时,得到二氧化钛粉末。 3.结果与讨论 mTiO2 =7.4g 颜色灰色 产率为 7.4/6.8=108.82% 4结束语 本实验溶胶-凝胶法制备TiO2通常以钛醇盐Ti(OR)4 为原料,合成工艺为:钛醇盐溶于溶剂中形成均相溶液,逐滴加入水后,钛醇盐发生水解反应,同时发生失水和失醇缩聚反应,生成1 nm 左右粒子并形成溶胶,经陈化,溶胶形成三维网络而成凝胶,凝胶在恒温箱中加热以去除残余水份和有机溶剂,得到干凝胶,经研磨后煅烧,除去吸附的羟基和烷基团以及物理吸附的有机溶剂和水,得到纳米TiO2 粉体。 通过两人一组实验,在实验过程中,培养了两人的合作精神。在指导老师的细心指导下,实验顺利进行,完成。在实验过程中,巩固了实验操作的基本技能,复习了课堂上的理论知识。实验过程中收获很大,感谢指导老师的悉心指导,同时也感谢同学们,因为有他们的合作,实验遇到的困难才一一得以解决,实验才顺利进行。 参考文献: 1) 北京师范大学, 等. 无机化学实验[M ]. 北京: 高等教育出版社, 1991.

物理在纳米材料测试表征中的应用讲解

物理在纳米材料测试表征中的应用 摘要:介绍了纳米材料的特性及一般的测试表征技术,主要从纳米材料的形貌分析,成分分析以及结构分析入手,介绍了扫描电子显微镜,透射电子显微镜,X 射线衍射,X射线荧光光谱分析,能谱分析等分析测试技术的工作原理及其在纳米粒子结构和性能分析上的应用和进展。 关键词:纳米材料;测试技术;表征方法 Abstract:The characterization and testing of nano-materials was described. Depend on the morphology, component and structure of nano-materials, the mechanism and applications of scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray fluorescence spectroscopy, energy dispersive x-ray spectroscope (EDS) technology was presented. Further, the application and development of those technologies were described. Keyword: nano-materials; testing technology; characterization 0. 前言 分析科学是人类知识宝库中最重要、最活跃的领域之一,它不仅是研究的对象,而且又是观察和探索世界特别是微观世界的重要手段[ 1 ]。随着纳米材料科学技术的发展,要求改进和发展新分析方法、新分析技术和新概念,提高其灵敏度、准确度和可靠性,从中提取更多信息,提高测试质量、效率和经济性[ 2 ]。纳米科学和技术是在纳米尺度上(0. 1~100nm)研究物质(包括原子、分子)的特性及其相互作用, 并且对这些特性加以利用的多学科的高科技。纳米科技是未来高技的基础,而适合纳米科技研究的仪器分析方法是纳米科技中必不可少的实验手段。因此,纳米材料的分析和表征对纳米材料和纳米科技发展具有重要的意义和作用[ 3 ]。 1. 纳米材料的形貌分析 1.1 形貌分析的重要性

催化剂性能的评价、测试和表征2

催化剂性能的评价、测试和表征概述主要内容 ?活性评价和动力学研究 ?催化剂的宏观物理性质测定 ?催化剂微观性质的测定和表征 工业催化剂性能评价的目的 ①为应用提供依据 ②为开发制备提供判别的标准 ③基础研究的需要 评价内容 ①使用性能 活性,选择性,寿命 ②.宏观性能:比表面积,孔结构,形状与尺寸 ③.微观性能:晶相组成,表面酸碱性 ?工业催化剂的性能要求及其物理化学性质 4

催化剂测试 ? 催化剂的物理性质的测定 ,包括宏观物理性质(孔容、孔径分布、比表面等)及微观物理 性质(催化剂的晶相、晶格缺陷、微观粒径尺寸等) 几个基本概念 评价(evaluation ),对催化剂的化学性质考察和定量描述; 测试(test ),对工业催化剂物理性质(宏观和微观)的测定; 表征(Characterization ),综合考察催化剂的物理、化学的性质和内在联系,特别是研究活性、 选择性、稳定性的本质原因。 第一节.活性评价和动力学研究 活性测定方法:流动法和静态法,流动法用得最多(一般流动法、流动循环法、催化色谱法) 本质上是对工业催化过程的模拟 流动循环法、催化色谱法多用于反应动力学和反应机理 活性测试的目的 a )由催化剂制造商或用户进行的常规质量控制检验 b )快速筛选大量催化剂,以便为特定的反应确定一个催化剂评价的优劣。 c )更详尽的比较几种催化剂 d )测定在特定催化剂上反应的详尽动力学,包括失活或再生动力学。 e )模拟工业反应条件下催化剂的连续长期运转 活性的表示方法 ? 转化率(X A ) 活性的表示方法 ? 选择性(S) 收率(Y) Y=X A ×S ? ? % 100?= 的起始摩尔数 反应物已转化的摩尔数 反应物A A X A % 100?=摩尔数 已转化的某一反应物的所得目的产物的摩尔数 S % 100?= 起始反应物的摩尔数 生成目的产物的摩尔数 Y

材料的表征方法总结

2.3.1 X 一射线衍射物相分析 粉末X 射线衍射法,除了用于对固体样品进行物相分析外,还可用来测定晶体 结构的晶胞参数、点阵型式及简单结构的原子坐标。X 射线衍射分析用于物相分析 的原理是:由各衍射峰的角度位置所确定的晶面间距d 以及它们的相对强度Ilh 是物 质的固有特征。而每种物质都有特定的晶胞尺寸和晶体结构,这些又都与衍射强 度和衍射角有着对应关系,因此,可以根据衍射数据来鉴别晶体结构。此外,依 据XRD 衍射图,利用Schercr 公式: θ λθβcos )2(L K = 式中p 为衍射峰的半高宽所对应的弧度值;K 为形态常数,可取0.94或0.89;为X 射线波长,当使用铜靶时,又1.54187 A; L 为粒度大小或一致衍射晶畴大小;e 为 布拉格衍射角。用衍射峰的半高宽FWHM 和位置(2a)可以计算纳米粒子的粒径, 由X 一射线衍射法测定的是粒子的晶粒度。样品的X 一射线衍射物相分析采用日本理 学D/max-rA 型X 射线粉末衍射仪,实验采用CuKa 1靶,石墨单色器,X 射线管电压 20 kV ,电流40 mA ,扫描速度0.01 0 (2θ) /4 s ,大角衍射扫描范围5 0-80 0,小角衍 射扫描范围0 0-5 0o 2.3.2热分析表征 热分析技术应用于固体催化剂方面的研究,主要是利用热分析跟踪氧化物制 备过程中的重量变化、热变化和状态变化。本论文采用的热分析技术是在氧化物 分析中常用的示差扫描热法(Differential Scanning Calorimetry, DSC)和热重法 ( Thermogravimetry, TG ),简称为DSC-TG 法。采用STA-449C 型综合热分析仪(德 国耐驰)进行热分析,N2保护器。升温速率为10 0C.1 min - . 2.3.3扫描隧道显微镜 扫描隧道显微镜有原子量级的高分辨率,其平行和垂直于表面方向的分辨率 分别为0.1 nm 和0.01nm ,即能够分辨出单个原子,因此可直接观察晶体表面的近原 子像;其次是能得到表面的三维图像,可用于测量具有周期性或不具备周期性的 表面结构。通过探针可以操纵和移动单个分子或原子,按照人们的意愿排布分子 和原子,以及实现对表面进行纳米尺度的微加工,同时,在测量样品表面形貌时, 可以得到表面的扫描隧道谱,用以研究表面电子结构。测试样品的制备:将所制 的纳米Fe203粉末分散在乙醇溶液中,超声分散30 min 得红色悬浊液,用滴管吸取 悬浊液滴在微栅膜上,干燥,在离子溅射仪上喷金处理。采用JSM-6700E 场发射扫 描电子显微镜旧本理学),JSM-6700E 场发射扫描电子显微镜分析样品形貌和粒 径,加速电压为5.0 kV o 2.3.4透射电子显微镜 透射电镜可用于观测微粒的尺寸、形态、粒径大小、分布状况、粒径分布范 围等,并用统计平均方法计算粒径,一般的电镜观察的是产物粒子的颗粒度而不 是晶粒度。高分辨电子显微镜(HRTEM)可直接观察微晶结构,尤其是为界面原 子结构分析提供了有效手段,它可以观察到微小颗粒的固体外观,根据晶体形貌 和相应的衍射花样、高分辨像可以研究晶体的生长方向。测试样品的制备同SEM 样品。本研究采用 JEM-3010E 高分辨透射电子显微镜(日本理学)分析晶体结构, 加速电压为200 kV o 2.3.5 X 射线能量弥散谱仪 每一种元素都有它自己的特征X 射线,根据特征X 射线的波长和强度就能得

催化剂表征方法

催化剂的表征方法之核磁共振法催化剂的表征就是应用近代物理方法和实验技术,对催化剂的表面及体相结构进行研究,并将它们与催化剂的性质、性能进行关联,探讨催化材料的宏观性质与微观结构之间的关系,加深对催化材料的本质的了解。近代物理方法主要包括:X射线衍射技术、色谱技术、热分析析技术、电子显微技术、光谱技术、低电子能谱、穆斯堡尔谱等…… 1 近代物理方法简介 1.1对催化剂的组成分析(体相) 化学分析(CA Chemical Analysis )用于Pt, Pd, Rh等贵金属分析。原子吸收光谱(AAS。X射线荧光光谱(XRF。电感耦合等离子体光谱(ICP). 1.2组成分析(表面) 射线光电子能谱(XPSX)。俄歇电子能谱(AES .分析深度:AES < XPS (表面10个原子层,<3 nm)。灵敏度:AES > XPS (分析取样量在微克级。释谱: XPS?谱和数据分析容易,应用更广。 1.3物相性质(结构) 多晶X射线衍射(XRD)――最普遍、最经典的物相性质鉴定手段。反映长程有序度,但对于高分散物相不适用 . 傅里叶变换红外光谱(FT-IR)――许多无机物固体在中红外区(400- 4000cm- 1)有振动吸收,反映短程有序度 . 拉曼光谱(RAM拉曼散射效应)一一拉曼光谱与红外光谱都能得到分子振动和转动光谱,但分子的极化率改变时才会产生拉曼活性,而红外光谱是偶极矩变化时有红外活性,因此两者有一定程度的互补性。 紫外可见光谱(UV-vis)――电子光谱 , 是由分子外层电子或价电子吸收一定能量的光跃迁所产生的 , 给出样品结构的信息 . 核磁共振技术(NMR)适用于含有核磁距的组元,如1H、13C 31P、 27Al 、 29Si. 1.4形貌 扫描电子显微镜(SEM :分辨率为6-10nm,放大倍数为2万倍. 透射电子显微镜(TEM :分辨率为0.1?0.2nm,放大倍数为几万?百万倍. 原子力显微镜( AFM): 可达到原子级分辨率 . 1.5 负载相(金属)的分散度

纳米材料AlOOH的合成与表征

纳米材料AlO(OH)的制备与表征 刘琦媛吉大物理学院2011级光信六班32110635 摘要:利用超声水合合成法使电爆炸法制成的纳米Al粉和去离子水反应制备纳米纤维AlO(OH)粉末,然后用投射电镜观察其结构样貌,并用氮吸附法测定其BET比表面。 关键词:超声水合合成法,一维纳米纤维,AlO(OH),氮吸附法,BET比表面 1.引言 纳米材料,是科学界中正冉冉升起的一颗新星。自20世纪70年代初发现和应用纳米效应以来。人们对于它的研究,越发深入:贯穿物理、化学、生物、材料等多个层次。因为各种性质的特殊,纳米材料的作用越来越大。随着纳米技术的发展,它在人们生产、生活中的地位终将无可取代。 从广义上讲,纳米材料是指在三围空间尺寸中至少有一维处于纳米尺度范围或由它们作为基本单元构成的材料。如果按维数,纳米材料大致可分为量子点,量子线和量子阱。从狭义上讲,则只要包括纳米微粒及由它构成的纳米固体都可称为纳米材料。纳米材料尺寸进入纳米量级(1~100nm)时,其本身具有的量子尺寸效应、表面效应和宏观量子隧道效应因而展现出许多特有性质。在催化、滤光、光吸收、医药、磁介质及新材料方面有广阔的应用前景。

本实验研究的是一维纳米纤维AlO(OH)的制备与表征,这种纳米纤维材料纯度高,比表面积大,活性很高,吸附能力强且制备工艺简单,是很有发展前景的一种净水材料。 2. 实验 2.1实验试剂与仪器 试剂:1.电爆炸法制成的纳米铝粉 2.去离子水 仪器:1.电子天平 2.超声波清洗器 3.电热鼓风干燥箱 4.ZHP-100智能恒温震荡培养箱 5.透射电镜(TEM) 6.比表面及孔径分析仪(BET) 2.2纳米纤维的制备 本实验采用超声水合合成法制备一维纳米纤维AlO(OH)。 实验中使用的原料为电爆炸法所制成的纳米铝粉和去离子水。电爆炸法是利用高密度脉冲电流通过导体金属的瞬间,导体发生爆炸性破坏爆炸的产物——金属蒸汽在导体周围高速飞溅,在分散过程中爆炸产物被冷激而形成高弥散粉体。 实验过程:将0.8g纳米Al粉和200ml去离子水放入烧杯混合,放在超声波清洗器里进行反应,反应时间为120min,温度为80℃。 反应方程为: AlN+H2O=AlO(OH)+H2↑+NH3↑ 反应结束后关闭超声波清洗器,将烧杯取出放在温度为80℃的恒温水浴箱里6小时。之后过滤,将得到的物质放进电热鼓风干燥箱进行烘干。烘干条件为温度60℃,时长6小时。取出烘干物即得到纳米

材料的表征方法总结

材料的表征方法 2.3.1 X 一射线衍射物相分析 粉末X 射线衍射法,除了用于对固体样品进行物相分析外,还可用来测定晶体 结构的晶胞参数、点阵型式及简单结构的原子坐标。X 射线衍射分析用于物相分析 的原理是:由各衍射峰的角度位置所确定的晶面间距d 以及它们的相对强度Ilh 是物 质的固有特征。而每种物质都有特定的晶胞尺寸和晶体结构,这些又都与衍射强 度和衍射角有着对应关系,因此,可以根据衍射数据来鉴别晶体结构。此外,依 据XRD 衍射图,利用Schercr 公式: θ λθβc o s )2(L K = 式中p 为衍射峰的半高宽所对应的弧度值;K 为形态常数,可取0.94或0.89;为X 射线波长,当使用铜靶时,又1.54187 A; L 为粒度大小或一致衍射晶畴大小;e 为 布拉格衍射角。用衍射峰的半高宽FWHM 和位置(2a)可以计算纳米粒子的粒径, 由X 一射线衍射法测定的是粒子的晶粒度。样品的X 一射线衍射物相分析采用日本理 学D/max-rA 型X 射线粉末衍射仪,实验采用CuKa 1靶,石墨单色器,X 射线管电压 20 kV ,电流40 mA ,扫描速度0.01 0 (2θ) /4 s ,大角衍射扫描范围5 0-80 0,小角衍 射扫描范围0 0-5 0o 2.3.2热分析表征 热分析技术应用于固体催化剂方面的研究,主要是利用热分析跟踪氧化物制 备过程中的重量变化、热变化和状态变化。本论文采用的热分析技术是在氧化物 分析中常用的示差扫描热法(Differential Scanning Calorimetry, DSC)和热重法 ( Thermogravimetry, TG ),简称为DSC-TG 法。采用STA-449C 型综合热分析仪(德 国耐驰)进行热分析,N2保护器。升温速率为10 0C.1 min - . 2.3.3扫描隧道显微镜 扫描隧道显微镜有原子量级的高分辨率,其平行和垂直于表面方向的分辨率 分别为0.1 nm 和0.01nm ,即能够分辨出单个原子,因此可直接观察晶体表面的近原 子像;其次是能得到表面的三维图像,可用于测量具有周期性或不具备周期性的 表面结构。通过探针可以操纵和移动单个分子或原子,按照人们的意愿排布分子 和原子,以及实现对表面进行纳米尺度的微加工,同时,在测量样品表面形貌时, 可以得到表面的扫描隧道谱,用以研究表面电子结构。测试样品的制备:将所制 的纳米Fe203粉末分散在乙醇溶液中,超声分散30 min 得红色悬浊液,用滴管吸取 悬浊液滴在微栅膜上,干燥,在离子溅射仪上喷金处理。采用JSM-6700E 场发射扫 描电子显微镜旧本理学),JSM-6700E 场发射扫描电子显微镜分析样品形貌和粒 径,加速电压为5.0 kV o 2.3.4透射电子显微镜 透射电镜可用于观测微粒的尺寸、形态、粒径大小、分布状况、粒径分布范 围等,并用统计平均方法计算粒径,一般的电镜观察的是产物粒子的颗粒度而不 是晶粒度。高分辨电子显微镜(HRTEM)可直接观察微晶结构,尤其是为界面原 子结构分析提供了有效手段,它可以观察到微小颗粒的固体外观,根据晶体形貌 和相应的衍射花样、高分辨像可以研究晶体的生长方向。测试样品的制备同SEM 样品。本研究采用 JEM-3010E 高分辨透射电子显微镜(日本理学)分析晶体结构, 加速电压为200 kV o

纳米材料制备及其表征

MXene的制备及其相关性能研究 1.1 MXene研究背景及现状 石墨烯是一种由碳原子以sp2杂化轨道组成的具有二维蜂窝状晶体结构的单原子层晶体,具有相当优异的力学、电子、热及磁学性能,而且被视为当今在纳米技术这个领域很有前景的材料[1]。石墨烯是二维晶体这一类的其中一种。二维晶体是指仅有单个或者多个原子厚度的二维材料,这种材料因为其绝对的二维结构而具备独有的特性与功能。石墨烯是最为典型的二维晶体结构,具有优异的性能,不过石墨烯却不是二维原子晶体材料的尽头,一些具有特殊性能并且包含其它元素的二维晶体成为当今的研究焦点。二维晶体材料可分为石墨烯基和类石墨烯这两大类材料。石墨烯基材料[2]是指包括石墨烯在内的二维原子晶体或化合物,例如单原子层的六方BN、MoS2、WS2等[3]。大部分的二维晶体材料是通过化学刻蚀或机械剥离等方法剥离层间结合力较弱(范德华力)的三维层状前驱物得到的,而剥离层间结合力较强的三维层状化合物似乎是不可能的。但是,2011 年Naguib和Barsoum等利用氢氟酸(HF)选择性刻蚀掉三维层状化合物Ti3AlC2中的Al原子层得到具有类石墨烯结构的二维原子晶体化Ti3C2材料,2012年他们采用同样的方法刻蚀若干与Ti3AlC2具有类似结构的陶瓷材料MAX相,成功的制备出了Ti2C、Ta4C3( Ti0.5Nb0.5)2C(V0.5Cr0.5)3C2、Ti3CN等相应的二维过渡金属碳化物或碳氮化物[4]。这种具有类石墨烯结构的新型二维晶体化合物被命名为MXene。其化学式为M n + 1X n,n =1、2、3,M为早期过渡金属元素,X为碳或氮元素[5]。MXene的母体材料MAX相是一类化学式为M n + 1AX n的三元层状化合物,其中M、X、n与上述一样,A为主族元素。目前已知MAX相大约有60多种,Ti3AlC2是其代表性化合物[6]。由于MAX相数量众多,且包含多种元素,所以通过刻蚀MAX相可以制备出大量具有特殊性能的MXene,这对于二维晶体材料的制 1.2 MXene的制备 制备MXene的前驱体是MAX相。MAX相是一类集陶瓷和金属的优良特性于一身的三元层状材料,既像陶瓷一样,具有高弹性模量、低密度、良好的热稳定性和抗氧化性能;又像金属一样,具备优良的导热和导电性能,以及较低的硬度,可以像金属和石墨一样进行机械加工,并在高温下具有良好的塑性,及自润滑性能。研究表明,MAX的晶体结构中,X原子填充于M原子形成的八面体空

纳米材料的表征与测试技术

纳米材料的表征与测试技术 作者:马翔(08级理学院材料化学系学生081132班) 摘要 虽然许多研究人员已经涉足纳米技术这个领域的工作,但还有很多研究人员以及相关产业的从业人员刘一纳米材料还不是很熟悉,尤其是如何分析和表征纳米材料,如何获得纳米材料的一此特征信息。该文对纳米材料的一此常用分析和表征技术做了概括。主要从纳米材料的成分分析、形貌分析、粒度分析、结构分析以及表面界面分析等几个方而进行了简要阐述。 关键词:纳米材料;表征;测试技术 1纳米材料的表征方法 纳米材料的表征主要包括: 1化学成分; 2纳米粒子的粒径、形貌、分散状况以及物相和晶体结构; 3纳米粒子的表面分析。 1. 1化学成分表征 化学成分是决定纳米粒子及其制品性能的最基本因素。常用的仪器分析法主要是利用各种化学成分的特征谱线,如采用X射线荧光分析和电子探针微区分析法可对纳米材料的整体及微区的化学组成进行测定。而且还可以与扫描电子显微镜SEM配合,使之既能利用探测从样品上发出的特征X 射线来进行元素分析,又可以利用二次电子、背散射电子、吸收电子信号等观察样品的形貌图像。即可以根据扫描图像边观察边分析成分,把样品的形貌和所对应微区的成分有机的联系起来,进一步揭示图像的本质。此外,还可以采用原子l发射光谱AES、原子吸收光谱AAS对纳米材料的化学成分进行定性、定量分析;采用X射线光电子能谱法XPS可分析纳米材料的表一面化学组成、原子价态、表面形貌、表面微细结构状态及表面能态分布等。 1.2纳米徽粒的衰面分析 (1)扫描探针显徽技术SPM 扫描探针显徽技术SPM以扫描隧道电子显微镜STM ,原子力显徽镜AFM、扫描力显微镜SFM 、弹道电子发射显徽镜BEEM、扫描近场光学显微镜SNOM等新型系列扫描探针显徽镜为主要实验技术,利用探针与样品的不同相互作用,在纳米级乃至原子级的水平 上研究物质表面的原子和分子的几何结构及与电子行为有关的物理、化学性质,在纳米尺度上研究物质的特性。 (2)谱分析法

纳米材料的概述、制备及其结构表征

20卷6期 结 构 化 学 (JIEGOU HUAXUE ) Vol.20, No.6 2001.11 Chinese J. Struct. Chem. 425~438 [综合评述] 纳米材料的概述、制备及其结构表征 蔡元霸① 梁玉仓 (结构化学国家重点实验室,中国科学院福建物质结构研究所, 福州350002) 纳米材料在电子、光学、化工、陶瓷、生物和医药等诸多方面的重要应用而引起人们的高度重视。本文从以下3个方面加以论述。 一、纳米材料的概述:从分子识别、分子自组装、吸附分子与基底的相互关系、分子操作与分子器件的构筑,并通过具体的例证加以阐述,包括在STM 操作下单分子反应;有机小分子在半导体表面的自指导生长;多肽-半导体表面特异性选择结合;生物分子/无机纳米组装体;光驱动多组分三维结构组装体;DNA 分子机器。 二、纳米材料的若干制备方法和结构表征方法:制备方法包括:物理的蒸发冷凝法,分子束外延法(MBE ),机械球磨法,扫描探针显微镜法(SPM )。化学的气相沉淀法(VCD ),液相沉淀法,溶胶-凝胶法(Sol-gel ),L-B 膜法,自组装单分子层和表面图案化法,水热/溶剂热法,喷雾热解法,样板合成法或化学环境限制法及自组装法。 三、若干结构表征方法包括:X-射线法(XRD ),扩展X 射线精细结构吸收谱(EXAFS ),X-射线光电子能谱(XPS ),光谱法,扫描隧道显微镜/原子力显微镜(STM/AFM )和有机质谱法(OMS )。 关键词:纳米制备,自组装,结构表征, 纳米器件 2001-03-14收到; 2001-10-16接受 ①通讯联系人 1 纳米材料概述: 所谓纳米材料,指的是具有纳米量级(1~100 nm )的晶态或非晶态超微粒构成的固体物质。纳米材料真正纳入材料科学殿堂应是德国科学家Gleiter 等 [1] 于1984年首用惰性 气体凝聚法成功地制备了铁纳米微粒,并以它作为结构单元制成纳米块体材料。由于纳米材料具有显然不同于体材料和单个分子的独特性能——表面效应、体积效应、量子尺寸效应和宏观隧道效应等及它在电子、光学、化工、陶瓷、生物和医药等诸多方面的重要应用而引起人们的高度重 视[2] 。 1988年美国科学家 Cram [3] 和法国科学 家 Lehn [4] 在诺贝尔领奖会上发表了演说,他 们分别以《分子的主体·客体和它们复合物的设计》和《超分子化学范围和展望——分子、超分子和分子器件》为题,论述了他们在超分子化学研究领域所取得成就和展望。1990年 Lehn [5] 又发表了《超分子化学展望——从分子识别走向分子信息处理和自组织作用》。他们指出生物体内反应、输运和调节的第一步就是分子识别。它定义为底物被给定受体选择并结合而形成超分子结构的过程。这是主/客体分子之间有选择、有目标的结合;是结构明确的分子间相互作用模式。这种结合还要求受体分子与所要键合的底物分子在立体空间结构和电荷特征上的互补性以及为了适合其功能上要求所必须遵循的刚性和柔性平衡原则。因为受体结构稳定性需要刚性分子结构,但识别过程中的变换、调控、协同及变构则需要一定的柔性。这对生物体系尤为重要。从分子识别引导

相关主题
文本预览
相关文档 最新文档