当前位置:文档之家› 激光全息细胞成像系统讲解

激光全息细胞成像系统讲解

激光全息细胞成像系统讲解
激光全息细胞成像系统讲解

激光全息细胞成像及分析系统应用

细胞活力

激光全息细胞成像及分析系统可以实时监测细胞死亡过程,以及通过图像进行记录。全息技术再不需要荧光标记的情况下可以得到细胞形态学数据。Khmaladze A. et al(2012和Pavillion N. et al(2012使用DHM 研究细胞死亡过程,观察到死亡过程中细胞体积显著减小。Kuhn et al(2013使用DHM 研究活/死细胞特点时得到实验结果和和基于荧光标记方法结果相一致。他们使用PI 和Hoechst 标记细胞。染料法鉴定细胞死活是目前常见的鉴定方法,其中台盼蓝染色方法最常见。台盼蓝可穿透变性的细胞膜,与解体的DNA 结合,使其着色,而活细胞能阻止染料进入细胞内,故可以鉴别死细胞与活细胞。鼠成纤维细胞L929接种在μ-slide(Ibidi,Germany 上,肿瘤药物依托泊苷etoposide(100μM处理细胞,使用激光全息细胞分析系统(M3 分析细胞的死亡,并与台盼蓝染色法进行比较。图1中左图为台盼蓝染色结果,右图为全息结果,细胞越白,细胞越厚。死细胞是圆的,薄的。两种方法得到的结果是

一样的。

图1

图2细胞厚度VS 细胞体积,死亡细胞集中在绿色区域

细胞凋亡

细胞死亡起码有两种方式,即细胞坏死(necrosis)与细胞凋亡(apoptosis。细胞坏死是细胞受到强烈理化或生物因素作用引起细胞无序变化的死亡过程。表现为细胞胀大,胞膜破裂,细胞内容物外溢,核

变化较慢,DNA 降解不充分,引起局部严重的炎症反应。细胞凋亡是指为维持内环境稳定,由基因控制的细胞自主的有序的死亡。在这两种过程中,细胞体积都会减少,形态学都会发生变化。

前列腺癌细胞DU145和小鼠成纤维细胞L929分别接种在IBIDI-micro slides (IBIDI)上,接种24h 后,50μM依托泊苷(etoposide 处理细胞,HoloMonitor M3分析细胞死亡过程。

小鼠成纤维细胞L929的死亡过程跟DU145不一样。细胞内含物光密度变小,细胞变得越来越薄。这种形式的细胞死亡没有表现出凋亡特征,而是表现出坏死细胞的特征(图3)。药物处理4h 后,DU145细胞收缩,变圆,大约5.5h ,细胞变得很不规则,细胞断裂,可以见到凋亡小体的产生。凋亡小体是细胞凋亡的特有特征(图

4

图3L929鼠成纤维细胞坏死过程

图4DU145前列腺癌细胞凋亡过程

细胞计数

小鼠成纤维细胞L929接种在6孔板(NUNC中,接种密度2×105个/孔,加入完全培养基。24h 之后,加入细胞毒性药物-拓扑异构酶抑制剂,依托泊苷(etoposide,每孔加入1ml 。其中2个孔做对照,2个

添加50μMetoposide, 另外的两个添加100μMetoposide ,每个孔随机选取30~40个拍摄点,Hstudio

软件分析之后用血球计数板方法细胞计数。

表1细胞计数/活力:血球计数板& 台盼蓝染色

表2细胞计数/活力:Holomonitor M3&Hstudio

细胞追踪

细胞接种在μ-slide(Ibidi ,药物etoposide 处理细胞后,HoloMonitor M3每3min 拍摄一次图像,绘制细胞体积、细胞厚度、细胞不规则度随时间变化趋势图,选取视野中三个细胞进行绘制。

图5

细胞体积

图6

细胞厚度

图7细胞不规则度

细胞运动

恶性肿瘤细胞侵袭正常组织以及白细胞迁移到炎症部位中都会涉及到细胞运动的研究。细胞运动可以分为两种类型:随机运动(motility,有方向的运动(migration。不同细胞类型运动速率不一样,人纤维细胞运动很慢(12~60μm/h,中性粒细胞是运动最快的白细胞(900~1200μm/h。

目前研究细胞迁移的方法主要有划痕法和跨膜实验,划痕实验的缺点是实验结果是细胞增殖和迁移的双重结果。由于跨膜实验对细胞的种类有限制,并非所有的细胞都可以迁移通过膜和基质,因为transwell

实验应用存在着很大的局限性。激光全息细胞成像分析系统不仅可以观察群体细胞的运动,并且可以提供单个细胞的运动轨迹,迁移速率及迁移过程中细胞系统,面积,厚度等形态学参数的实时变化。图 8 L929 细胞运动细胞分裂胰腺癌细胞 PanC-1 培养在 IBIDI 微流芯片上 (IBIDI, Germany ,微流芯片放在 37 ℃

加热台上, HoloMonitor M3( PHIAB, Sweden拍摄细胞分裂的完整过程。图 9 正在分裂的胰腺癌细胞 7

图 10 胰腺癌细胞在分裂为两个子细胞的过程中细胞面积,厚度,体积的变化。(红线代表母细胞,黑线代表图 9 中左边的子细胞,绿线代表图 9 中右边的

子细胞)参考文献 https://www.doczj.com/doc/472925296.html,bel-free cytotoxicity screening assay by digital holographic microscopy; Assay and drug development technologies. 2.Early cell death detection with digital holographic microscopy;PLoS ONE. 3.Morphological features of cell death, Physiology. 4.Cell volume changes during apoptosis monitored in real time using digital holographic microscopy;Journal of structural biology. 8

5.Noninvasive time-dependent cytometry monitoring by digital holography.;Biomed Opt.

6.Generation of trisomers in cancer cells by multipolar mitosis and incomplete cytokinesis. PNAS.

7.Cell motility studies using digital holographic microscopy. In: Microscopy, Science, Technology, Applications and Education.

8.Reduction of the putative CD44+CD24 breast cancer stem cell population bytargeting the polyamine metabolic pathway with PG11047;Anticancer Drugs.

9.Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy. Optics letters. 9

医学成像原理

Principles of Medical Imaging (医学成像原理) 生物医学工程研究所邓振生Zhensheng Deng from Institute of Biomedical Engineering

Principles of Medical Imaging (医学成像原理)

?Personal Data: ?Email Address: dzs@https://www.doczj.com/doc/472925296.html,,or ?bmedzs@https://www.doczj.com/doc/472925296.html, ?Tel. No. : 8836362 (Work) ?Office Location: #226, Di Xue Lou ?Text Book: Physical Principles of Medical Imaging, Second Edition, By Perry Sprawls & Ye-cho Huang ?Reference-book: Medical Imaging Physics, Fourth Edition, By William R. Hendee, & E. Russell Ritenour

Chapter 1. Preface (前言)

1.1 对医学成像过程理解的意义 任何医学成像模式的有效利用和图像的解释都要求对图像形成过程的物理原理的理解。这是因为显化特定解剖结构或病理状态的能力取决于由使用者选定的特定模式的固有特征和成像因素组。能见度和成像因素之间的关系相当复杂,并通常涉及到图像质量的各方面的折衷和平衡。

Some Words Important In This Paragraph ?1. anatomical structures, ?2. pathologic conditions, ? 3. medical imaging modality, ?4. compromise, ?5. trade off, ?6. visibility, ?7. visualize.

新型细胞成像技术

新型细胞成像技术 ——成像质谱仪 美国研究人员开发出了一种对组织切片上的分子进行观察和成像的新方法,被称为成像质谱仪的细胞成像技术。利用该技术可以获得显示组织中不同蛋白质位置的数字图像,并提高癌症诊断和治疗效果。 美国田纳西州范德比尔特大学的研究人员在新一期《自然医学》杂志上描述了他们如何应用质谱成像术来获得正常脑组织切片和病变脑组织切片的“分子图像”他们认为这种新技术给科学家们提供了识别细胞和组织中的蛋白质的新方法,从而使得研究在疾病发生发展过程中蛋白质的作用变得更加容易。报告说,这一技术能够确定产生高水平“胸腺素贝塔-4”的组织的精确位置,而“胸腺素贝塔-4”被认为是促使肿瘤细胞生长的蛋白质。通过确定组织中产生高水平该种蛋白质的位置,医生可以提高癌切除手术的效果。研究人员说,这种技术还能帮助他们更好地理解致癌蛋白在某些特定组织中的功能和位置,并有助于开发出阻止该种蛋白的药物。 质谱成像术所使用的仪器是一台通过测定荷质比来分析分子的标准的质谱仪。范德比尔特大学质谱中心的主任richard caprioli和他的同事们改变了质谱仪的电子学特性并重新编写了软件,从而使一台标准的质谱仪可以用来对组织切片成像。被用来研究的组织首先经过冰冻切片来获得极薄的组织片,接着用介质封闭组织切片并将切片置入质谱仪中。在质谱仪中,激光束对切片进行连续的扫描,样品在激光束的激发下释放出的分子被质谱仪所鉴定从而获得样品上每个点的信息,然后将各个点的信息转化为照片上的像素点,这样就可以完成对样品的“分子成像”。 利用上面描述的质谱成像技术,caprioli的研究组成功地获得了正常鼠脑组织和生长在鼠身上的人脑瘤组织的分子图像,并鉴定了定位于肿瘤内部及其侵入性表面上的特异性蛋白质。cparioli说: “我们认为肿瘤细胞表面这些特异性的分子是与肿瘤的无限生长特性密切相关的,而且这些表面的分子标志可以应用于诊断和药物的导向”。

医学成像系统的危害与相关防护

医学成像系统的危害与相关防护 医学影像技术 0808 李振涛学号:200802150832 指导老师:陈龙北京市积水潭医院放射科 【摘要】:随着医学影像事业的发展,各种新技术的引进,使防护的内涵与外延不仅限于过去的常规X线机,围绕医学成像系统的危害与相关防护,应提到议事日程上来。 【关键词】:成像系统;危害;防护 1、常规X线 常规X线透视采用影像增强器取代普通荧光屏,可提高影像质量,照射量降低系数为0.2;如辅以非检查部位的屏蔽,则降低系数为0.18;加之实施远距离或隔室操作,则更有利于X线工作人员的防护。稀土增感屏取代钨酸钙屏,影像质量无明显差别,但可使患者受照剂量降低近1/2【1】。胸部摄影使用稀土屏,并辅以限束装置,其剂量降低系数为0.34,若再将胸部摄影取代胸部透视,降低系数为0.08,加之使用高千伏技术,则更利于防护。在X线摄影中,照射野普遍偏大,据有关资料表明:我国照射野面积与胶片面积比值平均为4.32,而美国、日本等国平均仅为1.2,一方面可能与部分X线机无可调式限束装置有关,另一方面在一定程度上也反映出部分X线工作人员防护意识较差。这就要求技师们加强职业道德修养,增进防护意识,配备可调式限束装置。X线检查时,有的病人在投照室内候诊,重复受照率高;非适应证检查控制不严格,不符合X线应用正当化原则。 2、体层 在体层摄影时【2】眼晶体和甲状腺吸收剂量达12mGy以上,主要原因为用此方法检查时,照射野较大,且曝光时间较长。经铅玻璃眼镜和铅胶颈围防护后,上述两个器官吸收剂量减少为0.5mGy,仅为屏蔽前的4%。在【3、4】数字成像体层摄影可最大限度降低1/10~1/2的照射量。 3、口腔全景 眼睛的晶体,甲状腺和下颌骨的骨髓都是X线敏感组织,而在全景X线拍片中这些组织都受到照射,眼晶体的吸收剂量为0.118mGy。儿童的头部

Celigo细胞成像分析仪的特点和应用详解

Celigo细胞成像分析仪的特点和应用 Celigo细胞成像分析仪的特点和应用 上海典奥生物科技有限公司(tekon biotech (Shanghai) Itd) Celigo细胞成像分析仪可分析生长在微孔板和T-flask中的贴壁和非贴壁(悬浮)细胞,具有超越传统方法的更好的优势。Celigo具有特别一致的,高质量,全孔的明亮视野(brightfield)成像功能,结合强大的分割软件可在5分钟内获得整个微孔板的所有孔中的所有细胞的高质量数据。Celigo具有非破坏性和非侵入性明亮视野分析功能,并有多色荧光功能作补充,使系统适合任何实验室中的基于细胞的广泛的实验。 图1 Celigo细胞成像分析仪 Celigo细胞成像分析仪具有下列特征和优势: 1)可接受T-flask(T-25和T-75)和多数微孔板(1536孔板到6孔板); 2)可在整个孔的范围内进行准确的明亮视野细胞成像和识别; 3)具有三通道荧光(除了明亮视野功能):红色荧光、绿色荧光和蓝色荧光;

4)极快速的扫描(扫描整块微孔板大约耗时5-15min); 5)有直观并易于使用的,功能强大的,软件分割和分类界面; 6)可选择的API软件,可进行机械臂装载整合。 Celigo细胞成像分析仪的杰出的性能主要取决于它的独特的光学通路,此光学通路应用了一个大型的F-theta透镜和检流计镜片来进行大面积快速扫描。与传统的基于显微镜的仪器不同,此系统可扫描整个孔,而无需移动微孔板,并保持一致的亮度对孔边缘的细胞进行准确的细胞识别。 Celigo可检测的细胞分析参数: 1)总细胞数目(Total Cell Number);2)分类细胞数目(Gated Cell Number);3)分类细胞百分比(Percentage of Gated Cells);4)细胞密度(Cell Density);5)细胞面积(Cell Area);6)细胞平均强度(Cell Mean Intensity);7)细胞整体强度(Cell Integrated Intensity);8)细胞长宽比(Cell Aspect Ratio);9)细胞形状因子(Cell Form Factor);10)细胞光滑度(Cell Smoothness);11)克隆直径(Colony Diameter);12)克隆周长(Colony Perimeter)。 Celigo细胞成像分析仪的应用 (一)明亮视野无标记实验 1)细胞计数和细胞生长跟踪(Cell Counting & Growth Tracking) 用于进行细胞系特征描述,克隆确认,和基于形态学的筛选。 2)克隆计数:球体分析(Colony Counting: Sphere Analysis) 用于进行EB特征描述和肿瘤球体分析。 3)饱和度(Confluency) 用于细胞系特征描述和侵染性实验。 (二)荧光标记实验 1)细胞计数和细胞生长跟踪(Cell Counting & Growth Tracking) 用于进行细胞系特征描述,克隆确认,和基于形态学的筛选。 2)细胞分泌实验(Cell Secretion Assay) 用于细胞分泌分析。 3)细胞活力(Cell Viability)

学习造血干细胞移植的体会

关于赴北京大学人民医院进修学习的汇报 尊敬的院领导及各位同事: 本人非常荣幸在主任和院领导的支持和安排下,于今年2月底赴北京大学人民医院进行为期半年的临床进修学习,主要学习内容为异基因造血干细胞移植技术。学习过程中,收获颇丰,在临床业务、治疗理念、科研合作和思维开拓方面有了一次极大的提升,所思所感向领导汇报如下。 北京大学人民医院血液病研究所包括实验室诊断中心及临床中心,其中临床中心共有13个病区,包括移植仓内病区4个,移植后病区5个,化疗病区4个,共有床位372张。实验室诊断包括中心形态室、分子和生物学实验室、细胞遗传学实验室和移植免疫学实验室。目前是世界最大的异基因造血干细胞移植中心,每年移植病例接近900例,超过美国最大的癌症中心MD.Anderson(年均400例),骨髓移植诞生地美国Fred.Hutchison癌症中心(年均350例)等欧美著名骨髓移植中心。一直以来造血干细胞移植都仅限于HLA基因相合的同胞(兄弟姐妹)之间进行,我国以“独生子女家庭”为社会主体的现状使同胞相合供者日渐匮乏;中华骨髓库等非血缘供者库捐献成功率仅11%。因此,供者来源缺乏是HSCT领域长期未解决的重大难题。而北京大学血液病研究所提出的为解决供体缺乏的单倍体造血干细胞移植“北京方案”已在世界范围内被广泛接受。 半相合造血干细胞移植风险大,移植过程中及移植后1年内并发症多,在半年的学习和临床工作中,发现北大人民医院之所以能创新

性提出“北京方案”,并保证高移植存活率,与其严谨的工作精神、完备的临床管理制度、科研思维的培养密不可分。 一、极其严谨的工匠精神 “移植无小事”,这是常挂在北大人民医院血血研所的各位老师口中的一句话。临床工作中,患者的每一项异常结果都会得到最及时的处理,每一个不适主诉都会得到极大的重视。刚开始进修学习时,我还颇不以为然,觉得上级医生过于紧张,稍有病重患者就会“鸡飞狗跳”,但是随着学习的深入,发现临床工作中细节的处理正是移植高成功率的重要保障。 1.科室管理层的严格要求:血研所每周三上午实行所长查房制度,参加人员包括本院移植病区的医生、研究所、进修生及实验诊断中心的老师。形式是先在示教室进行幻灯汇报,本院医生发言讨论(类似病例讨论的形式),然后所长去床边看病人,半天时间的查房病人数5~8例左右。黄晓军所长是前任中华医学会血液学分会主任委员,每天早上7点都会准时到达办公室。他对各级医师要求非常严格,查房时,他的问题常令上级医生们冷汗连连:为什么这个病人现在才提出讨论?偏离治疗规范的原因何在?你对得起病人千里迢迢来诊吗?扪心自问,如果这个患者由其他医生管理,会比你更好吗?现在已经讨论了下一步方案,你能保证患者顺利出院吗?有些问题初听不免苛刻,但无形的压力也令所有医生绝不敢对患者掉以轻心,对自己的每一个治疗决策都要周详考虑。 2.上级医生身为表率,极其敬业:带组医生可能是刚晋升不久的

医学影像系统PACS

医学影像系统PACS

一、医学影像系统PACS简介 PACS系统就是Picture Archivingand Communication Systems的缩写,意为影像归档与通信系统。它就是应用在医院影像科室的系统,主要的任务就就是把日常产生的各种医学影像(包括核磁,CT,超声,各种X光机,各种红外仪、显微仪等设备产生的图像)通过各种接口(模拟,DICOM,网络)以数字化的方式海量保存起来,当需要的时候在一定的授权下能够很快的调回使用,同时增加一些辅助诊断管理功能。它在各种影像设备间传输数据与组织存储数据具有重要作用。PACS也就是近年来随着数字成像技术、计算机技术与网络技术的进步而迅速发展起来的,旨在全面解决医学图像的获取、显示、存贮、传送与管理的综合系统。它主要分为影像采集系统、数据处理与管理系统(PACS控制器)、影像通讯网络、影像显示系统(显示工作站)、影像存档系统、影像打印与输出系统等6个单元。 二、PACS产生的背景与原因 伦琴发现X射线后的一百多年里,医学成像科学与技术对放射诊断学的主要贡献就是创造了多种成像方式,例如:CT、MRI、SPECT、PET、DSA、NM、US、CR 等,这些新的医学成像技术为临床提供了丰富的影像学资料,极大地方便了医生的诊断,但与此同时所产生的大量的影像资料对医院的管理提出了更高的要求。传统的胶片备份,人工管理的方法不仅要耗费大量的资金、场地与人力,而且存在着丢失资料、查找困难、存储时间短等问题。显然这种方法已经远远不能满足医院迅速增长的业务要求,迫切需要一种自动化的影像管理系统来代替它,这已成为每一家医院面临的急迫需要解决的问题。 伴随着高速计算设备、网络通讯及图像处理技术的飞速发展而产生的“医学影像存取与传输系统”(Picture Archiving and Communication System)为以上问题的彻底解决提供了一种先进的技术手段。据估算,在一家医院中放射成像(radiography,即将医学影像成像到传统的胶片上)的工作,其工作量通常占影像室工作量的60%至70%。PACS系统可以大大降低该工作量的比例,提高影像室的工作效率。PACS系统的使用不但为医院达到无胶片化环境提供了解决的

超高分辨活细胞成像系统技术

GE超高分辨活细胞成像系统 利用活细胞成像工作站进行细胞和基因的功能研究,是生物医学研究的最新趋势。固定细胞观察仅能提供固定瞬间细胞的静态信息,无法反映细胞在正常生理生化条件下的状态。活细胞观察,对处于正常生理状况下的细胞进行全程扫描和记录,获得其连续、全面、动态过程由于其显示的正常细胞动态的活动过程,很容易发现和确定细胞间相互作用和信号传导的过程,以及在活细胞水平上的生物分子间的相互作用,不仅可以解决长期以来悬而未解的问题,更为未来的研究提出新的问题,指出新的方向。 一、活细胞成像系统原理 目前主流的活细胞成像系统从原理上可以分为两大类: 基于宽场反卷积技术 基于共聚焦技术 两种技术作为目前最流行的活细胞成像技术,均可以实现在维持细胞存活的情况下,快速获取单一焦平面的信号,在具体性能上则各有擅长。 宽场反卷积技术 对光线进行反卷积运算是光学成像领域的成熟技术,最早由美国国家航空航天局开发并成为观察微弱天体信号的标准技术。去卷积和共聚焦技术是光学显微镜领域获得单一焦平面光线的两大主流技术(J.M.Murray, live cell imaging, 2010)。通过将非焦平面的光线还原至焦平面上,大大提高了样品信号的强度以及图像的信噪比。由于去卷积技术设计到大量的后期运算,因此在高性能计算机发明以前,一直受制于运算能力,没有得到大规模的推广。随着近年来计算机性能的大幅提升和价格的下降,去卷积技术逐渐成为光学显微镜的主流技术。一个点光源经过显微镜的光路,由于镜片对光线的衍射和散射,最终呈现在观察者面前的是一个模糊的点,所以点光源变成模糊的点的过程即为卷积。反卷积就是把模糊的点还原成点光源的过程。 以API 公司的DeltaVision系统为例,其反卷积过程经历以下几步: 1)首先通过无数的计算和实验,得到点光源经过显微镜物镜后变模糊的规律,建立模型。 2)选择完美的物镜,保证样品信号经过物镜后变模糊的规律符合步骤一中得到的模型。 3)将通过显微镜光路的所有的光信号进行收集,因为点光源经过显微镜光路后会变成一个空 间中的倒圆锥形,所以在收集信号的时候需要很准确的记录信号的Z 轴信息。 4)对收集到的所有光信号按照步骤一中的模型进行还原,最终将模糊的点还原成清晰的点, 客观反映它在空间的位置和强度。 目前去卷积技术越来越广泛地应用于生物学图像的研究中。 共聚焦技术 共聚焦显微镜它采用点光源(point lightsource) 照射标本,在焦平面上形成了一个轮廓分明 的小的光点(light spot ) ,该点被照射后发出的荧光被物镜收集,并沿原照射光路回送到探测器。探测器前方有一个针孔(pinhole) ,几何尺寸可调。这样,来自焦平面的光,可以会聚在探 测针孔范围之内,而其它来自焦平面上方或下方的散射光,都被挡在探测针孔之外而不能成象。 光束扫描器又分为单光束、多光束或狭缝扫描器几种。其中单光束扫描获得的图像质量最好, 狭缝扫描器虽然产生图像的速率很高(可达实时水平) ,但其图像信噪比低于单光束扫描,这是 因为从狭缝长轴来的漫射光不能被有效遮挡。多光束扫描如碟片式共聚焦是由电动马达驱动

活细胞成像设备的选择

为活细胞研究设计光学显微系统时,首要考虑的是检测器的敏感度(对信号乃至噪音的检测),图像获取的速度,以及在此基础上标本的可行性。对于固定细胞的成像,曝光时间及光强度相对来说都很高,这时可能会造成光漂白;然而对于活细胞成像,上述光的影响必须去除。几乎在所有情况下,活细胞显微镜都会在尽可能高的图像质量与尽可能好的细胞活性之间取得一个平衡。对于此类实验,时间及空间上的分辨率需要设定在能满足实验要求的水平上,而不是给予过度的光照或设定过多采样时间点。 基本上,一个理想的活细胞成像系统必需有足够的敏感度,来满足在弱荧光条件下仍能得到高图片质量;同时,系统也必需足够快,以记录整个动态过程。另外,这个系统还需要有足够高的分辨率以捕捉样品细节,并且能够准确的实时测量每个微小的光强变化。然而不幸的是,要改善上述的任意一条都需建立在牺牲其它性能的基础上。因此现在还不能够设计出一个可以满足所有要求的活细胞成像体系。研究人员现在只能在尽量减低不重要的信息的遗失的同时,尽可能的获得最优的重要参数。这样,显微镜的配置最终取决于成像的要求,对于样品在实验期间活性的要求,进行标记的难度水平,以及仪器的可用性等实际因素。 如图一(Figure 1)所示为一台倒置研究级显微镜,它配有四个相机接口,并可满足对培养的组织的研究。在四个接口上分别配有四个不同的相机,每一个都用来获取不同的图像。在大多数情况下,这种显微镜的分光设计是100%进入相机或以80:20的比例同时分配给相机和目镜。在弱光成像时,研究人员必需确保将最敏感的相机接在100%分光口上。在图一中,彩色CCD(Full color CCD)接在显微镜的底部(a),它从物镜接受的光信号不经过棱镜或反光镜的反射。这样的相机通常用来进行多色荧光或明场拍摄。显微镜右侧连接高效的电子倍增电荷偶联设备(Electron Multiplying Charge Coupled Device,EMCCD)(b),它通常用来检测极弱的荧光信号。接在显微镜左侧的相机(c)配有一个高量子效应的感应器,可以感应700-1000nm 波长范围内的光,所以这个相机可以用来进行微分干涉相称(differential interference contrast,DIC)观察方法下厚标本的红外线照明成像。最后,对于高分辨率的单色荧光成像,如全内反射荧光或其它荧光技术,图一中的显微镜在前部(d)

第一章放射治疗中医学影像成像系统

第一章肿瘤放射治疗中的医学影像成像系统 引言 医学影像成像系统是现代精确放疗的基础。在过去三十多年里,医学影像技术的发展促进了3D根治放疗剂量计算、传输和控制革命性进展。医学影像对评估肿瘤的进展程度、修改治疗计划和引导剂量传输方面起到了不可或缺的作用,其中一个最重要的进步就是实现了患者解剖信息在断层层面上的可视化显示。恶性肿瘤可改变正常器官的空间位置关系。现代医学影像系统可以从以下三个方面协助实现精确放疗: ①医学影像系统可提供肿瘤和临近器官的形状、体积和位置的准确信息。 ②CT图像反映出的组织密度(电子密度)是放射剂量准确计算的基础。 ③连续的动态影像成像系统可用于观察和评估生理运动造成的肿瘤和器官形态、位置的变 化。 随着逆向调强放射治疗(intensity modulated radiotherapy,IMRT)、重离子放射治疗等剂量传输技术的应用,放射治疗可实现高适形度的剂量传输,如图1-1所示。这些高精度剂量传输技术的发展与应用,增加了大家对运动靶区成像和治疗的兴趣。治疗机房内成像系统的发展为在线图像引导放疗的实现提供了可能,通过获取患者治疗期间每日的影像信息,可减小由摆位和器官运动造成的误差,并可通过后台图像处理定量监测病灶变化,可更客观、真实的评估靶区及危及器官的真实受量,最终实现自适应放射治疗(Adaptive radiotherapy,ART)。本章节着重讲述医学影像成像系统与调强适形放疗相关的成像手段和图像处理技术。 a:横断面b:冠状面c:矢状面d:三维重建 图1-1 一例鼻咽癌患者IMRT计划的剂量分布图 通过回顾性的检查、统计和分析放射治疗过程中不确定性的来源,可更好的开发用以提高治疗精度的成像系统。放疗过程中的不确定性因素从靶区的勾画就已经存在。在治疗计划中应用电子计算机X射线断层扫描技术(computed tomography,CT)扫描图像的初步研究表明,若未使用CT扫描,约20%的患者肿瘤靶区覆盖是不够的,约27%刚好处于临界状态,只有约53%的患者肿瘤靶区的覆盖度是足够的。因此应用一个准确、有效而又稳定的靶区范围确定方法非常重要,如图1-2所示。对器官因生理运动(如呼吸、膀胱充盈程度等)造成的靶区位置的不确定性,更应该给予动态的靶区足够的剂量覆盖。

造血干细胞移植基础知识

造血干细胞移植 适应症 造血干细胞移植迄今仍然是一种高风险治疗方法,目前主要用于恶性血液疾病的治疗,也试用于非恶性疾病和非血液系统疾病,如重症难治自身免疫性疾病和实体瘤等。 (1)血液系统恶性肿瘤:慢性粒细胞白血病、急性髓细胞白血病、急性淋巴细胞白血病、非霍奇金淋巴瘤、霍奇金淋巴瘤、多发性骨髓瘤、骨髓增生异常综合征等。 (2)血液系统非恶性肿瘤:再生障碍性贫血、可尼贫血、地中海贫血、镰状细胞贫血、骨髓纤维化、重型阵发性睡眠性血红蛋白尿症、无巨核细胞性血小板减少症等。 (3)其它实体瘤:乳腺癌、卵巢癌、睾丸癌、神经母细胞瘤、小细胞肺癌等。 (4)免疫系统疾病:重症联合免疫缺陷症、严重自身免疫性疾病。 由于移植存在致命性合并症,因而非血液系统疾病的造血干细胞移植治疗还未被广泛接受。 分类 (1)按照采集造血干细胞的来源不同分为:骨髓移植、脐血移植、外周血造血干细胞移植等。 (2)按照供体与受体的关系分为:自体骨髓移植/脐血移植/外周血造血干细胞移植、异体骨髓移植/脐血移植/外周血造血干细胞移植。异体移植又称异基因移植,当供者是同卵双生供者时,又称同基因移植。 (3)根据供者与受者HLA配型相合程度,异体骨髓移植/脐血移植/外周血造血干细胞移植分为:HLA全相合移植、不全相合移植、单倍体相合移植。 (4)根据供者与受者的血缘关系分为:血缘相关移植、非血缘移植即骨髓库来源供者。 (5)根据移植前的预处理方案强度可分为:清髓性造血干细胞移植和非清髓性造血干细胞移植(减低预处理剂量的造血干细胞移植)。 一般根据患者的疾病种类、疾病状态及预后、HLA配型结果及供者年龄等因素综合考虑来选择造血干细胞移植方式。目前异基因造血干细胞移植绝大多数为配型相同的同胞间、半相合父母与子女间、不全相合同胞间的移植,而随着全世界及我国骨髓库的增加,非血缘供者的异基因造血干细胞移植数量也在不断增加。不同移植类型各自优劣不同,自体造血干细胞移植的优点在于不受供者的限制,移植后不发生移植物抗宿主病,不需要使用免疫抑制剂,严重并发症较少,费用较低,缺点是复发率高。异基因造血干细胞移植治疗恶性疾病,植入的供者细胞有持久的抗肿瘤作用,复发率低,但严重并发症多,费用相对较高。

医学成像系统试题库A

医学成像系统试题库(A ) 试卷(一) 一. 填空 1.磁共振的频率ω= 。 2.在磁共振中,若质子的能级差B 2E μ=?,B 为外加磁场。质子产生共振的条 件 ,共振频率 。 3.在磁共振中用部分饱和序列采集MRI 信号,图像的灰度值主要由 决定, 对 的变化不敏感。1T 的组织图像要比1T 的组织显得亮。 4.在B 超成像中对组织器官的轮廓显示主要取决于 回波,反映组织特征的 图像由 回波决定。 A .反射 B. 衍射 C. 散射 D. 透射 5.B 超设备中的DSC (数字扫描变换器)在图像后处理的主要功能有:1. 2. 3. 4. 5. 6.在B 超成像中显示图像的数据插补方案有: 。 7.核医学成像的辐射检测器有哪几 类 。 8.可以完成对正电子探测成像的设备有: 成像设备,双探头 成像设备, 成像设备,与CT 相结合的

成像设备。 9.γ照相机准直器的类型有。 二.简答题 1.画出超声换能器基本结构的示意图,并作简单说明。 2.超声探头晶片D=10mm,频率f=1.25MHz , λ=1.22mm ,定量求出超声场轴线上的声压分布情况并画图,说明远场和近场的特点以及远场扩散角是多少?3.在磁共振成像中,用二维付里叶法对16个层面进行检查时,如果脉冲周期的重复时间为1.5S,图象平均次数为2,整个图像数据采集时间为多少(假设图象像素矩阵为128×128)。 4.磁共振信号的采集脉冲有哪几种?并说明激励脉冲信号的组成。 5.画出双探头的SPECT符合检测成像设备中的符合检测电路的基本结构、并说明基本工作原理。 6.画出γ照相机的基本结构图以及简单说明信号流程。 7.画出PACS的基本工作框图,并对其做简要说明。 三.回答下列问题 1.说明X-CT成像、核医学成像、超声成像、磁共振成像的各自特点及共性。2.画出超声彩色血流图(CFM)的原理框图,并说明其工作原理。 3.B超设备中声束的扫描方式有哪几种?请说明各种扫描方式的基本特点。4.在磁共振成像中利用付里叶变换法成像,请说明其成像原理(包括磁梯度场的选取、相位编码、频率编码,和最后的成像)。

医学成像系统的最新发展现状

医学成像系统的最新发展现状医学成像是指外科医生用以诊断从身体外部无法看到的身体部位的过程,比较常见的方式包括使用内视镜、X光等方式。医学成像又称卤化银成像,因为从前的菲林(胶卷)是用感光材料卤化银化学感光物成像的。 根据成像的形式,可以有影像诊断学、医学超声检查、超声诊断学、乳房摄影术、X射线断层成像、核磁共振成像(又称磁振造影)、X光成像、萤光成像等。 医学图像在医学中占有重要地位。显微镜的发明对医学的发展是一次重大推动。因为它使人们以图像的形式观察到了直接由眼睛所不能看到的微观世界。德国物理学家伦琴(Wilhelm Conrad Rontgen)于1895年11月8日发现X射线,促使医学图像第二次得到重大发展。由于X线在医学上的应用使得人们能观察到过去看不到的人体内部的形态结构。1972年X 线计算机断层成像设备〔X-CT)的问世,使医学成像技术出现了崭新的面貌,它可以给出无重叠的、清晰度相对比度有很大提高的断层图像,这是发现x线以来医学图像的又一次重大发展。100多年来放医学影像设备迅速发展。条件日臻完善,医学成像技术日新月异。特别近些年来,医学影像设备又有一些新的发展动向。第一动向是,技术的发展充实与完善了设备的硬件与软件功能;第二个动向是高档设备的技术指标主要用于临床研究与功能的开发,代表了生产厂家的技术实力,低档设备则在努力充实与不断提高硬件的性能,并且迅速把高、中档设备较成熟的功能与软件移植过来,从而显著改善了低档设备的性能指标,拓宽了低档设备的适用范围。 不同的成像方式经历着不一样的发展阶段,但却给医学带来了客观的贡献。 一、X线成像技术 1895年伦琴发现了X射线,这是19世纪医学诊断学上最伟大的发现。X-ray透视和摄影技术作为最早的医学影像技术,直到今天还是使用最普遍且有相当大的临床诊断价值的一种医学诊断方法。X线成像系统检测的信号是穿透组织后的X线强度,反映人体不同组织对X 线吸收系数的差别,即组织厚度及密度的差异;图像所显示的是组织、器官和病变部位的形状。 随着计算机的发展,数字成像技术越来越广泛地代替传统的屏片摄影。数字X线检查技术包括计算机X线摄影、直接数字X线摄影、数字减影血管造影和X-CT等。X-CT的问世被公认为伦琴发现X射线以来的重大突破,是标志着医学影像设备与计算机相结合的里程碑。自20世纪70年代初开始在临床应用以来,经过多次升级换代,由最初的普通头颅CT机发展到现在的高档滑环式螺旋CT和电子束CT。其结构和性能不断完善和提高,可用于身体任何部位组织器官的检查,因其密度分辨率高,解剖结构显示清楚,对病变的定位和定性较高,已成为临床常用的影像检查方法。 此外,双源CT 系统以及真三维容积成像技术成为近年来医学成像的研究热门。西门子

激光全息细胞成像系统讲解

激光全息细胞成像及分析系统应用 细胞活力 激光全息细胞成像及分析系统可以实时监测细胞死亡过程,以及通过图像进行记录。全息技术再不需要荧光标记的情况下可以得到细胞形态学数据。Khmaladze A. et al(2012和Pavillion N. et al(2012使用DHM 研究细胞死亡过程,观察到死亡过程中细胞体积显著减小。Kuhn et al(2013使用DHM 研究活/死细胞特点时得到实验结果和和基于荧光标记方法结果相一致。他们使用PI 和Hoechst 标记细胞。染料法鉴定细胞死活是目前常见的鉴定方法,其中台盼蓝染色方法最常见。台盼蓝可穿透变性的细胞膜,与解体的DNA 结合,使其着色,而活细胞能阻止染料进入细胞内,故可以鉴别死细胞与活细胞。鼠成纤维细胞L929接种在μ-slide(Ibidi,Germany 上,肿瘤药物依托泊苷etoposide(100μM处理细胞,使用激光全息细胞分析系统(M3 分析细胞的死亡,并与台盼蓝染色法进行比较。图1中左图为台盼蓝染色结果,右图为全息结果,细胞越白,细胞越厚。死细胞是圆的,薄的。两种方法得到的结果是 一样的。

图1

图2细胞厚度VS 细胞体积,死亡细胞集中在绿色区域 细胞凋亡 细胞死亡起码有两种方式,即细胞坏死(necrosis)与细胞凋亡(apoptosis。细胞坏死是细胞受到强烈理化或生物因素作用引起细胞无序变化的死亡过程。表现为细胞胀大,胞膜破裂,细胞内容物外溢,核 变化较慢,DNA 降解不充分,引起局部严重的炎症反应。细胞凋亡是指为维持内环境稳定,由基因控制的细胞自主的有序的死亡。在这两种过程中,细胞体积都会减少,形态学都会发生变化。 前列腺癌细胞DU145和小鼠成纤维细胞L929分别接种在IBIDI-micro slides (IBIDI)上,接种24h 后,50μM依托泊苷(etoposide 处理细胞,HoloMonitor M3分析细胞死亡过程。

医学成像系统试题库A

医学成像系统试题库(A ) 试卷(一) 一. 填空 1.磁共振的频率ω= 。 2.在磁共振中,若质子的能级差B 2E μ=?,B 为外加磁场。质子产生共振的条件 ,共振频率 。 3.在磁共振中用部分饱和序列采集MRI 信号,图像的灰度值主要由 决定,对 的变化不敏感。1T 的组织图像要比1T 的组织显得亮。 4.在B 超成像中对组织器官的轮廓显示主要取决于 回波,反映组织特征的图像由 回波决定。 A .反射 B. 衍射 C. 散射 D. 透射 5.B 超设备中的DSC (数字扫描变换器)在图像后处理的主要功能有:1. ! 2. 3. 4. 5. 6.在B 超成像中显示图像的数据插补方案有: 。 7 . 核 医 学 成 像 的 辐 射 检 测 器 有 哪 几 类 。 8.可以完成对正电子探测成像的设备有: 成像设备,双探头 成像设备, 成像设备,与CT 相结合的 成像设备。 9 . γ照相机准直器的类型 有 。 二.$

三. 简答题 1.画出超声换能器基本结构的示意图,并作简单说明。 2.超声探头晶片D=10mm ,频率f= , λ=1.22mm ,定量求出超声场轴线上的声压分布情况并画图,说明远场和近场的特点以及远场扩散角是多少 3.在磁共振成像中,用二维付里叶法对16个层面进行检查时,如果脉冲周期的重复时间为,图象平均次数为2,整个图像数据采集时间为多少(假设图象像素矩阵为128×128)。 4.磁共振信号的采集脉冲有哪几种并说明激励脉冲信号的组成。 5.画出双探头的SPECT 符合检测成像设备中的符合检测电路的基本结构、并说明基本工作原理。 6.画出γ照相机的基本结构图以及简单说明信号流程。 7.画出PACS 的基本工作框图,并对其做简要说明。 四.回答下列问题 1. 说明X-CT 成像、核医学成像、超声成像、磁共振成像的各自特点及共性。 2. ! 3. 画出超声彩色血流图(CFM )的原理框图,并说明其工作原理。 4. B 超设备中声束的扫描方式有哪几种请说明各种扫描方式的基本特点。 5. 在磁共振成像中利用付里叶变换法成像,请说明其成像原理(包括磁梯度场的选取、相位编码、频率编码,和最后的成像)。 6. 在磁共振成像中利用自旋回波序列,对纯水和非纯水进行检测,纯水的1T 、 2T 较大,非纯水的1T 、2T 较小。试分析以下两种情况纯水和非纯水的MRI 信号,并画出纯水和非纯水的MRI 信号图 (1) 脉冲序列重复时间R T 足够长,两种物质均可恢复到0M 。 (2) R T 缩短到约等于纯水1T 时。

FRET暨活细胞显微成像系统

荧光共振能量转移(FRET)影像系统
Olympus(北京)销售服务有限公司上海分公司
PDF created with pdfFactory Pro trial version https://www.doczj.com/doc/472925296.html,

荧光共振能量转移(FRET)影像系统
一、研究目的
随着生命科学研究的不断深入, 光学显微镜使我们理解了细胞结构和有关功能。 但是分子 生物学研究已经显示了分子事件,例如信号传导和基因翻译,需要蛋白质的装配成特殊的大 分子复合体等。对各种生命现象发生的机制,特别是对细胞内蛋白质间相互作用的研究变得尤 为重要。 传统的生物物理或生物化学方法例如亲和色谱法或免疫沉淀反应法和近来的酵母双杂 交、磷酸化抗体、免疫荧光、放射性标记等方法等,都需要破碎细胞或对细胞造成损伤,无 法做到在活细胞生理条件下实时地对细胞内蛋白质-蛋白质间相互作用进行动态研究。 而基于强度的影像技术FRET方法,使得研究活细胞内的这些相互作用变得容易了,荧光 共振能量转移( FRET)是用于对生物大分子之间相互作用定性、定量检测的一种有效方法。根 据所基于的荧光显微镜配置不同而有不同的应用侧重,可在多细胞,单细胞,细胞膜,细胞 器等不同层次对生物大分子间的相互作用距离,动力学特性等进行研究。
二、FRET的原理和实现方法
FRET的原理和发生的基本条件:
1. 2. 3. 4. 发色团之间的距离在10A到100A 。 供体D的荧光光谱和受体A的吸收光谱足够多的重叠。 供体D的量子产率和受体A的吸收系数足够大。 D和A的跃迁偶极矩有最佳的相对取向,或者两者之一有一定的快速旋转的自由度。
FRET的实现方法:
1) 稳态方法(基于供体、受体的三通道计算校准) 供体荧光的减弱-主要的方法 受体荧光的增强 激发光谱和吸收光谱的比较 2) 3) 光漂白方法 (Pb-FRET) 时间分辨方法(TR-FRET) 供体荧光的衰减 受体荧光的增长
PDF created with pdfFactory Pro trial version https://www.doczj.com/doc/472925296.html,

造血干细胞移植基础知识

1、什么是造血干细胞(hematopoietic stem cells,HSC)? 人体大部分骨头的中央部门有骨腔,骨腔内所含的物质即骨髓.骨髓中有一种能起着造血功能的细胞就叫造血干细胞.人血中的红细胞,血小板,淋巴细胞,粒细胞等,都是由它经过多次分化发育而成的. 2、什么是造血干细胞移植? 造血干细胞移植是指他人骨髓中的造血干细胞移植到人体内,平时所说的”骨髓移植”实际上就是造血干细胞移植. 3、造血干细胞移植能治疗哪些疾病? 利用造血干细胞移植治疗的疾病很多.可治疗肿瘤性疾病,如:白血病,某些恶性实体瘤等,以及非肿瘤性疾病,如:再生障碍性贫血,重症免疫缺陷病,急性放射病,地中海贫血等.目前,对造血干细胞的研究又有一些新突破,如对重症天疱疮严重并发症(双侧股骨头无菌性坏死)以及生症肌无力等疾病的患者治疗. 4、什么是HLA,它在造血干细胞移植中的作用是什么? HLA即人类白细胞抗原,存在于人体的各种有核细胞表面.它是人体生物学”身份证”,由父母遗传,能识别”自己”和非已”,从而保持个体完整性.因而HLA在造血干细胞移植的成败中起着重要作用,造血干细胞移植要求捐献者和接受移植者HLA配型. 5、兄弟姐妹的HLA相合率是多少?非血缘关系的捐献者中与患者的HLA相合率是多少? 同卵(同基因)双生兄弟姐妹为100%,非同卵(异基因)双生或亲生兄弟姐妹是1/4. 人类非血缘关系的HLA型别中,相合几率是四百分之一到万分之一,在较为罕见的HLA型别中,相合几率只有几十万分之一.由于独生子女家庭的普遍性,高相合率人群减少,今后移植主要在非血缘关系供者中寻找相合者. 6、为什么要建立中国造血干细胞捐献者资料库? 我国需要造血干细胞移植的患者有数百万人,仅白血病患者每年就新增4万人以上,要成功地进行造血干细胞移植治疗,捐献者与患者之间的HLA型别要相合.如果不合,移植后就会产生严重的移植物抗宿主反应,甚至危及患者生命.因此,必须建立中国人的造血干细胞捐献者资料库,并且是参加的志愿者越多,库容量越大,患者找到相合捐献者的机会就越多,”生机”就越大. 7、中国造血干细胞捐献者资料库是什么机构?

细胞迁移or侵袭实验分析——LumaScope活细胞成像系统

细胞迁移/侵袭实验分析 ——LumaScope活细胞成像系统 细胞迁移实验是普遍应用于评价损伤修复、贴壁肿瘤细胞转移或血管再生等的典型实验。传统方法是应用无菌枪头(Tip)在细胞培养容器上划痕来实现。但是此种方法无法实现在不同孔中划出同样大小的划痕。Oris TM迁移/侵袭试剂盒能够提供更加精确的方法,在培养容器中生成一个圆形区域。这种方法同样适用于观察不同方向的细胞迁移。LumaScope活细胞成像系统具备传统显微镜的功能,可应用于细胞或组织培养实验室的日常细胞观察。如细胞状态实时检测、远程传送和监控、细胞计数、形态观察、染色观察等。LumaScope可放置于培养箱中实现细胞的长时间的连续成像和定点监测。这种应用大大提高了实验过程检测的便捷性和结果的准确性。 本文将描述如何结合LumaScope与Oris TM迁移/侵袭试剂盒来实现细胞迁移/侵袭实验。实验结果可通过Image J软件来进行分析,最终得到细胞迁移的数量和速度数据。 细胞迁移分析: Day 1:am 9:00插入Stoppers,接种细胞; pm 4:00(根据细胞贴附状况),拔除stoppers,PBS洗一遍后加入新鲜培养液。Day 2:根据要观察的时间点设置LumaScope成像参数进行成像,并进行量化分析。 细胞侵袭分析: Day 1:am 9:00包被薄层BME(用无血清培养液制备),插入stoppers,接种细胞; pm 4:00 (根据细胞状况),拔除stoppers,包被厚层BME(含血清生长因子),再在第二层gel上面加上一层无血清培养液 Day 2:根据要观察的时间点设置LumaScope成像参数进行成像,并进行量化。

医学影像成像原理名词解释

《医学影像成像原理》名词解释 第一章 1.X 线摄影(radiography):是X 线通过人体不同组织、器官结构的衰减 作用,产生人体医疗情报信息传递给屏-片系统,再通过显定影处理,最终以X 线平片影像方式表现出来的技术。 2.X 线计算机体层成像(computed tomography,CT):经过准直器的X 线束穿透人体被检测层面;经人体薄层内组织、器官衰减后射出的带有人体信息的X 线束到达检测器,检测器将含有被检体层面信息X 线转变为相应的电信号;通过对电信号放大,A/D 转换器变为数字信号,送给计算机系统处理;计算机按照设计好的方法进行图像重建和处理,得到人体被检测层面上组织、器官衰减系数(|)分布,并以灰度方式显示人体这一层面上组织、器官的图像。 3.磁共振成像(magnetic resonance imaging,MRI):通过对静磁场(B0) 中的人体施加某种特定频率的射频脉冲电磁波,使人体组织中的氢质子(1H)受到激励而发生磁共振现象,当RF 脉冲中止后,1H 在弛豫过程中发射出射频信号(MR 信号),被接收线圈接收,利用梯度磁场进行空间定位,最后进行图像重 建而成像的。 4.计算机X 线摄影(computed radiography,CR):是使用可记录并由激 光读出X 线影像信息的成像板(IP)作为载体,经X 线曝光及信息读出处理,形成数字式平片影像。 5.数字X 线摄影(digital radiography,DR):指在具有图像处理功能的计 算机控制下,采用一维或二维的X 线探测器直接把X 线影像信息转化为数字信号的技术。 6.影像板(imaging plate,IP):是CR 系统中作为采集(记录)影像信息 的接收器(代替传统X 线胶片),可以重复使用,但没有显示影像的功能。 7.平板探测器(flat panel detector,FPD):数字X 线摄影中用来代替屏- 片系统作为X 线信息接收器(探测器)。 8.数字减影血管造影(digital subtraction angiography,DSA):是计算机 与常规X 线血管造影相结合的一种检查方法,能减去骨骼、肌肉等背景影像, 突出显示血管图像的技术。 9.计算机辅助诊断(computer aided diagnosis,CAD):借助人工智能等 技术对医学影像作图像分割、特征提取和定量分析等增加诊断信息,用以辅助医生对各种医学影像进行诊断的技术。 第二章 1.X 线强度(X-ray intensity):指在垂直于X 线传播方向单位面积上、单 位时间内通过光子数量(N)与能量(hν)(hv)乘积的总和。常用X 线强度表示X 线的量与质。 2.光学密度(density,D):又称黑化度。指X 线胶片经过曝光后,通过 显影等处理在照片上形成的黑化程度。 3.光激励发光(photo stimulated luminescence,PSL):某些物质在第一 次受到光(一次X 线激发光)照射时,能将一次激发光所携带的信息贮存下来,当再次受到光(二次激光激发光)照射时,能发出与一次激发光所携带信息相关荧光的现象。 4.光激励发光物质(photo stimulated luminescence substance):能发生 光激励发光(PSL)现象的物质。

相关主题
文本预览
相关文档 最新文档