当前位置:文档之家› 高中数学复习专题讲座(第23讲)关于求圆锥曲线方程的方法

高中数学复习专题讲座(第23讲)关于求圆锥曲线方程的方法

高中数学复习专题讲座(第23讲)关于求圆锥曲线方程的方法
高中数学复习专题讲座(第23讲)关于求圆锥曲线方程的方法

题目高中数学复习专题讲座关于求圆锥曲线方程的方法 高考要求

求指定的圆锥曲线的方程是高考命题的重点,主要考查学生识图、画图、数形结合、等价转化、分类讨论、逻辑推理、合理运算及创新思维能力,解决好这类问题,除要求同学们熟练掌握好圆锥曲线的定义、性质外,命题人还常常将它与对称问题、弦长问题、最值问题等综合在一起命制难度较大的题,解决这类问题常用定义法和待定系数法 重难点归纳

一般求已知曲线类型的曲线方程问题,可采用“先定形,后定式,再定量”的步骤

定形——指的是二次曲线的焦点位置与对称轴的位置

定式——根据“形”设方程的形式,注意曲线系方程的应用,如当椭圆

的焦点不确定在哪个坐标轴上时,可设方程为mx 2+ny 2

=1(m >0,n >0)

定量——由题设中的条件找到“式”中特定系数的等量关系,通过解方程得到量的大小

典型题例示范讲解 例1某电厂冷却塔的外形是如图所示的双曲线的一部

分,绕其中轴(即双曲线的虚轴)旋转所成的曲面,其中A 、A ′是双曲线的顶点,C 、C ′是冷却塔上口直径的两个端

点,B 、B ′是下底直径的两个端点,已知AA ′=14 m ,CC ′=18 m,BB ′=22 m,塔高20 m 建立坐标系并写出该双曲线方程

命题意图 本题考查选择适当的坐标系建立曲线方程和解方程组的基础知识,考查应用所学积分知识、思想和方法解决实际问题的能力

知识依托 待定系数法求曲线方程;点在曲线上,点的坐标适合方程;积分法求体积

错解分析 建立恰当的坐标系是解决本题的关键 技巧与方法 本题是待定系数法求曲线方程

解 如图,建立直角坐标系xOy ,使AA ′在x 轴上,AA ′

的中点为坐标原点O ,CC ′与BB ′平行于x 轴

设双曲线方程为2222b

y a x =1(a >0,b >0),则a =21

AA ′

=7

又设B (11,y 1),C (9,x 2)因为点B 、C 在双曲线上,所以有

B B '

179,171122

2

2222122=-=-b

y b y 由题意,知y 2-y 1=20,由以上三式得 y 1=-12,y 2=8,b =72

故双曲线方程为98

492

2y x -

=1 例2过点(1,0)的直线l 与中心在原点,焦点在x 轴上

且离心率为

22的椭圆C 相交于A 、B 两点,直线y =2

1x 过线段AB 的中点,同时椭圆C 上存在一点与右焦点关于直线l 对称,试求直线l 与椭圆C 的方程

命题意图 本题利用对称问题来考查用待定系数法求曲线方程的方法,设计新颖,基础性强

知识依托 待定系数法求曲线方程,如何处理直线与圆锥曲线问题,对称问题

错解分析 不能恰当地利用离心率设出方程是学生容易犯的错误 恰当地利用好对称问题是解决好本题的关键

技巧与方法 本题是典型的求圆锥曲线方程的问题,解法一,将A 、B 两点坐标代入圆锥曲线方程,两式相减得关于直线AB 斜率的等式 解法二,用韦达定理

解法一 由e =22=a c ,得212

22=-a

b a ,从而a 2=2b 2

,c =b 设椭圆方程为x 2+2y 2=2b 2

,A (x 1,y 1),B (x 2,y 2)在椭圆上

则x 12+2y 12=2b 2,x 22+2y 22=2b 2,两式相减得,(x 12-x 22)+2(y 12

y 22)=0,

.)

(2212

12121y y x x x x y y ++-=--

设AB 中点为(x 0,y 0),则k AB =-

002y x ,又(x 0,y 0)在直线y =21x 上,y 0=2

1

x 0,于是-

2y x =-1,k AB =-1,设l 的方程为y =-x +1 右焦点(b ,0)关于l 的对称点设为(x ′,y ′),

??

?-='='???????++'-='=-''

b y x b x y b

x y 11 1

22

1解得则 由点(1,1-b )在椭圆上,得1+2(1-b )2

=2b 2

,b 2

=

8

9

,1692=a ∴所求椭圆C 的方程为2

29

1698y x + =1,l 的方程为y =-x +1

解法二 由e =21,222

22=

-=a b a a c 得,从而a 2=2b 2

,c =b 设椭圆C 的方程为x 2+2y 2=2b 2

,l 的方程为y =k (x -1),

将l 的方程代入C 的方程,得(1+2k 2)x 2-4k 2x +2k 2-2b 2

=0,则

x 1+x 2=22214k k +,y 1+y 2=k (x 1-1)+k (x 2-1)=k (x 1+x 2)-2k =2

212k k

+ 直线l y =21

x 过AB 的中点(2,22121y y x x ++),则2222122121k k k

k +?=+-,解得k =0,或k =-1

若k =0,则l 的方程为y =0,焦点F (c ,0)关于直线l 的对称点就是F 点本身,不能在椭圆C 上,所以k =0舍去,从而k =-1,直线l 的方程为y =-(x -1),即y =-x +1,以下同解法一

例3如图,已知△P 1OP 2的面积为4

27

,P 为线段P 1P 2的一个三等分点,求以直线OP 1、OP 2为渐近线且

过点P 的离心率为

213的双曲线方程 命题意图 本题考查待定系数法求双曲线的方

程以及综合运用所学知识分析问题、解决问题的能力

知识依托 定比分点坐标公式;三角形的面积公式;以及点在曲线上,点的坐标适合方程

错解分析 利用离心率恰当地找出双曲线的渐近线方程是本题的关键,正确地表示出

△P 1OP 2的面积是学生感到困难的

技巧与方法 利用点P 在曲线上和△P 1OP 2的面积建

立关于参数

P 1

a 、

b 的两个方程,从而求出a 、b 的值

解 以O 为原点,∠P 1OP 2的角平分线为x 轴建立如图的直角坐标系

设双曲线方程为22

22b y a x -=1(a >0,b >0)

由e 2

=2222)213()(1=+=a b a

c ,得3

=a b

∴两渐近线OP 1、OP 2方程分别为y =23x 和y =-2

3x 设点P 1(x 1,

23x 1),P 2(x 2,-2

3

x 2)(x 1>0,x 2>0),则由点P 分21P P 所成的比λ=

21PP P P =2,得P 点坐标为(2

2,322

121x x x x -+),又点P 在双曲线222294a y a x -=1上,所以2

22122219)2(9)2(a x x a x x --+=1, 即(x 1+2x 2)2

-(x 1-2x 2)2

=9a 2

,整理得8x 1x 2=9a 2

,

427

131241321sin ||||2113

124

91232tan 1tan 2sin 2

1349||,21349||212121*********

21212

1121=??=??=∴=+?

=+==+==+

=?x x OP P OP OP S Ox P Ox P OP P x x x OP x x x OP OP P 又 即x 1x 2=

2

9

② 由①、②得a 2=4,b 2

=9

故双曲线方程为9

42

2y x -

=1 例4 双曲线2

2

24b y x -=1(b ∈N )的两个焦点F 1、F 2,P 为双曲线上一点,|OP |<5,|PF 1|,|F 1F 2|,|PF 2|成等比数列,则b 2

=_________

解析 设F 1(-c ,0)、F 2(c ,0)、P (x ,y ),则

|PF 1|2+|PF 2|2=2(|PO |2+|F 1O |2)<2(52+c 2

),

即|PF 1|2

+|PF 2|2

<50+2c 2

,

又∵|PF 1|2+|PF 2|2=(|PF 1|-|PF 2|)2

+2|PF 1|·|PF 2|, 依双曲线定义,有|PF 1|-|PF 2|=4,

依已知条件有|PF 1|·|PF 2|=|F 1F 2|2=4c 2

∴16+8c 2

<50+2c 2

,∴c 2

3

17, 又∵c 2=4+b 2<317,∴b 2<3

5,∴b 2

=1

答案 1 学生巩固练习

1 已知直线x +2y -3=0与圆x 2+y 2

+x -6y +m =0相交于P 、Q 两点,O 为坐标原点,若OP ⊥OQ ,则m 等于( )

A 3

B -3

C 1

D -1

2 中心在原点,焦点在坐标为(0,±52)的椭圆被直线3x -y -2=0

截得的弦的中点的横坐标为

2

1

,则椭圆方程为( ) 125

75 D. 17525C.125

2752 B. 1752252A.22222222=+=+=+=+y x y x y x y x

3 直线l 的方程为y =x +3,在l 上任取一点P ,若过点P 且以双曲线12x 2

-4y 2

=3的焦点作椭圆的焦点,那么具有最短长轴的椭圆方程为_________

4 已知圆过点P (4,-2)、Q (-1,3)两点,且在y 轴上截得的线段长

为43,则该圆的方程为_________

5 已知椭圆的中心在坐标原点,焦点在x 轴上,它的一个焦点为F ,M 是椭圆上的任意点,|MF |的最大值和最小值的几何平均数为2,椭圆上存在

着以y =x 为轴的对称点M 1和M 2,且|M 1M 2|=

3

10

4,试求椭圆的方程

6 某抛物线形拱桥跨度是20米,拱高4米,在建桥时每隔4米需用一支柱支撑,求其中最长的支柱的长

7 已知圆C 1的方程为(x -2)2+(y -1)2

=

3

20

,椭圆C 2

的方程为2222b

y a x +=1(a >b >0),C 2的离心率为22

,如果C 1与C 2相交

于A 、B 两点,且线段AB 恰为圆C 1的直径,求直线AB 的方程和椭圆C 2的方

程 参考答案:

1 解析 将直线方程变为x =3-2y ,代入圆的方程x 2+y 2

+x -6y +m =0,

得(3-2y )2+y 2

+(3-2y )+m =0

整理得5y 2

-20y +12+m =0,设P (x 1,y 1)、Q (x 2,y 2)

则y 1y 2=

5

12m

+,y 1+y 2=4 又∵P 、Q 在直线x =3-2y 上,

∴x 1x 2=(3-2y 1)(3-2y 2)=4y 1y 2-6(y 1+y 2)+9

故y 1y 2+x 1x 2=5y 1y 2-6(y 1+y 2)+9=m -3=0,故m =3 答案 A

2 解析 由题意,可设椭圆方程为 2222b

x a y + =1,且a 2=50+b 2

,

即方程为2

2

2250b x b y ++=1

将直线3x -y -2=0代入,整理成关于x 的二次方程

由x 1+x 2=1可求得b 2=25,a 2

=75 答案 C

3 解析 所求椭圆的焦点为F 1(-1,0),F 2(1,0),2a =|PF 1|+|PF 2|

欲使2a 最小,只需在直线l 上找一点P 使|PF 1|+|PF 2|最小,利用对称性

可解 答案 4

52

2y x +

=1 4 解析 设所求圆的方程为(x -a )2+(y -b )2=r 2

则有???

?

???=+=-+--=--+-2

22222222)32(||)3()1()2()4(r a r b a r b a ?????===?????===?2745130122r b a r b a 或

由此可写所求圆的方程

答案 x 2+y 2-2x -12=0或x 2+y 2

-10x -8y +4=0

5 解 |MF |max =a +c ,|MF |min =a -c ,则(a +c )(a -c )=a 2-c 2=b 2

,

∴b 2

=4,设椭圆方程为142

22=+y a

x

设过M 1和M 2的直线方程为y =-x +m ② 将②代入①得 (4+a 2)x 2-2a 2mx +a 2m 2-4a 2

=0 ③ 设M 1(x 1,y 1)、M 2(x 2,y 2),M 1M 2的中点为(x 0,y 0),

则x 0=21

(x 1+x 2)=224a m a +,y 0=-x 0+m =

2

44a m + 代入y =x ,得2

22444a

m

a m a +=+, 由于a 2

>4,∴m =0,∴由③知x 1+x 2=0,x 1x 2=-2

2

44a a +,

又|M 1M 2|=3

10

44)(221221=-+x x x x ,

代入x 1+x 2,x 1x 2可解a 2

=5,故所求椭圆方程为 4

52

2y x +

=1 6 解 以拱顶为原点,水平线为x 轴,建立坐标系,如图,由题意知,|AB |=20,|OM |=4,A 、B 坐标分别为(-10,-4)、(10,-4)

设抛物线方程为x 2

=-2py ,将A 点坐标代入,得100=-2p ×(-4),解得p =12 5,

于是抛物线方程为x 2

=-25y 由题意知E 点坐标为(2,-4),E ′点横坐标也为2,将2代入得y =-0 16,从而|EE ′|=(-0 16)-(-4)=3 84 故最长支柱长应为3 84米

7 解 由e =22

,可设椭圆方程为22222b

y b x +=1,

又设A (x 1,y 1)、B (x 2,y 2),则x 1+x 2=4,y 1+y 2=2,

又2222222212212,12b y b x b y b x +=+=1,两式相减,得22

221222212b

y

y b x x -+-=0, 即(x 1+x 2)(x 1-x 2)+2(y 1+y 2)(y 1-y 2)=0

化简得

2

12

1x x y y --=-1,故直线AB 的方程为y =-x +3,

代入椭圆方程得3x 2

-12x +18-2b 2

=0 有Δ=24b 2

-72>0,

又|AB |=3

204)(221221=

-+x x x x , 得3

209

72

2422=-?

b ,解得b 2

=8 故所求椭圆方程为8

162

2y x +

=1 课前后备注

(注:本资料素材和资料部分来自网络,仅供参考。请预览后才下载,期待你的好评与关注!)

圆锥曲线的定义方程和性质知识点总结

椭圆的定义、性质及标准方程 1. 椭圆的定义: ⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。 ⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<>=+b a b y a x 中心在原点,焦点在x 轴上 )0(12 2 22>>=+b a b x a y 中心在原点,焦点在y 轴上 图形 范围 x a y b ≤≤, x b y a ≤≤, 顶点 ()()()() 12120000A a A a B b B b --,、,,、, ()()()() 12120000A a A a B b B b --,、,,、, 对称轴 x 轴、y 轴; 长轴长2a ,短轴长2b ; 焦点在长轴上 x 轴、y 轴; 长轴长2a ,短轴长2b ; 焦点在长轴上 焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距 )0(221>=c c F F )0(221>=c c F F 离心率 )10(<<= e a c e )10(<<= e a c e 准线 2 a x c =± 2 a y c =± 参数方程与普通方程 22 22 1x y a b +=的参数方程为 ()cos sin x a y b θ θθ=?? =?为参数 22 22 1y x a b +=的参数方程为 ()cos sin y a x b θ θθ =?? =?为参数

(完整版)高中数学圆锥曲线知识点总结

高中数学知识点大全—圆锥曲线 一、考点(限考)概要: 1、椭圆: (1)轨迹定义: ①定义一:在平面内到两定点的距离之和等于定长的点的轨迹是椭圆,两定点是焦点,两定点间距离是焦距,且定长2a大于焦距2c。用集合表示为: ; ②定义二:在平面内到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做椭圆。其中定点叫焦点,定直线叫准线,常数是离心 率用集合表示为: ; (2)标准方程和性质:

注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。 (3)参数方程:(θ为参数); 3、双曲线: (1)轨迹定义: ①定义一:在平面内到两定点的距离之差的绝对值等于定长的点的轨迹是双曲线,两定点是焦点,两定点间距离是焦距。用集合表示为: ②定义二:到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做双曲线。其中定点叫焦点,定直线叫准线,常数e是离心率。 用集合表示为:

(2)标准方程和性质: 注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。

4、抛物线: (1)轨迹定义:在平面内到定点和定直线的距离相等的点的轨迹是抛物线,定点是焦点,定直线是准线,定点与定直线间的距离叫焦参数p。用集合表示为 : (2)标准方程和性质: ①焦点坐标的符号与方程符号一致,与准线方程的符号相反;②标准方程中一次项的字母与对称轴和准线方程的字母一致;③标准方程的顶点在原点,对称轴是坐标轴,有别于一元二次函数的图像;

二、复习点睛: 1、平面解析几何的知识结构: 2、椭圆各参数间的关系请记熟“六点六线,一个三角形”,即六点:四个顶点,两个焦点;六线:两条准线,长轴短轴,焦点线和垂线PQ;三角形:焦点三角形。则椭圆的各性质(除切线外)均可在这个图中找到。

求圆锥曲线方程

微专题71 求曲线(或直线)的方程 一、基础知识: 1、求曲线(或直线)方程的思考方向大体有两种,一个方向是题目中含几何意义的条件较多(例如斜率,焦距,半轴长,半径等),那么可以考虑利用几何意义求出曲线方程中的要素的值,从而按定义确定方程;另一个方向是若题目中没有明显的几何条件,主要依靠代数运算,那么就考虑先用待定系数法设出方程(未知的部分用字母代替),从而该方程便可参与题目中的运算,再利用题目条件求出参数的值,即可确定方程。可以说两个方向各有侧重,一个倾向于几何意义,另一个倾向于代数运算,下面将对两个方向涉及到的知识进行详细梳理 2、所学方程中字母的几何意义 (1)直线::斜率;()00,x y :直线所过的定点 (2)圆:(),a b :圆心的坐标; :r 圆的半径 (3)椭圆:2a :长轴长,焦半径的和;2:b 短轴长;2c :焦距 (4)双曲线:2a :实轴长,焦半径差的绝对值;2:b 虚轴长;2c :焦距 注:在椭圆和双曲线中,很多几何性质也围绕着,,a b c 展开,通过这些条件也可以求出,,a b c 的值,从而确定曲线方程。例如(椭圆与双曲线共有的): 离心率:c e a =;通径(焦点弦长的最小值):22b a 等 (5)抛物线::p 焦准距 3、待定系数法中方程的形式: (1)直线与曲线方程通式: ① 直线:y kx m =+,x my t =+ ② 圆:2 2 0x y Dx Ey F ++++= ③ 椭圆: 标准方程:()222210x y a b a b +=>>(或()22 2210y x a b a b +=>>,视焦点所在轴来决定) 椭圆方程通式:()2 2 10,0mx ny m n +=>> ④ 双曲线:

高中数学圆锥曲线详解【免费】

解圆锥曲线问题常用方法+椭圆与双曲线的经典 结论+椭圆与双曲线的对偶性质总结 解圆锥曲线问题常用以下方法: 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02 020=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02 020=-k b y a x (3)y 2 =2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 【典型例题】 例1、(1)抛物线C:y 2 =4x 上一点P 到点A(3,42) (2)抛物线C: y 2 =4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,则点分析:(1)A 在抛物线外,如图,连PF ,则PF PH =

圆锥曲线标准方程求法(学生版)

圆锥曲线标准方程求法 一、椭圆标准方程求法 1、定义法 【例1】已知ABC ?的周长是18,)0,4(),0,4(B A -,求点C 的轨迹方程。 【变式】:在周长为定值的△ABC 中,已知|AB|=6,且当顶点C 位于定点P 时,cosC 有最小值为25 7.建立适当的坐标系,求顶点C 的轨迹方程. 【例2】已知椭圆C 以坐标轴为对称轴,以坐标原点为对称中心,椭圆的一个焦点为()0,1,点??? ? ??26,23M 在椭圆上,求椭圆C 的方程; 【例3】已知圆221:(1)16F x y ++=,定点2(1,0)F .动圆M 过点F 2,且与圆F 1相内切.求点M 的轨迹C 的方程. 【例4】设R y x ,,,∈为直角坐标系内y x ,轴正方向的单位向量, ,)2(j y i x a ++=j y i x b )2(-+=,且8||||=+.求点),(y x M 的轨迹C 的方程; 2、待定系数法 1.已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为 2 ,且G 上一点到G 的两个焦点的距离之和为12,椭圆G 的方程.

2.已知椭圆1C :22 221(0)y x a b a b +=>>的右顶点为(1,0)A ,过1C 的焦点且垂直长轴的弦长为1.求椭圆1C 的方程. 3.已知椭圆C 的中心为直角坐标系xOy 的原点,焦点在x 轴上,它的一个顶点到两个焦点的距离分别是7和1.求椭圆C 的方程. 4.设椭圆:E 22 221x y a b +=(,0a b >>)过2)M ,(6,1)N 两点,O 为坐标原点,求椭圆E 的方程。 3、转化已知条件 【例1】已知点,A B 的坐标分别是(0,1)-,(0,1),直线,AM BM 相交于点M ,且它们的斜率之积为12- .求点M 轨迹C 的方程; 【例2】设Q 、G 分别为ABC ?的外心和重心,已知)0,1(-A ,)0,1(B ,AB QG //?求点C 的轨迹E 【例3】已知动点P 到直线33 4- =x 的距离是到定点(0,3-)的距离的332倍.求动点P 的轨迹方程;

圆锥曲线全部公式及概念

圆锥曲线 1.椭圆22221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ =??=?离心率c e a == 准线到中心的距离为2a c ,焦点到对应准线的距离(焦准距)2b p c =. 通径的一半(焦参数):2 b a . 2.椭圆22 221(0)x y a b a b +=>>焦半径公式及两焦半径与焦距构成三角形的面积: 21()a PF e x a ex c =+=+,2 2()a PF e x a ex c =-=-;1221tan 2F PF F PF S b ?∠=. 3.椭圆的的内外部: (1)点00(,)P x y 在椭圆22 221(0)x y a b a b +=>>的内部2200221x y a b ?+<. (2)点00(,)P x y 在椭圆22 221(0)x y a b a b +=>>的外部2200221x y b ?+>. 4.双曲线22221(0,0)x y a b a b -=>>的离心率c e a ==2a c ,焦点到对应准线 的距离(焦准距)2p c = 通径的一半(焦参数):2 b a 焦半径公式21|()|||a PF e x a ex c =+=+,2 2|()|||a PF e x a ex c =-=-, 两焦半径与焦距构成三角形的面积122 1cot 2 F PF F PF S b ?∠=. 5.双曲线的内外部: (1)点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>的内部2200221x y a b ?->. (2)点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>的外部2200221x y a b ?-<. 6.双曲线的方程与渐近线方程的关系: (1)若双曲线方程为12222=-b y a x ?渐近线方程:22220x y a b -=?x a b y ±=. (2)若渐近线方程为x a b y ±=?0=±b y a x ?双曲线可设为λ=-2222b y a x . (3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-22 22b y a x (0>λ,焦点在x 轴上;0<λ,焦点在y 轴上). (4) 焦点到渐近线的距离总是b 7.抛物线px y 22 =的焦半径公式: 抛物线2 2(0)y px p =>焦半径02p CF x =+ . 过焦点弦长p x x p x p x CD ++=+++=21212 2. 8.抛物线px y 22 =上的动点可设为P ),2(2 y p y 或2 (2,2)P pt pt P (,)x y ,其中 22y px = . 9.二次函数22 24()24b ac b y ax bx c a x a a -=++=++(0)a ≠的图象是抛物线:(1)顶点坐标为 24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a -+-;(3)准线方程是2414ac b y a --=. 10.以抛物线上的点为圆心,焦半径为半径的圆必与准线相切;以抛物线焦点弦为直径的圆,必与准线相切;以抛物线的焦半径为直径的圆必与过顶点垂直于轴的直线相切.

高中数学圆锥曲线专题-理科

圆锥曲线专题 【考纲要求】 一、直线 1.掌握直线的点方向式方程、点法向式方程、点斜式方程,认识坐标法在建立形与数的关 系中的作用; 2.会求直线的一般式方程,理解方程中字母系数表示斜率和截距的几何意义:懂得一元二 次方程的图像是直线; 3.会用直线方程判定两条直线间的平行或垂直关系(方向向量、法向量); 4.会求两条相交直线的交点坐标和夹角,掌握点到直线的距离公式。 二、圆锥曲线 1.理解曲线的方程与方程的曲线的意义,并能由此利用代数方法判定点是否在曲线上,以 及求曲线交点; 2.掌握圆、椭圆、双曲线、抛物线的定义,并理解上述曲线在直角坐标系中的标准方程的 推导过程; 3.理解椭圆、双曲线、抛物线的有关概念及简单的几何特性,掌握求这些曲线方程的基本 方法,并能根据曲线方程的关系解决简单的直线与上述曲线有两个交点情况下的有关问题; 4.能利用直线和圆、圆和圆的位置关系的几何判定,确定它们之间的位置关系,并能利用 解析法解决相应的几何问题。 【知识导图】【精解名题】 一、弦长问题 例1 如图,已知椭圆 2 21 2 x y +=及点B(0, -2),过点B引椭圆的割线(与椭圆相交的直线)BD与椭圆交于C、D两点 (1)确定直线BD斜率的取值范围 (2)若割线BD过椭圆的左焦点 12 ,F F是椭圆的右焦点,求 2 CDF ?的面积 y x B C D F1F2 O

二、轨迹问题 例2 如图,已知平行四边形ABCO ,O 是坐标原点,点A 在线段MN 上移动,x=4,y=t (33)t -≤≤上移动,点C 在双曲线 22 1169 x y -=上移动,求点B 的轨迹方程 三、对称问题 例3 已知直线l :22 2,: 1169 x y y kx C =++=,问椭圆上是否存在相异两点A 、B ,关于直线l 对称,请说明理由 四、最值问题 例4 已知抛物线2 :2()C x y m =--,点A 、B 及P(2, 4)均在抛物线上,且直线PA 与PB 的倾斜角互补 (1)求证:直线AB 的斜率为定值 (2)当直线AB 在y 轴上的截距为正值时,求ABP ?面积的最大值 五、参数的取值范围 例5 已知(,0),(1,),a x b y → → == ()a → +⊥()a → - (1)求点P (x, y )的轨迹C 的方程 (2)直线:(0,0)l y kx m k m =+≠≠与曲线C 交于A 、B 两点,且在以点D (0,-1)为圆 心的同一圆上,求m 的取值范围 六、探索性问题 例6 设x, y ∈R ,,i j →→ 为直角坐标平面内x, y 轴正方向上的单位向量,若向量 (2)a x i y j → →→=++,且(2)b x i y j →→→=+-且8a b →→ += (1)求点M (x, y )的轨迹方程 (2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设OP OA OB → → → =+,是否存在这样的直线l ,使得四边形OAPB 是矩形?若存在,求出直线l 的方程;若不存在,请说明理由

高考★圆锥曲线★的基本公式推导(学长整合版)

圆锥曲线的几大大题特征公式:焦半径、准线、弦长、切线方程、弦中点公式、极线方程 /*另外,针对“计算不好”的同学,本人提供“硬解定理”供大家无脑使用。具体的请参考本目录下的【硬解定理的推导和使用】文章。*/ 圆锥 曲线 的切 线 方程 在 历年高考题中出现,但是在高中教材及资料都涉及较少。本文主要探索圆锥曲线的切线方程及其应用。从而为解这一类题提供统一、清晰、简捷的解法。 【基础知识1:切线方程、极线方程】 【1-0】公式小结:x 2换成xx 0,y 2换成yy 0,x 换成(x+x 0)/2,y 换成(y+y 0)/2. 【1-1】 椭圆的切线方程 : ①椭圆 12222=+b y a x 上一点),(00y x P 处的切线方程是 12020=+b yy a xx 。 ②过椭圆 12222=+b y a x 外一点),(00y x P 所引两条切线的切点弦方程是 12020=+b yy a xx 。 ③椭圆122 22=+b y a x 与直线0=++C Bx Ax 相切的条件是02 2222=-+C b B a A (也就是下篇文档所讲的硬解定理公式△=0的充要条件) 【1-2】双曲线的切线方程: ①双曲线12222=-b y a x 上一点),(00y x P 处的切线方程是 12020=-b yy a xx 。 ②过椭圆 12222=-b y a x 外一点),(00y x P 所引两条切线的切点弦方程是 12020=-b yy a xx 。 ③椭圆122 22=-b y a x 与直线0=++C Bx Ax 相切的条件是022222=--C b B a A 【1-3】抛物线的切线方程: ② 物线 px y 22 = 上一点),(00y x P 处的切线方程是 )(200x x p yy += ②过抛物线 px y 22 =外一点 处所引两条切线是)(200x x p yy += ③抛物线 px y 22=与直线0=++C Bx Ax 相切的条件是AC pB 22 = 【1-4】 基础知识的证明: 【公式一:曲线C 上切点公式证明】 1、第1种证明思路:过曲线上一点的切线方程 设曲线C 上某一点处 ),(00y x P 的 切 线 方 程 为)(00x x k y y -=-, 联立方程,令 0=?,得到k 的表达式,再代入原始式,最后得切线方程式1)()(22 02202020=+= +b y a x b yy a xx (注: k 的表达式可以在草稿中巧用点差法求,具体见下) 2、第2种证明思路:点差法(求斜率,其余跟第一种方法一样) 证明:设某直线与曲线C 交于M 、N 两点坐标分别为),(11y x 、),(22y x ,中点P ),(00y x

微专题19圆锥曲线的标准方程的求法答案

微专题19 1.答案:x 2=2y . 解析:假设抛物线标准方程x 2=2py (p >0),因为准线方程y =-12=-p 2 ,所以p =1,抛物线标准方程为x 2=2y . 2.答案:x 28-y 28 =1. 解析:因为e =c a =2,又b a =4c ,所以b =22,a =22,所以双曲线的E 的标准方程为x 28-y 28 =1. 3.答案:x 24+y 22 =1. 解析:由c a =22,2a 2c =42解得a =2,c =2,所以b = 2.所以椭圆的方程为x 24+y 2 2=1. 4.答案:y =±2x . 解析:因为m +4m =3,得出m =2,所以渐近线方程为x 22-y 2 4 =0,所以y =±2x . 5.答案:x 216+y 2 8 =1. 解析:由???c a =22,c +a 2 c =62,解得???a =4,c =22 则b =22,所以椭圆C 的标准方程为x 216+y 28=1. 6.答案:x 2-y 2 3 =1. 解析:因为c a =2,不妨设焦点为(c ,0),渐近线为y =b a x ,即bx -ay =0,所以bc b 2+a 2=b =3,c 2=4a 2=a 2+b 2,所以 a 2=1,双曲线C 的标准方程为x 2-y 23 =1. 7.答案:x 24+y 2 4 3 =1. 解析:因为a =2,由|OC →-OB →|= 2|BC →-BA →|,得|BC →|=2|AC →|,所以|OC →|=|AC →|,又由AC →·BC →=0,所以|OC →|=|AC →|=2,则点C (1,-1)代入椭圆E ,得b 2=43,所以椭圆E :x 24+y 2 4 3=1.

高中数学圆锥曲线解题技巧总结

高中数学圆锥曲线解题 技巧总结 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

解圆锥曲线问题的常用方法大全 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有 020 20=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02 020 =-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 【典型例题】 例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42)与到准线的距离和最小,则点 P 的坐标为______________ (2)抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 分析:(1)A 在抛物线外,如图,连PF ,则PF PH =现,当A 、P 、F 三点共线时,距离和最小。

椭圆及其标准方程练习题

椭圆及其标准方程练习题 【基础知识】 一.椭圆的基本概念 1.椭圆的定义:我们把平面内与两个定点的距离的和等于常数 ( )的点 的轨迹叫做椭圆,用符号表示为这两个定点叫椭圆的 ,两个焦点之间的距离叫做椭圆的 。 椭圆方程的总形式为 [经典例题]: 例1. 根据定义推导椭圆标准方程. 已知B ,C 是两个定点,|BC |=6,且ABC ?的周长等于16,求顶点A 的轨迹方程 已知F 1, F 2是定点,| F 1 F 2|=8, 动点M 满足|M F 1|+|M F 2|=8,则点M 的轨迹是 (A )椭圆 (B )直线 (C )圆 (D )线段

例2.写出适合下列条件的椭圆的标准方程: ⑴两个焦点坐标分别是(-4,0)、(4,0),椭圆上一点P 到两焦点的距离之和等于10; ⑵两个焦点坐标分别是(0,-2)和(0,2)且过(23-,2 5) 例3 求适合下列条件的椭圆的标准方程: (1)两个焦点坐标分别是(-3,0),(3,0),椭圆经过点(5,0). (2)两个焦点坐标分别是(0,5),(0,-5),椭圆上一点P 到两焦点的距离和为26. 例4 已知椭圆经过两点()5,3()2 5 ,23与-,求椭圆的标准方程 例5 1.椭圆短轴长是2,长轴是短轴的2倍,则椭圆离心率是 ; 2.如果椭圆的焦距、短轴长、长轴长成等差数列,则其离心率为 ; 3.若椭圆的两个焦点F 1、F 2与短轴的一个端点B 构成一个正三角形,则椭圆的离心率为 ; [典型练习]: 椭圆 19 252 2=+y x 上一点P 到一个焦点的距离为5,则P 到另一个焦点的距离为( ) A.5 B.6 C.4 D.10 2.椭圆 1169 252 2=+y x 的焦点坐标是( ) A.(±5,0) B.(0,±5) C.(0,±12) D.(±12,0) 3.已知椭圆的方程为 182 2 2=+m y x ,焦点在x 轴上,则其焦距为( ) A.228m - B.2m -22 C.282-m D.222-m 4.1,6==c a ,焦点在y 轴上的椭圆的标准方程是

圆锥曲线定义、标准方程及性质(精)

圆锥曲线定义、标准方程及性质 一.椭圆 定义Ⅰ:若F 1,F 2是两定点,P 为动点,且21212F F a PF PF >=+ (a 为常数)则P 点的轨迹是椭圆。 定义Ⅱ:若F 1为定点,l 为定直线,动点P 到F 1的距离与到定直线l 的距离之比为常数e (0>b a 取值范围:}{a x a x ≤≤-, }{b y b x ≤≤- 长轴长=a 2,短轴长=2b 焦距:2c 准线方程:c a x 2 ±= 焦半径:)(21c a x e PF +=,)(2 2x c a e PF -=,212PF a PF -=,c a PF c a +≤≤-1等(注意:涉及焦半径时①用点P 坐标表示,②第一定义,第二定义。) 注意:(1)图中线段的几何特征:=11F A c a F A -=22,=21F A c a F A +=12 =11F B a F B F B F B ===122221 ,222122b a B A B A += =等等。顶点与 准线距离、焦点与准线距离分别与c b a ,,有关。 (2)21F PF ?中经常利用余弦定理....、三角形面....积公式... 将有关线段1PF 、2PF 、2c , 有关角21PF F ∠结合起来,建立1 PF +2PF 、1 PF ? 2PF 等关系 (3)椭圆上的点有时常用到三角换元:?? ?θ =θ =sin cos b y a x ; (4)注意题目中椭圆的焦点在x 轴上还是在y 轴上,请补充当焦点在y 轴上时,其相 应的性质。 二、双曲线 (一)定义:Ⅰ若F 1,F 2是两定点,21212F F a PF PF <=-(a 为常数),则动点P 的轨迹是双曲线。 Ⅱ若动点P 到定点F 与定直线l 的距离之比是常数e (e>1),则动点P 的轨迹是双曲线。 (二)图形: (三)性质 方程:12222=-b y a x )0,0(>>b a 122 22=-b x a y )0,0(>>b a 取值范围:}{a x a x x ≤≥或; 实轴长=a 2,虚轴长=2b 焦距:2c

高中数学圆锥曲线问题常用方法经典例题(含答案)

专题:解圆锥曲线问题常用方法(一) 【学习要点】 解圆锥曲线问题常用以下方法: 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则 有 020 20=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)

高中数学《圆锥曲线方程》重要公式

高中数学《圆锥曲线方程》重要公式 1.椭圆22 221(0)x y a b a b +=>>焦半径公式 )(21c a x e PF +=,)(2 2x c a e PF -= 2.椭圆22 221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ=??=? . 3.椭圆的的内外部 (1)点00(,)P x y 在椭圆22 221(0)x y a b a b +=>>的内部22 00 221x y a b ? +<. (2)点00(,)P x y 在椭圆22 221(0)x y a b a b +=>>的外部2200 22 1x y a b ? +>. 4. 椭圆的切线方程 (1)椭圆22 221(0)x y a b a b +=>>上一点00(,)P x y 处的切线方程是00221x x y y a b +=. (2)椭圆22 221(0)x y a b a b +=>>与直线0Ax By C ++=相切的条件是 22222A a B b c +=. (3)过椭圆22 221(0)x y a b a b +=>>外一点00(,)P x y 所引两条切线的切点弦方程是 00221x x y y a b +=. 5.双曲线22 221(0,0)x y a b a b -=>>的焦半径公式 21|()|a PF e x c =+,2 2|()|a PF e x c =-. 6.双曲线的内外部 (1)点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>的内部22 00 221x y a b ? ->. (2)点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>的外部2200 2 21x y a b ? -<. 7.双曲线的方程与渐近线方程的关系 (1)若双曲线方程为12222=-b y a x ?渐近线方程:22220x y a b -=?x a b y ±=. (2)若渐近线方程为x a b y ±=?0=±b y a x ?双曲线可设为λ=-2222b y a x . (3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-22 22b y a x (0>λ,焦点在x 轴上,0<λ,焦点在y 轴上). 8. 双曲线的切线方程 (1)双曲线22 221(0,0)x y a b a b -=>>上一点00(,)P x y 处的切线方程是00221x x y y a b -=.

高中数学圆锥曲线的知识点总结

高考数学圆锥曲线部分知识点梳理 一、方程的曲线: 在平面直角坐标系中,如果某曲线C (看作适合某种条件的点的集合或轨迹 )上的点与一个二元方程 (,)0f x y =的实数解建立了如下的关系:(1)曲线上的点的坐标都是这个方程的解;(2)以这个方程的解为坐标 的点都是曲线上的点,那么这个方程叫做曲线的方程;这条曲线叫做方程的曲线. 点与曲线的关系:若曲线C 的方程是(,)0f x y =,则点000(,)P x y 在曲线C 上?00(,)0f x y =;点000(,)P x y 不在曲线C 上?00(,)0f x y ≠. 两条曲线的交点:若曲线1C ,2C 的方程分别为1(,)0f x y =,2(,)0f x y =,则点000(,)P x y 是1C ,2C 的交点 ?{ ),(0),(002001==y x f y x f 方程组有n 个不同的实数解,两条曲线就有n 个不同的交点;方程组没有实数解,曲线就没 有交点. 二、圆: 1、定义:点集{|}M OM r =,其中定点O 为圆心,定长r 为半径. 2、方程:(1)标准方程:圆心在(,)C a b ,半径为r 的圆方程是2 2 2 ()()x a y b r -+-= 圆心在坐标原点,半径为r 的圆方程是2 2 2x y r += (2)一般方程:①当22 40D E F +->时,一元二次方程2 20x y Dx Ey F ++++=叫做圆的一般方程,圆心为 )2 ,2(E D -- 半径是2. 配方,将方程22 0x y Dx Ey F ++++=化为 22224()()224 D E D E F x y +-+++= ②当2 2 40D E F +-=时,方程表示一个点)2 ,2(E D -- ③当2 2 40D E F +-<时,方程不表示任何图形. (3)点与圆的位置关系 已知圆心(,)C a b ,半径为r ,点M 的坐标为00(,)x y ,则||MC r < ?点M 在圆C 内,||MC r =?点M 在圆C 上,||MC r >?点M 在圆C 外,其中||MC = (4)直线和圆的位置关系:①直线和圆有相交、相切、相离三种位置关系:直线与圆相交?有两个公共点;直线与圆相切?有一个公共点;直线与圆相离?没有公共点. ②直线和圆的位置关系的判定:(i)判别式法;(ii)利用圆心(,)C a b 到直线0Ax By C ++=的距离 2 2 B A C Bb Aa d +++= 与半径r 的大小关系来判定.

椭圆标准方程的求法举例

椭圆标准方程的求法举例 一、定义法 例1.已知圆22:(1)8C x y ++=,点(10)A ,是圆内一点,AM 的垂直平分线l 交CM 于点N ,当点M 在圆C 上运动时,求点N 的轨迹方程。 解:连结AN ,由NM NA = ,得NC NA NC NM CM +=+==, 而2CA =,因此,点N 的轨迹是以点C A ,为焦点的椭圆, 设为22 221(0)x y a b a b +=>> ,2a =,22c =, 所以a =1c = ,21b =。因此,所求轨迹方程为2 212x y +=。 评注:用定义法求椭圆的方程,首先要清楚椭圆的中心是否在原点、对称轴是否为坐标轴;其次,要紧紧的抓住定义,由定义产生椭圆的基本量a 、b 、c . 二、待定系数法 例2 .已知椭圆的焦距离为 ,求焦点在x 轴上时,它的标准方程. 解析:焦点在x 轴上,设所求方程为22 221x y a b +=(0)a b >>, 由题意得2222321a b a b ?+=???-? ,,解之得2293.a b ?=??=??,因此,所求方程为22193x y +=. 评注:用待定系数法求椭圆方程的基本步骤是:首先设出含待定系数的椭圆方程;然后根据题目条件再逐步求出待定的系数,从而得到方程. 三、轨迹法 例3.点()P x y ,到定点(01)A -,的距离与定直线14y =- ,求动点P 的轨迹方程. 解析:设d 为动点()P x y ,到定直线14y =-的距离,根据题意动点P 的轨迹就是集合 ()PA M P x y d ??==????? ,| =. 将上式两边平方,并化简得2214131413x y +=?,即22 11314 x y +=为所求. 评注:用轨迹法求椭圆方程,首先要写出适合条件的点集,然后用坐标代入,再对含x y ,的式子进行化简,最后产生所求方程,这是必须的基本步骤. 四、奇思妙解法 例4 .已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点1 (02)2A B ? ?,, 求

高考数学知识点之圆锥曲线方程

高考数学知识点之圆锥曲线方程 考试内容: 椭圆及其标准方程.椭圆的简单几何性质.椭圆的参数方程. 双曲线及其标准方程.双曲线的简单几何性质. 抛物线及其标准方程.抛物线的简单几何性质. 考试要求: (1)掌握椭圆的定义、标准方程和椭圆的简单几何性质,了解椭圆的参数方程. (2)掌握双曲线的定义、标准方程和双曲线的简单几何性质. (3)掌握抛物线的定义、标准方程和抛物线的简单几何性质. (4)了解圆锥曲线的初步应用. §08. 圆锥曲线方程 知识要点 一、椭圆方程. 1. 椭圆方程的第一定义: 为端点的线段 以无轨迹方程为椭圆21212 1 21212121,2, 2,2F F F F a PF PF F F a PF PF F F a PF PF ==+=+=+ ⑴①椭圆的标准方程: i. 中心在原点,焦点在x 轴上: ) 0(12 22 2 b a b y a x =+ . ii. 中心在原点,焦点在 y 轴上: )0(12 22 2 b a b x a y =+ . ②一般方程: ) 0,0(12 2 B A By Ax =+.③椭圆的标准参数方程: 1 2 22 2=+ b y a x 的参数方程为 ?? ?==θ θs in cos b y a x (一象限θ应是属于2 0π θ ). ⑵①顶点:),0)(0,(b a ±±或)0,)(,0(b a ±±.②轴:对称轴:x 轴,y 轴;长轴长a 2,短轴长b 2.③焦点:)0,)(0,(c c -或),0)(,0(c c -.④焦距:2 2 21,2b a c c F F -==.⑤准线:c a x 2 ± =或 c a y 2 ± =.⑥ 离心率:)10( e a c e = .⑦ 焦点半径: i. 设),(00y x P 为椭圆 )0(12 22 2 b a b y a x =+ 上的一点,2 1,F F 为左、右焦点,则 由椭圆方程的第二定义可以推出. ii.设),(00y x P 为椭圆 ) 0(12 22 2 b a a y b x =+ 上的一点,21,F F 为上、下焦点,则 由椭圆方程的第二定义可以推出. 由椭圆第二定义可知: )0()( ),0()(0002 2 002 01 x a ex x c a e pF x ex a c a x e pF -=-=+=+ =归结起来为 “左加右减”. 注意:椭圆参数方程的推导:得→)sin ,cos (θθb a N 方程的轨迹为椭圆. ⑧通径:垂直于x 轴且过焦点的弦叫做通经.坐标:) , (22 2 2a b c a b d -=和) , (2 a b c ? -=+=02 01,ex a PF ex a PF ? -=+=02 01,ey a PF ey a PF

高二数学圆锥曲线测试题以及详细答案

圆锥曲线测试题及详细答案 一、选择题: 1、双曲线 22 1102x y -=的焦距为( ) 2.椭圆14 22 =+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的 直线与椭圆相交,一个交点为P ,则||2PF = ( ) A . 23 B .3 C .2 7 D .4 3.已知动点M 的坐标满足方程|12512|1322-+=+y x y x ,则动点M 的轨迹是( ) A. 抛物线 B.双曲线 C. 椭圆 D.以上都不对 4.设P 是双曲线192 22=-y a x 上一点,双曲线的一条渐近线方程为1,023F y x =-、F 2分别是双曲线的左、右焦点,若5||1 =PF ,则=||2PF ( ) 】 A. 1或5 B. 1或9 C. 1 D. 9 5、设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角 形,则椭圆的离心率是( ). A. B. C. 2 D. 1 6.双曲线)0(12 2≠=-mn n y m x 离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为( ) A .163 B .83 C .316 D .38 7. 若双曲线22 21613x y p -=的左焦点在抛物线y 2=2px 的准线上,则p 的值为 ( ) (A)2 (B)3 (C)4 8.如果椭圆 19 362 2=+y x 的弦被点(4,2)平分,则这条弦所在的直线方程是( ) A 02=-y x B 042=-+y x C 01232=-+y x D 082=-+y x 9、无论θ为何值,方程1sin 22 2=?+y x θ所表示的曲线必不是( ) |

圆锥曲线基本题型总结

圆锥曲线基本题型总结:提纲: 一、定义的应用: 1、定义法求标准方程: 2、涉及到曲线上的点到焦点距离的问题: 3、焦点三角形问题: 二、圆锥曲线的标准方程: 1、对方程的理解 2、求圆锥曲线方程(已经性质求方程) 3、各种圆锥曲线系的应用: 三、圆锥曲线的性质: 1、已知方程求性质: 2、求离心率的取值或取值范围 3、涉及性质的问题: 四、直线与圆锥曲线的关系: 1、位置关系的判定: 2、弦长公式的应用: 3、弦的中点问题:

4、韦达定理的应用: 一、定义的应用: 1. 定义法求标准方程: (1)由题目条件判断是什么形状,再由该形状的特征求方程:(注意细节的处 理) 1.设F1, F2 为定点,|F1F2| =6,动点M满足|MF1| + |MF2| = 6,则动点M的轨 迹是() A.椭圆 B.直线 C.圆 D.线段【注:2a>|F1 F2| 是椭圆,2a=|F1 F2|是线段】 2. 设 B - 4,0) , C4,0),且厶ABC的周长等于18,则动点A的轨迹方程为) x2 y2 y2 x2 A.25+ -9 = i y z0) B.25^9 = 1 徉0) x2 y2 y2 x2 C.^+16= 1 y z 0) D£+_9 = 1 y z 0) 【注:检验去点】 3. 已知A0, - 5)、B0,5) ,|PA| - |PB| = 2a,当a= 3 或 5 时,P点的轨迹为) A. 双曲线或一条直线 B. 双曲线或两条直线 C. 双曲线一支或一条直线

D. 双曲线一支或一条射线【注:2av|F1 F2|是双曲线,2a=|F1 F2|是射线,注意一支与两支的判断】

相关主题
文本预览
相关文档 最新文档