当前位置:文档之家› 2020高考数学《圆锥曲线》专题复习

2020高考数学《圆锥曲线》专题复习

2020高考数学《圆锥曲线》专题复习
2020高考数学《圆锥曲线》专题复习

圆锥曲线

一、知识结构 1.方程的曲线

在平面直角坐标系中,如果某曲线C(看作适合某种条件的点的集合或轨迹 )上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:

(1)曲线上的点的坐标都是这个方程的解;

(2)以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做曲线的方程;这条曲线叫 做方程的曲线.

点与曲线的关系 若曲线C 的方程是f(x,y)=0,则点P 0(x 0,y 0)在曲线C 上?f(x 0,y 0)=0; 点P 0(x 0,y 0)不在曲线C 上?f(x 0,y 0)≠0

两条曲线的交点 若曲线C 1,C 2的方程分别为f 1(x,y)=0,f 2(x,y)=0,则 f 1(x 0,y 0)=0 点P 0(x 0,y 0)是C 1,C 2的交点?

f 2(x 0,y 0) =0

方程组有n 个不同的实数解,两条曲线就有n 个不同的交点;方程组没有实数解,曲线就没有 交点.

2.圆 圆的定义

点集:{M ||OM |=r },其中定点O 为圆心,定长r 为半径. 圆的方程 (1)标准方程

圆心在c(a,b),半径为r 的圆方程是

(x-a)2

+(y-b)2

=r 2

圆心在坐标原点,半径为r 的圆方程是

x 2

+y 2

=r 2

(2)一般方程

当D 2

+E 2

-4F >0时,一元二次方程

x 2

+y 2

+Dx+Ey+F=0

叫做圆的一般方程,圆心为(-2D ,-2

E ,半径是

2

4F

-E D 22+.配方,将方程

x 2

+y 2

+Dx+Ey+F=0化为

(x+2D )2+(y+2

E )2=44

F -E D 22+

当D 2+E 2

-4F=0时,方程表示一个点

(-2D ,-2

E ); 当D 2

+E 2

-4F <0时,方程不表示任何图形.

点与圆的位置关系 已知圆心C(a,b),半径为r,点M 的坐标为(x 0,y 0),则

|MC |<r ?点M 在圆C 内, |MC |=r ?点M 在圆C 上, |MC |>r ?点M 在圆C 内,

其中|MC |=2

02

0b)-(y a)-(x +. (3)直线和圆的位置关系

①直线和圆有相交、相切、相离三种位置关系 直线与圆相交?有两个公共点 直线与圆相切?有一个公共点 直线与圆相离?没有公共点 ②直线和圆的位置关系的判定 (i)判别式法

(ii)利用圆心C(a,b)到直线Ax+By+C=0的距离d=

2

2

C Bb Aa B

A +++与半径r 的大小关系来判

定.

3.椭圆、双曲线和抛物线

椭 圆

双曲线

抛物线

轨迹条件 点集:({M ||MF 1+|

MF 2|=2a,|F 1F 2|<

2a = 点集:{M ||MF 1|-|MF 2|.

=±2a,|F 2F 2|>2a}. 点集{M | |MF |=点M 到直线l 的距离}.

圆 形

线 性 质

标准方程 2

2a

x +22

b y =1(a >b >0) 22a x -22

b

y =1(a >0,b >0)

y 2=2px(p >0)

顶 点

A 1(-a,0),A 2(a,0);

B 1(0,-b),B 2(0,b)

A 1(0,-a),A 2(0,a) O(0,0)

轴 对称轴x=0,y=0

长轴长:2a 短轴长:2b

对称轴x=0,y=0 实轴长:2a 虚轴长:2b 对称轴y=

焦 点

F 1(-c,0),F 2(c,0) 焦点在长轴上 F 1(-c,0),F 2(c,0) 焦点在实轴上 F(

2

P

,0) 焦点对称轴上

焦 距

|F 1F 2|=2c ,

c=b2-a2

|F 1F 2|=2c, c=b2a2

准 线

x=±c

a 2

准线垂直于长轴,且在椭圆外.

x=±c

a 2

准线垂直于实轴,且在两顶点的内侧.

x=-

2

p 准线与焦点位于顶点两侧,且到顶点的距离相等.

离心率 e=

a c

,0<e <1 e=

a

c

,e >1 e=1

4.圆锥曲线的统一定义

平面内的动点P(x,y)到一个定点F(c,0)的距离与到不通过这个定点的一条定直线l 的距离之 比是一个常数e(e >0),则动点的轨迹叫做圆锥曲线.

其中定点F(c,0)称为焦点,定直线l 称为准线,正常数e 称为离心率. 当0<e <1时,轨迹为椭圆 当e=1时,轨迹为抛物线 当e >1时,轨迹为双曲线 5.坐标变换

坐标变换 在解析几何中,把坐标系的变换(如改变坐标系原点的位置或坐标轴的方向)叫做 坐标变换.实施坐标变换时,点的位置,曲线的形状、大小、位置都不改变,仅仅只改变点 的坐标与曲线的方程.

坐标轴的平移 坐标轴的方向和长度单位不改变,只改变原点的位置,这种坐标系的变换叫 做坐标轴的平移,简称移轴.

坐标轴的平移公式 设平面内任意一点M ,它在原坐标系xOy 中的坐标是9x,y),在新坐

标系x ′O′y′中的坐标是(x′,y′).设新坐标系的原点O′在原坐标系xOy中的坐标是(h,k),则

x=x′+h x′=x-h

(1) 或(2)

y=y′+k y′=y-k

公式(1)或(2)叫做平移(或移轴)公式.

中心或顶点在(h,k)的圆锥曲线方程

中心或顶点在(h,k)的圆锥曲线方程见下表.

方程焦点焦线对称轴

椭圆

2

2

h)

-

(x

a

+

2

2

k)

-

(y

b

=1 (±c+h,k)x=±

c

a2

+h

x=h

y=k 2

2

h)

-

(x

b

+

2

2

k)

-

(y

a

=1 (h,±c+k)y=±

c

a2

+k

x=h

y=k

双曲线

2

2

h)

-

(x

a

-

2

2

k)

-

(y

b

=1 (±c+h,k)=±

c

a2

+k

x=h

y=k 2

2

k)

-

(y

a

-

2

2

h)

-

(x

b

=1 (h,±c+h)y=±

c

a2

+k

x=h

y=k

抛物线(y-k)2=2p(x-h) (2

p

+h,k) x=-

2

p

+h y=k (y-k)2=-2p(x-h) (-2

p

+h,k) x=

2

p

+h y=k (x-h)2=2p(y-k) (h, 2

p

+k) y=-

2

p

+k x=h (x-h)2=-2p(y-k) (h,- 2

p

+k) y=

2

p

+k x=h

二、知识点、能力点提示

(一)曲线和方程,由已知条件列出曲线的方程,曲线的交点

说明在求曲线方程之前必须建立坐标系,然后根据条件列出等式进行化简 .特别是在求出方程后要考虑化简的过程是否是同解变形,是否满足已知条件,只有这样求出的曲线方程才能准确无误.另外,要求会判断曲线间有无交点,会求曲线的交点坐标.

三、考纲中对圆锥曲线的要求:

考试内容:

. 椭圆及其标准方程.椭圆的简单几何性质.椭圆的参数方程; . 双曲线及其标准方程.双曲线的简单几何性质; . 抛物线及其标准方程.抛物线的简单几何性质; 考试要求:

. (1)掌握椭圆的定义、标准方程和椭圆的简单几何性质,理解椭圆的参数方程; . (2)掌握双曲线的定义、标准方程和双曲线的简单几何性质; . (3)掌握抛物线的定义、标准方程和抛物线的简单几何性质; . (4)了解圆锥曲线的初步应用。 四.对考试大纲的理解

高考圆锥曲线试题一般有3题(1个选择题, 1个填空题, 1个解答题), 共计22分左右, 考查的知识点约为20个左右. 其命题一般紧扣课本, 突出重点, 全面考查. 选择题和填空题考查以圆锥曲线的基本概念和性质为主, 难度在中等以下,一般较容易得分,解答题常作为数学高考中的压轴题,综合考查学生数形结合、等价转换、分类讨论、逻辑推理等诸方面的能力,重点考查圆锥曲线中的重要知识点, 通过知识的重组与链接, 使知识形成网络, 着重考查直线与圆锥曲线的位置关系, 往往结合平面向量进行求解,在复习应充分重视。

求圆锥曲线的方程

【复习要点】

求指定的圆锥曲线的方程是高考命题的重点,主要考查识图、画图、数形结合、等价转化、分类讨论、逻辑推理、合理运算及创新思维能力,解决好这类问题,除要求熟练掌握好圆锥曲线的定义、性质外,命题人还常常将它与对称问题、弦长问题、最值问题等综合在一起命制难度较大的题,解决这类问题常用定义法和待定系数法.

一般求已知曲线类型的曲线方程问题,可采用“先定形,后定式,再定量”的步骤. 定形——指的是二次曲线的焦点位置与对称轴的位置.

定式——根据“形”设方程的形式,注意曲线系方程的应用,如当椭圆的焦点不确定在哪个坐标轴上时,可设方程为mx 2+ny 2=1(m >0,n >0).

定量——由题设中的条件找到“式”中特定系数的等量关系,通过解方程得到量的大小. 【例题】

【例1】 双曲线2

2

24b y x =1(b ∈N )的两个焦点F 1、F 2,P 为双曲线上一点, |OP |<5,|PF 1|,|F 1F 2|,|PF 2|成等比数列,则b 2=_________.

解:设F 1(-c ,0)、F 2(c ,0)、P (x ,y ),则 |PF 1|2+|PF 2|2=2(|PO |2+|F 1O |2)<2(52+c 2), 即|PF 1|2+|PF 2|2<50+2c 2,

又∵|PF 1|2+|PF 2|2=(|PF 1|-|PF 2|)2+2|PF 1|·|PF 2|,

依双曲线定义,有|PF 1|-|PF 2|=4, 依已知条件有|PF 1|·|PF 2|=|F 1F 2|2=4c 2 ∴16+8c 2<50+2c 2,∴c 2<3

17

, 又∵c 2=4+b 2<317

,∴b 2<3

5,∴b 2=1. 答案:1

【例2】 已知圆C 1的方程为()()3

20

1222=

-+-y x ,椭圆C 2的方程为 12

22

2=+b y a x ()a b >>0,C 2的离心率为

2

2

,如果C 1与C 2相交于A 、B 两点,且线段AB 恰为圆C 1的直径,求直线AB 的方程和椭圆C 2的方程。

解:由.,2,2

2,222222c b c a a c e ====得 设椭圆方程为

.122

22

2=+

b

y b

x

设).1,2().,().,(2211由圆心为y x B y x A .2,42121=+=+∴y y x x

,12,

12222

222

2

21

2

2

1

=+

=+

b y b x b y b x

两式相减,得

.022

2

2

212

2221=-+

-b y y b x x

,0))((2))((21212121=-++-+y y y y x x x x

又.1.2.42

12

12121-=--=+=+x x y y y y x x 得

)..2(1--=-∴x y AB 的方程为

直线

即3+-=x y 将得代入

,1232

22

2=++-=b y b x x y

.021812322=-+-b x x

.07224.22>-=?∴b C AB 相交与椭圆直线

由.3

204)(222122121=

-+=-=x x x x x x B A 得.3

203

72

2422=-?

b 解得 .82

=b 故所有椭圆方程.18

162

2=+y x

y

x

C 1

F 2

F 1

O

A

B

【例3】 过点(1,0)的直线l 与中心在原点,焦点在x 轴上且离心率为2

2

的椭圆C 相交于A 、B 两点,直线y =

2

1

x 过线段AB 的中点,同时椭圆C 上存在一点与右焦点关于直线l 对称,试求直线l 与椭圆C 的方程.

解法一:由e =22=a c ,得21

222=-a b a ,从而a 2=2b 2,c =b . 设椭圆方程为x 2+2y 2=2b 2,A (x 1,y 1),B (x 2,y 2)在椭圆上. 则x 12+2y 12=2b 2,x 22+2y 22=2b 2,两式相减得,

(x 12-x 22)+2(y 12-y 22)=0,.)(2212

12121y y x x x x y y ++-=--

设AB 中点为(x 0,y 0),则k AB =-

2y x , 又(x 0,y 0)在直线y =21x 上,y 0=2

1

x 0,

于是-

2y x =-1,k AB =-1, 设l 的方程为y =-x +1.

右焦点(b ,0)关于l 的对称点设为(x ′,y ′),

???-='='???????++'-='=-''

b y x b x y b

x y 11 1

22

1解得则

由点(1,1-b )在椭圆上,得1+2(1-b )2=2b 2,b 2=

8

9

,1692=a . ∴所求椭圆C 的方程为2

29

1698y x + =1,l 的方程为y =-x +1.

解法二:由e =21

,22222=-=a

b a a

c 得,从而a 2=2b 2,c =b . 设椭圆C 的方程为x 2+2y 2=2b 2,l 的方程为y =k (x -1), 将l 的方程代入C 的方程,得(1+2k 2)x 2-4k 2x +2k 2-2b 2=0, 则x 1+x 2=

2

2214k k +,y 1+y 2=k (x 1-1)+k (x 2-1)=k (x 1+x 2)-2k =-

2

212k k +.

直线l :y =21x 过AB 的中点(2,

22121y y x x ++),则2

2

22122121k k k k +?=+-, 解得k =0,或k =-1.

若k =0,则l 的方程为y =0,焦点F (c ,0)关于直线l 的对称点就是F 点本身,不能在椭圆C 上,所以k =0舍去,从而k =-1,直线l 的方程为y =-(x -1),即y =-x +1,以下同解法一.

B

A

y=12x

o

y

x

F 2

F 1

解法3:设椭圆方程为

)1()0(12

22

2>>=+

b a b y a x

直线不平行于y 轴,否则AB 中点在x 轴上与直线AB x y 过2

1

=中点矛盾。 故可设直线)2()1(-=x k y l 的方程为

整理得:

消代入y )1()2()3(02)(2222222222=-+-+b a k a x a k x b a k )()(2211y x B y x A ,,设,2

2

2

22212b

a k a k x x +=

+知:

代入上式得:

又k x x k y y 2)(2121-+=+ 21221=+-x x k k ,212222222=+?-∴a k b a k k k ,2

1

22=--∴ka b k k ,22=e 又 122)

(2222

222

2-=+-=--

=-

=∴e a

c a a

b k ,x y l -=∴1的方程为直线,

222b a =此时,02243)3(22=-+-b x x 化为方程,0)13(8)1(241622>-=--=?b b

3

3

>

∴b ,)4(22222b y x C =+的方程可写成:椭圆,2222b b a c =-=又, )0(,右焦点b F ∴,)(00y x l F ,的对称点关于直线设点,

则b y x b x y b x y -=-?????

???+-==-11212

100000

,, 得:

在椭圆上,代入,又点)4()11(b -22)1(21b b =-+,3

3

43>

=∴b , 1692=

∴b , 8

9

2=a 所以所求的椭圆方程为:116

9892

2=+y x

【例4】 如图,已知△P 1OP 2的面积为

4

27

,P 为线段P 1P 2的一个三等分点,求以直线OP 1、OP 2为渐近线且过点P 的离心率为2

13

的双曲线方程.

解:以O 为原点,∠P 1OP 2的角平分线为x 轴建立如图所示的直角坐标系.

o

y

x

P

P 2

P 1

设双曲线方程为2

22

2b y a x -

=1(a >0,b >0)

由e 2

=

2222

)213()(1=+=a b a

c ,得23

=a b . ∴两渐近线OP 1、OP 2方程分别为y =

23x 和y =-2

3

x 设点P 1(x 1,

23x 1),P 2(x 2,-2

3

x 2)(x 1>0,x 2>0), 则由点P 分21P P 所成的比λ=2

1PP P

P =2, 得P 点坐标为(

2

2,322

121x x x x -+), 又点P 在双曲线222

294a y a x -

=1上, 所以

2

2

212

2

219)2(9)2(a x x a x x --

+=1,

即(x 1+2x 2)2-(x 1-2x 2)2=9a 2,整理得8x 1x 2=9a 2 ①

,4

271312

41321sin ||||2113

124

91232tan 1tan 2sin 2

13

4

9

||,21349||212121121212222212121121=

??=??=∴=+?

=

+==+==+

=?x x OP P OP OP S Ox P Ox P OP P x x x OP x x x OP OP P 又

即x 1x 2=

2

9

由①、②得a 2=4,b 2=9 故双曲线方程为9

42

2y x -

=1. 【例5】 过椭圆C :

)0(12

22

2>>=+

b a b

x a

y 上一动点P 引圆O :x 2 +y 2 =b 2的两条切线

P A 、P B ,A 、B 为切点,直线AB 与x 轴,y 轴分别交于M 、N 两点。(1) 已知P 点坐标为(x 0,y 0 )并且x 0y 0≠0,试求直线AB 方程;(2) 若椭圆的短轴长为8,并且

16

25

||||2

22

2=

+

ON b OM a ,求椭圆C 的方程;(3) 椭圆C 上是否存在点P ,由P 向圆O 所引两条切线互相垂直?若存在,请求出存在的条件;若不存在,请说明理由。 解:(1)设A (x 1,y 1),B (x 2, y 2)

切线P A :211b y y x x =+,P B :222b y y x x =+

∵P 点在切线P A 、P B 上,∴2020220101b y y x x b y y x x =+=+

∴直线AB 的方程为)0(00200≠=+y x b y y x x

(2)在直线AB 方程中,令y =0,则M(02x b ,0);令x =0,则N(0,0

2

y b )

∴1625

)(||||222

2

02202222

22==+=+b a b x a y b a ON b OM a ① ∵2b =8 ∴b =4 代入①得a 2 =25, b 2 =16

∴椭圆C 方程:)0(116

252

2≠=+xy x y (注:不剔除xy ≠0,可不扣分)

(3) 假设存在点P(x 0,y 0)满足P A ⊥P B ,连接O A 、O B 由|P A |=|P B |知,

四边形P A O B 为正方形,|OP|=|O A | ∴22020

2b y x =+ ① 又∵P 点在椭圆C 上 ∴222

0220

2b a y b x a =+ ② 由①②知

x 2

2

222

2

2

2222

0,

)2(b

a b a y b

a b a b -=

--=

∵a >b >0 ∴a 2 -b 2>0

(1)当a 2-2b 2>0,即a >b 时,椭圆C 上存在点,由P 点向圆所引两切线互相垂直; (2)当a 2-2b 2<0,即b

【例6】 已知椭圆C 的焦点是F 1(-3,0)、F 2(3,0),点F 1到相应的准线的距离为

3

3

,过F 2点且倾斜角为锐角的直线l 与椭圆C 交于A 、B 两点,使得|F 2B|=3|F 2A|. (1)求椭圆C 的方程;(2)求直线l 的方程.

解:(1)依题意,椭圆中心为O (0,0),3=c

点F 1到相应准线的距离为133

3,322

=?=∴=b c b ,

a 2=

b 2+

c 2=1+3=4

∴所求椭圆方程为14

22

=+y x

(2)设椭圆的右准线l '与l 交于点P ,作AM ⊥l ',AN ⊥l ',垂足

分别为M 、N. 由椭圆第二定义, 得|||||

|||22AM e AF e AM AF =?= 同理|BF 2|=e|BN|

x

y

l O B

N A M F 2

F 1

P

由Rt △PAM ~Rt △PBN ,得||2||2||2

1||2AM e A F AB PA ===

…9分

l e

PA AM PAM ?=

?

===

∠∴3

3

2

321

21

||||cos 的斜率2tan =∠=PAM k . ∴直线l 的方程062)3(2=---=y x x y 即

【例7】 已知点B (-1,0),C (1,0),P 是平面上一动点,且满足.||||?=?

(1)求点P 的轨迹C 对应的方程;

(2)已知点A (m,2)在曲线C 上,过点A 作曲线C 的两条弦AD 和AE ,且AD ⊥AE ,判断:直线DE 是否过定点?试证明你的结论.

(3)已知点A (m,2)在曲线C 上,过点A 作曲线C 的两条弦AD ,AE ,且AD ,AE 的斜率k 1、k 2满足k 1·k 2=2.求证:直线DE 过定点,并求出这个定点.

解:(1)设.4,1)1(||||),(222x y x y x CB PB BC PC y x P =+=+-?=?化简得得代入 ).

2,5(),5(1

2,0)2()5()2(),14(44

4424:).24,14(4),1(1

2:).24

,14(,242,048

4,4)1(2).2,1(,14)2,()2(222222221222----

=+=+--++---+=++--+=--=--+∴-=

==-+-=-=-∴==过定点即化简得方程为则直线得代入同理可设直线可得由得代入的方程为设直线的坐标为点得代入将x k k y y x k y k k x k

k k k k y DE k k E x y x k

y AE k k

D k y y k

y k y x y x k y AD A m x y m A

),

1,(21

2

12,2,0)2(24),(),,(,,

14)2,()3(212211222211112≠=--?--∴=?=+-+?????=+=+===x x x y x y k k b x kb x k x

y b kx y y x E y x D b kx y DE m x y m A AE AD 得由的方程为设直线得代入将 )

2,1(,,),2,1(,2)1(22).2,1(,2)1(22).

2().

2(,)2(,)

2(2,02)2())(22()2(,222

2212

212212122211--∴+-=-+=+=-=---+=-+=+=-=-±=∴-±=∴-==

--=

+=--+++-+-∴+=+=定点为舍去不合过定点得代入将过定点得代入将代入化简得将且x k k kx y b kx y k b x k k kx y b kx y k b k b k b k b k b x x k kb x x b x x k kb x x k b

kx y b kx y

【例8】 已知曲线

3

3

2)0,0(12

22

2=

>>=-

e b a b y a x 的离心率,直线l 过A (a ,0)、 B (0,-b )两点,原点O 到l 的距离是

.2

3 (Ⅰ)求双曲线的方程;

(Ⅱ)过点B 作直线m 交双曲线于M 、N 两点,若23-=?,求直线m 的方程.

解:(Ⅰ)依题意,,0,1=--=-+ab ay bx b y a x l 即方程 由原点O 到l 的距离

为2

3,得

2

32

2

=

=

+c ab b

a a

b 又332==a

c e 3,1==∴a b

故所求双曲线方程为13

22

=-y x

(Ⅱ)显然直线m 不与x 轴垂直,设m 方程为y =k x -1,则点M 、N 坐标(11,y x )、

(22,y x )是方程组 ???

??=--=13

1

2

2y x kx y 的解

消去y ,得066)31(22=-+-kx x k ① 依设,,0312

≠-k 由根与系数关系,知1

36,13622

1221-=-=

+k x x k k x x

)1)(1(),(),(212121212211--+=+=?=?kx kx x x y y x x y x y x

=1)()1(21212++-+x x k x x k =11

3613)1(62

2

22+---+k k k k

=

11

362

+-k

23-=?ON OM ∴

11

362+-k =-23,k=±

2

1

当k=±

2

1

时,方程①有两个不等的实数根 故直线l 方程为12

1,121--=-=x y x y 或

【例9】 已知动点P 与双曲线13

22

2=-y x 的两个焦点1F 、2F 的距离之和为定值,

21cos PF F ∠的最小值为9

1-

. (1)求动点P 的轨迹方程;

(2)若已知)3,0(D ,M 、N 在动点P 的轨迹上且λ=,求实数λ的取值范围. 解:(1)由已知可得: 5=c ,

9

1

2)2(2

2

22-

=-+a c a a

∴ 4,

9

2222=-==c a b a

∴ 所求的椭圆方程为 14

92

2=+y x .

(2)方法一:

由题知点D 、M 、N 共线,设为直线m ,当直线m 的斜率存在时,设为k ,则直线m 的方程为 y = k x +3 代入前面的椭圆方程得 (4+9k 2) x 2 +54 k +45 = 0 ① 由判别式 045)94(4)54(22≥?+?-=?k k ,得9

52≥k . 再设M (x 1 , y 1 ), N ( x 2 , y 2),则一方面有

))3(,()3,()3,(222211-=-==-=y x y x y x λλλλ,得 ??

?-=-=)

3(3212

1y y x x λλ 另一方面有 2

219454k k x x +-

=+,2

219445k x x +=

将21x x λ=代入②式并消去 x 2可得

94)1(53242

2

+=+k λλ,由前面知, 5

36402

81

)1(532492

+<

λλ,解得 551<<λ.

又当直线m 的斜率不存在时,不难验证:55

1

==λλ或, 所以

55

1

≤≤λ为所求。 方法二:同上得 ??

?-=-=)3(321

2

1y y x x λλ

设点M (3cos α,2sin α),N (3cos β,2sin β) 则有???-=-=)3sin 2(3sin 2cos cos βλαβλα

由上式消去α并整理得

)

(1251813sin 22λλλλβ-+-=

, 由于1sin 1≤≤-β

∴ 1)

(1251813122≤-+-≤

-λλλλ, 解得

55

1

≤≤λ为所求.

方法三:设法求出椭圆上的点到点D 的距离的最大值为5,最小值为1. 进而推得λ

的取值范围为

55

1

≤≤λ。 【求圆锥曲线的方程练习】

一、选择题

1.已知直线x +2y -3=0与圆x 2+y 2+x -6y +m =0相交于P 、Q 两点,O 为坐标原点,若OP ⊥OQ ,则m 等于( )

A.3

B.-3

C.1

D.-1

2.中心在原点,焦点在坐标为(0,±52)的椭圆被直线3x -y -2=0截得的弦的中点的横坐标为

2

1

,则椭圆方程为( ) 125

75D. 17525C.1252752B. 1752252A.22222222=+=+=+=+y x

y x y x y x

二、填空题

3.直线l 的方程为y =x +3,在l 上任取一点P ,若过点P 且以双曲线12x 2-4y 2=3的焦点作椭圆的焦点,那么具有最短长轴的椭圆方程为_________.

4.已知圆过点P (4,-2)、Q (-1,3)两点,且在y 轴上截得的线段长为43,则该圆的方程为_________.

三、解答题

5.已知椭圆的中心在坐标原点,焦点在x 轴上,它的一个焦点为F ,M 是椭圆上的任意点,|MF |的最大值和最小值的几何平均数为2,椭圆上存在着以y =x 为轴的对称点M 1和M 2,且|M 1M 2|=

3

10

4,试求椭圆的方程. 6.某抛物线形拱桥跨度是20米,拱高4米,在建桥时每隔4米需用一支柱支撑,求其中最长的支柱的长.

7.已知圆C 1的方程为(x -2)2+(y -1)2=

3

20

,椭圆C 2的方程为2

22

2b y a x +=1(a >b >0),C 2的离心率为

2

2

,如果C 1与C 2相交于A 、B 两点,且线段AB 恰为圆C 1的直径,求直线AB 的方程和椭圆C 2

的方程.

参考答案

一、1.解析:将直线方程变为x =3-2y ,代入圆的方程x 2+y 2+x -6y +m =0, 得(3-2y )2+y 2+(3-2y )+m =0.

整理得5y 2-20y +12+m =0,设P (x 1,y 1)、Q (x 2,y 2) 则y 1y 2=

5

12m

+,y 1+y 2=4. 又∵P 、Q 在直线x =3-2y 上,

∴x 1x 2=(3-2y 1)(3-2y 2)=4y 1y 2-6(y 1+y 2)+9 故y 1y 2+x 1x 2=5y 1y 2-6(y 1+y 2)+9=m -3=0,故m =3. 答案:A

2.解析:由题意,可设椭圆方程为:2

22

2b

x a

y +

=1,且a 2=50+b 2,

即方程为

2

22

250b x b y ++=1.

将直线3x -y -2=0代入,整理成关于x 的二次方程. 由x 1+x 2=1可求得b 2=25,a 2=75. 答案:C

二、3.解析:所求椭圆的焦点为F 1(-1,0),F 2(1,0),2a =|PF 1|+|PF 2|.

欲使2a 最小,只需在直线l 上找一点P .使|PF 1|+|PF 2|最小,利用对称性可解. 答案:4

52

2y x +

=1 4.解析:设所求圆的方程为(x -a )2+(y -b )2=r 2

则有???

?

???=+=-+--=--+-222222222)32(||)3()1()2()4(r a r b a r b a ?????===?????===?2745130122r b a r b a 或

由此可写所求圆的方程.

答案:x 2+y 2-2x -12=0或x 2+y 2-10x -8y +4=0

三、5.解:|MF |ma x =a +c ,|MF |min =a -c ,则(a +c )(a -c )=a 2-c 2=b 2, ∴b 2=4,设椭圆方程为

142

22

=+y a x ① 设过M 1和M 2的直线方程为y =-x +m

② 将②代入①得:(4+a 2)x 2-2a 2mx +a 2m 2-4a 2=0

设M 1(x 1,y 1)、M 2(x 2,y 2),M 1M 2的中点为(x 0,y 0),

则x 0=21 (x 1+x 2)=224a m a +,y 0=-x 0+m =

2

44a m

+.

代入y =x ,得

2

2

2444a m a m a +=

+,

由于a 2

>4,∴m =0,∴由③知x 1+x 2=0,x 1x 2=-2

244a

a +,

又|M 1M 2|=3

10

44)(221221=-+x x x x , 代入x 1+x 2,x 1x 2可解

a 2=5,故所求椭圆方程为:

4

52

2y x +

=1. 6.解:以拱顶为原点,水平线为x 轴,建立坐标系,

如图,由题意知,|AB |=20,|OM |=4,A 、B 坐标分别为(-10,-4)、(10,-4) 设抛物线方程为x 2=-2py ,将A 点坐标代入,得100=-2p ×(-4),解得p =12.5, 于是抛物线方程为x 2=-25y .

由题意知E 点坐标为(2,-4),E ′点横坐标也为2,将2代入得y =-0.16,从而|EE ′|= (-0.16)-(-4)=3.84.故最长支柱长应为3.84米.

7.解:由e =22

,可设椭圆方程为22222b

y b x +=1,

又设A (x 1,y 1)、B (x 2,y 2),则x 1+x 2=4,y 1+y 2=2, 又

2

222

222

212

212,

12b

y b

x b

y b

x +

=+

=1,两式相减,得

2

2

2212

2

2212b

y y b

x x -+

-=0,

即(x 1+x 2)(x 1-x 2)+2(y 1+y 2)(y 1-y 2)=0. 化简得

2

12

1x x y y --=-1,故直线AB 的方程为y =-x +3,

代入椭圆方程得3x 2-12x +18-2b 2=0.

有Δ=24b 2-72>0,又|AB |=3

20

4)(221221=

-+x x x x , 得3

20

9722422=-?b ,解得b 2=8. 故所求椭圆方程为8

162

2y x +

=1.

直线与圆锥曲线

【复习要点】

直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现,主要涉及位置关系的判定,弦长问题、最值问题、对称问题、轨迹问题等.突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法,要求考生分析问题和解决问题的能力、计算能力较高,起到了拉开考生“档次”,有利于选拔的功能.

1.直线与圆锥曲线有无公共点或有几个公共点的问题,实际上是研究它们的方程组成的方程是否有实数解成实数解的个数问题,此时要注意用好分类讨论和数形结合的思想方法.

2.当直线与圆锥曲线相交时:涉及弦长问题,常用“韦达定理法”设而不求计算弦长(即应用弦长公式);涉及弦长的中点问题,常用“差分法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化.同时还应充分挖掘题目的隐含条件,寻找量与量间的关系灵活转化,往往就能事半功倍. 【例题】

【例1】 已知椭圆的中心在坐标原点O ,焦点在坐标轴上,直线y =x +1与椭圆交于P 和Q ,且OP ⊥OQ ,|PQ |=

2

10

,求椭圆方程. 解:设椭圆方程为mx 2+ny 2=1(m >0,n >0),P (x 1,y 1),Q (x 2,y 2) 由????

?=++=1

1

2

2ny mx x y 得(m +n )x 2+2nx +n -1=0, Δ=4n 2-4(m +n )(n -1)>0,即m +n -mn >0, 由OP ⊥OQ ,所以x 1x 2+y 1y 2=0,即2x 1x 2+(x 1+x 2)+1=0, ∴

n

m n

n m n --+-2)1(2+1=0,∴m +n =2 ①

又2

)2

10()(4=+-+n m mn n m 2

,

将m +n =2,代入得m ·n =4

3

由①、②式得m =

21,n =2

3或m =23,n =21

故椭圆方程为22x +2

3y 2

=1或23x 2+21y 2=1.

【例2】 如图所示,抛物线y 2=4x 的顶点为O ,点A 的坐标为(5,0),倾斜角为

4

π

的直线l 与线段OA 相交(不经过点O 或点A )且交抛物线于M 、N 两点,求△AMN 面积最大时直线l 的方程,并求△AMN 的最大面积.

解:由题意,可设l 的方程为y =x +m ,-5<m <0. 由方程组????

?=+=x

y m

x y 42

,消去y ,得x 2+(2m -4)x +m 2=0……………① ∵直线l 与抛物线有两个不同交点M 、N , ∴方程①的判别式Δ=(2m -4)2-4m 2=16(1-m )>0, 解得m <1,又-5<m <0,∴m 的范围为(-5,0)

设M (x 1,y 1),N (x 2,y 2)则x 1+x 2=4-2m ,x 1·x 2=m 2, ∴|MN |=4)1(2m -. 点A 到直线l 的距离为d =

2

5m +.

∴S △=2(5+m )m -1,从而S △2=4(1-m )(5+m )2 =2(2-2m )·(5+m )(5+m )≤2(

3

5522m m m ++++-)3

=128.

∴S △≤82,当且仅当2-2m =5+m ,即m =-1时取等号. 故直线l 的方程为y =x -1,△AMN 的最大面积为82.

【例3】 已知双曲线C :2x 2-y 2=2与点P (1,2)。(1)求过P (1,2)点的直线l 的斜率取值范围,使l 与C 分别有一个交点,两个交点,没有交点。(2)若Q (1,1),试判断以Q 为中点的弦是否存在.

解:(1)当直线l 的斜率不存在时,l 的方程为x =1, 与曲线C 有一个交点.

当l 的斜率存在时,设直线l 的方程为y -2=k (x -1), 代入C 的方程,并整理得

(2-k 2)x 2+2(k 2-2k )x -k 2+4k -6=0………………(*)

(ⅰ)当2-k 2=0,即k =±2时,方程(*)有一个根,l 与C 有一个交点 (ⅱ)当2-k 2≠0,即k ≠±2时

Δ=[2(k 2-2k )]2-4(2-k 2)(-k 2+4k -6)=16(3-2k ) ①当Δ=0,即3-2k =0,k =2

3

时,方程(*)有一个实根,l 与C 有一个交点. ②当Δ>0,即k <

23,又k ≠±2,故当k <-2或-2<k <2或2<k <2

3

时,方程(*)有两不等实根,l 与C 有两个交点.

③当Δ<0,即k >

2

3

时,方程(*)无解,l 与C 无交点.

综上知:当k =±2,或k =2

3

,或k 不存在时,l 与C 只有一个交点; 当2<k <2

3

,或-2<k <2,或k <-2时,l 与C 有两个交点; 当k >

2

3

时,l 与C 没有交点. (2)假设以Q 为中点的弦存在,设为AB ,且A (x 1,y 1),B (x 2,y 2),则2x 12-y 12=2,2x 22-y 22=2两式相减得:2(x 1-x 2)(x 1+x 2)=(y 1-y 2)(y 1+y 2)

又∵x 1+x 2=2,y 1+y 2=2 ∴2(x 1-x 2)=y 1-y 1

即k AB =2

12

1x x y y --=2

但渐近线斜率为±2,结合图形知直线AB 与C 无交点,所以假设不正确,即以Q 为中点的弦不存在.

【例4】 如图,已知某椭圆的焦点是F 1(-4,0)、F 2(4,0),过点F 2并垂直于x 轴的直线与椭圆的一个交点为B ,且|F 1B |+|F 2B |=10,椭圆上不同的两点A (x 1,y 1),C (x 2,y 2)满足条件:|F 2A |、|F 2B |、|F 2C |成等差数列. (1)求该弦椭圆的方程; (2)求弦AC 中点的横坐标;

(3)设弦AC 的垂直平分线的方程为y =kx +m , 求m 的取值范围.

解:(1)由椭圆定义及条件知,2a =|F 1B |+|F 2B |=10,得a =5,又c =4,所以b =22c a -=3.

故椭圆方程为9

2522y x +

=1. (2)由点B (4,y B )在椭圆上,得|F 2B |=|y B |=5

9.因为椭圆右准线方程为x =425,离心率为54,根

据椭圆定义,有|F 2A |=

54(425-x 1),|F 2C |=54(4

25

-x 2), 由|F 2A |、|F 2B |、|F 2C |成等差数列,得

54(425-x 1)+54(425-x 2)=2×5

9

,由此得出:x 1+x 2=8. 设弦AC 的中点为P (x 0,y 0),则x 0=

2

2

1x x +=4. (3)解法一:由A (x 1,y 1),C (x 2,y 2)在椭圆上.

得??????=+?=+25

92592592592

2222121y x y x

o

y

x

C A

B'

B F 1

F 2

①-②得9(x 12-x 22)+25(y 12-y 22)=0,

即9×)()2(25)2(212

12121x x y y y y x x --?+++=0(x 1≠x 2)

将k

x x y y y y y x x x 1

,2,422121021021-=--=+==+ (k ≠0)代入上式,得9×

4+25y 0(-k 1)=0 (k ≠0)

即k =

36

25

y 0(当k =0时也成立). 由点P (4,y 0)在弦AC 的垂直平分线上,得y 0=4k +m , 所以m =y 0-4k =y 0-

925

y 0=-9

16y 0. 由点P (4,y 0)在线段BB ′(B ′与B 关于x 轴对称)的内部, 得-

59<y 0<59,所以-516<m <5

16

. 解法二:因为弦AC 的中点为P (4,y 0),所以直线AC 的方程为 y -y 0=-

k

1

(x -4)(k ≠0) ③

将③代入椭圆方程9

252

2y x +

=1,得 (9k 2+25)x 2-50(ky 0+4)x +25(ky 0+4)2-25×9k 2=0

所以x 1+x 2=259)4(5020++k k =8,解得k =3625

y 0.(当k =0时也成立) (以下同解法一).

【例5】 已知双曲线G 的中心在原点,它的渐近线与圆2

2

10200x y x +-+=相切.过点()4,0P -作斜率为

1

4

的直线l ,使得l 和G 交于,A B 两点,和y 轴交于点C ,并且点P 在线段AB 上,又满足2

PA PB PC ?=. (1)求双曲线G 的渐近线的方程; (2)求双曲线G 的方程;

(3)椭圆S 的中心在原点,它的短轴是G 的实轴.如果S 中垂直于l 的平行弦的中点的轨迹恰好是G 的渐近线截在S 内的部分,求椭圆S 的方程.

解:(1)设双曲线G 的渐近线的方程为:y kx =,

则由渐近线与圆2

2

10200x y x +-+=2

551

k k =+

所以,1

2

k =±

2020高考数学圆锥曲线试题(含答案)

2020高考虽然延期,但是每天练习一定要跟上,加油! 圆锥曲线 一. 选择题: 1.(福建卷11)又曲线22 221x y a b ==(a >0,b >0)的两个焦点为F 1、 F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为B A.(1,3) B.(]1,3 C.(3,+∞) D.[)3,+∞ 2.(海南卷11)已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2, -1)的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( A ) A. (4 1 ,-1) B. (4 1,1) C. (1,2) D. (1,-2) 3.(湖北卷10)如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点 的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用12c 和22c 分别表示椭轨道Ⅰ和Ⅱ的焦距,用12a 和22a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子: ①1122a c a c +=+; ②1122a c a c -=-; ③1212c a a c >; ④ 1 1 c a <2 2 c a . 其中正确式子的序号是B

A. ①③ B. ②③ C. ①④ D. ②④ 4.(湖南卷8)若双曲线22221x y a b -=(a >0,b >0)上横坐标为32 a 的点 到右焦点的距离大于它到左准线的距离,则双曲线离心率的取值范围是( B ) A.(1,2) B.(2,+∞) C.(1,5) D. (5,+∞) 5.(江西卷7)已知1F 、2F 是椭圆的两个焦点,满足120MF MF ?=u u u u r u u u u r 的点M 总在椭圆内部,则椭圆离心率的取值范围是C A .(0,1) B .1 (0,]2 C .(0, 2 D .,1)2 6.(辽宁卷10)已知点P 是抛物线22y x =上的一个动点,则点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值为( A ) A B .3 C D .92 7.(全国二9)设1a >,则双曲线22 22 1(1)x y a a - =+的离心率e 的取值范围是( B ) A . B . C .(25), D .(2 8.(山东卷(10)设椭圆C 1的离心率为 13 5 ,焦点在X 轴上且长轴长为 A B C D -

圆锥曲线大题专题训练答案和题目

圆锥曲线大题专题训练 1.如图,曲线G 的方程为22(0)y x y =≥.以原点为圆心.以(0)t t >为半径的圆分别 与曲线G 和y 轴的正半轴相交于点A 与点B .直线AB 与x 轴相交于点C . (Ⅰ)求点A 的横坐标a 与点C 的横坐标 c 的关系式 (Ⅱ)设曲线G 上点D 的横坐标为2a +, 求证:直线CD 的斜率为定值. 1.解: (Ⅰ)由题意知,(A a . 因为OA t =,所以2 2 2a a t +=.由于0t > 由点(0)(0)B t C c ,,,的坐标知,直线BC 的方程为 1c t +=. 又因点A 在直线BC 上,故有 1a c +=,将(1)代入上式,得1a c =, 解得2c a =+ (Ⅱ)因为(2D a +,所以直线CD 的斜率为 1CD k = ===-. 所以直线CD 的斜率为定值. 2.设F 是抛物线2 :4G x y =的焦点. (I )过点(04)P -,作抛物线G 的切线,求切线方程; (II )设A B ,为抛物线G 上异于原点的两点,且满足0FA FB =u u u r u u u r g ,延长AF ,BF 分别交抛物线G 于点C D ,,求 四边形ABCD 面积的最小值. 2.解:(I )设切点2 004x Q x ?? ???,.由2x y '=,知抛物线在Q 点处的切线斜率为02x ,故所求切线方程为 2000()42x x y x x -=-. 即2 04 24x x y x =-. 因为点(0)P -4,在切线上. 所以2 044 x -=-,2 016x =,04x =±.所求切线方程为24y x =±-. (II )设11()A x y ,,22()C x y ,. 由题意知,直线AC 的斜率k 存在,由对称性,不妨设0k >.

【2020届】高考数学圆锥曲线专题复习:圆锥曲线解答题12大题型解题套路归纳

【高考数学中最具震撼力的一个解答题!】注:【求解完第一问以后,】→WILL COME ACROSS圆锥曲线题10大题型:(1)弦长问题(2)中点问题(3)垂直问题(4)斜率问题(5)对称问题(6)向量问题(7)切线问题(8)面积问题(9)最值问题(10)焦点三角形问题。中的2-----4类;分门别类按套路求解; 1.高考最重要考:直线与椭圆,抛物线的位置关系。第一问最高频考(总与三个问题有关):(1)———————;(2)——————————;(3)—————————; 2.圆锥曲线题,直线代入圆锥曲线的“固定3步走”:---------------------------------------------------; ——————————————————————————————————————; 3.圆锥曲线题固定步骤前9步:-------------------;---------------------------------------------;————————————;—————————;——————————;—————————————————;———————————;——————————————; 4.STEP1:首先看是否属于3种特殊弦长:(1)圆的弦长问题;(2)中点弦长问题(3)焦点弦长问题;→(1)圆的弦长问题:(2法)首选方法:垂径定理+勾

股定理:图示:--------------------------------;公式为:-------------------------;其中求“点线距”的方法:———————;次选:弦长公式;→(2) 中点弦长问题:(2法)首选方法:“点差法” 椭圆:(公式一)--------------------------------;(公式二)--------------------------------;副产品:两直线永远不可能垂直!原因:___________;【两直线夹角的求法:(夹角公式)___________;】双曲线(公式一)--------------------------------;(公式二)--------------------------------;抛物线:形式一:___________;(公式一)--------------------------------;(公式二)--------------------------------;形式2:___________;(公式一)--------------------------------;(公式二)--------------------------------;附:“点差法”步骤:椭圆:“点”_______________________;___________________________;“差”__________________________________;“设而不求法”_______________________________;“斜率公式”+“中点公式”_____________________;___________;___________;→得公式:(公式一)-------------------;(公式二)---------------------;附:“点差法”步骤:抛物线;形式一___________;:“点”_______________________;_____________________;“差”_________________________;“设而不求法”___________________;“斜率公式”+“中点公式”_____________;___________;___________;→得公式:(公式一)---------------------;(公式二)--------------------;附:“点差法”步骤:

高考数学一轮复习专题突破训练圆锥曲线

圆锥曲线 一、填空题 1、(2015年江苏高考)在平面直角坐标系xoy 中,P 为双曲线221x y -=右支上的一个动点,若P 到直线10x y -+=的距离大于c 恒成立,则c 的最大值 为___ 2 __________。 2、(2013年江苏高考)双曲线19 162 2=-y x 的两条渐近线的方程为 。 3、(2013年江苏高考)在平面直角坐标系xOy 中,椭圆C 的标准方程为 )0,0(122 22>>=+b a b y a x ,右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d ,若126d d =,则椭圆 C 的离心率为 。 4、( 南京、盐城市高三二模)在平面直角坐标系xoy 中,已知抛物线C : y x 42=的焦点为F ,定点)0, 22(A ,若射线FA 及抛物线C 相交于点M ,及抛物线C 的准线相交于点N ,则FM :MN= 5、(苏锡常镇四市 高三教学情况调研(二))已知双曲线22 221(,0) x y a b a b -=>的离心率等于2,它的焦点到渐近线的距离等于1,则该双曲线的方程为 ▲ 6、(泰州市 高三第二次模拟考试)已知双曲线22 14x y m -=的渐近线方程为 2 y x =± ,则m = ▲

7、(盐城市 高三第三次模拟考试)若抛物线28y x =的焦点F 及双曲线 22 13x y n -=的一个焦点重合,则n 的值为 ▲ 8、( 江苏南京高三9月调研)已知双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的渐近 线方程 为y =±3x ,则该双曲线的离心率为 ▲ 9、( 江苏苏州高三9月调研)已知双曲线22 15 x y m -=的右焦点及抛物线 212y x =的焦点相同,则此双曲线的渐近线方程为 ▲ 10、(南京市、盐城市 高三)若双曲线222(0)x y a a -=>的右焦点及抛物线 24y x =的焦点重合,则a = ▲ . 11、(南通市 高三)在平面直角坐标系xOy 中,以直线2y x =±为渐近线,且经过抛物 线24y x =焦点的双曲线的方程是 12、(苏州市 高三上期末)以抛物线24y x =的焦点为顶点,顶点为中心,离心率为2的双曲线标准方程为 13、(泰州市 高三上期末)双曲线12222=-b y a x 的右焦点到渐近线的距离是其 到左顶点距离的一半,则双曲线的离心率e = ▲ 14、(苏锡常镇四市2014届高三5月调研(二))在平面直角坐标系xOy 中,已知双曲线22 19x y m -=的一个焦点为(5,0),则实数 m = ▲ 15、(南京、盐城市2014届高三第二次模拟(淮安三模))在平面直角坐 标系xOy 中,双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的两条渐近线及抛物线y 2=4x Y

高考数学圆锥曲线专题复习

圆锥曲线 一、知识结构 1.方程的曲线 在平面直角坐标系中,如果某曲线C(看作适合某种条件的点的集合或轨迹 )上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系: (1)曲线上的点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做曲线的方程;这条曲线叫做方程的曲线. 点与曲线的关系若曲线C的方程是f(x,y)=0,则点P0(x0,y0)在曲线C上?f(x0,y 0)=0; 点P0(x0,y0)不在曲线C上?f(x0,y0)≠0 两条曲线的交点若曲线C1,C2的方程分别为f1(x,y)=0,f2(x,y)=0,则 f1(x0,y0)=0 点P0(x0,y0)是C1,C2的交点? f2(x0,y0) =0 方程组有n个不同的实数解,两条曲线就有n个不同的交点;方程组没有实数解,曲线就没有交点.

2.圆 圆的定义:点集:{M ||OM |=r },其中定点O 为圆心,定长r 为半径. 圆的方程: (1)标准方程 圆心在c(a,b),半径为r 的圆方程是 (x-a)2 +(y-b)2 =r 2 圆心在坐标原点,半径为r 的圆方程是 x 2 +y 2 =r 2 (2)一般方程 当D 2 +E 2 -4F >0时,一元二次方程 x 2 +y 2 +Dx+Ey+F=0 叫做圆的一般方程,圆心为(-2D ,-2 E ),半径是 2 4F -E D 22+.配方,将方程 x 2 +y 2 +Dx+Ey+F=0化为 (x+2D )2+(y+2 E )2=44 F -E D 22+ 当D 2 +E 2 -4F=0时,方程表示一个点 (-2D ,-2 E ); 当D 2 +E 2-4F <0时,方程不表示任何图形. 点与圆的位置关系 已知圆心C(a,b),半径为r,点M 的坐标为(x 0,y 0),则 |MC |<r ?点M 在圆C 内,|MC |=r ?点M 在圆C 上,|MC |>r ?点M 在圆C 内, 其中|MC |=2 02 0b)-(y a)-(x +. (3)直线和圆的位置关系 ①直线和圆有相交、相切、相离三种位置关系 直线与圆相交?有两个公共点 直线与圆相切?有一个公共点 直线与圆相离?没有公共点 ②直线和圆的位置关系的判定 (i)判别式法 (ii)利用圆心C(a,b)到直线Ax+By+C=0的距离d= 2 2 C Bb Aa B A +++与半径r 的大小关系来判 定.

文科圆锥曲线专题练习及问题详解

文科圆锥曲线 1.设12F F 是椭圆2222:1(0)x y E a b a b +=>>的左、右焦点,P 为直线32a x =上一点,12PF F ?是底角为30的等腰三 角形,则E 的离心率为( ) () A 12 () B 23 () C 3 4 () D 4 5 【答案】C 【命题意图】本题主要考查椭圆的性质及数形结合思 想,是简单题. 【解析】∵△21F PF 是底角为0 30的等腰三角形, ∴322c a = ,∴e =3 4 , ∴0260PF A ∠=,212||||2PF F F c ==,∴2||AF =c , 2.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B 两点,AB =;则C 的实轴长为( ) ()A ()B ()C 4 ()D 8 【命题意图】本题主要考查抛物线的准线、直线与双曲线的位置关系,是简单题. 【解析】由题设知抛物线的准线为:4x =,设等轴双曲线方程为:222x y a -=,将4x =代入等轴双曲线方程解 得y =||AB =a =2, ∴C 的实轴长为4,故选C. 3.已知双曲线1C :22 221(0,0)x y a b a b -=>>的离心率为2.若抛物线22:2(0)C x py p =>的焦点到双曲线1C 的渐近线的距 离为2,则抛物线2C 的方程为 (A) 2x y = (B) 2x y = (C)28x y = (D)216x y = 考点:圆锥曲线的性质 解析:由双曲线离心率为2且双曲线中a ,b ,c 的关系可知a b 3=,此题应注意C2的焦点在y 轴上,即(0,p/2)到直线x y 3=的距离为2,可知p=8或数形结合,利用直角三角形求解。 4.椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为 (A ) 2211612x y += (B )221128x y += (C )22184x y += (D )22 1124 x y += 【命题意图】本试题主要考查了椭圆的方程以及性质的运用。通过准线方程确定焦点位置,然后借助于焦距和准线求解参数,,a b c ,从而得到椭圆的方程。 【解析】因为242c c =?=,由一条准线方程为4x =-可得该椭圆的焦点在x 轴上县2 2448a a c c =?==,所以2 2 2 844b a c =-=-=。故选答案C 5.已知1F 、2F 为双曲线22 :2C x y -=的左、右焦点,点 P 在C 上,12||2||PF PF =,则12cos F PF ∠=

高考数学圆锥曲线大题集大全

高考二轮复习专项:圆锥曲线 1. 如图,直线l1与l2是同一平面内两条互相垂直的直线,交点是A ,点B 、D 在直线l1 上(B 、D 位于点A 右侧),且|AB|=4,|AD|=1,M 是该平面上的一个动点,M 在l1上的射影点是N ,且|BN|=2|DM|. 2. (Ⅰ) 建立适当的坐标系,求动点M 的轨迹C 的方程. (Ⅱ)过点D 且不与l1、l2垂直的直线l 交(Ⅰ)中的轨迹C 于E 、F 两点;另外平面上的点G 、H 满足: ○1(R);AG AD λλ=∈u u u r u u u r ○22;GE GF GH +=u u u r u u u r u u u r ○30.GH EF ?=u u u r u u u r 求点G 的横坐标的取值范围. 2. 设椭圆的中心是坐标原点,焦点在x 轴上,离心率 23=e ,已知点)3,0(P 到这个椭圆上的点的最远距离是4,求这个椭圆的方程. 3. 已知椭圆)0(1:22221>>=+b a b y a x C 的一条准线方程是, 425=x 其左、右顶点分别 是A 、B ;双曲线1 :22 222=-b y a x C 的一条渐近线方程为3x -5y=0. (Ⅰ)求椭圆C1的方程及双曲线C2的离心率; (Ⅱ)在第一象限内取双曲线C2上一点P ,连结AP 交椭圆C1于点M ,连结PB 并延长交椭圆C1于点N ,若=. 求证:.0=? B A D M B N l2 l1

4. 椭圆的中心在坐标原点O,右焦点F (c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A ,B 两点.设AB 中点为M ,直线AB 与OM 的夹角为αa. (1)用半焦距c 表示椭圆的方程及tg α; (2)若2

全国卷高考数学圆锥曲线大题集大全

全国卷高考数学圆锥曲线大题集大全 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高考二轮复习专项:圆锥曲线大题集 1. 如图,直线l 1与l 2是同一平面内两条互相垂直的直线,交点是A ,点B 、D 在直线l 1上(B 、D 位于点A 右侧),且|AB|=4,|AD|=1,M 是该平面上的一个动点,M 在l 1上的射影点是N ,且|BN|=2|DM|. (Ⅰ) 建立适当的坐标系,求动点M 的轨迹C 的方程. (Ⅱ)过点D 且不与l 1、l 2垂直的直线l 交(Ⅰ)中的轨迹C 于E 、F 两点;另外平面上的点G 、H 满足: (R); AG AD λλ=∈2; GE GF GH +=0.GH EF ?= 求点G 的横坐标的取值范围. 2. 设椭圆的中心是坐标原点,焦点在x 轴上,离心率 23 = e ,已知点)3,0(P 到 这个椭圆上的点的最远距离是4,求这个椭圆的方程. 3. 已知椭圆)0(1:22221>>=+b a b y a x C 的一条准线方程是 , 425=x 其左、右顶点分别 B A D M B N l 2 l 1

是A、B;双曲线 1 : 2 2 2 2 2 = - b y a x C 的一条渐近线方程为3x-5y=0. (Ⅰ)求椭圆C1的方程及双曲线C2的离心率; (Ⅱ)在第一象限内取双曲线C2上一点P,连结AP交椭圆C1于点M,连结PB并延长交椭圆C1于点N,若AM=. 求证:.0 = ?AB MN 4. 椭圆的中心在坐标原点O,右焦点F(c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A,B两点.设AB中点为M,直线AB与OM的夹角为αa. (1)用半焦距c表示椭圆的方程及tanα; (2)若2

历年高考数学圆锥曲线试题汇总

高考数学试题分类详解——圆锥曲线 一、选择题 1.设双曲线22 221x y a b -=(a >0,b >0)的渐近线与抛物线y=x 2 +1相切,则该双曲线的离心率等于( C ) (A (B )2 (C (D 2.已知椭圆2 2:12 x C y +=的右焦点为F ,右准线为l ,点A l ∈,线段AF 交C 于点B ,若3F A F B =,则||AF = (A). (B). 2 (D). 3 3.过双曲线22 221(0,0)x y a b a b -=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线 的交点分别为,B C .若1 2 AB BC =,则双曲线的离心率是 ( ) A B C D 4.已知椭圆22 221(0)x y a b a b +=>>的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF x ⊥轴, 直 线AB 交y 轴于点P .若2AP PB =,则椭圆的离心率是( ) A B .2 C .13 D .12 5.点P 在直线:1l y x =-上,若存在过P 的直线交抛物线2 y x =于,A B 两点,且 |||PA AB =,则称点P 为“ 点”,那么下列结论中正确的是 ( ) A .直线l 上的所有点都是“点” B .直线l 上仅有有限个点是“点” C .直线l 上的所有点都不是“ 点” D .直线l 上有无穷多个点(点不是所有的点)是“ 点” 6.设双曲线12222=-b y a x 的一条渐近线与抛物线y=x 2 +1 只有一个公共点,则双曲线的离心率为 ( ). A. 4 5 B. 5 C. 25 D.5 7.设斜率为2的直线l 过抛物线2 (0)y ax a =≠的焦点F,且和y 轴交于点A,若△OAF(O 为坐标原点)

高中数学圆锥曲线专题-理科

圆锥曲线专题 【考纲要求】 一、直线 1.掌握直线的点方向式方程、点法向式方程、点斜式方程,认识坐标法在建立形与数的关 系中的作用; 2.会求直线的一般式方程,理解方程中字母系数表示斜率和截距的几何意义:懂得一元二 次方程的图像是直线; 3.会用直线方程判定两条直线间的平行或垂直关系(方向向量、法向量); 4.会求两条相交直线的交点坐标和夹角,掌握点到直线的距离公式。 二、圆锥曲线 1.理解曲线的方程与方程的曲线的意义,并能由此利用代数方法判定点是否在曲线上,以 及求曲线交点; 2.掌握圆、椭圆、双曲线、抛物线的定义,并理解上述曲线在直角坐标系中的标准方程的 推导过程; 3.理解椭圆、双曲线、抛物线的有关概念及简单的几何特性,掌握求这些曲线方程的基本 方法,并能根据曲线方程的关系解决简单的直线与上述曲线有两个交点情况下的有关问题; 4.能利用直线和圆、圆和圆的位置关系的几何判定,确定它们之间的位置关系,并能利用 解析法解决相应的几何问题。 【知识导图】【精解名题】 一、弦长问题 例1 如图,已知椭圆 2 21 2 x y +=及点B(0, -2),过点B引椭圆的割线(与椭圆相交的直线)BD与椭圆交于C、D两点 (1)确定直线BD斜率的取值范围 (2)若割线BD过椭圆的左焦点 12 ,F F是椭圆的右焦点,求 2 CDF ?的面积 y x B C D F1F2 O

二、轨迹问题 例2 如图,已知平行四边形ABCO ,O 是坐标原点,点A 在线段MN 上移动,x=4,y=t (33)t -≤≤上移动,点C 在双曲线 22 1169 x y -=上移动,求点B 的轨迹方程 三、对称问题 例3 已知直线l :22 2,: 1169 x y y kx C =++=,问椭圆上是否存在相异两点A 、B ,关于直线l 对称,请说明理由 四、最值问题 例4 已知抛物线2 :2()C x y m =--,点A 、B 及P(2, 4)均在抛物线上,且直线PA 与PB 的倾斜角互补 (1)求证:直线AB 的斜率为定值 (2)当直线AB 在y 轴上的截距为正值时,求ABP ?面积的最大值 五、参数的取值范围 例5 已知(,0),(1,),a x b y → → == ()a → +⊥()a → - (1)求点P (x, y )的轨迹C 的方程 (2)直线:(0,0)l y kx m k m =+≠≠与曲线C 交于A 、B 两点,且在以点D (0,-1)为圆 心的同一圆上,求m 的取值范围 六、探索性问题 例6 设x, y ∈R ,,i j →→ 为直角坐标平面内x, y 轴正方向上的单位向量,若向量 (2)a x i y j → →→=++,且(2)b x i y j →→→=+-且8a b →→ += (1)求点M (x, y )的轨迹方程 (2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设OP OA OB → → → =+,是否存在这样的直线l ,使得四边形OAPB 是矩形?若存在,求出直线l 的方程;若不存在,请说明理由

全国卷高考数学圆锥曲线大题集大全

高考二轮复习专项:圆锥曲线大题集 1. 如图,直线11与12是同一平面两条互相垂直的直线, 交点是A ,点B 、D 在直线11上(B 、 D 位于点A 右侧),且|AB|=4 , |AD|=1 , M 是该平面上的一个动点, M 在l i 上的射影点 是 N ,且 |BN|=2|DM|. (I )建立适当的坐标系,求动点 M 的轨迹C 的方程. (II )过点D 且不与11、12垂直的直线1交(I )中的轨迹C 于E 、F 两点;另外平面上的点 G 、 求点G 的横坐标的取值围. M ___ B ___________________ A D N B 11 、3 e 2. 设椭圆的中心是坐标原点,焦点在 x 轴上,离心率 2,已知 点P(0,3) 到这个椭圆 上的点的最远距离是 4,求这个椭圆的方程. H 满足: AD( R); G E G F 2G H ; G H E F 0. 12

2 2 C x y 1( b 0) 3. 已知椭圆/ b2的一条准线方程是25 , 4其左、右顶点分别

(I) 求椭圆C i的方程及双曲线C2的离心率; (H)在第一象限取双曲线C2上一点P,连结AP交椭圆C i于点M,连结PB并延长交椭 圆C i于点N,若AM MP.求证:MN ?AB 0. 4. 椭圆的中心在坐标原点O,右焦点F (c,0)到相应准线的距离为1,倾斜角为45。的直线交 椭圆于A, B两点.设AB中点为M,直线AB与OM的夹角为 a. (1) 用半焦距c表示椭圆的方程及tan ; (2) 若2b>0)的离心率 3 ,过点A (0, -b)和B (a, 0)的直线 ,3 与原点的距离为 2 (1)求椭圆的方程 (2)已知定点E (-1, 0),若直线y= kx + 2 (k乒0与椭圆交于C D两点问:是否存在k的值,使以CD 为直径的圆过E点?请说明理由 2 2 C x y 是A、B;双曲线, a2b2 1 的一条渐近线方程为3x- 5y=0. 2 x 2 5.已知椭圆a

历年高考数学圆锥曲线第二轮专题复习

高考数学试题圆锥曲线 一. 选择题: 1.又曲线22 221x y a b ==(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点, 且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为B A.(1,3) B.(]1,3 C.(3,+∞) D.[)3,+∞ 2.(已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2,-1)的距离与点P 到 抛物线焦点距离之和取得最小值时,点P 的坐标为( A ) A. ( 41 ,-1) B. (4 1 ,1) C. (1,2) D. (1,-2) 3.如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用12c 和22c 分别表示椭轨道Ⅰ和Ⅱ的焦距,用12a 和22a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子: ①1122a c a c +=+; ②1122a c a c -=-; ③1212c a a c >; ④ 11c a <22 c a . 其中正确式子的序号是B A. ①③ B. ②③ C. ①④ D. ②④ 4.若双曲线22221x y a b -=(a >0,b >0)上横坐标为32 a 的点到右焦点的距离大于它 到左准线的距离,则双曲线离心率的取值范围是( B ) A.(1,2) B.(2,+∞) C.(1,5) D. (5,+∞) 5.已知1F 、2F 是椭圆的两个焦点,满足120MF MF ?=的点M 总在椭圆内部,则椭圆离心率的取值范围是C A .(0,1) B .1 (0,]2 C . D . 6.已知点P 是抛物线22y x =上的一个动点,则点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值为( A )

全国卷高考数学圆锥曲线大题集大全

高考二轮复习专项:圆锥曲线大题集 1. 如图,直线l 1与l 2是同一平面内两条互相垂直的直线,交点是A ,点B 、D 在直线l 1上 (B 、D 位于点A 右侧),且|AB|=4,|AD|=1,M 是该平面上的一个动点,M 在l 1上的射影点是N ,且|BN|=2|DM|. (Ⅰ) 建立适当的坐标系,求动点M 的轨迹C 的方程. (Ⅱ)过点D 且不与l 1、l 2垂直的直线l 交(Ⅰ)中的轨迹C 于E 、F 两点;另外平面上的点G 、H 满足: ①(R);AG AD λλ=∈②2;GE GF GH +=③0.GH EF ?= 求点G 的横坐标的取值范围. 2. 设椭圆的中心是坐标原点,焦点在x 轴上,离心率23 = e ,已知点)3,0(P 到这个椭圆 上的点的最远距离是4,求这个椭圆的方程. 3. 已知椭圆)0(1:22221>>=+b a b y a x C 的一条准线方程是 , 425=x 其左、右顶点分别 B A D M B N l 2 l 1

是A、B;双曲线 1 : 2 2 2 2 2 = - b y a x C 的一条渐近线方程为3x-5y=0. (Ⅰ)求椭圆C1的方程及双曲线C2的离心率; (Ⅱ)在第一象限内取双曲线C2上一点P,连结AP交椭圆C1于点M,连结PB并延长交椭圆C1于点N,若MP AM=. 求证:.0 = ?AB MN 4. 椭圆的中心在坐标原点O,右焦点F(c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A,B两点.设AB中点为M,直线AB与OM的夹角为αa. (1)用半焦距c表示椭圆的方程及tanα; (2)若2

数学高考圆锥曲线压轴题

数学高考圆锥曲线压轴 题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

数学高考圆锥曲线压轴题经典预测一、圆锥曲线中的定值问题 ★★椭圆C:x2 a2+ y2 b2=1(a>b>0)的离心率e= 3 2,a+b=3. (Ⅰ)求椭圆C的方程; (Ⅱ)如图,A,B,D是椭圆C的顶点,P是椭圆C上除顶点外的任意点,直线DP交x轴于点N直线AD交BP于点M,设BP的斜率为k,MN的斜率为m,证明2m-k为定值. ★★如图,椭圆C:x2 a2+ y2 b2=1(a>b>0)经过点P(1, 3 2),离心率e= 1 2,直 线l的方程为x=4. (Ⅰ)求椭圆C的方程; (Ⅱ)AB是经过右焦点F的任一弦(不经过点P),设直线AB与直线l相交于点M,记PA,PB,PM的斜率分别为k1,k2,k3.问:是否存在常数λ,使得k1+k2=λk3若存在,求λ的值;若不存在,说明理由. ★★椭圆C:x2 a2+ y2 b2=1(a>b>0)的左右焦点分别是F1,F2,离心率为 3 2,过 F1且垂直于x轴的直线被椭圆C截得的线段长为1. (Ⅰ)求椭圆C的方程; (Ⅱ)点P是椭圆C上除长轴端点外的任一点,连接PF1,PF2,设∠F1PF2的角平分线PM交C的长轴于点M(m,0),求m的取值范围; (Ⅲ)在(2)的条件下,过点P作斜率为k的直线l,使得l与椭圆C有且只 有一个公共点,设直线PF1,PF2的斜率分别为k1,k2,若k≠0,试证明 1 kk1+ 1 kk2 为定值,并求出这个定值. - 2 -

二、圆锥曲线中的最值问题 +y2 b2=1( a>b>0)的离心率为 (Ⅰ)求椭圆C的方程; (Ⅱ)过原点的直线与椭圆C交于A,B两点(A,B不是椭圆C的顶点).点D在椭圆C上,且A D⊥AB,直线BD与x轴、y轴分别交于M,N两点.(i)设直线BD,AM的斜率分别为k1,k2,证明存在常数λ使得k1=λk2,并求出λ的值; (ii)求△OMN面积的最大值. - 3 -

圆锥曲线提升专题训练

圆锥曲线专题训练2018.1 数学高考对解析几何内容的考查主要集中在如下几个类型: ①求曲线方程(类型确定,甚至给出曲线方程); ②直线、圆和圆锥曲线间的交点问题(含切线问题); ③与圆锥曲线定义有关的问题(涉及焦半径、焦点弦、焦点三角形和准线,利用余弦定理等) ④与曲线有关的最值问题(含三角形和四边形面积); ⑤与曲线有关的几何证明(圆线相切、四点共圆、对称性或求对称曲线、平行、垂直等); ⑥探求曲线方程中几何量及参数间的数量特征; 考点一、求范围(最值)问题 例1-1.(2014新课标全国卷Ⅰ)已知点A (0,-2),椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为32 ,F 是椭圆E 的右焦点,直线AF 的斜率为233 ,O 为坐标原点. (1)求E 的方程; (2)设过点A 的动直线l 与E 相交于P ,Q 两点,当△OPQ 的面积最大时,求l 的方程. 例1-2.已知直线1y x =-+与椭圆相交于A B 、两点. (1,焦距为2,求线段AB 的长; (2)与向量OB 互相垂直(其中O 为坐标原点),求椭圆长轴长的最大值.

练习1.【江苏省扬州中学2015届高三4月双周测】 在平面直角坐标系xoy 中,椭圆C :的离心率为,右焦点F (1,0),点P 在椭圆C 上,且在第一象限内,直线PQ 与圆O : 相切于点M. (1)求椭圆C 的方程;(2)求|PM|·|PF|的取值范围; (3)若OP ⊥OQ ,求点Q 的纵坐标t 的值. 考点二、存在性问题 例2-1.如图,过椭圆L 的左顶点(3,0)A -和下顶点B 且斜率均为k 的两直线12,l l 分别交椭圆于,C D ,又1l 交y 轴于M ,2l 交x 轴于N , 且CD 与MN 相交于点P .当3k =时,ABM ?是直角三角形. (1)求椭圆L 的标准方程;(2)①证明:存在实数λ,使得AM OP λ=uuu r uu u r ; ②求|OP |的最小值.

(完整word版)2019-2020年高考数学大题专题练习——圆锥曲线(一)

2019-2020年高考数学大题专题练习——圆锥曲线(一) 1.设F 1,F 2为椭圆22 143 x y +=的左、右焦点,动点P 的坐标为(-1,m ),过点F 2的直线与 椭圆交于A ,B 两点. (1)求F 1,F 2的坐标; (2)若直线P A ,PF 2,PB 的斜率之和为0,求m 的所有整数值. 2.已知椭圆2 214 x y +=,P 是椭圆的上顶点.过P 作斜率为k (k ≠0)的直线l 交椭圆于另一点A ,设点A 关于原点的对称点为B . (1)求△P AB 面积的最大值; (2)设线段PB 的中垂线与y 轴交于点N ,若点N 在椭圆内部,求斜率k 的取值范围. 3.已知椭圆()22 22:10x y C a b a b +=>>的离心率为5,定点()2,0M ,椭圆短轴的端点是 1B ,2B ,且21MB MB ⊥. (1)求椭圆C 的方程; (2)设过点M 且斜率不为0的直线交椭圆C 于,A B 两点,试问x 轴上是否存在定点P ,使PM 平分APB ∠?若存在,求出点P 的坐标,若不存在,说明理由.

4.已知椭圆C 的标准方程为22 1 1612x y +=,点(0,1)E . (1)经过点E 且倾斜角为 3π 4 的直线l 与椭圆C 交于A 、B 两点,求||AB . (2)问是否存在直线p 与椭圆交于两点M 、N 且||||ME NE =,若存在,求出直线p 斜率的取值范围;若不存在说明理由. 5.椭圆1C 与2C 的中心在原点,焦点分别在x 轴与y 轴上,它们有相同的离心率2 e =,并且2C 的短轴为1C 的长轴,1C 与2C 的四个焦点构成的四边形面积是22. (1)求椭圆1C 与2C 的方程; (2)设P 是椭圆2C 上非顶点的动点,P 与椭圆1C 长轴两个顶点A ,B 的连线PA ,PB 分别与椭圆1C 交于E ,F 点. (i)求证:直线PA ,PB 斜率之积为常数; (ii)直线AF 与直线BE 的斜率之积是否为常数?若是,求出该值;若不是,说明理由.

高考理科数学-圆锥曲线专题训练

高三圆锥曲线选填训练 一、选择题(本大题共10小题,每小题4分,共40分) 1.椭圆12222=+b y a x (a >b>0)离心率为23,则双曲线12222=-b y a x 的离心率为 ( ) A .45 B .25 C .32 D .45 2.椭圆13 122 2=+y x 的焦点为F 1和F 2,点P 在椭圆上,如果线段PF 1中点在y 轴上,那么|PF 1|是|PF 2| 的 ( ) A .7倍 B .5倍 C .4倍 D .3倍 3.过双曲线x 2 -22 y =1的右焦点F 作直线l 交双曲线于A , B 两点,若|AB |=4,则这样的直线l 有 ( ) A .1条 B .2条 C .3条 D .4条 4.如果双曲线 136 642 2=-y x 上的一点P 到双曲线的右焦点的距离是8,那么点P 到右准线的距离是 ( ) A .10 B .7 7 32 C .27 D .5 32 5.若抛物线y 2=2p x 上的一点A (6,y )到焦点F 的距离为10,则p 等于 ( ) A .4 B .8 C .16 D .32 6.如图,过抛物线)(022>=p px y 的焦点F 的直线l 交抛物线于点A .B ,交其准线于点C ,若 BF BC 2=,且3=AF ,则此抛物线的方程为 A .x y 23 2= B .x y 32= C .x y 2 9 2= D .x y 92= 7.曲线 19252 2 =+y x 与曲线)925(19252 2 ≠<=-+-k k k y k x 且 有相同的( A .长、短轴 B .焦距 C .离心率 D .准线 8.过椭圆22 2214x y a a += (a>0)的焦点F 作一直线交椭圆于P, Q 两点,若线段PF 与QF 的长分别为 p, q ,则11p q +等于( ) A .4a B .1 2a C .4a D .2a 9.椭圆13 22 =+y x 上的点到直线x -y+6=0的距离的最小值是 . 10.已知双曲线C 的渐近线方程是x y 32±=,且经过点M ()1,2 9 -,则双曲线C 的方程是 . 11.AB 是抛物线y =x 2的一条弦,若AB 的中点到x 轴的距离为1,则弦AB 的长度的最大值 为 .

圆锥曲线练习题含答案

圆锥曲线专题练习 一、选择题 1.已知椭圆 116 252 2=+y x 上的一点P 到椭圆一个焦点的距离为3,则P 到另一焦点距离为 ( ) A .2 B .3 C .5 D .7 2.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程为 ( ) A . 116922=+y x B .1162522=+y x C .1162522=+y x 或125 162 2=+y x D .以上都不对 3.动点P 到点)0,1(M 及点)0,3(N 的距离之差为2,则点P 的轨迹是 ( ) A .双曲线 B .双曲线的一支 C .两条射线 D .一条射线 4.设双曲线的半焦距为c ,两条准线间的距离为d ,且d c =,那么双曲线的离心率e 等于( ) A .2 B .3 C .2 D .3 5.抛物线x y 102 =的焦点到准线的距离是 ( ) A . 25 B .5 C .2 15 D .10 6.若抛物线2 8y x =上一点P 到其焦点的距离为9,则点P 的坐标为 ( ) A .(7, B .(14, C .(7,± D .(7,-± 7.如果22 2 =+ky x 表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( ) A .()+∞,0 B .()2,0 C .()+∞,1 D .()1,0 8.以椭圆 116 252 2=+y x 的顶点为顶点,离心率为2的双曲线方程( ) A . 1481622=-y x B .127922=-y x C .1481622=-y x 或127 92 2=-y x D .以上都不对 9.过双曲线的一个焦点2F 作垂直于实轴的弦PQ ,1F 是另一焦点,若∠2 1π = Q PF ,则双曲线的离心率 e 等于( ) A .12- B .2 C .12+ D .22+ 10.21,F F 是椭圆17 92 2=+y x 的两个焦点,A 为椭圆上一点,且∠02145=F AF ,则Δ12AF F 的面积为( ) A .7 B . 47 C .2 7 D .257 11.以坐标轴为对称轴,以原点为顶点且过圆09622 2 =++-+y x y x 的圆心的抛物线的方程() A .2 3x y =或2 3x y -= B .2 3x y = C .x y 92 -=或2 3x y = D .2 3x y -=或x y 92 =

相关主题
文本预览
相关文档 最新文档