当前位置:文档之家› 振动故障诊断及其转子平衡

振动故障诊断及其转子平衡

振动故障诊断及其转子平衡
振动故障诊断及其转子平衡

振动故障诊断及其转子平衡

一、振动基础理论知识简介

1、基本概念:

▲振动:一个弹性体或弹性系统(几个弹性体连在一起)离开其平衡位置做周期性往复运动就叫振动。

其振动量有:极值(峰值),其中单峰值X m,峰-峰值X m-m,X m-m=2 X m;平均值(X i)和均方根值(有效值-X S)。

▲简谐振动:能用一项正弦或余弦函数表示其运动规律的周期性振动,现场发生的一些复杂振动均是几种不同频率的简谐振动的合成,因此一些资料或书籍均以简谐振动为主加以分析和研究。

X=A.cos(ωt+Φ)

▲通频振幅、基频振幅/基频相位:目前测量振动的仪表按功能来分有两种,一种只能测量振幅值,称为振动表;另一种除能测量幅值外,还能测量振动相位和不同频率下的振动分量,称作振动仪。

振幅有两个含义:1.振幅的表示方法;2.振幅中所含的频率成分。

描述振动的几个物理量:

振动速度:X=A.sin ωt

振动位移:Y=dx/dt=ωt sin(ωt+900)

振动加速度:Z= d2x/dt2=ω2t sin(ωt+1800)

X、Y、Z:ω相同,A(最大位移),ωA,ω2A;

Y比X矢量超前900;Z比X矢量超前1800。

表示振动强度,位移是最有效的;表示振动平均能量的振动速度是有效的;表示振动冲击强度,振动加速度是最有效的。 ▲极值(幅值)、有效值、平均值的关系:

X S =Xm Xi 2

1223600= 极值(幅值):单峰值X (t )=1;峰-峰值=2

平均值:( X )=A dt t x T

T 636.0)(10=? 均方根值(有效值):X S =A dt t x T T

707.0120

=?)( 三者之间的关系:双振幅近似等于3倍的有效值或平均值。 轴承振动烈度是以振动速度的均方根值, 我们现在一直沿用的是轴承振动位移峰-峰值S P-P ,国外和国内某些制造厂有用轴承烈度表示

振动,上述换算关系只是指单一频率的振动,如果是混频振动不能直接换算。

▲通频振幅:用普通振动表(不带滤波器)测得的振幅值是各种频率振动分量的叠加值,如果振幅是由几种不同频率的周期振动叠加而成,其叠加后的振动仍是周期振动,A 在各个周期内保持不变,仪表指示稳定,如果表记示值不稳定,说明由非周期成分存在。

▲基频振幅:通频振动只能反映物体总的状态,如果要反映振动故障的性质和计算转子重量,就要获取基频振幅。所谓基频振幅是指基波振动频率(机组振动的基波频率等于转子工作频率)下运动量值按正弦规律变化的幅值。测取的方法是采用可调滤波器,可调滤波器

工作原理略。

▲基频相位:测取基频振幅只能了解激振力的大小或转子平衡状态,若要找转子平衡或对某一振动物体作进一步研究时,则需要测量振动相位。在振动领域内,相位可以看作振动信号上的某一点(高点、零点)与振动信号频率相同的基准信号(脉冲信号)或转子上某一点之间的关系。这个关系在振动相位测量中都是把振动的一个周期分成360等份,它们之间的导前或滞后关系直接用角度表示。

▲振动频谱:为了解机组振动状态和在轴承中分布,应测取机组各瓦和转轴通频振幅,若要对振动故障作出诊断,首先应将发生的振动进行分类,从而需要测量基频振幅和相位,当基频振幅和通频振幅差别较大时,还应测量振动频谱。

前面谈到复杂振动是由于不同频率的简谐振动量叠加而成的,频谱分析就要看那一种频率的振动分量占主导地位。实际就是数学上把一连续函数通过傅立叶函数变换后,变成离散量。目前国内使用的不论是国产还是进口的振动仪,都带有1X/2,1X,2X的功能,利用这一功能可以方便地测量出振动信号中半频、基频、倍频振动分量值,虽是简单频谱,但一般能满足工程要求,如果以上几种分量均不大,还需要进一步测量振动频谱。

▲波德曲线(BODE):为了判断轴系不平衡的轴向位置及不平衡形式,应测取相应的轴承及转轴振动波德曲线,即转速与振幅/相位的关系曲线。具有以下功能:

(1).确定转子临界转速及其范围;

(2).了解升速和降速过程中,除转子临界转速外,是否还有其它部件(如基础、静子、管道)发生共振;

(3).作为柔性转子平衡的依据;

(4).可以正确地求出机械滞后角,为加准试加重量提供正确的依据;

(5).前后对比,可以判断机组启动中转轴是否存在动静摩擦和冲转前转子是否存在热弯曲等故障;

(6).将机组启停所得的波德曲线进行对比,可以确定运行中转子是否发生热弯曲;

(7).前后对比1X/2、1X、2X振动分量波德曲线,可以提供转子横向裂纹信息和量值概念。

二、振动故障诊断

▲振动故障诊断:依据振动故障特征,进行严密推理得出得结论得诊断叫…以前振动原因寻找以及振动原因分析都是有一定的盲目性,还不能叫故障诊断。

▲在线诊断:对运行状态下机组振动故障原因作出粗线条的诊断,以便运行人员作出纠正性操作,防止事故扩大,时间上要求紧迫,目前采用计算机实现,故又称为自动诊断系统。

▲离线诊断:是为消除振动故障而进行的诊断,时间上要求不那么紧迫,可以将振动信号数据拿出现场,进行仔细地分析、讨论或模拟试验。在故障诊断深入程度上要比在线诊断具体得多,因此难度也大一些。一些常见振动故障得诊断方法见《网内常见机组振动故障及

其消除对策》。

三、转子平衡

▲转子平衡:调整转子质量分布,使其质心偏移回转中心距离逐渐减小的过程称为…

转子平衡是消除现场运行的回转机械振动的一项重要措施,由于转子工作转速、结构(长径比)、转子刚性不同和各类转子要求不同的平衡精度,可以采用静平衡、刚性转子平衡和柔性转子平衡。静平衡和刚性转子平衡比较简单,这里不再祥述。柔性转子平衡方法见《振型分离法和谐分量法在转子平衡中的综合应用》,这里需要指出的是轴系平衡中的一些注意事项:

1、平衡重量计算数据要正确、可靠

引起轴系平衡失败的原因尽管是多方面的,但可归纳为两类。一类是因为不平衡轴向位置和不平衡形式、加重大小和方向判断失误,后因受机组启停次数和时间的限制,而使轴系平衡不能不能进行,二是平衡重量计算数据不正确或不可靠。平衡重量计算数据包括3000r/min,带负荷直至满负荷和额定励磁电流下原始振动,后来历次加重数值和方向及机组振动变化规律。

2、不平衡方向振荡时加重方向的确定

在现场单平面平衡中,有时会遇到求得平衡重量以试加重量为起点,来回移动多次,却不能使原始振动明显降低的情况,这种现象称为不平衡方向振荡。

产生上述现象的原因是由于加重部件与转轴连接刚度不足引起

的,机理是由于加重部件与转轴连接刚度不足,在原始不平衡力与试加重量合力的效应作用下,部件产生径向位移或变形,引起附加不平衡所致。遇到此种情况往往作出故障原因不是不平衡引起的判断,因而放弃平衡。

实际上明白上述机理后,在平衡中应首先避免在一些与转轴连接刚度不足的部件上加重,如果无法选到合适的加重平面,在平衡时应根据附加不平衡的大小进行折中计算,实际加重方向取计算值1/2∽2/3,一次调整不可能加准,经过2-3次调整即可找到合适的加重位置。在现场容易产生附加重量不平衡的有某些风机(如锅炉排粉机)、某些机组的励磁机整流子、弹性心环、悬挂式护环上可能产生,虽然激振荡角度不大,但会给平衡带来麻烦,应引起注意。

转子不平衡的故障机理与诊断

转子不平衡的故障机理与诊断(1) 转子不平衡是由于转子部件质量偏心或转子部件出现缺损造成的故障,它是旋转机械最常见的故障。据统计,旋转机械约有一半以上的故障与转子不平衡有关。因此,对不平衡故障的研究与诊断也最有实际意义。 一、不平衡的种类 造成转子不平衡的具体原因很多,按发生不平衡的过程可分为原始不平衡、渐发性不平衡和突发性不平衡等几种情况。 原始不平衡是由于转子制造误差、装配误差以及材质不均匀等原因造成的,如出厂时动平衡没有达到平衡精度要求,在投用之初,便会产生较大的振动。 渐发性不平衡是由于转子上不均匀结垢,介质中粉尘的不均匀沉积,介质中颗粒对叶片及叶轮的不均匀磨损以及工作介质对转子的磨蚀等因素造成的。其表现为振值随运行时间的延长而逐渐增大。 突发性不平衡是由于转子上零部件脱落或叶轮流道有异物附着、卡塞造成,机组振值突然显著增大后稳定在一定水平上。 不平衡按其机理又可分为静失衡、力偶失衡、准静失衡、动失衡等四类。 二、不平衡故障机理 设转子的质量为M,偏心质量为m,偏心距为e,如果转子的质心到两轴承连心线的垂直距离不为零,具有挠度为a,如图1-1所示。

图1-1 转子力学模型 由于有偏心质量m和偏心距e的存在,当转子转动时将产生离心力、离心力矩或两兼而有之。离心力的大小与偏心质量m、偏心距e及旋转角速度ω有关,即F=meω2。众所周知,交变的力(方向、大小均周期性变化)会引起振动,这就是不平衡引起振动的原因。转子转动一周,离心力方向改变一次,因此不平衡振动的频率与转速相一致,振动的幅频特性及相频特性。 三、不平衡故障的特征 实际工程中,由于轴的各个方向上刚度有差别,特别是由于支承刚度各向不同,因而转子对平衡质量的响应在x、y方向不仅振幅不同,而且相位差也不是90°,因此转子的轴心轨迹不是圆而是椭圆,如图1-2所示。 由上述分析知,转子不平衡故障的主要振动特征如下。 (1) 振动的时域波形近似为正弦波(图1-2)。 (2)频谱图中,谐波能量集中于基频。并且会出现较小的高次谐波,使整个 频谱呈所谓的“枞树形”,如图1-3所示。

转子故障振动机理分析

转子故障振动机理分析 转子故障引起振动有许多形式, 现对其中的几个典型振动故障产生的原因及其对应的振动机理进行如下分析: 1.转子不平衡故障及振动机理分析 转子不平衡包括转子系统的质量偏心及转子部件出现缺陷;转子质量偏心是由于转子的制造误差、装配误差、材料不均匀等原因造成的,称为初始不平衡。转子部件缺损是指转子在运行中由于腐蚀、磨损、介质结垢以及转子受疲劳力的作用,使转子的零部件(如叶轮、叶片等)局部损坏、脱落、碎片飞出等,造成的新的转子不平衡。转子质量偏心及转子部件缺损是两种不同的故障,但其不平衡振动机理却有共同之处。 振动机理分析:旋转过程中,转子产生不平衡离心力与力矩通过支承点作用在轴及轴承上,引起振动.设转子质量为M(包括偏心质量m),偏心距e,旋转角频率w=2 f(v f为 v 转动频率),在t瞬时位移在直角坐标系分量x,y,如图6-3所示,则可得转子中心运动微分方程为 图6-3 转子力学模型

则有 以上几式中的K可以近似简化为机器的安装总刚度,M为机器的总质量,为K和M构成的振动体的无阻尼固有频率。为无量纲阻尼因子,它的取值不同,会影响到系统 的响应,是激励频率与固有频率之比,也是无量纲因子。根据上式,按不同的频率比和阻尼系数的变化,作出幅频响应图及相频响应图,如下图所示: 图6-4 幅频响应图及相频响应图 转子不平衡所引起振动有下列特点:振动方向为径向,振动的特征频率等于转频;转子的轴承均发生较大的振动;在转子通过临界转速时振幅有特别显著的增大;在高速下随转轴转速上升振动很快增大;振动频率与转速相等且为正弦波;在没有带负荷时振动就达到最大值. 2.转子不对中故障振动机理分析 机组各转子之间由联轴器联接构成轴系,传递运动和转动。由于机器的安装误差、承载后的变形以及机器基础的沉降不均等,造成机器工作状态时各转子轴线之间产生轴线平

机械故障诊断论文 旋转机械故障诊断技术

XX大学机械交通学院 机械故障诊断论文 题目:旋转机械故障诊断技术 姓名学号: 指导教师: 年级专业:机械设计制造及其自动化084班所在学院:机械交通学院 课程评分: 二零一一年12月18日

旋转机械故障诊断技术 摘要:通过分析旋转式机械各种故障产生机理的基础上,归纳和概括了传统故障诊断的基本原理和典型故障振动特征分析方法及模糊理论、神经网络、遗传算法等在诊断决策算法研究中的应用,并对国内外旋转机械故障诊断的发展现状进行了详细论述最后对其发展趋势进行了展望。旋转机械是各种类型机械设备中数量最多应用最广的一类机械,特别是一些大型旋转机械,如汽轮机、球磨机、离心式压缩机等支持国家经济命脉的一些工业门是属于关键设备。由于检测技术在当今轻工业广泛应用,如电力、石化、冶金、汽车和造船等国民经济重要部门,都需要用机械振动的测试和分析,来检测机械是否正常运作。 关键字:机械故障诊断;旋转机械

前言 设备状态监测与故障诊断是通过掌握设备过去和现在运行中或基本不拆卸的情况下的状态量,判断有关异常或故障的原因及预测对将来的影响,从而找出必要对策的技术。它是一门综合性技术,涉及传感及测试技术、电子学、信号处理、识别理论、计算机技术以及人工智能专家系统等多门基础学科,是对这些基础理论的综合应用。 旋转机械的主要功能是由旋转动作完成的,转了是其最主要的部件。旋转机械发生故障的重要特征是机器伴有异常的振动和噪声,其振动信号从幅值域、频率域和时间域实时地反映了机器故障信息。转子常见的故障有转子不平衡、转子不对中、转子弯曲、油膜涡动和油膜振荡等[1]。 1.旋转机械故障诊断的内容 作为设备故障诊断技术的一个分支--旋转机械状态监测与故障诊断技术.其研究领域也同样主要集中在故障信息检测、故障特征分析、状态监测方法、故障机理研究、故障识别及其专家系统。 2.旋转机械的振动关系及故障分类 旋转式机械的主要组成部分是转轴组件,又称转子系统,它包括转子、轴承、支座及密封装置等部分。由于转子类型及振动性质的不同,其产生故障的原因,机理及振动特征各不相同。 2.1转子不平衡 2.1.1转子不平衡产生原因 在旋转机械中,若转子的质心与旋转轴不重合,就存在不平衡。转子不平衡包括转了系统的质量偏心及转子部件出现缺损。转子质量偏心是由于转子的制造误差、装配误差、材质不均匀等原因造成的,称此为初始不平衡。转了部件的缺损是指转子在运行中由于腐蚀、磨损、介质结垢以及转子受疲劳力的作用使转子的零部件(如叶轮、叶片等)局部损坏、脱落、碎块飞出,从而造成新的转了不平衡。转子质量偏心和转子部件缺损是两种不同的故障但其不平衡振动机理却有共同之处。 2.1.2转子不平衡的振动特征 转子不平衡故障的主要振动特征为:频谱图中,谐波能量集中于基频;振动的时域波形为正弦波;当工作转速一定时,相位稳定;转子的轴心轨迹为椭圆;转子的进动特征为同步正进动;转子振动的强烈程度对工作转速的变化很敏感,振动幅值与转速的平方成正比,而与负荷大小无关;当转速大于第一临界转速后,转速上升,振幅趋向于一个较小的稳定值。当转速接近第一临界转速时,发生共振,振幅具有最大峰值;不平衡故障主要有静不平衡和动不平衡两种。对于静不平衡,其振动方向主要反映在径向,与轴向振动无关,转子两端轴承同一方向的径向振动为同相。 2.2转子不对中 2.2.1转子不对中产生原因 机组各转子之间由联轴器联接构成轴系传递运动和转矩。由于机器的安装误

不平衡故障(附定向振动) (DEMO)

不平衡故障 一、 不平衡故障的产生机理 由于设计、制造、安装中转子材质不均匀、结构不对称、加工和装配误差等原因或由于机器运行时结垢、热弯曲、零部件脱落、电磁干扰力等原因而产生质量偏心。转子旋转时,由于转子质量中心偏离转动中心,将激起转子的振动,这是旋转机械最常见的故障。 由于有偏心质量m 和偏心距e 的存在,当转子转动时将产生离心力、离心力矩或两者兼而有之。离心力的大小与偏心质量m 、偏心距e 及旋转角速度ω有关,即2ωme F =。众所周知,交变的力(方向、大小均周期性变化)会引起振动,这就是不平衡引起振动的原因。转子每转动一周,离心力方向变化一周,因此不平衡振动的频率与转速相一致。 不平衡故障的主要振动特征: 1) 振动的时域波形近似为正弦波; 2) 频谱图中,谐波能量集中于基频。并且会出现较小的高次谐波,使整个频谱呈所谓的“枞树形”; 3) 当ω<n ω时,即在临界转速以下,振幅随着转速的增加而增大;当ω>n ω后,即在临界转速以上,转速增加时振幅趋于一个较小的稳定值;当ω接近于n ω时,即转速接近临界转速时,发生共振,振幅具有最大峰值。振动幅值对转速的变化很敏感。 4) 当工作转速一定时,相位稳定。 5) 转子的轴心轨迹为椭圆。(由于支撑刚度不同的影响) 6) 从轴心轨迹观察其进动特征为同步正进动。 对于原始不平衡、渐变不平衡和突发性不平衡这三种形式,其共同点较多,但可以从以下两个方面对其进行甄别。

1)振动趋势不同 原始不平衡:在运行初期机组的振动就处于较高的水平。 渐变不平衡:运行初期机组振动较低,随着时间的推移,振值逐步升高。 突发不平衡:振动值突然升高,然后稳定在一个较高的水平; 2)矢量域变化不同 原始不平衡:矢量域稳定于某一允许的范围。 渐变不平衡:矢量域逐渐变化; 突发性不平衡:矢量域某一时刻发生突变,然后稳定。 2.转子不平衡可能导致的后果 对于柔性转子还可能由于动挠度产生附加的惯性离心力而造成不平衡。不同原因所引起的转子不平衡故障是具有基本上一致的规律。归结起来,转子不平衡可能会导致下列不良后果; (1)造成转子的反复弯曲和内应力,从而引起转子疲劳,甚至引起转子断裂; (2)使机器在运转过程中产生过度振动和噪声,从而会加速轴承等零件的磨损及缩短使用寿命。

转动设备常见振动故障频谱特征案例分析

转动设备常见振动故障频谱特征及案例分析 一、不平衡 转子不平衡是由于转子部件质量偏心或转子部件出现缺损造成的故障,它是旋转机械最常见的故障。结构设计不合理,制造和安装误差,材质不均匀造成的质量偏心,以及转子运行过程中由于腐蚀、结垢、交变应力作用等造成的零部件局部损坏、脱落等,都会使转子在转动过程中受到旋转离心力的作用,发生异常振动。 转子不平衡的主要振动特征: 1、振动方向以径向为主,悬臂式转子不平衡可能会表现出轴向振动; 2、波形为典型的正弦波; 3、振动频率为工频,水平与垂直方向振动的相位差接近90度。 案例:某装置泵轴承箱靠联轴器侧振动烈度水平13.2 mm/s,垂直11.8mm /s,轴向12.0 mm/s。各方向振动都为工频成分,水平、垂直波形为正弦波,水平振动频谱如图1所示,水平振动波形如图2所示。再对水平和垂直振动进行双通道相位差测量,显示相位差接近90度。诊断为不平衡故障,并且不平衡很可能出现在联轴器部位。

解体检查未见零部件的明显磨损,但联轴器经检测存在质量偏心,动平衡操作时对联轴器相应部位进行打磨校正后振动降至2.4 mm/s。 二、不对中 转子不对中包括轴系不对中和轴承不对中两种情况。轴系不对中是指转子联接后各转子的轴线不在同一条直线上。轴承不对中是指轴颈在轴承中偏斜,轴颈与轴承孔轴线相互不平行。通常所讲不对中多指轴系不对中。 不对中的振动特征: 1、最大振动往往在不对中联轴器两侧的轴承上,振动值随负荷的增大而增高;

2、平行不对中主要引起径向振动,振动频率为2倍工频,同时也存在工频和多倍频,但以工频和2倍工频为主; 3、平行不对中在联轴节两端径向振动的相位差接近180度; 4、角度不对中时,轴向振动较大,振动频率为工频,联轴器两端轴向振动相位差接近180度。 案例:某卧式高速泵振动达16.0 mm/s,由振动频谱图(图3)可以看出,50 Hz(电机工频)及其2倍频幅值显著,且2倍频振幅明显高于工频,初步判定为不对中故障。再测量泵轴承箱与电机轴承座对应部位的相位差,发现接近180度。 解体检查发现联轴器有2根联接螺栓断裂,高速轴上部径向轴瓦有金属脱落现象,轴瓦间隙偏大;高速轴止推面磨损,推力瓦及惰性轴轴瓦的间隙偏大。检修更换高速轴轴瓦、惰性轴轴瓦及联轴器联接螺栓后,振动降到A区。 三、松动 机械存在松动时,极小的不平衡或不对中都会导致很大的振动。通常有三种类型的机械松动,第一种类型的松动是指机器的底座、台板和基础存在结构松动,或水泥灌浆不实以及结构或基础的变形,此类松动表现出的振动频谱主要为1x。第二种类型的松动主要是由于机器底座固定螺栓的松动或轴承座出现裂纹引起,其振动频谱除1X外,还存在相当大的2X分量,有时还激发出1/2X和3X振动

振动故障诊断及其转子平衡

振动故障诊断及其转子平衡 一、振动基础理论知识简介 1、基本概念: ▲振动:一个弹性体或弹性系统(几个弹性体连在一起)离开其平衡位置做周期性往复运动就叫振动。 其振动量有:极值(峰值),其中单峰值X m,峰-峰值X m-m,X m-m=2 X m;平均值(X i)和均方根值(有效值-X S)。 ▲简谐振动:能用一项正弦或余弦函数表示其运动规律的周期性振动,现场发生的一些复杂振动均是几种不同频率的简谐振动的合成,因此一些资料或书籍均以简谐振动为主加以分析和研究。 X=A.cos(ωt+Φ) ▲通频振幅、基频振幅/基频相位:目前测量振动的仪表按功能来分有两种,一种只能测量振幅值,称为振动表;另一种除能测量幅值外,还能测量振动相位和不同频率下的振动分量,称作振动仪。 振幅有两个含义:1.振幅的表示方法;2.振幅中所含的频率成分。 描述振动的几个物理量: 振动速度:X=A.sin ωt 振动位移:Y=dx/dt=ωt sin(ωt+900) 振动加速度:Z= d2x/dt2=ω2t sin(ωt+1800) X、Y、Z:ω相同,A(最大位移),ωA,ω2A; Y比X矢量超前900;Z比X矢量超前1800。

表示振动强度,位移是最有效的;表示振动平均能量的振动速度是有效的;表示振动冲击强度,振动加速度是最有效的。 ▲极值(幅值)、有效值、平均值的关系: X S =Xm Xi 2 1223600= 极值(幅值):单峰值X (t )=1;峰-峰值=2 平均值:( X )=A dt t x T T 636.0)(10=? 均方根值(有效值):X S =A dt t x T T 707.0120 =?)( 三者之间的关系:双振幅近似等于3倍的有效值或平均值。 轴承振动烈度是以振动速度的均方根值, 我们现在一直沿用的是轴承振动位移峰-峰值S P-P ,国外和国内某些制造厂有用轴承烈度表示 振动,上述换算关系只是指单一频率的振动,如果是混频振动不能直接换算。 ▲通频振幅:用普通振动表(不带滤波器)测得的振幅值是各种频率振动分量的叠加值,如果振幅是由几种不同频率的周期振动叠加而成,其叠加后的振动仍是周期振动,A 在各个周期内保持不变,仪表指示稳定,如果表记示值不稳定,说明由非周期成分存在。 ▲基频振幅:通频振动只能反映物体总的状态,如果要反映振动故障的性质和计算转子重量,就要获取基频振幅。所谓基频振幅是指基波振动频率(机组振动的基波频率等于转子工作频率)下运动量值按正弦规律变化的幅值。测取的方法是采用可调滤波器,可调滤波器

2电机振动异常的识别与诊断

电机振动异常的识别与诊断 一、三相交流电机定子异常产生的电磁振动 三相交流电机在正常运转时,机座上受到一个频率为电网频率2倍的旋转力波的作用,而可能产生振动,振动大小与旋转力波的大小和机座的刚度直接有关。 定子电磁振动异常的原因: ①定子三相磁场不对称,如电网三相电压不平衡。因接触不良和断线造成单相运行,定子绕组三相不对称等原因,都会造成定子磁场不对称,而产生异常振动。 ②定子铁心和定子线圈松动将使定子电磁振动和电磁噪声加大。 ③电磁底脚线条松动,相当于机座刚度降低使定子振动增加。 定子电磁振动的特征: ①振动频率为电源频率的2倍,F=2f ②切断电源,电磁振动立即消失 ③振动可以在定子机座上和轴承上测得 ④振动强度与机座刚度的负载有关 二、气隙静态偏心引起的电磁力 电机定子中心与转子轴心不重合时,定、转子之间气隙将会出现偏心现象,偏心固定在一个位置上,在一般情况下,气隙偏心误差不超过气隙平均值的上下10%是允许的,过大的偏心值产生很大的单边磁拉力。 气隙静态偏心产生的原因: ①电磁振动频率是电源频率的2倍F=2f。 ②振动随偏心值的增大在增加,随负载增大而增加。 ③断电后电磁振动消失。 ④静态偏心产生的电磁振动与定子异常产生的电磁振动非常相似,难以区别。 三、气隙动态偏心引起电磁振动 偏心的位置对定子是不固定的,对转子是固定的,因此偏心的位置随转子而转动。 气隙动态偏心产生的原因: ①转子的转轴弯曲 ②转子铁心与转轴或轴承不同心。 ③转子铁心不圆 气隙动态偏心产生电磁振动的特征; ①转子旋转频率和定子磁场旋转频率的电磁振动都可能出现。 ②电磁振动的振幅随时间变化而脉动(振),脉动的频率为2sf,周期为1/2sf 当电动机负载增加,S加大,其脉动节拍加快。 ③电动机往往发生与脉动节拍相一致的电磁噪声。 ④断电后,电磁振动消失,电磁噪声消失。 四、转子绕组故障引起的电磁振动 笼形电机笼条断裂,绕组异步电机由于转子回路电气不平衡都将产生不平衡电磁力。 转子绕组故障产生的原因: ①笼条铸造质量不良,产生断条和高阻。

透平膨胀机转子系统振动故障分析与处理

收稿日期:2011- 08-19作者简介:白晖宇,男,上海交通大学机械系统与振动国家重点实验室博士。 透平膨胀机转子系统振动故障分析与处理 白晖宇1 ,朱 瑞 2,3 ,孟 光4,李鸿光 5 (1、2、4、5.上海交通大学机械系统与振动国家重点实验室,上海市闵行区东川路800号200240; 3.上海电力学院能源与环境工程学院,上海市杨浦区平凉路2103号200090) 摘要:透平膨胀机是低温法空分设备及气体分离和液化装置中的重要部机之一,在实际生产中,膨胀机处于高速运转中,最常见也是最易发生的故障大多是由转子—轴承系统振动所引起。分析叶轮轴向窜动、转子不平衡振动、轴承自激振动、喘振和液击现象等振动故障的原因,提出改进措施,以保证空分设备稳定和安全运行。 关键词:空分设备;透平膨胀机;转子;振动中图分类号:TB653文献标识码:A Analysis and treatment of vibration trouble of turbine expander rotor system Bai Huiyu 1,Zhu Rui 2,3 ,Meng Guang 4,Li Hongguang 5 (1,2,4,5.Shanghai Jiaotong University Mechanical System and Vibration Key State Lab ,800#Dongchuan Road ,Minhang District ,Shanghai 200240,P.R.China ;3.Institute of Energy and Environment Engineering ,Shanghai University of Electric Power ,2103#Pingliang Road ,Yangpu District ,Shanghai 200090,P.R.China ) Abstract :The turbine expander is one of important devices of the low-temperature process air separation plant and the gas separation and liquefaction equipment.During actual production ,the expander runs at high speed ,and thus the most common and most liable trouble is usually resulted from vibration of rotor-bearing system.The causes for axial displacement of impeller ,unbalanced vibration of rotor ,self-excited vibration of bearing ,surge ,and liquid hammer are analyzed ,and for safe and steady run of air separation plant the improving measures are proposed. Keywords :Air separation plant ;Turbine expander ;Rotor ;Vibration 引言 透平膨胀机是低温法空分设备及气体分离和液 化装置的重要部机之一。膨胀机的变革、发展和进步必然会促使低温法空分设备、气体分离和液化装置等成套装置的变革、发展和进步。透平膨胀机利用工质流动时速度的变化来进行能量转化,因此也称为速度型膨胀机,有时也称为涡轮膨胀机。它具有高转速、低温、压差大等工作特点,优点是体积 小、重量轻、效率高、噪声小、节能省电、操作方 便、运转时间长、无油污染等,因而得到广泛应用。 [1-3] 增压透平膨胀机主要由膨胀机通流部分、增压 部分和机体三部分组成。膨胀机通流部分是获得低温的主要部件,包括蜗壳、喷嘴、膨胀轮和扩压器;增压部分是透平膨胀机功率的消耗元件;机体起着传递、支撑和隔热的作用。由膨胀轮、增压轮和主轴等旋转零件组成的部件称为转子。膨胀轮和

汽轮机转子运行故障分析及诊断

汽轮机转子运行故障分析及诊断 发表时间:2017-05-12T09:03:43.900Z 来源:《防护工程》2017年第1期作者:李钢 [导读] 在目前工业生产中,汽轮机作为重要的旋转设备,是工业生产中必不可少的机械设备。 辽宁大唐国际阜新煤制天然气有限责任公司辽宁阜新 123000 摘要:在目前工业生产中,汽轮机作为重要的旋转设备,是工业生产中必不可少的机械设备。其中汽轮机转子是汽轮机的主要零部件,使得汽轮机转子安全性、可靠性、适用性以及可维修性特点受到人们的关注,促使关于汽轮机转子运行故障机理与诊断技术也在飞速发展。在汽轮机转子运行过程中,发生的振动信号是判断汽轮机工作状态的重要指标,更是影响机械设备运行安全与操作人员人身安全的因素,因此对汽轮机转子运行故障分析及诊断的研究工作迫在眉睫。 关键词:汽轮机转子;运行故障;诊断 1概述 汽轮机组的振动是机组运行必须要监测的一个非常重要的参数,因为当机组振动超过规定的范围时,将会引起设备的损坏,甚至造成严重后果:(1)使转动部件损坏。当机组振动过大时,会使叶片、围带、叶轮等各部件的应力增加,从而产生很大的交变应力,导致疲劳而损坏;(2)使机组动、静部分发生磨损;(3)使各链接部件松动;(4)直接造成运行事故。当机组振动过大,同时又发生在高压缸端侧时,有可能危及保安器误动作而发生停机事故。因此,机组运行中要严格检测其振动值。 近几年来,大庆油田宏伟热机组频繁出现振动大引起的停机事件,这就使得我们不得不引起对汽轮机组振动故障的重视。 2汽轮机转子运行故障类型 在汽轮机转子运行过程中,振动信号发生是转子发生故障的前提表现,对此应在汽轮机转子运行过程中,对其振动信号进行准确测量,为了更好地判断汽轮机转子运行故障类型,对其进行分类阐述。振动频率:基频振动、倍频振动、整分数基频振动、比例基频振动、超低基频振动以及超高基频振动;振幅方位:横向振动(水平振动和垂直振动)、轴向振动与扭转振动;振动原因:转子平衡度较差、轴系不对称和零件松动、摩擦(密封件摩擦、转子和定子之间产生的摩擦)、轴承损坏、轴承内部油膜涡动与油膜振动、动力和水力的影响、轴承刚度较差、电气等;振动部位:转子和轴系振动(轴颈、轴纹叶片)、轴承(油膜滑动和波动)、壳体振动与轴承座振动、基础振动(基座、工作台、支架)、其他结构振动(阀门、阀杆、管道等)。 3结合实际案例对汽轮机转子运行故障及诊断进行分析 某市炼油厂,利用延迟焦化装置中采用汽轮机,其具体的汽轮机厂商为杭州汽轮机厂,类型为凝气反动式汽轮机,现采用ENTEK振动检测系统对汽轮机运行状态进行诊断与监测。其详细的汽轮机转子运行故障诊流程为:对汽轮机转子振动信号信息进行检测和采集、分析与处理、传输、推理以及控制等。因为振动信号检测是判断汽轮机转子运行故障的主要依据,振动信号分析与处理工作是判断汽轮机转子故障的关键环节,传输与推理是整体运行故障判断的核心,控制是汽轮机转子运行故障诊断的最终目标。同时在汽轮机转子内部安装电涡流传感器,将线缆与控制箱相连,控制箱自带的振动监测模块可完成高速度数字振动信号的传输与处理工作,再使用以太网将信号处理结果上传至上位机中,从而完成汽轮机转子运行故障的诊断工作。 3.1对ENTEK振动检测系统的利用 在该炼油厂使用的ENTEK振动检测系统性能参数如下所示:型号:NK25/NK28/NK12.5;额定功率:1178KW、常规功率:1071KW;额定转速:12176RPM、常规转速:9132RPM-12785RPM;最大进汽压力:1.2MPa(a)、常规进汽压力:1MPa(a);常规排汽压力:0.012MPa(a);最大进汽温度300摄氏度、常规进汽温度230摄氏度。 在ENTEK振动检测系统中,对于汽轮机转子运行故障的诊断,产生的信号数据直接送至XM模块中,经过以太网的传输,将信号传输至emonitor系统软件内部,在该软件界面中,实现传感器与信号数据的相接,使其成为振幅型数据,从而可知由emonitor系统软件连接的采集器、监测模块以及保护监测表共同组成具有共享能力的数据库,其共享数据库内自主携带故障诊断工作,能够依据实际需求,对汽轮机转子的运行故障类别进行准确定位,对此,操作人员以手动输送的方式,完成故障诊断报告的生成工作。 在此系统故障诊断环节中,由汽轮机转子振动值超出限定值而产生的故障,则需对汽轮机进行停机检修,同时加大对转子运行状态的监测工作,并对转子的转速进行妥善控制。汽轮机转子在初始运行期间,振动值均以达到限定值范围,但是由于难以在生产中对汽轮机进行检修。因此,采用转子减速与状态控制的方式,实现对汽轮机转子运行故障的诊断工作。 3.2报警和故障诊断 在对汽轮机转子振动信号数据分析过程中,应利用事先采集的信号设置与之相对应的报警界定,进而才能在振动值高出正常限定值时,及时对汽轮机转子的运行故障类型进行识别和分类,其详细的振动值高超报警流程为:输定报警值界限——输入采集数据限号——汽轮机转子运行——发生警报。首先,对转子平衡度较差故障诊断:水平与垂直倍频不平衡值均大于等于1、单倍频振动效果较为明显;其次,转子摩擦故障诊断:4倍频占据1倍频20%以上、5倍频与0.5倍频占据1倍频10%以上、2倍频占据1倍频50%以上、3倍频占据1倍频20%以上以及1倍频在界定值以上;最后,油膜涡动与油膜振动故障诊断:0.5倍频、1倍频其幅值均在2.0以上。 3.3摩擦振动故障排查措施分析 通常情况下,汽轮机转子运行的环境比较复杂,它在运行过程中不仅会受到高速旋转和气流冲击作用力,同时高温、潮湿以及高压的工作环境会对转子造成一定的破坏,影响机组转子的安全稳定运行。因此,应当对转子日常的保养和检查工作给予高度的重视,一旦检查过程中发现故障,维修技术人员应当立即采取解决措施,对产生摩擦振动的部件进行必要维修,而如果机组部件维修价值不高应当进行更换,以消除摩擦振动对汽轮机运行造成的不利影响。 3.4汽轮机积盐原因及处理措施 对于正常运行的汽轮机,其饱和蒸汽实际含盐量会与过热蒸汽含盐量相同或饱和蒸汽含盐量略高。若汽轮机的过热蒸汽含盐量比过饱和蒸汽含盐量高时,则说明汽轮机内部积盐现象已很严重,此时应及时停机,全面清洗汽轮机。在清洗时我们常用到两种处理方法手工除垢与喷砂除垢。如果用这两种除垢法不能完全去除汽轮机内部污垢,可用柠檬酸溶液配合软水来进一步清洗汽轮机。

旋转机械不平衡故障的诊断

《机械故障诊断技术》 读书报告 院系:机械与汽车工程学院 专业:机械设计制造及自动化 班级:13机制(升) 姓名:林媛 学号:1302224001 指导老师:王平 学年:2014-2015学年第一学期

旋转机械不平衡故障的诊断案例综述 The Summary of Unbalanced Rotating Machinery Fault Diagnosis Cases 【摘要】: 在理想的情况下回转体旋转与不旋转时,对轴承产生的压力是一样的,这样的回转体是平衡的回转体。但在实际应用中的各种回转体,由于材质不均匀 或毛坯缺陷、加工及装配中产生的误差,甚至设计时就具有非对称的几何形状 等多种因素,造成了回转体的不平衡,即使静态平衡了,回转体在旋转时,其 上每个微小质点产生的离心惯性力不能相互抵消,从而产生了不平衡的离心力,就造成了动态的不平衡。转子不平衡是由于转子部件质量偏心或转子部件出现 缺损造成的故障,它是旋转机械最常见的故障。据统计,旋转机械约有70%的 故障与转子不平衡有关。因此,对不平衡故障的研究与诊断也最有实际意义。 【关键词】: 旋转机械转子不平衡故障诊断 【Abstract】: In the ideal case, no matter how the rotary body is rotating or not rotating, the pressure on the bearings is the same, so that the rotary body is balanced. However, b ecause material is unevenblank has some defect and machining and assembling gene rate errors,even designing has been asymmetrical geometry and so on,the various rot ary body of the practical application become to be unbalanced. Even under Static bal ance.When the rotary body is rotating,centrifugal force of inertia generated on each t

转子大不平衡振动的研究

收稿日期:2009201207  作者简介:施维新(19372),男,江苏南通人,高级工程师,从事汽轮发电机组振动研究。 转子大不平衡振动的研究 施维新 (西安热工研究院,西安710032) 摘要:为使轴系破坏事故调查、寻找转子大不平衡振动摆脱困境,历经近20年的研究,查明了引起轴系破坏的转子 各种大不平衡振动原因及形成机理。在阐述研究结果的同时,分析了国内5起破坏原因最为复杂的毁机事故。研究结果表明,造成轴系破坏的大不平衡振动原因有,转动部件飞脱、转轴碰磨、转轴刚度降低、扭矩冲击,其中转动部件飞脱引起的瞬态响应和扭矩冲击产生的大不平衡振动造成毁机事故机理,在国内外尚属首次提出。对查明轴系破坏真正原因和提高机组振动故障诊断水平有较大的帮助。关键词:转子大不平衡振动;瞬态响应;扭矩冲击;毁机分类号:TK268. + 1 文献标识码:A 文章编号:100125884(2010)0120051206 Large I m balance in the Rotor V ibration Research SH IW ei 2xin (Xi ’an Ther mos Power Research I nstitute,Xi ’an 710032,China ) Abstract:I n order t o under m ine the shaft da mage accident and t o find the large i m balance,after 20years of research,it can be identified that the da mage f or mati on mechanis m of the vibrati on caused by the r ot or shaft of large i m balances .I n this paper,study of the big i m balance in the r ot or vibrati on reas on is showed,the five maj or domestic shaft da mage accidents is als o analyzed,as a result,identify the real cause of the shaft damage .The research shows that the reas on of the shaft da mage due t o large i m balance is caused by s p inning off parts,shaft rub,shaft stiffness reduce and the i m pact of t orque .It is first ti m e t o point out that the da mage f or mati on mechanis m of the transient res ponse caused by s p inning off parts and vibrati on of large i m balances p r oduced by the i m pact of t orque in domestic .This research is more hel pful t o identify the real reas on of the shaft da mage accident and t o i m p r ove the vibrati on fault diagnosis . Key words:l arge i m ba l ance i n the rotor v i bra ti on;tran si en t respon se;torque i m pact ;shaft damage 0 前 言 转子不平衡不仅是运行机组振动最主要的激振力,而且 也是引起轴系破坏的主要原因,据2000年国内发生的毁机事故统计,由转子大不平衡振动引起的占80%,但是每次毁机事故调查为寻找转子大不平衡振动原因,程度不同地都会陷入困境。例如,分宜电厂6号机、秦岭电厂5号机、大同电厂2号机、新乡电厂2号机、阜新电厂8号机,这些机组轴系破坏真正原因,是后来通过转子大不平衡振动的研究才得到查明。 为了摆脱这种困境,在90年代初,将转子大不平衡振动,作为国家重点课题进行了研究。从国外关于毁机事故研究情况来看,除对转子材质、运行工况关注外,开始对轴系破坏主要原因,转子大不平衡振动进行了研究[1]。 经过5年的研究基本查明了,国内外在上世纪90年代初以前,历次发生的轴系破坏时转子产生大不平衡振动的原因及机理,但是对于严重的非同期合闸和轴系破坏起始断口发生之后,轴系破坏后继过程中,转轴快速断裂的大不平衡振动的原因还是不明。 1999年8月,阜新8号机发生了严重的轴系破坏事故, 轴系破坏时间历程仅为3s ~5s,轴系中各转轴断口是典型的由转子大不平衡振动引起,但为寻找转子大不平衡振源又一次陷入了困境。 在这起破坏事故中,由事故追忆装置和DCS 系统,精确地记录了事故过程中机组运行主要参数,时间历程精确到“秒”,为研究这起毁机事故真正原因提供了充分证据。研究结果表明,造成这起毁机事故的转子大不平衡振动,是由扭矩冲击引起,这是迄今为止还未见有人提出过的新的大不平衡振动,由此也就解开了长期以来轴系破坏后继过程中造成转轴快速断裂的大不平衡振动从何而来的迷团。 本文是针对目前国内外轴系破坏主要原因,转子大不平衡振动的产生及形成机理,做了近20年的研究。现将研究结果简述如下,为分析毁机事故寻找转子大不平衡振动原因及机理,可以摆脱困境,并为提高运行机组振动故障诊断水平提供帮助。 1 转动部件飞脱 转动部件损坏飞脱,是转子产生不平衡振动直观可见故 第52卷第1期 汽 轮 机 技 术Vol .52No .1 2010年2月 T URB I N E TECHNOLOGY Feb .2010

转子系统的故障机理及其诊断技术

转子系统的故障机理及其诊断技术 1 概述 旋转机械的种类繁多,有发电机、汽轮机、离心式压缩机、水泵、通风机以及电动机等等,这类机械的主要功能都是由旋转动作完成。旋转肌械故障是指机械的功能失常,即其动态性能恶化,不符合技术要求。例如机械运行失稳,机械发生异常振动和噪声,机械的工作转速、输出功率发生变化,以及介质的温度、压力、流量异常等。机械发生故障的原因不同,所产生的信息也不一样,根据机械特有的信息,可以对机械故障进行诊断。但足机械发生故障的原因往往不是单?一的因素,特别是对于机械系统中的旋转机械故障,往往是多种故障耦合结果,所发对旋转机械进行故障诊断,必须进行全面的综合分析研究。 旋转机械的主要功能是由旋转动作写成的,转子是最主要的部件。旋转机械发生故障诊断的觅要特征是机器伴有异常的振动和噪声,其振动信号从幅值域、频率域和时间域实时地反映了机器故障信息。因此,了解与掌握转子系统在故障状态卜?的振动机理,对于监测机器的运行状态和提高故障诊断的准确度具有重要的理论意义和实际的工程价值。 2转子系统的故障机理2.1转子不平衡故障机理 转子不平衡包括转子的质量偏心及转子部件出现缺损。 转子质量偏心是由于转子的制造误差、装配谋差、材质不均匀等原因造成的,称此为初始不平衡。转子部件缺损是指转子在运行中由于腐蚀、磨损、介质结垢以及转子受疲劳力的作用,使转子的零部件(如叶轮、叶片等)局部损坏、脱落,碎块飞出等,造成的新的转子不平衡。 图2.1转子力学模型 设转子的质承为M,偏心质最为m,偏心距为e,如果转子的质心到两轴承连心线的垂直距离不为零,具有挠度为a,如图2.1所示。由于偏心质量m和偏心距e的存在,当转子转动时将产生离心力、离心力矩或两者兼而有之。离心力的大小与偏心质量m、偏心距e及旋转速度有关,即F = mecu2.众所周知,交变的力(方向、大小均周期性变化)会引起振动,这就是不平衡引起振动的原因。转子转动一周,离心力方向改变一次,因此不平衡振动的频率与转速相一致。 实际工程中,由于轴的各个方向上刚度有差别,特别是由于支承刚度各向不同,因而转子对不平衡的响应在x,y方向不仅振幅不同,而且相位也不是90度,因此转子的轴心轨迹不足圆而是椭圆,表2.1是转子发生不平衡时的故障特征。 表2.1转子不平衡的振动特征 ~待征频率振动稳定性振动方向相位特征轴心轨迹进给方向矢量区域

电机常见的振动故障原因(正式版)

文件编号:TP-AR-L5574 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 电机常见的振动故障原 因(正式版)

电机常见的振动故障原因(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 一般来讲,电机振动是由于转动部分不平衡、机械故障或电磁方面的原因引起的。 一、转动部分不平衡主要是转子、耦合器、联轴器、传动轮(制动轮)不平衡引起的。 处理方法是先找好转子平衡。如果有大型传动轮、制动轮、耦合器、联轴器,应与转子分开单独找好平衡。再有就是转动部分机械松动造成的。如:铁心支架松动,斜键、销钉失效松动,转子绑扎不紧都会造成转动部分不平衡。 二、机械部分故障主要有以下几点: 1、联动部分轴系不对中,中心线不重合,定心

不正确。这种故障产生的原因主要是安装过程中,对中不良、安装不当造成的。还有一种情况,就是有的联动部分中心线在冷态时是重合一致的,但运行一段时间后由于转子支点,基础等变形,中心线又被破坏,因而产生振动。 2、与电机相联的齿轮、联轴器有毛病。这种故障主要表现为齿轮咬合不良,轮齿磨损严重,对轮润滑不良,联轴器歪斜、错位,齿式联轴器齿形、齿距不对、间隙过大或磨损严重,都会造成一定的振动。 3、电机本身结构的缺陷和安装的问题。这种故障主要表现为轴颈椭圆,转轴弯曲,轴与轴瓦间间隙过大或过小,轴承座、基础板、地基的某部分乃至整个电机安装基础的刚度不够,电机与基础板之间固定不牢,底脚螺栓松动,轴承座与基础板之间松动等。而轴与轴瓦间间隙过大或过小不仅可以造成振动还可

转子材料缺陷引起的振动问题分析

汽轮发电机组转子材质缺陷引起的振动问题分析 0前言 锻件毛坯质量对于保证加工后的汽轮发电机组转子安全稳定运行极为重要。当制造厂出厂的转子材料存在明显的组织不均匀或残余内应力过大时,机组运行中就会发生转子热弯曲或永久弯曲,造成振动增大及波动,甚至振动超过限值引 起机组跳机,对机组的安全运行构成严重威胁。 目前国内生产的大型汽轮发电机组转子的锻件毛胚大多从日本、意大利等工业发达国家进口,还有一些由国内一重和二重提供。随着国内外合金钢冶炼技术和锻压技术的提高,总体而言这些进口及国内生产的转子锻件毛坯质量较好,但由于锻件设备生产周期短、质量控制不严等原因,仍有极个别的转子锻件毛坯材质出现质量问题。如果汽轮发电机组制造厂转子毛坯进货把关出现漏洞,或没有进行相关的退应力热处理试验时,这些问题锻件毛坯加工后的转子在运行中会出现不稳定振动问题,有时在现场无法处理,严重影响机组安全稳定运行,给发电用户造成很大的经济损失。 本文将着重对转子锻件毛坯缺陷引起的振动机理、振动特点进行阐述,并给出近年在国内电厂发生的三个与转子材质缺陷有关的振动分析和处理实例予以说明。 1材质缺陷转子引起的振动机理和特点 1.1转轴材质不均匀 转子材质不均匀是指转子锻件内部存在气隙、夹杂、鼓泡等因素形成转子径向纤维组织不均匀,使材料的物理特性存在各相异性。这类问题通常是在锻件生产和热处理过程中的缺陷引起的。在机组运行中当材质各项异性的转子受热以后,转轴将会产生不均匀的轴向或径向膨胀,引起转子出现热弯曲,即热态下转子的质心较冷态时发生变化,引起不平衡振动。 该不平衡振动的大小与转子的受热状态有直接的关系。由于汽轮机工作环境温度较高,如果转子材质存在组织不均匀缺陷,相比发电机转子,则弯曲量可能更大,对振动的影响也更显著。 这类材质缺陷问题引发的振动特点通常与大多数热弯曲转子呈现的一样,冷态(空载)振动不大,带负荷后,当转子温度达到一定数值后,振动开始爬升,严重时超过限值引发跳机。振动高位时立即停机惰走通过转子一阶临界转速时的振动较冷态启动时增大许多,低转速时转子晃度也比冷态启动时增大许多。当机组降负荷或解列后,转子温度降低,振动一般也随之减小,当然振动的较小与降负荷过程有一定的时间滞后。 1.2转轴残余内应力过大 转子毛坯在锻压过程中在其内部会产生很大的残余应力。通常情况下毛坯锻件应堆放在室外较长一段时间进行自然时效来释放内应力,或在恒温炉中进行去除应力的热处理试验,保证锻件内的残余内应力降至合理的水平,然后再对其进行机械加工制成转子成品。如果锻件毛坯的时效时间不够,或未进行去除应力的热处理试验及去除应力热处理试验工艺不当时,则该锻件毛坯加工后的转子残留的内应力在机组运行过程中将不断释放,造成转子发生永久弯曲进而引发强烈振动。

相关主题
文本预览
相关文档 最新文档